Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation

As the only catalytic member of the Sir-protein gene-silencing complex, Sir2’s catalytic activity is necessary for silencing. The only known role for Sir2’s catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity bindi...

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 204; no. 1; pp. 177 - 190
Main Authors Thurtle-Schmidt, Deborah M, Dodson, Anne E, Rine, Jasper
Format Journal Article
LanguageEnglish
Published United States Genetics Society of America 01.09.2016
Subjects
Online AccessGet full text
ISSN1943-2631
0016-6731
1943-2631
DOI10.1534/genetics.116.190835

Cover

Abstract As the only catalytic member of the Sir-protein gene-silencing complex, Sir2’s catalytic activity is necessary for silencing. The only known role for Sir2’s catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2’s H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2’s catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2’s catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3. Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2’s function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
AbstractList As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3. Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2 ’s catalytic activity is necessary for silencing. The only known role for Sir2 ’s catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2 ’s H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2 ’s catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3 , restored Sir-protein-based silencing in the absence of Sir2 ’s catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 . Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2 ’s function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3 , indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's catalytic activity in Saccharomyces cerevisiae silencing is to deacetylate N-terminal tails of histones H3 and H4, creating high-affinity binding sites for the Sir-protein complex, resulting in association of Sir proteins across the silenced domain. This histone deacetylation model makes the simple prediction that preemptively removing Sir2's H3 and H4 acetyl substrates, by mutating these lysines to unacetylatable arginines, or removing the acetyl transferase responsible for their acetylation, should restore silencing in the Sir2 catalytic mutant. However, this was not the case. We conducted a genetic screen to explore what aspect of Sir2's catalytic activity has not been accounted for in silencing. Mutation of a nonsirtuin histone deacetylase, Rpd3, restored Sir-protein-based silencing in the absence of Sir2's catalytic activity. Moreover, this antagonism could be mediated by either the large or the small Rpd3-containing complex. Interestingly, this restoration of silencing appeared independent of any known histone H3 or H4 substrates of Rpd3 Investigation of Sir-protein association in the Rpd3 mutant revealed that the restoration of silencing was correlated with an increased association of Sir proteins at the silencers, suggesting that Rpd3 was an antagonist of Sir2's function in nucleation of Sir proteins to the silencer. Additionally, restoration of silencing by Rpd3 was dependent on another sirtuin family member, Hst3, indicating multiple antagonistic roles for deacetylases in S. cerevisiae silencing.
Author Rine, Jasper
Dodson, Anne E
Thurtle-Schmidt, Deborah M
Author_xml – sequence: 1
  givenname: Deborah M
  surname: Thurtle-Schmidt
  fullname: Thurtle-Schmidt, Deborah M
– sequence: 2
  givenname: Anne E
