Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2’s catalytic activity is necessary for silencing. The only known role for Sir2’s catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity bindi...
Saved in:
Published in | Genetics (Austin) Vol. 204; no. 1; pp. 177 - 190 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Genetics Society of America
01.09.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1943-2631 0016-6731 1943-2631 |
DOI | 10.1534/genetics.116.190835 |
Cover
Abstract | As the only catalytic member of the Sir-protein gene-silencing complex, Sir2’s catalytic activity is necessary for silencing. The only known role for Sir2’s catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2’s H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2’s catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2’s catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3. Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2’s function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing. |
---|---|
AbstractList | As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3. Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing. As the only catalytic member of the Sir-protein gene-silencing complex, Sir2 ’s catalytic activity is necessary for silencing. The only known role for Sir2 ’s catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2 ’s H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2 ’s catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3 , restored Sir-protein-based silencing in the absence of Sir2 ’s catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 . Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2 ’s function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3 , indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing. As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing. |
Author | Rine, Jasper Dodson, Anne E Thurtle-Schmidt, Deborah M |
Author_xml | – sequence: 1 givenname: Deborah M surname: Thurtle-Schmidt fullname: Thurtle-Schmidt, Deborah M – sequence: 2 givenname: Anne E surname: Dodson fullname: Dodson, Anne E – sequence: 3 givenname: Jasper surname: Rine fullname: Rine, Jasper |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27489001$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1rGzEQhkVIyfcvCJSFXnKxq5G00u6lEPLlQKDQNmehlWdthbWUSnKC_33kOAlJDqUnDTPPvIxm3n2y7YNHQo6BjqHm4vsMPWZn0xhAjqGlDa-3yB60go-Y5LD9Lt4l-yndUUplWzc7ZJcp0bSUwh7pJi7loludo7GYV4NJmKpHl-fVqc9mFnypO1v9CkPJO1_9NtbOTQyLlS0JixEfXHIGqwlmjMHOS8nkAl6GuA6CPyRfejMkPHp5D8jt5cWfs8no5ufV9dnpzcgKBnkkJK1Z22FneTdVwnQWuGRIZa9Uy4Sqe8qmAIZOJRjR8w6pkr1AVdMerez5Afmx0b1fdgucWvQ5mkHfR7cwcaWDcfpjxbu5noUHXVNgvBFF4ORFIIa_S0xZL1yyOAzGY1gmDQ0rkyiq-H-goBrRKICCfvuE3oVl9GUTa0HKZPnmWvDr--Hfpn69VAH4BrAxpBSxf0OA6rUf9KsfdPGD3vihdLWfuqzLz1cpG3DDP3ufAMjNv4k |
CODEN | GENTAE |
CitedBy_id | crossref_primary_10_1002_cpmb_103 crossref_primary_10_1093_g3journal_jkab309 crossref_primary_10_3390_antiox10040572 crossref_primary_10_26508_lsa_202101126 crossref_primary_10_1007_s00294_020_01114_7 crossref_primary_10_7554_eLife_22451 crossref_primary_10_1534_genetics_119_302395 crossref_primary_10_1534_genetics_118_301853 crossref_primary_10_1126_science_aaj2103 crossref_primary_10_1016_j_jbc_2022_102410 crossref_primary_10_15252_embj_2019101564 |
Cites_doi | 10.1093/genetics/111.4.745 10.1074/jbc.M809790200 10.1101/gad.907201 10.1038/nature05649 10.1038/312247a0 10.1093/emboj/cdf468 10.1093/nar/gkp233 10.1101/gad.1979710 10.1126/science.291.5504.646 10.1091/mbc.e02-03-0175 10.1128/EC.00143-10 10.1128/MCB.26.3.1098-1108.2006 10.1038/35001622 10.1007/BF00330984 10.1038/384589a0 10.1073/pnas.87.16.6286 10.1074/jbc.M102176200 10.1093/emboj/18.9.2522 10.1016/j.molcel.2007.07.021 10.1126/science.8266072 10.1016/j.cell.2005.10.023 10.1016/j.cell.2012.02.064 10.1016/j.cub.2015.03.004 10.1371/journal.pbio.1000550 10.1093/genetics/144.4.1343 10.7554/eLife.05007 10.1074/mcp.M112.017251 10.1073/pnas.0909169107 10.1074/jbc.M005730200 10.1016/j.cell.2004.05.023 10.1016/j.molcel.2009.01.009 10.1128/MCB.22.12.4167-4180.2002 10.1534/genetics.115.175711 10.1093/bioinformatics/btp324 10.1073/pnas.1300126110 10.1534/g3.115.018515 10.1016/j.molcel.2011.03.007 10.1002/yea.1250 10.1016/j.molcel.2014.04.032 10.1101/gad.9.23.2888 10.1126/science.291.5504.650 10.1128/MCB.16.8.4281 10.1038/ng1017 10.1126/science.8209257 10.1016/j.molcel.2008.06.020 10.1016/j.cub.2013.06.050 10.1101/gad.929001 10.1073/pnas.250422697 10.1016/S0092-8674(00)80215-9 10.1093/bib/bbs017 10.1128/MCB.20.19.7051-7058.2000 10.1128/MCB.00614-09 10.1074/jbc.M205670200 10.1016/j.ab.2008.08.033 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U 10.1091/mbc.e06-08-0669 10.1091/mbc.e08-05-0524 10.1038/nsmb956 10.1128/MCB.17.8.4852 10.1093/genetics/129.3.685 10.1016/j.cub.2011.11.042 10.1186/1756-8935-2-18 10.1128/MCB.16.8.4215 10.1073/pnas.110148297 10.1128/MCB.18.9.5392 10.1128/MCB.21.6.2057-2069.2001 10.1073/pnas.93.25.14503 10.1016/j.cell.2005.03.035 10.1126/science.1210915 10.1093/genetics/152.3.921 10.1101/gad.230532.113 10.1074/jbc.M200671200 10.1016/S1097-2765(01)00301-X 10.1128/MCB.24.11.4769-4780.2004 10.1016/S0092-8674(02)00746-8 10.1146/annurev.biochem.74.082803.133500 10.1016/j.cub.2006.06.023 10.1038/ng993 10.1093/bioinformatics/btr330 10.1534/genetics.110.123232 10.1016/0378-1119(87)90131-4 10.1073/pnas.0503525102 10.1146/annurev.biochem.72.121801.161547 10.1016/j.molcel.2011.03.006 10.1101/gad.7.7a.1133 10.1016/0092-8674(90)90141-Z 10.1016/j.cell.2009.01.033 10.1101/gad.873601 10.1038/emboj.2011.170 10.1128/MCB.19.12.7944 10.1186/1741-7007-5-38 |
ContentType | Journal Article |
Copyright | Copyright © 2016 by the Genetics Society of America. Copyright Genetics Society of America Sep 2016 Copyright © 2016 by the Genetics Society of America 2016 |