  surname: Dodson
  fullname: Dodson, Anne E
– sequence: 3
  givenname: Jasper
  surname: Rine
  fullname: Rine, Jasper
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27489001$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rGzEQhkVIyfcvCJSFXnKxq5G00u6lEPLlQKDQNmehlWdthbWUSnKC_33kOAlJDqUnDTPPvIxm3n2y7YNHQo6BjqHm4vsMPWZn0xhAjqGlDa-3yB60go-Y5LD9Lt4l-yndUUplWzc7ZJcp0bSUwh7pJi7loludo7GYV4NJmKpHl-fVqc9mFnypO1v9CkPJO1_9NtbOTQyLlS0JixEfXHIGqwlmjMHOS8nkAl6GuA6CPyRfejMkPHp5D8jt5cWfs8no5ufV9dnpzcgKBnkkJK1Z22FneTdVwnQWuGRIZa9Uy4Sqe8qmAIZOJRjR8w6pkr1AVdMerez5Afmx0b1fdgucWvQ5mkHfR7cwcaWDcfpjxbu5noUHXVNgvBFF4ORFIIa_S0xZL1yyOAzGY1gmDQ0rkyiq-H-goBrRKICCfvuE3oVl9GUTa0HKZPnmWvDr--Hfpn69VAH4BrAxpBSxf0OA6rUf9KsfdPGD3vihdLWfuqzLz1cpG3DDP3ufAMjNv4k
CODEN GENTAE
CitedBy_id crossref_primary_10_1002_cpmb_103
crossref_primary_10_1093_g3journal_jkab309
crossref_primary_10_3390_antiox10040572
crossref_primary_10_26508_lsa_202101126
crossref_primary_10_1007_s00294_020_01114_7
crossref_primary_10_7554_eLife_22451
crossref_primary_10_1534_genetics_119_302395
crossref_primary_10_1534_genetics_118_301853
crossref_primary_10_1126_science_aaj2103
crossref_primary_10_1016_j_jbc_2022_102410
crossref_primary_10_15252_embj_2019101564
Cites_doi 10.1093/genetics/111.4.745
10.1074/jbc.M809790200
10.1101/gad.907201
10.1038/nature05649
10.1038/312247a0
10.1093/emboj/cdf468
10.1093/nar/gkp233
10.1101/gad.1979710
10.1126/science.291.5504.646
10.1091/mbc.e02-03-0175
10.1128/EC.00143-10
10.1128/MCB.26.3.1098-1108.2006
10.1038/35001622
10.1007/BF00330984
10.1038/384589a0
10.1073/pnas.87.16.6286
10.1074/jbc.M102176200
10.1093/emboj/18.9.2522
10.1016/j.molcel.2007.07.021
10.1126/science.8266072
10.1016/j.cell.2005.10.023
10.1016/j.cell.2012.02.064
10.1016/j.cub.2015.03.004
10.1371/journal.pbio.1000550
10.1093/genetics/144.4.1343
10.7554/eLife.05007
10.1074/mcp.M112.017251
10.1073/pnas.0909169107
10.1074/jbc.M005730200
10.1016/j.cell.2004.05.023
10.1016/j.molcel.2009.01.009
10.1128/MCB.22.12.4167-4180.2002
10.1534/genetics.115.175711
10.1093/bioinformatics/btp324
10.1073/pnas.1300126110
10.1534/g3.115.018515
10.1016/j.molcel.2011.03.007
10.1002/yea.1250
10.1016/j.molcel.2014.04.032
10.1101/gad.9.23.2888
10.1126/science.291.5504.650
10.1128/MCB.16.8.4281
10.1038/ng1017
10.1126/science.8209257
10.1016/j.molcel.2008.06.020
10.1016/j.cub.2013.06.050
10.1101/gad.929001
10.1073/pnas.250422697
10.1016/S0092-8674(00)80215-9
10.1093/bib/bbs017
10.1128/MCB.20.19.7051-7058.2000
10.1128/MCB.00614-09
10.1074/jbc.M205670200
10.1016/j.ab.2008.08.033
10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
10.1091/mbc.e06-08-0669
10.1091/mbc.e08-05-0524
10.1038/nsmb956
10.1128/MCB.17.8.4852
10.1093/genetics/129.3.685
10.1016/j.cub.2011.11.042
10.1186/1756-8935-2-18
10.1128/MCB.16.8.4215
10.1073/pnas.110148297
10.1128/MCB.18.9.5392
10.1128/MCB.21.6.2057-2069.2001
10.1073/pnas.93.25.14503
10.1016/j.cell.2005.03.035
10.1126/science.1210915
10.1093/genetics/152.3.921
10.1101/gad.230532.113
10.1074/jbc.M200671200
10.1016/S1097-2765(01)00301-X
10.1128/MCB.24.11.4769-4780.2004
10.1016/S0092-8674(02)00746-8
10.1146/annurev.biochem.74.082803.133500
10.1016/j.cub.2006.06.023
10.1038/ng993
10.1093/bioinformatics/btr330
10.1534/genetics.110.123232
10.1016/0378-1119(87)90131-4
10.1073/pnas.0503525102
10.1146/annurev.biochem.72.121801.161547
10.1016/j.molcel.2011.03.006
10.1101/gad.7.7a.1133
10.1016/0092-8674(90)90141-Z
10.1016/j.cell.2009.01.033
10.1101/gad.873601
10.1038/emboj.2011.170
10.1128/MCB.19.12.7944
10.1186/1741-7007-5-38
ContentType Journal Article
Copyright Copyright © 2016 by the Genetics Society of America.
Copyright Genetics Society of America Sep 2016
Copyright © 2016 by the Genetics Society of America 2016
Copyright_xml – notice: Copyright © 2016 by the Genetics Society of America.
– notice: Copyright Genetics Society of America Sep 2016
– notice: Copyright © 2016 by the Genetics Society of America 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
4T-
4U-
7QP
7SS
7TK
7TM
7X2
7X7
7XB
88A
88E
88I
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
LK8
M0K
M0R
M0S
M1P
M2O
M2P
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1534/genetics.116.190835
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Docstoc
University Readers
Calcium & Calcified Tissue Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agricultural Science Database
Consumer Health Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database (ProQuest)
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Docstoc
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
University Readers
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
CrossRef
MEDLINE

Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1943-2631
EndPage 190
ExternalDocumentID PMC5012384
4184874391
27489001
10_1534_genetics_116_190835
Genre Journal Article
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007232
– fundername: NCRR NIH HHS
  grantid: S10 RR027303
– fundername: NIGMS NIH HHS
  grantid: R01 GM031105
– fundername: NCRR NIH HHS
  grantid: S10 RR029668
GroupedDBID ---
--Z
-DZ
-~X
0R~
18M
29H
2KS
2WC
34G
36B
39C
53G
5GY
5RE
5VS
5WD
7X2
7X7
85S
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AABZA
AACZT
AAPXW
AARHZ
AAUAY
AAVAP
AAYXX
ABDFA
ABDNZ
ABEJV
ABGNP
ABMNT
ABNHQ
ABPPZ
ABPTD
ABUWG
ABVGC
ABXVV
ABXZS
ACFRR
ACGOD
ACIHN
ACIPB
ACNCT
ACPRK
ACUTJ
ADBBV
ADGKP
ADIPN
ADQBN
ADVEK
AEAQA
AENEX
AEUYN
AFFZL
AFGWE
AFKRA
AFRAH
AGORE
AHMBA
AHMMS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AOIJS
APEBS
ATCPS
ATGXG
AZQEC
BAWUL
BBNVY
BCRHZ
BENPR
BES
BEYMZ
BHPHI
BKNYI
BKOMP
BPHCQ
BTFSW
BVXVI
CCPQU
CITATION
CJ0
CS3
D0L
DIK
DU5
DWQXO
E3Z
EBD
EBS
EJD
EMB
EMOBN
F5P
F8P
F9R
FD6
FLUFQ
FOEOM
FRP
FYUFA
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HYE
INIJC
JXSIZ
K9-
KBUDW
KOP
KQ8
KSI
KSN
L7B
LK8
M0K
M0R
M1P
M2O
M2P
M7P
MV1
NOMLY
OBOKY
OCZFY
OJZSN
OK1
OMK
OPAEJ
OWPYF
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
QF4
QM4
QM9
QN7
QO4
R0Z
RHI
ROX
RXW
SJN
SV3
TAE
TGS
TH9
TN5
TR2
TWZ
U5U
UHB
UKHRP
UKR
UNMZH
UPT
W8F
WH7
WOQ
XSW
YHG
YKV
YSK
YZZ
ZCA
~KM
.-4
.55
.GJ
186
9M8
AAUTI
ABJNI
ACPVT
ACVCV
ACYGS
ADXHL
AFFNX
AGMDO
AHGBF
AJBYB
APJGH
C1A
CGR
CUY
CVF
ECM
EIF
H~9
MVM
NHB
NPM
OHT
WHG
X7M
XOL
YYP
YYQ
ZGI
ZXP
ZY4
3V.