Copyright_xml | – notice: Copyright © 2016 by the Genetics Society of America. – notice: Copyright Genetics Society of America Sep 2016 – notice: Copyright © 2016 by the Genetics Society of America 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 4T- 4U- 7QP 7SS 7TK 7TM 7X2 7X7 7XB 88A 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. LK8 M0K M0R M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1534/genetics.116.190835 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc University Readers Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection Consumer Health Database (Alumni Edition) ProQuest Health & Medical Complete (Alumni) Biological Sciences Agricultural Science Database Consumer Health Database Health & Medical Collection (Alumni) Medical Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database (ProQuest) Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Docstoc Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) University Readers Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database CrossRef MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1943-2631 |
EndPage | 190 |
ExternalDocumentID | PMC5012384 4184874391 27489001 10_1534_genetics_116_190835 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM007232 – fundername: NCRR NIH HHS grantid: S10 RR027303 – fundername: NIGMS NIH HHS grantid: R01 GM031105 – fundername: NCRR NIH HHS grantid: S10 RR029668 |
GroupedDBID | --- --Z -DZ -~X 0R~ 18M 29H 2KS 2WC 34G 36B 39C 53G 5GY 5RE 5VS 5WD 7X2 7X7 85S 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AABZA AACZT AAPXW AARHZ AAUAY AAVAP AAYXX ABDFA ABDNZ ABEJV ABGNP ABMNT ABNHQ ABPPZ ABPTD ABUWG ABVGC ABXVV ABXZS ACFRR ACGOD ACIHN ACIPB ACNCT ACPRK ACUTJ ADBBV ADGKP ADIPN ADQBN ADVEK AEAQA AENEX AEUYN AFFZL AFGWE AFKRA AFRAH AGORE AHMBA AHMMS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AOIJS APEBS ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BES BEYMZ BHPHI BKNYI BKOMP BPHCQ BTFSW BVXVI CCPQU CITATION CJ0 CS3 D0L DIK DU5 DWQXO E3Z EBD EBS EJD EMB EMOBN F5P F8P F9R FD6 FLUFQ FOEOM FRP FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HYE INIJC JXSIZ K9- KBUDW KOP KQ8 KSI KSN L7B LK8 M0K M0R M1P M2O M2P M7P MV1 NOMLY OBOKY OCZFY OJZSN OK1 OMK OPAEJ OWPYF PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X QF4 QM4 QM9 QN7 QO4 R0Z RHI ROX RXW SJN SV3 TAE TGS TH9 TN5 TR2 TWZ U5U UHB UKHRP UKR UNMZH UPT W8F WH7 WOQ XSW YHG YKV YSK YZZ ZCA ~KM .-4 .55 .GJ 186 9M8 AAUTI ABJNI ACPVT ACVCV ACYGS ADXHL AFFNX AGMDO AHGBF AJBYB APJGH C1A CGR CUY CVF ECM EIF H~9 MVM NHB NPM OHT WHG X7M XOL YYP YYQ ZGI ZXP ZY4 3V. 4T- 4U- 7QP 7SS 7TK 7TM 7XB 88A 8FD 8FK FR3 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO ESTFP 5PM |
ID | FETCH-LOGICAL-c421t-460529bebc3bd74abc1362e06f7792475f02d11a0d61a4f3be076f4e750fec6f3 |
IEDL.DBID | 8C1 |
ISSN | 1943-2631 0016-6731 |
IngestDate | Thu Aug 21 14:27:07 EDT 2025 Sat Sep 27 19:53:37 EDT 2025 Thu Sep 04 18:29:10 EDT 2025 Fri Jul 25 11:11:31 EDT 2025 Mon Jul 21 05:47:20 EDT 2025 Tue Aug 05 12:08:26 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Hst3 Sir2 H4K16 Rpd3 heterochromatin |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model Copyright © 2016 by the Genetics Society of America. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-460529bebc3bd74abc1362e06f7792475f02d11a0d61a4f3be076f4e750fec6f3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9747-9585 0000-0001-7719-0496 |
PMID | 27489001 |
PQID | 1820261363 |
PQPubID | 47453 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012384 proquest_miscellaneous_1827927073 proquest_miscellaneous_1817848711 proquest_journals_1820261363 pubmed_primary_27489001 crossref_primary_10_1534_genetics_116_190835 crossref_citationtrail_10_1534_genetics_116_190835 |
PublicationCentury | 2000 |
PublicationDate | 2016-09-01 |
PublicationDateYYYYMMDD | 2016-09-01 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Genetics (Austin) |
PublicationTitleAlternate | Genetics |
PublicationYear | 2016 |
Publisher | Genetics Society of America |
Publisher_xml | – name: Genetics Society of America |
References | Landry (2023030909021787800_) 2000; 97 Lin (2023030909021787800_) 2009; 136 Tong (2023030909021787800_) 2009; 284 Birkeland (2023030909021787800_) 2010; 186 Boeke (2023030909021787800_) 1984; 197 Loney (2023030909021787800_) 2009; 2 Rusché (2023030909021787800_) 2001; 15 Jackson (2023030909021787800_) 2002; 277 Thurtle (2023030909021787800_) 2014; 28 Hoppe (2023030909021787800_) 2002; 22 Ravindra (2023030909021787800_) 1999; 19 Imai (2023030909021787800_) 2000; 403 Kelly (2023030909021787800_) 2000; 20 Kimura (2023030909021787800_) 2002; 32 Zhang (2023030909021787800_) 2002; 21 Danecek (2023030909021787800_) 2011; 27 Steakley (2023030909021787800_) 2015; 5 Li (2023030909021787800_) 2001; 291 Martino (2023030909021787800_) 2009; 33 Lee (2023030909021787800_) 2008; 383 Yang (2023030909021787800_) 2006; 17 Zill (2023030909021787800_) 2010; 8 Chou (2023030909021787800_) 2008; 31 Chen (2023030909021787800_) 2012; 22 Takahashi (2023030909021787800_) 2011; 42 Chi (2023030909021787800_) 1996; 16 Carrozza (2023030909021787800_) 2005; 123 Tanner (2023030909021787800_) 2000; 97 Wang (2023030909021787800_) 2015; 25 Sun (2023030909021787800_) 1999; 152 Hou (2023030909021787800_) 2005; 102 Meijsing (2023030909021787800_) 2001; 15 Fourel (2023030909021787800_) 1999; 18 Brachmann (2023030909021787800_) 1995; 9 Lechner (2023030909021787800_) 2000; 275 Robyr (2023030909021787800_) 2002; 109 Kim (2023030909021787800_) 2010; 24 Gottschling (2023030909021787800_) 1990; 63 Suter (2023030909021787800_) 2007; 5 Klar (2023030909021787800_) 1985; 111 Wang (2023030909021787800_) 2013; 110 Kaluarachchi Duffy (2023030909021787800_) 2012; 149 Sauve (2023030909021787800_) 2006; 75 Yang (2023030909021787800_) 2008; 19 Rusché (2023030909021787800_) 2002; 13 Weiss (2023030909021787800_) 1998; 18 Rossmann (2023030909021787800_) 2011; 42 Wang (2023030909021787800_) 1993; 13 Jauert (2023030909021787800_) 2005; 22 Rundlett (2023030909021787800_) 1996; 93 Laherty (2023030909021787800_) 1997; 89 Miller (2023030909021787800_) 1984; 312 Ozaydin (2023030909021787800_) 2010; 30 Park (2023030909021787800_) 