4T-
4U-
7QP
7SS
7TK
7TM
7XB
88A
8FD
8FK
FR3
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
ESTFP
5PM
ID FETCH-LOGICAL-c421t-460529bebc3bd74abc1362e06f7792475f02d11a0d61a4f3be076f4e750fec6f3
IEDL.DBID 8C1
ISSN 1943-2631
0016-6731
IngestDate Thu Aug 21 14:27:07 EDT 2025
Sat Sep 27 19:53:37 EDT 2025
Thu Sep 04 18:29:10 EDT 2025
Fri Jul 25 11:11:31 EDT 2025
Mon Jul 21 05:47:20 EDT 2025
Tue Aug 05 12:08:26 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Hst3
Sir2
H4K16
Rpd3
heterochromatin
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
Copyright © 2016 by the Genetics Society of America.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-460529bebc3bd74abc1362e06f7792475f02d11a0d61a4f3be076f4e750fec6f3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9747-9585
0000-0001-7719-0496
PMID 27489001
PQID 1820261363
PQPubID 47453
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5012384
proquest_miscellaneous_1827927073
proquest_miscellaneous_1817848711
proquest_journals_1820261363
pubmed_primary_27489001
crossref_primary_10_1534_genetics_116_190835
crossref_citationtrail_10_1534_genetics_116_190835
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle Genetics (Austin)
PublicationTitleAlternate Genetics
PublicationYear 2016
Publisher Genetics Society of America
Publisher_xml – name: Genetics Society of America
References Landry (2023030909021787800_) 2000; 97
Lin (2023030909021787800_) 2009; 136
Tong (2023030909021787800_) 2009; 284
Birkeland (2023030909021787800_) 2010; 186
Boeke (2023030909021787800_) 1984; 197
Loney (2023030909021787800_) 2009; 2
Rusché (2023030909021787800_) 2001; 15
Jackson (2023030909021787800_) 2002; 277
Thurtle (2023030909021787800_) 2014; 28
Hoppe (2023030909021787800_) 2002; 22
Ravindra (2023030909021787800_) 1999; 19
Imai (2023030909021787800_) 2000; 403
Kelly (2023030909021787800_) 2000; 20
Kimura (2023030909021787800_) 2002; 32
Zhang (2023030909021787800_) 2002; 21
Danecek (2023030909021787800_) 2011; 27
Steakley (2023030909021787800_) 2015; 5
Li (2023030909021787800_) 2001; 291
Martino (2023030909021787800_) 2009; 33
Lee (2023030909021787800_) 2008; 383
Yang (2023030909021787800_) 2006; 17
Zill (2023030909021787800_) 2010; 8
Chou (2023030909021787800_) 2008; 31
Chen (2023030909021787800_) 2012; 22
Takahashi (2023030909021787800_) 2011; 42
Chi (2023030909021787800_) 1996; 16
Carrozza (2023030909021787800_) 2005; 123
Tanner (2023030909021787800_) 2000; 97
Wang (2023030909021787800_) 2015; 25
Sun (2023030909021787800_) 1999; 152
Hou (2023030909021787800_) 2005; 102
Meijsing (2023030909021787800_) 2001; 15
Fourel (2023030909021787800_) 1999; 18
Brachmann (2023030909021787800_) 1995; 9
Lechner (2023030909021787800_) 2000; 275
Robyr (2023030909021787800_) 2002; 109
Kim (2023030909021787800_) 2010; 24
Gottschling (2023030909021787800_) 1990; 63
Suter (2023030909021787800_) 2007; 5
Klar (2023030909021787800_) 1985; 111
Wang (2023030909021787800_) 2013; 110
Kaluarachchi Duffy (2023030909021787800_) 2012; 149
Sauve (2023030909021787800_) 2006; 75
Yang (2023030909021787800_) 2008; 19
Rusché (2023030909021787800_) 2002; 13
Weiss (2023030909021787800_) 1998; 18
Rossmann (2023030909021787800_) 2011; 42
Wang (2023030909021787800_) 1993; 13
Jauert (2023030909021787800_) 2005; 22
Rundlett (2023030909021787800_) 1996; 93