1990; 10 Laurenson (2023030909021787800_) 1991; 129 Iizuka (2023030909021787800_) 2006; 26 Kasten (2023030909021787800_) 1997; 17 Kirchmaier (2023030909021787800_) 2001; 291 Celic (2023030909021787800_) 2006; 16 Renauld (2023030909021787800_) 1993; 7 Suka (2023030909021787800_) 2001; 8 De Rubertis (2023030909021787800_) 1996; 384 Liou (2023030909021787800_) 2005; 121 Loewith (2023030909021787800_) 2001; 276 Kurdistani (2023030909021787800_) 2004; 117 Yoshida (2023030909021787800_) 2014; 54 Ehrentraut (2023030909021787800_) 2010; 107 Loo (2023030909021787800_) 1994; 264 Kasten (2023030909021787800_) 1996; 16 Henriksen (2023030909021787800_) 2012; 11 Mallory (2023030909021787800_) 2010; 9 Li (2023030909021787800_) 2009; 25 Downey (2023030909021787800_) 2013; 23 Bitterman (2023030909021787800_) 2002; 277 Rusché (2023030909021787800_) 2003; 72 Xu (2023030909021787800_) 2007; 27 Ellahi (2023030909021787800_) 2015; 200 Osada (2023030909021787800_) 2001; 15 Suka (2023030909021787800_) 2002; 32 2023030909021787800 Zhou (2023030909021787800_) 2009; 37 Armache (2023030909021787800_) 2011; 334 Washburn (2023030909021787800_) 2001; 21 Bell (2023030909021787800_) 1993; 262 Collins (2023030909021787800_) 2007; 446 Hoffman (2023030909021787800_) 1987; 57 Longtine (2023030909021787800_) 1998; 14 Aparicio (2023030909021787800_) 2004; 24 Johnson (2023030909021787800_) 1990; 87 Kustatscher (2023030909021787800_) 2005; 12 Oppikofer (2023030909021787800_) 2011; 30 Thorvaldsdóttir (2023030909021787800_) 2013; 14 Vannier (2023030909021787800_) 1996; 144 Dodson (2023030909021787800_) 2015; 4 11316790 - Genes Dev. 2001 Apr 15;15(8):955-67 23973296 - Curr Biol. 2013 Sep 9;23(17):1638-48 19372273 - Nucleic Acids Res. 2009 Jun;37(11):3699-713 10388812 - Genetics. 1999 Jul;152(3):921-32 15965484 - Nat Struct Mol Biol. 2005 Jul;12(7):624-5 3905506 - Genetics. 1985 Dec;111(4):745-58 19954519 - Epigenetics Chromatin. 2009 Dec 02;2(1):18 18265358 - Curr Protoc Mol Biol. 2005 Feb;Chapter 21:Unit 21.3 10811920 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5807-11 11306585 - J Biol Chem. 2001 Jun 29;276(26):24068-74 12134062 - Mol Biol Cell. 2002 Jul;13(7):2207-22 10982821 - Mol Cell Biol. 2000 Oct;20(19):7051-8 11106374 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14178-82 6390211 - Nature. 1984 Nov 15-21;312(5991):247-51 16428461 - Mol Cell Biol. 2006 Feb;26(3):1098-108 9717241 - Yeast. 1998 Jul;14(10):953-61 19948882 - Mol Cell Biol. 2010 Feb;30(3):626-39 25891403 - Curr Biol. 2015 May 4;25(9):1215-20 11024051 - J Biol Chem. 2000 Dec 29;275(52):40961-6 11731480 - Genes Dev. 2001 Dec 1;15(23):3169-82 24856221 - Mol Cell. 2014 May 22;54(4):691-7 22865919 - Mol Cell Proteomics. 2012 Nov;11(11):1510-22 2225075 - Cell. 1990 Nov 16;63(4):751-62 22096199 - Science. 2011 Nov 18;334(6058):977-82 11158677 - Science. 2001 Jan 26;291(5504):650-3 21666601 - EMBO J. 2011 Jun 10;30(13):2610-21 1752414 - Genetics. 1991 Nov;129(3):685-96 8962081 - Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14503-8 9234741 - Mol Cell Biol. 1997 Aug;17(8):4852-8 2117703 - Mol Cell Biol. 1990 Sep;10(9):4932-4 19251690 - J Biol Chem. 2009 Apr 24;284(17):11256-66 22517427 - Brief Bioinform. 2013 Mar;14(2):178-92 22177115 - Curr Biol. 2012 Jan 10;22(1):56-63 20133733 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5522-7 8754829 - Mol Cell Biol. 1996 Aug;16(8):4281-94 16286007 - Cell. 2005 Nov 18;123(4):581-92 10228166 - EMBO J. 1999 May 4;18(9):2522-37 20971827 - Eukaryot Cell. 2010 Dec;9(12):1835-44 16756498 - Annu Rev Biochem. 2006;75:435-65 12024030 - Mol Cell Biol. 2002 Jun;22(12):4167-80 8441414 - Mol Cell Biol. 1993 Mar;13(3):1805-14 9150134 - Cell. 1997 May 2;89(3):349-56 12410229 - Nat Genet. 2002 Nov;32(3):370-7 22579291 - Cell. 2012 May 11;149(4):936-48 11545749 - Mol Cell. 2001 Aug;8(2):473-9 15143171 - Mol Cell Biol. 2004 Jun;24(11):4769-80 17889663 - Mol Cell. 2007 Sep 21;27(6):890-900 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 7498786 - Genes Dev. 1995 Dec 1;9(23):2888-902 8319906 - Genes Dev. 1993 Jul;7(7A):1133-45 17314980 - Nature. 2007 Apr 12;446(7137):806-10 12198162 - EMBO J. 2002 Sep 2;21(17):4600-11 11238941 - Mol Cell Biol. 2001 Mar;21(6):2057-69 9710623 - Mol Cell Biol. 1998 Sep;18(9):5392-403 8955276 - Nature. 1996 Dec 12;384(6609):589-91 25581000 - Elife. 2015 Jan 12;4:e05007 11158676 - Science. 2001 Jan 26;291(5504):646-50 18799617 - Mol Biol Cell. 2008 Nov;19(11):4993-5005 15907466 - Cell. 2005 May 20;121(4):515-27 15186774 - Cell. 2004 Jun 11;117(6):721-33 6394957 - Mol Gen Genet. 1984;197(2):345-6 15932939 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8489-94 16034826 - Yeast. 2005 Jun;22(8):653-7 11731479 - Genes Dev. 2001 Dec 1;15(23):3155-68 11893743 - J Biol Chem. 2002 May 24;277(21):18535-44 2201024 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6286-90 21653522 - Bioinformatics. 2011 Aug 1;27(15):2156-8 17880717 - BMC Biol. 2007 Sep 19;5:38 12379856 - Nat Genet. 2002 Nov;32(3):378-83 18775325 - Mol Cell. 2008 Sep 5;31(5):650-9 16815704 - Curr Biol. 2006 Jul 11;16(13):1280-9 17035629 - Mol Biol Cell. 2006 Dec;17(12):5287-97 23650358 - Proc Natl Acad Sci U S A. 2013 May 21;110(21):8495-500 24493645 - Genes Dev. 2014 Feb 1;28(3):245-58 8754821 - Mol Cell Biol. 1996 Aug;16(8):4215-21 8209257 - Science. 1994 Jun 17;264(5166):1768-71 20923977 - Genetics. 2010 Dec;186(4):1127-37 12676793 - Annu Rev Biochem. 2003;72:481-516 10693811 - Nature. 2000 Feb 17;403(6771):795-800 19303850 - Cell. 2009 Mar 20;136(6):1073-84 18812159 - Anal Biochem. 2008 Dec 15;383(2):174-9 26082137 - G3 (Bethesda). 2015 Jun 16;5(8):1751-63 25823445 - Genetics. 2015 Jun;200(2):505-21 15542839 - Mol Cell Biol. 2004 Dec;24(23):10300-12 12086601 - Cell. 2002 May 17;109(4):437-46 21151344 - PLoS Biol. 2010 Nov 30;8(11):e1000550 21474074 - Mol Cell. 2011 Apr 8;42(1):127-36 8978024 - Genetics. 1996 Dec;144(4):1343-53 12297502 - J Biol Chem. 2002 Nov 22;277(47):45099-107 10567520 - Mol Cell Biol. 1999 Dec;19(12):7944-50 19217406 - Mol Cell. 2009 Feb 13;33(3):323-34 21159817 - Genes Dev. 2010 Dec 15;24(24):2766-71 3319781 - Gene. 1987;57(2-3):267-72 21474073 - Mol Cell. 2011 Apr 8;42(1):118-26 8266072 - Science. 1993 Dec 17;262(5141):1844-9 |