Laherty (2023030909021787800_) 1997; 89
Miller (2023030909021787800_) 1984; 312
Ozaydin (2023030909021787800_) 2010; 30
Park (2023030909021787800_) 1990; 10
Laurenson (2023030909021787800_) 1991; 129
Iizuka (2023030909021787800_) 2006; 26
Kasten (2023030909021787800_) 1997; 17
Kirchmaier (2023030909021787800_) 2001; 291
Celic (2023030909021787800_) 2006; 16
Renauld (2023030909021787800_) 1993; 7
Suka (2023030909021787800_) 2001; 8
De Rubertis (2023030909021787800_) 1996; 384
Liou (2023030909021787800_) 2005; 121
Loewith (2023030909021787800_) 2001; 276
Kurdistani (2023030909021787800_) 2004; 117
Yoshida (2023030909021787800_) 2014; 54
Ehrentraut (2023030909021787800_) 2010; 107
Loo (2023030909021787800_) 1994; 264
Kasten (2023030909021787800_) 1996; 16
Henriksen (2023030909021787800_) 2012; 11
Mallory (2023030909021787800_) 2010; 9
Li (2023030909021787800_) 2009; 25
Downey (2023030909021787800_) 2013; 23
Bitterman (2023030909021787800_) 2002; 277
Rusché (2023030909021787800_) 2003; 72
Xu (2023030909021787800_) 2007; 27
Ellahi (2023030909021787800_) 2015; 200
Osada (2023030909021787800_) 2001; 15
Suka (2023030909021787800_) 2002; 32
2023030909021787800
Zhou (2023030909021787800_) 2009; 37
Armache (2023030909021787800_) 2011; 334
Washburn (2023030909021787800_) 2001; 21
Bell (2023030909021787800_) 1993; 262
Collins (2023030909021787800_) 2007; 446
Hoffman (2023030909021787800_) 1987; 57
Longtine (2023030909021787800_) 1998; 14
Aparicio (2023030909021787800_) 2004; 24
Johnson (2023030909021787800_) 1990; 87
Kustatscher (2023030909021787800_) 2005; 12
Oppikofer (2023030909021787800_) 2011; 30
Thorvaldsdóttir (2023030909021787800_) 2013; 14
Vannier (2023030909021787800_) 1996; 144
Dodson (2023030909021787800_) 2015; 4
11316790 - Genes Dev. 2001 Apr 15;15(8):955-67
23973296 - Curr Biol. 2013 Sep 9;23(17):1638-48
19372273 - Nucleic Acids Res. 2009 Jun;37(11):3699-713
10388812 - Genetics. 1999 Jul;152(3):921-32
15965484 - Nat Struct Mol Biol. 2005 Jul;12(7):624-5
3905506 - Genetics. 1985 Dec;111(4):745-58
19954519 - Epigenetics Chromatin. 2009 Dec 02;2(1):18
18265358 - Curr Protoc Mol Biol. 2005 Feb;Chapter 21:Unit 21.3
10811920 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5807-11
11306585 - J Biol Chem. 2001 Jun 29;276(26):24068-74
12134062 - Mol Biol Cell. 2002 Jul;13(7):2207-22
10982821 - Mol Cell Biol. 2000 Oct;20(19):7051-8
11106374 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14178-82
6390211 - Nature. 1984 Nov 15-21;312(5991):247-51
16428461 - Mol Cell Biol. 2006 Feb;26(3):1098-108
9717241 - Yeast. 1998 Jul;14(10):953-61
19948882 - Mol Cell Biol. 2010 Feb;30(3):626-39
25891403 - Curr Biol. 2015 May 4;25(9):1215-20
11024051 - J Biol Chem. 2000 Dec 29;275(52):40961-6
11731480 - Genes Dev. 2001 Dec 1;15(23):3169-82
24856221 - Mol Cell. 2014 May 22;54(4):691-7
22865919 - Mol Cell Proteomics. 2012 Nov;11(11):1510-22
2225075 - Cell. 1990 Nov 16;63(4):751-62
22096199 - Science. 2011 Nov 18;334(6058):977-82
11158677 - Science. 2001 Jan 26;291(5504):650-3
21666601 - EMBO J. 2011 Jun 10;30(13):2610-21
1752414 - Genetics. 1991 Nov;129(3):685-96
8962081 - Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14503-8
9234741 - Mol Cell Biol. 1997 Aug;17(8):4852-8
2117703 - Mol Cell Biol. 1990 Sep;10(9):4932-4