References_xml | – volume: 111 start-page: 745 year: 1985 ident: 2023030909021787800_ article-title: SUM1, an apparent positive regulator of the cryptic mating-type loci in Saccharomyces cerevisiae. publication-title: Genetics doi: 10.1093/genetics/111.4.745 – volume: 284 start-page: 11256 issue: 17 year: 2009 ident: 2023030909021787800_ article-title: Hydrolase regulates NAD+ metabolites and modulates cellular redox. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M809790200 – volume: 15 start-page: 3155 issue: 23 year: 2001 ident: 2023030909021787800_ article-title: The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. publication-title: Genes Dev. doi: 10.1101/gad.907201 – volume: 446 start-page: 806 issue: 7137 year: 2007 ident: 2023030909021787800_ article-title: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. publication-title: Nature doi: 10.1038/nature05649 – volume: 312 start-page: 247 issue: 5991 year: 1984 ident: 2023030909021787800_ article-title: Role of DNA replication in the repression of silent mating type loci in yeast. publication-title: Nature doi: 10.1038/312247a0 – volume: 21 start-page: 4600 issue: 17 year: 2002 ident: 2023030909021787800_ article-title: Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing. publication-title: EMBO J. doi: 10.1093/emboj/cdf468 – volume: 37 start-page: 3699 issue: 11 year: 2009 ident: 2023030909021787800_ article-title: Histone deacetylase Rpd3 antagonizes Sir2-dependent silent chromatin propagation. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp233 – volume: 24 start-page: 2766 issue: 24 year: 2010 ident: 2023030909021787800_ article-title: Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2. publication-title: Genes Dev. doi: 10.1101/gad.1979710 – volume: 291 start-page: 646 issue: 5504 year: 2001 ident: 2023030909021787800_ article-title: DNA replication-independent silencing in S. cerevisiae. publication-title: Science doi: 10.1126/science.291.5504.646 – volume: 13 start-page: 2207 issue: 7 year: 2002 ident: 2023030909021787800_ article-title: Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e02-03-0175 – volume: 9 start-page: 1835 issue: 12 year: 2010 ident: 2023030909021787800_ article-title: The Sin3p PAH domains provide separate functions repressing meiotic gene transcription in Saccharomyces cerevisiae. publication-title: Eukaryot. Cell doi: 10.1128/EC.00143-10 – volume: 26 start-page: 1098 issue: 3 year: 2006 ident: 2023030909021787800_ article-title: Regulation of replication licensing by acetyltransferase Hbo1. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.26.3.1098-1108.2006 – volume: 403 start-page: 795 issue: 6771 year: 2000 ident: 2023030909021787800_ article-title: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. publication-title: Nature doi: 10.1038/35001622 – volume: 197 start-page: 345 issue: 2 year: 1984 ident: 2023030909021787800_ article-title: A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. publication-title: Mol. Gen. Genet. doi: 10.1007/BF00330984 – volume: 384 start-page: 589 issue: 6609 year: 1996 ident: 2023030909021787800_ article-title: The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast. publication-title: Nature doi: 10.1038/384589a0 – volume: 87 start-page: 6286 issue: 16 year: 1990 ident: 2023030909021787800_ article-title: Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.87.16.6286 – volume: 276 start-page: 24068 issue: 26 year: 2001 ident: 2023030909021787800_ article-title: Pho23 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M102176200 – volume: 18 start-page: 2522 issue: 9 year: 1999 ident: 2023030909021787800_ article-title: Cohabitation of insulators and silencing elements in yeast subtelomeric regions. publication-title: EMBO J. doi: 10.1093/emboj/18.9.2522 – volume: 27 start-page: 890 issue: 6 year: 2007 ident: 2023030909021787800_ article-title: Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.07.021 – volume: 262 start-page: 1844 issue: 5141 year: 1993 ident: 2023030909021787800_ article-title: Yeast origin recognition complex functions in transcription silencing and DNA replication. publication-title: Science doi: 10.1126/science.8266072 – volume: 123 start-page: 581 issue: 4 year: 2005 ident: 2023030909021787800_ article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. publication-title: Cell doi: 10.1016/j.cell.2005.10.023 – volume: 149 start-page: 936 issue: 4 year: 2012 ident: 2023030909021787800_ article-title: Exploring the yeast acetylome using functional genomics. publication-title: Cell doi: 10.1016/j.cell.2012.02.064 – volume: 25 start-page: 1215 issue: 9 year: 2015 ident: 2023030909021787800_ article-title: Nucleosome avidities and transcriptional silencing in yeast. publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.03.004 – volume: 8 start-page: e1000550 issue: 11 year: 2010 ident: 2023030909021787800_ article-title: Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly. publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000550 – volume: 144 start-page: 1343 year: 1996 ident: 2023030909021787800_ article-title: Evidence that the transcriptional regulators SIN3 and RPD3, and a novel gene (SDS3) with similar functions, are involved in transcriptional silencing in S. cerevisiae. publication-title: Genetics doi: 10.1093/genetics/144.4.1343 – volume: 4 start-page: e05007 year: 2015 ident: 2023030909021787800_ article-title: Heritable capture of heterochromatin dynamics in Saccharomyces cerevisiae. publication-title: eLife doi: 10.7554/eLife.05007 – volume: 11 start-page: 1510 issue: 11 year: 2012 ident: 2023030909021787800_ article-title: Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M112.017251 – volume: 107 start-page: 5522 issue: 12 year: 2010 ident: 2023030909021787800_ article-title: Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0909169107 – volume: 275 start-page: 40961 issue: 52 year: 2000 ident: 2023030909021787800_ article-title: Sds3 (suppressor of defective silencing 3) is an integral component of the yeast Sin3[middle dot]Rpd3 histone deacetylase complex and is required for histone deacetylase activity. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M005730200 – volume: 117 start-page: 721 issue: 6 year: 2004 ident: 2023030909021787800_ article-title: Mapping global histone acetylation patterns to gene expression. publication-title: Cell doi: 10.1016/j.cell.2004.05.023 – volume: 33 start-page: 323 issue: 3 year: 2009 ident: 2023030909021787800_ article-title: Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro. publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.009 – volume: 22 start-page: 4167 issue: 12 year: 2002 ident: 2023030909021787800_ article-title: Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.22.12.4167-4180.2002 – volume: 200 start-page: 505 year: 2015 ident: 2023030909021787800_ article-title: The chromatin and transcriptional landscape of native Saccharomyces cerevisiae telomeres and subtelomeric domains. publication-title: Genetics doi: 10.1534/genetics.115.175711 – volume: 25 start-page: 1754 issue: 14 year: 2009 ident: 2023030909021787800_ article-title: Fast and accurate short read alignment with Burrows-Wheeler transform. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp324 – volume: 110 start-page: 8495 issue: 21 year: 2013 ident: 2023030909021787800_ article-title: Heterochromatin protein Sir3 induces contacts between the amino terminus of histone H4 and nucleosomal DNA. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1300126110 – volume: 5 start-page: 1751 issue: 8 year: 2015 ident: 2023030909021787800_ article-title: On the mechanism of gene silencing in Saccharomyces cerevisiae. publication-title: G3 (Bethesda) doi: 10.1534/g3.115.018515 – volume: 42 start-page: 127 issue: 1 year: 2011 ident: 2023030909021787800_ article-title: A common telomeric gene silencing assay is affected by nucleotide metabolism. publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.03.007 – volume: 22 start-page: 653 issue: 8 year: 2005 ident: 2023030909021787800_ article-title: A novel yeast genomic DNA library on a geneticin-resistance vector. publication-title: Yeast doi: 10.1002/yea.1250 – volume: 13 start-page: 1805 issue: 3 year: 1993 ident: 2023030909021787800_ article-title: Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. publication-title: Mol. Cell. Biol. – volume: 54 start-page: 691 issue: 4 year: 2014 ident: 2023030909021787800_ article-title: The histone deacetylases sir2 and rpd3 act on ribosomal DNA to control the replication program in budding yeast. publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.04.032 – volume: 9 start-page: 2888 issue: 23 year: 1995 ident: 2023030909021787800_ article-title: The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. publication-title: Genes Dev. doi: 10.1101/gad.9.23.2888 – volume: 291 start-page: 650 issue: 5504 year: 2001 ident: 2023030909021787800_ article-title: Establishment of transcriptional silencing in the absence of DNA replication. publication-title: Science doi: 10.1126/science.291.5504.650 – volume: 16 start-page: 4281 issue: 8 year: 1996 ident: 2023030909021787800_ article-title: SUM1-1, a dominant suppressor of SIR mutations in Saccharomyces cerevisiae, increases transcriptional silencing at telomeres and HM mating-type loci and decreases chromosome stability. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.8.4281 – volume: 32 start-page: 378 issue: 3 year: 2002 ident: 2023030909021787800_ article-title: Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. publication-title: Nat. Genet. doi: 10.1038/ng1017 – volume: 264 start-page: 1768 issue: 5166 year: 1994 ident: 2023030909021787800_ article-title: Silencers and domains of generalized repression. publication-title: Science doi: 10.1126/science.8209257 – volume: 31 start-page: 650 issue: 5 year: 2008 ident: 2023030909021787800_ article-title: Bypassing Sir2 and O-acetyl-ADP-ribose in transcriptional silencing. publication-title: Mol. Cell doi: 10.1016/j.molcel.2008.06.020 – volume: 23 start-page: 1638 issue: 17 year: 2013 ident: 2023030909021787800_ article-title: Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1. publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.06.050 – volume: 15 start-page: 3169 issue: 23 year: 2001 ident: 2023030909021787800_ article-title: The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae. publication-title: Genes Dev. doi: 10.1101/gad.929001 – volume: 97 start-page: 14178 issue: 26 year: 2000 ident: 2023030909021787800_ article-title: Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.250422697 – volume: 89 start-page: 349 issue: 3 year: 1997 ident: 2023030909021787800_ article-title: Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. publication-title: Cell doi: 10.1016/S0092-8674(00)80215-9 – volume: 14 start-page: 178 issue: 2 year: 2013 ident: 2023030909021787800_ article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. publication-title: Brief. Bioinform. doi: 10.1093/bib/bbs017 – volume: 20 start-page: 7051 issue: 19 year: 2000 ident: 2023030909021787800_ article-title: Type B histone acetyltransferase Hat1p participates in telomeric silencing. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.20.19.7051-7058.2000 – volume: 30 start-page: 626 issue: 3 year: 2010 ident: 2023030909021787800_ article-title: Expanded roles of the origin recognition complex in the architecture and function of silenced chromatin in Saccharomyces cerevisiae. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00614-09 – volume: 277 start-page: 45099 issue: 47 year: 2002 ident: 2023030909021787800_ article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M205670200 – volume: 383 start-page: 174 issue: 2 year: 2008 ident: 2023030909021787800_ article-title: Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose. publication-title: Anal. Biochem. doi: 10.1016/j.ab.2008.08.033 – volume: 14 start-page: 953 issue: 10 year: 1998 ident: 2023030909021787800_ article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. publication-title: Yeast doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U – volume: 10 start-page: 4932 issue: 9 year: 1990 ident: 2023030909021787800_ article-title: Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML. publication-title: Mol. Cell. Biol. – volume: 17 start-page: 5287 issue: 12 year: 2006 ident: 2023030909021787800_ article-title: Bypassing the catalytic activity of SIR2 for SIR protein spreading in Saccharomyces cerevisiae. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e06-08-0669 – volume: 19 start-page: 4993 issue: 11 year: 2008 ident: 2023030909021787800_ article-title: HST3/HST4-dependent deacetylation of lysine 56 of histone H3 in silent chromatin. publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e08-05-0524 – ident: 2023030909021787800_ – volume: 12 start-page: 624 issue: 7 year: 2005 ident: 2023030909021787800_ article-title: Splicing regulates NAD metabolite binding to histone macroH2A. publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb956 – volume: 17 start-page: 4852 issue: 8 year: 1997 ident: 2023030909021787800_ article-title: A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.17.8.4852 – volume: 129 start-page: 685 year: 1991 ident: 2023030909021787800_ article-title: SUM1-1: a suppressor of silencing defects in Saccharomyces cerevisiae. publication-title: Genetics doi: 10.1093/genetics/129.3.685 – volume: 22 start-page: 56 issue: 1 year: 2012 ident: 2023030909021787800_ article-title: The Rpd3 core complex is a chromatin stabilization module. publication-title: Curr. Biol. doi: 10.1016/j.cub.2011.11.042 – volume: 2 start-page: 18 issue: 1 year: 2009 ident: 2023030909021787800_ article-title: Repressive and non-repressive chromatin at native telomeres in Saccharomyces cerevisiae. publication-title: Epigenetics Chromatin doi: 10.1186/1756-8935-2-18 – volume: 16 start-page: 4215 issue: 8 year: 1996 ident: 2023030909021787800_ article-title: SIN3-dependent transcriptional repression by interaction with the Mad1 DNA-binding protein. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.16.8.4215 – volume: 97 start-page: 5807 issue: 11 year: 2000 ident: 2023030909021787800_ article-title: The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.110148297 – volume: 18 start-page: 5392 issue: 9 year: 1998 ident: 2023030909021787800_ article-title: High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLalpha. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.9.5392 – volume: 21 start-page: 2057 issue: 6 year: 2001 ident: 2023030909021787800_ article-title: Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.21.6.2057-2069.2001 – volume: 93 start-page: 14503 issue: 25 year: 1996 ident: 2023030909021787800_ article-title: HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.25.14503 – volume: 121 start-page: 515 issue: 4 year: 2005 ident: 2023030909021787800_ article-title: Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation. publication-title: Cell doi: 10.1016/j.cell.2005.03.035 – volume: 334 start-page: 977 issue: 6058 year: 2011 ident: 2023030909021787800_ article-title: Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution. publication-title: Science doi: 10.1126/science.1210915 – volume: 152 start-page: 921 year: 1999 ident: 2023030909021787800_ article-title: A general requirement for the Sin3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae. publication-title: Genetics doi: 10.1093/genetics/152.3.921 – volume: 28 start-page: 245 issue: 3 year: 2014 ident: 2023030909021787800_ article-title: The molecular topography of silenced chromatin in Saccharomyces cerevisiae. publication-title: Genes Dev. doi: 10.1101/gad.230532.113 – volume: 277 start-page: 18535 issue: 21 year: 2002 ident: 2023030909021787800_ article-title: Structural identification of 2′- and 3′-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases. publication-title: J. Biol. Chem. doi: 10.1074/jbc.M200671200 – volume: 8 start-page: 473 issue: 2 year: 2001 ident: 2023030909021787800_ article-title: Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00301-X – volume: 24 start-page: 4769 issue: 11 year: 2004 ident: 2023030909021787800_ article-title: The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.11.4769-4780.2004 – volume: 109 start-page: 437 issue: 4 year: 2002 ident: 2023030909021787800_ article-title: Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases. publication-title: Cell doi: 10.1016/S0092-8674(02)00746-8 – volume: 75 start-page: 435 year: 2006 ident: 2023030909021787800_ article-title: The biochemistry of sirtuins. publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.74.082803.133500 – volume: 16 start-page: 1280 issue: 13 year: 2006 ident: 2023030909021787800_ article-title: The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.06.023 – volume: 32 start-page: 370 issue: 3 year: 2002 ident: 2023030909021787800_ article-title: Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. publication-title: Nat. Genet. doi: 10.1038/ng993 – volume: 27 start-page: 2156 issue: 15 year: 2011 ident: 2023030909021787800_ article-title: The variant call format and VCFtools. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr330 – volume: 186 start-page: 1127 year: 2010 ident: 2023030909021787800_ article-title: Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole-genome sequencing. publication-title: Genetics doi: 10.1534/genetics.110.123232 – volume: 57 start-page: 267 issue: 2-3 year: 1987 ident: 2023030909021787800_ article-title: A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. publication-title: Gene doi: 10.1016/0378-1119(87)90131-4 – volume: 102 start-page: 8489 issue: 24 year: 2005 ident: 2023030909021787800_ article-title: Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing. publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0503525102 – volume: 72 start-page: 481 year: 2003 ident: 2023030909021787800_ article-title: The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.72.121801.161547 – volume: 42 start-page: 118 issue: 1 year: 2011 ident: 2023030909021787800_ article-title: Dot1 and histone H3K79 methylation in natural telomeric and HM silencing. publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.03.006 – volume: 7 start-page: 1133 year: 1993 ident: 2023030909021787800_ article-title: Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. publication-title: Genes Dev. doi: 10.1101/gad.7.7a.1133 – volume: 63 start-page: 751 issue: 4 year: 1990 ident: 2023030909021787800_ article-title: Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. publication-title: Cell doi: 10.1016/0092-8674(90)90141-Z – volume: 136 start-page: 1073 issue: 6 year: 2009 ident: 2023030909021787800_ article-title: Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. publication-title: Cell doi: 10.1016/j.cell.2009.01.033 – volume: 15 start-page: 955 issue: 8 year: 2001 ident: 2023030909021787800_ article-title: Conversion of a gene-specific repressor to a regional silencer. publication-title: Genes Dev. doi: 10.1101/gad.873601 – volume: 30 start-page: 2610 issue: 13 year: 2011 ident: 2023030909021787800_ article-title: A dual role of H4K16 acetylation in the establishment of yeast silent chromatin. publication-title: EMBO J. doi: 10.1038/emboj.2011.170 – volume: 19 start-page: 7944 issue: 12 year: 1999 ident: 2023030909021787800_ article-title: High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating-type locus HMRa. publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.12.7944 – volume: 5 start-page: 38 year: 2007 ident: 2023030909021787800_ article-title: Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p. publication-title: BMC Biol. doi: 10.1186/1741-7007-5-38 – reference: 24856221 - Mol Cell. 2014 May 22;54(4):691-7 – reference: 21159817 - Genes Dev. 2010 Dec 15;24(24):2766-71 – reference: 23973296 - Curr Biol. 2013 Sep 9;23(17):1638-48 – reference: 11158676 - Science. 2001 Jan 26;291(5504):646-50 – reference: 12379856 - Nat Genet. 2002 Nov;32(3):378-83 – reference: 20923977 - Genetics. 2010 Dec;186(4):1127-37 – reference: 16286007 - Cell. 2005 Nov 18;123(4):581-92 – reference: 11731480 - Genes Dev. 2001 Dec 1;15(23):3169-82 – reference: 25891403 - Curr Biol. 2015 May 4;25(9):1215-20 – reference: 21653522 - Bioinformatics. 2011 Aug 1;27(15):2156-8 – reference: 17314980 - Nature. 2007 Apr 12;446(7137):806-10 – reference: 12024030 - Mol Cell Biol. 2002 Jun;22(12):4167-80 – reference: 19372273 - Nucleic Acids Res. 2009 Jun;37(11):3699-713 – reference: 11238941 - Mol Cell Biol. 2001 Mar;21(6):2057-69 – reference: 20971827 - Eukaryot Cell. 2010 Dec;9(12):1835-44 – reference: 11306585 - J Biol Chem. 2001 Jun 29;276(26):24068-74 – reference: 15965484 - Nat Struct Mol Biol. 2005 Jul;12(7):624-5 – reference: 21666601 - EMBO J. 2011 Jun 10;30(13):2610-21 – reference: 10693811 - Nature. 2000 Feb 17;403(6771):795-800 – reference: 11545749 - Mol Cell. 2001 Aug;8(2):473-9 – reference: 8754829 - Mol Cell Biol. 1996 Aug;16(8):4281-94 – reference: 20133733 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5522-7 – reference: 12297502 - J Biol Chem. 2002 Nov 22;277(47):45099-107 – reference: 12410229 - Nat Genet. 2002 Nov;32(3):370-7 – reference: 16756498 - Annu Rev Biochem. 2006;75:435-65 – reference: 19948882 - Mol Cell Biol. 2010 Feb;30(3):626-39 – reference: 11893743 - J Biol Chem. 2002 May 24;277(21):18535-44 – reference: 25581000 - Elife. 2015 Jan 12;4:e05007 – reference: 8754821 - Mol Cell Biol. 1996 Aug;16(8):4215-21 – reference: 15186774 - Cell. 2004 Jun 11;117(6):721-33 – reference: 22177115 - Curr Biol. 2012 Jan 10;22(1):56-63 – reference: 11158677 - Science. 2001 Jan 26;291(5504):650-3 – reference: 16428461 - Mol Cell Biol. 2006 Feb;26(3):1098-108 – reference: 21474074 - Mol Cell. 2011 Apr 8;42(1):127-36 – reference: 19303850 - Cell. 2009 Mar 20;136(6):1073-84 – reference: 22579291 - Cell. 2012 May 11;149(4):936-48 – reference: 18799617 - Mol Biol Cell. 2008 Nov;19(11):4993-5005 – reference: 16815704 - Curr Biol. 2006 Jul 11;16(13):1280-9 – reference: 10982821 - Mol Cell Biol. 2000 Oct;20(19):7051-8 – reference: 12086601 - Cell. 2002 May 17;109(4):437-46 – reference: 10388812 - Genetics. 1999 Jul;152(3):921-32 – reference: 11106374 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14178-82 – reference: 11731479 - Genes Dev. 2001 Dec 1;15(23):3155-68 – reference: 3905506 - Genetics. 1985 Dec;111(4):745-58 – reference: 1752414 - Genetics. 1991 Nov;129(3):685-96 – reference: 8266072 - Science. 1993 Dec 17;262(5141):1844-9 – reference: 15542839 - Mol Cell Biol. 2004 Dec;24(23):10300-12 – reference: 16034826 - Yeast. 2005 Jun;22(8):653-7 – reference: 2117703 - Mol Cell Biol. 1990 Sep;10(9):4932-4 – reference: 25823445 - Genetics. 2015 Jun;200(2):505-21 – reference: 22865919 - Mol Cell Proteomics. 2012 Nov;11(11):1510-22 – reference: 26082137 - G3 (Bethesda). 2015 Jun 16;5(8):1751-63 – reference: 9150134 - Cell. 1997 May 2;89(3):349-56 – reference: 21151344 - PLoS Biol. 2010 Nov 30;8(11):e1000550 – reference: 15143171 - Mol Cell Biol. 2004 Jun;24(11):4769-80 – reference: 21474073 - Mol Cell. 2011 Apr 8;42(1):118-26 – reference: 12198162 - EMBO J. 2002 Sep 2;21(17):4600-11 – reference: 18265358 - Curr Protoc Mol Biol. 2005 Feb;Chapter 21:Unit 21.3 – reference: 10567520 - Mol Cell Biol. 1999 Dec;19(12):7944-50 – reference: 15907466 - Cell. 2005 May 20;121(4):515-27 – reference: 18812159 - Anal Biochem. 2008 Dec 15;383(2):174-9 – reference: 19251690 - J Biol Chem. 2009 Apr 24;284(17):11256-66 – reference: 17889663 - Mol Cell. 2007 Sep 21;27(6):890-900 – reference: 9710623 - Mol Cell Biol. 1998 Sep;18(9):5392-403 – reference: 15932939 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8489-94 – reference: 10811920 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5807-11 – reference: 22096199 - Science. 