19251690 - J Biol Chem. 2009 Apr 24;284(17):11256-66
22517427 - Brief Bioinform. 2013 Mar;14(2):178-92
22177115 - Curr Biol. 2012 Jan 10;22(1):56-63
20133733 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5522-7
8754829 - Mol Cell Biol. 1996 Aug;16(8):4281-94
16286007 - Cell. 2005 Nov 18;123(4):581-92
10228166 - EMBO J. 1999 May 4;18(9):2522-37
20971827 - Eukaryot Cell. 2010 Dec;9(12):1835-44
16756498 - Annu Rev Biochem. 2006;75:435-65
12024030 - Mol Cell Biol. 2002 Jun;22(12):4167-80
8441414 - Mol Cell Biol. 1993 Mar;13(3):1805-14
9150134 - Cell. 1997 May 2;89(3):349-56
12410229 - Nat Genet. 2002 Nov;32(3):370-7
22579291 - Cell. 2012 May 11;149(4):936-48
11545749 - Mol Cell. 2001 Aug;8(2):473-9
15143171 - Mol Cell Biol. 2004 Jun;24(11):4769-80
17889663 - Mol Cell. 2007 Sep 21;27(6):890-900
19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
7498786 - Genes Dev. 1995 Dec 1;9(23):2888-902
8319906 - Genes Dev. 1993 Jul;7(7A):1133-45
17314980 - Nature. 2007 Apr 12;446(7137):806-10
12198162 - EMBO J. 2002 Sep 2;21(17):4600-11
11238941 - Mol Cell Biol. 2001 Mar;21(6):2057-69
9710623 - Mol Cell Biol. 1998 Sep;18(9):5392-403
8955276 - Nature. 1996 Dec 12;384(6609):589-91
25581000 - Elife. 2015 Jan 12;4:e05007
11158676 - Science. 2001 Jan 26;291(5504):646-50
18799617 - Mol Biol Cell. 2008 Nov;19(11):4993-5005
15907466 - Cell. 2005 May 20;121(4):515-27
15186774 - Cell. 2004 Jun 11;117(6):721-33
6394957 - Mol Gen Genet. 1984;197(2):345-6
15932939 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8489-94
16034826 - Yeast. 2005 Jun;22(8):653-7
11731479 - Genes Dev. 2001 Dec 1;15(23):3155-68
11893743 - J Biol Chem. 2002 May 24;277(21):18535-44
2201024 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6286-90
21653522 - Bioinformatics. 2011 Aug 1;27(15):2156-8
17880717 - BMC Biol. 2007 Sep 19;5:38
12379856 - Nat Genet. 2002 Nov;32(3):378-83
18775325 - Mol Cell. 2008 Sep 5;31(5):650-9
16815704 - Curr Biol. 2006 Jul 11;16(13):1280-9
17035629 - Mol Biol Cell. 2006 Dec;17(12):5287-97
23650358 - Proc Natl Acad Sci U S A. 2013 May 21;110(21):8495-500
24493645 - Genes Dev. 2014 Feb 1;28(3):245-58
8754821 - Mol Cell Biol. 1996 Aug;16(8):4215-21
8209257 - Science. 1994 Jun 17;264(5166):1768-71
20923977 - Genetics. 2010 Dec;186(4):1127-37
12676793 - Annu Rev Biochem. 2003;72:481-516
10693811 - Nature. 2000 Feb 17;403(6771):795-800
19303850 - Cell. 2009 Mar 20;136(6):1073-84
18812159 - Anal Biochem. 2008 Dec 15;383(2):174-9
26082137 - G3 (Bethesda). 2015 Jun 16;5(8):1751-63
25823445 - Genetics. 2015 Jun;200(2):505-21
15542839 - Mol Cell Biol. 2004 Dec;24(23):10300-12
12086601 - Cell. 2002 May 17;109(4):437-46
21151344 - PLoS Biol. 2010 Nov 30;8(11):e1000550
21474074 - Mol Cell. 2011 Apr 8;42(1):127-36
8978024 - Genetics. 1996 Dec;144(4):1343-53
12297502 - J Biol Chem. 2002 Nov 22;277(47):45099-107
10567520 - Mol Cell Biol. 1999 Dec;19(12):7944-50
19217406 - Mol Cell. 2009 Feb 13;33(3):323-34
21159817 - Genes Dev. 2010 Dec 15;24(24):2766-71
3319781 - Gene. 1987;57(2-3):267-72
21474073 - Mol Cell. 2011 Apr 8;42(1):118-26
8266072 - Science. 1993 Dec 17;262(5141):1844-9
References_xml – volume: 111
  start-page: 745
  year: 1985
  ident: 2023030909021787800_
  article-title: SUM1, an apparent positive regulator of the cryptic mating-type loci in Saccharomyces cerevisiae.
  publication-title: Genetics
  doi: 10.1093/genetics/111.4.745
– volume: 284
  start-page: 11256
  issue: 17
  year: 2009
  ident: 2023030909021787800_
  article-title: Hydrolase regulates NAD+ metabolites and modulates cellular redox.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M809790200
– volume: 15
  start-page: 3155
  issue: 23
  year: 2001
  ident: 2023030909021787800_
  article-title: The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1.
  publication-title: Genes Dev.
  doi: 10.1101/gad.907201
– volume: 446
  start-page: 806
  issue: 7137
  year: 2007
  ident: 2023030909021787800_
  article-title: Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.
  publication-title: Nature
  doi: 10.1038/nature05649
– volume: 312
  start-page: 247
  issue: 5991
  year: 1984
  ident: 2023030909021787800_
  article-title: Role of DNA replication in the repression of silent mating type loci in yeast.
  publication-title: Nature
  doi: 10.1038/312247a0
– volume: 21
  start-page: 4600
  issue: 17
  year: 2002
  ident: 2023030909021787800_
  article-title: Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing.
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf468
– volume: 37
  start-page: 3699
  issue: 11
  year: 2009
  ident: 2023030909021787800_
  article-title: Histone deacetylase Rpd3 antagonizes Sir2-dependent silent chromatin propagation.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp233
– volume: 24
  start-page: 2766
  issue: 24
  year: 2010
  ident: 2023030909021787800_
  article-title: Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2.
  publication-title: Genes Dev.
  doi: 10.1101/gad.1979710
– volume: 291
  start-page: 646
  issue: 5504
  year: 2001
  ident: 2023030909021787800_
  article-title: DNA replication-independent silencing in S. cerevisiae.
  publication-title: Science
  doi: 10.1126/science.291.5504.646
– volume: 13
  start-page: 2207
  issue: 7
  year: 2002
  ident: 2023030909021787800_
  article-title: Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e02-03-0175
– volume: 9
  start-page: 1835
  issue: 12
  year: 2010
  ident: 2023030909021787800_
  article-title: The Sin3p PAH domains provide separate functions repressing meiotic gene transcription in Saccharomyces cerevisiae.
  publication-title: Eukaryot. Cell
  doi: 10.1128/EC.00143-10
– volume: 26
  start-page: 1098
  issue: 3
  year: 2006
  ident: 2023030909021787800_
  article-title: Regulation of replication licensing by acetyltransferase Hbo1.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.3.1098-1108.2006
– volume: 403
  start-page: 795
  issue: 6771
  year: 2000
  ident: 2023030909021787800_
  article-title: Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase.
  publication-title: Nature
  doi: 10.1038/35001622
– volume: 197
  start-page: 345
  issue: 2
  year: 1984
  ident: 2023030909021787800_
  article-title: A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance.