2011 Nov 18;334(6058):977-82 – reference: 19217406 - Mol Cell. 2009 Feb 13;33(3):323-34 – reference: 24493645 - Genes Dev. 2014 Feb 1;28(3):245-58 – reference: 8209257 - Science. 1994 Jun 17;264(5166):1768-71 – reference: 18775325 - Mol Cell. 2008 Sep 5;31(5):650-9 – reference: 3319781 - Gene. 1987;57(2-3):267-72 – reference: 7498786 - Genes Dev. 1995 Dec 1;9(23):2888-902 – reference: 10228166 - EMBO J. 1999 May 4;18(9):2522-37 – reference: 11316790 - Genes Dev. 2001 Apr 15;15(8):955-67 – reference: 11024051 - J Biol Chem. 2000 Dec 29;275(52):40961-6 – reference: 6394957 - Mol Gen Genet. 1984;197(2):345-6 – reference: 8955276 - Nature. 1996 Dec 12;384(6609):589-91 – reference: 8978024 - Genetics. 1996 Dec;144(4):1343-53 – reference: 8441414 - Mol Cell Biol. 1993 Mar;13(3):1805-14 – reference: 8962081 - Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14503-8 – reference: 6390211 - Nature. 1984 Nov 15-21;312(5991):247-51 – reference: 8319906 - Genes Dev. 1993 Jul;7(7A):1133-45 – reference: 9234741 - Mol Cell Biol. 1997 Aug;17(8):4852-8 – reference: 12676793 - Annu Rev Biochem. 2003;72:481-516 – reference: 17035629 - Mol Biol Cell. 2006 Dec;17(12):5287-97 – reference: 19954519 - Epigenetics Chromatin. 2009 Dec 02;2(1):18 – reference: 23650358 - Proc Natl Acad Sci U S A. 2013 May 21;110(21):8495-500 – reference: 2201024 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6286-90 – reference: 22517427 - Brief Bioinform. 2013 Mar;14(2):178-92 – reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60 – reference: 17880717 - BMC Biol. 2007 Sep 19;5:38 – reference: 9717241 - Yeast. 1998 Jul;14(10):953-61 – reference: 2225075 - Cell. 1990 Nov 16;63(4):751-62 – reference: 12134062 - Mol Biol Cell. 2002 Jul;13(7):2207-22 |
SSID | ssj0006958 |
Score | 2.2726054 |
Snippet | As the only catalytic member of the Sir-protein gene-silencing complex, Sir2’s catalytic activity is necessary for silencing. The only known role for Sir2’s... As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's... As the only catalytic member of the Sir-protein gene-silencing complex, Sir2 ’s catalytic activity is necessary for silencing. The only known role for Sir2 ’s... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 177 |
SubjectTerms | Acetylation Chromatin Chromatin Assembly and Disassembly - genetics Colleges & universities Gene Silencing Genes Heterochromatin Heterochromatin - genetics Heterochromatin - metabolism Histone Deacetylases - genetics Histone Deacetylases - metabolism Histones - metabolism Hypotheses Investigations Mutation Proteins Roles Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism Sirtuin 2 - genetics Sirtuin 2 - metabolism Transcription, Genetic Yeast |
Title | Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27489001 https://www.proquest.com/docview/1820261363 https://www.proquest.com/docview/1817848711 https://www.proquest.com/docview/1827927073 https://pubmed.ncbi.nlm.nih.gov/PMC5012384 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9si-CL-N1oe6zgo7HZ7GY3eZK29jgEi1QL9xb2K_SgzVXv-nD_vTPJJrYK9zwTWGYm87E78xuAD7k01poqpM5on8ogQ2oKL9LSWYnVAA9VRsPJ387V7FJ-nRfzeOG2im2Vg0_sHLVfOrojPyKgccz2hRKfb3-ltDWKXlfjCo0d2KMZUCq-ytO_LR6qKqInVtTiziPqUCHkEWqHhgRX6DLUJwyKZbfv7V5k-i_d_Ldr8l4Ymj6DpzF_ZMe9wp_Do9C-gMf9RsnNS7Ad7Ecb2Bd0dWG9wdw4rBhdtrLjlh6g2g6YmV0QjhNbtOyHcTR4tbzZoMNgruv6XS1MYDPqk1m6KySh8lo2HaYcX8Hl9Ozn6SyNaxRSJ3O-TunlM69ssE5Yr1E3DqWYh0w1WmP1pYsmyz3nJvOKG9kIGzKtGhkwl2iCU414DbstnnwfmBWh4o7LhhslrRCV994WGOOs5410eQL5IMLaRYxxWnVxXVOtgXKvB7lj5aHqXu4JfBw_uu0hNrazHwy6qeP_huTROhJ4P5LxT6HnD9OG5R3xcF1ifcb5Nh4CVNTo9xJ406t7PFNOQD1oSwnoB4YwMhBS90NKu7jqELtJRKKUb7cf_R08yclUuw62A9hd_74Lh5jyrO0EdvRcTzrrnsDeydn594s_ni4Geg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC5iRPQiPuNo1Bb05pjpx_TsHESCcdmYx0ET2NvYryEL2hvdDbJ_yt9o1bxIFPaWc_c0TXU9p6q-AngtlLHWlCF1pvCpCiqkJvcyHTmrMBrgocyoOfnoWE9O1edpPt2AP30vDJVV9jqxUdR-7ugf-Q4BjaO3L7X8cP4zpalRlF3tR2i0bHEQVr8xZFu839_D930jxPjTycdJ2k0VSJ0SfJlSIlCUNlgnrS_wqg4PFSHTdVFgMFLkdSY85ybzmhtVSxsw1K9VQNNaB6driefegJuKUowoP8V0CPAyXead5tdUUs87lKNcqh3kBmpKXKCK0u_QCI-a-XKXLOF_7u2_VZqXzN74Htzt_FW22zLYfdgI8QHcaidYrh6CbWBGYmB7qFrDcoW-eFgw-rnLdiMlvGIDBM2-EG4Um0X21Thq9Jr_WKGCYq6pMl7MTGATqsuZuzNcQmaJbNx3VT6C02sh8GPYjHjzJ8CsDCV3XNXcaGWlLL33Nkebaj2vlRMJiJ6EleswzWm0xveKYhuke9XTHSMdXbV0T-Dt8NF5C-mxfvt2_zZVJ9-4PHBjAq-GZZRMSreYGOYXtIcXI4wHOV-3hwAcC9SzCWy1zz3cSRAwEPJSAsUVRhg2EDL41ZU4O2sQwolEcqSerr_6S7g9OTk6rA73jw-ewR1BbNtUz23D5vLXRXiO7tbSvmh4nMG36xaqv46hQQ0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VViAuiDeGAosEN0y8D-_GhwoV0iilEFWFSr2ZfVmJ1DqlSYXyF_lVzDhrqwUpt553ba9nZ-exM_MNIW-5NNaaIqTOaJ_KIENqci_SvrMSvAEWigyLk7-N1ehYfjnJTzbIn7YWBtMqW5nYCGo_c3hH3kOgcbD2hRK9KqZFHA6GH89_pdhBCiOtbTsNE9ss-J0GbiwWeRyE5W9w5-Y7-wPY-3ecD_d-fB6lseNA6iRnixSDhLywwTphvYbfcPBBHjJVaQ2Ois6rjHvGTOYVM7ISNmRaVTKA2q2CU5WA994iWxq0PjiCW5_2xodHnV5QRR71gsKEexYxkHIhe8ArWLI4BwGmPoCK7jfd567oyf-M339zOK8oxeF9ci9as3R3xX4PyEaoH5Lbq_6Wy0fENiAkdaADELxhsQRLPcwpXv3S3RrDYXUDE02PEFWKTmv6Hag6MRezsyWIL-qaHOT51AQ6wqydmZvAELBSTYdtzeVjcnwjJH5CNmtY-TNCrQgFc0xWzChphSi89zYHjWs9q6TjCeEtCUsXEc-x8cZpiZ4P0L1s6Q5-kCpXdE_I--6h8xXgx_rp2-3elPH0w3DHqwl50w3DucVgjKnD7BLnMN0Hb5GxdXMQ3lGDFE7I09V2d2viCBsEvJQQfY0RugmIG359pJ5OGvxwJJHoy-frl_6a3IEDVn7dHx-8IHc5cm2TWrdNNhcXl-El2GIL-yoyOSU_b_pc_QVNkEvo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histone+Deacetylases+with+Antagonistic+Roles+in+Saccharomyces+cerevisiae+Heterochromatin+Formation&rft.jtitle=Genetics+%28Austin%29&rft.au=Thurtle-Schmidt%2C+Deborah+M&rft.au=Dodson%2C+Anne+E&rft.au=Rine%2C+Jasper&rft.date=2016-09-01&rft.issn=1943-2631&rft.eissn=1943-2631&rft.volume=204&rft.issue=1&rft.spage=177&rft.epage=190&rft_id=info:doi/10.1534%2Fgenetics.116.190835&rft.externalDBID=n%2Fa&rft.externalDocID=10_1534_genetics_116_190835 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-2631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-2631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-2631&client=summon |