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00330984
– volume: 384
  start-page: 589
  issue: 6609
  year: 1996
  ident: 2023030909021787800_
  article-title: The histone deacetylase RPD3 counteracts genomic silencing in Drosophila and yeast.
  publication-title: Nature
  doi: 10.1038/384589a0
– volume: 87
  start-page: 6286
  issue: 16
  year: 1990
  ident: 2023030909021787800_
  article-title: Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.87.16.6286
– volume: 276
  start-page: 24068
  issue: 26
  year: 2001
  ident: 2023030909021787800_
  article-title: Pho23 is associated with the Rpd3 histone deacetylase and is required for its normal function in regulation of gene expression and silencing in Saccharomyces cerevisiae.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M102176200
– volume: 18
  start-page: 2522
  issue: 9
  year: 1999
  ident: 2023030909021787800_
  article-title: Cohabitation of insulators and silencing elements in yeast subtelomeric regions.
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.9.2522
– volume: 27
  start-page: 890
  issue: 6
  year: 2007
  ident: 2023030909021787800_
  article-title: Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.07.021
– volume: 262
  start-page: 1844
  issue: 5141
  year: 1993
  ident: 2023030909021787800_
  article-title: Yeast origin recognition complex functions in transcription silencing and DNA replication.
  publication-title: Science
  doi: 10.1126/science.8266072
– volume: 123
  start-page: 581
  issue: 4
  year: 2005
  ident: 2023030909021787800_
  article-title: Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.023
– volume: 149
  start-page: 936
  issue: 4
  year: 2012
  ident: 2023030909021787800_
  article-title: Exploring the yeast acetylome using functional genomics.
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.064
– volume: 25
  start-page: 1215
  issue: 9
  year: 2015
  ident: 2023030909021787800_
  article-title: Nucleosome avidities and transcriptional silencing in yeast.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.03.004
– volume: 8
  start-page: e1000550
  issue: 11
  year: 2010
  ident: 2023030909021787800_
  article-title: Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly.
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1000550
– volume: 144
  start-page: 1343
  year: 1996
  ident: 2023030909021787800_
  article-title: Evidence that the transcriptional regulators SIN3 and RPD3, and a novel gene (SDS3) with similar functions, are involved in transcriptional silencing in S. cerevisiae.
  publication-title: Genetics
  doi: 10.1093/genetics/144.4.1343
– volume: 4
  start-page: e05007
  year: 2015
  ident: 2023030909021787800_
  article-title: Heritable capture of heterochromatin dynamics in Saccharomyces cerevisiae.
  publication-title: eLife
  doi: 10.7554/eLife.05007
– volume: 11
  start-page: 1510
  issue: 11
  year: 2012
  ident: 2023030909021787800_
  article-title: Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae.
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M112.017251
– volume: 107
  start-page: 5522
  issue: 12
  year: 2010
  ident: 2023030909021787800_
  article-title: Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0909169107
– volume: 275
  start-page: 40961
  issue: 52
  year: 2000
  ident: 2023030909021787800_
  article-title: Sds3 (suppressor of defective silencing 3) is an integral component of the yeast Sin3[middle dot]Rpd3 histone deacetylase complex and is required for histone deacetylase activity.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M005730200
– volume: 117
  start-page: 721
  issue: 6
  year: 2004
  ident: 2023030909021787800_
  article-title: Mapping global histone acetylation patterns to gene expression.
  publication-title: Cell
  doi: 10.1016/j.cell.2004.05.023
– volume: 33
  start-page: 323
  issue: 3
  year: 2009
  ident: 2023030909021787800_
  article-title: Reconstitution of yeast silent chromatin: multiple contact sites and O-AADPR binding load SIR complexes onto nucleosomes in vitro.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.01.009
– volume: 22
  start-page: 4167
  issue: 12
  year: 2002
  ident: 2023030909021787800_
  article-title: Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.22.12.4167-4180.2002
– volume: 200
  start-page: 505
  year: 2015
  ident: 2023030909021787800_
  article-title: The chromatin and transcriptional landscape of native Saccharomyces cerevisiae telomeres and subtelomeric domains.
  publication-title: Genetics
  doi: 10.1534/genetics.115.175711
– volume: 25
  start-page: 1754
  issue: 14
  year: 2009
  ident: 2023030909021787800_
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– volume: 110
  start-page: 8495
  issue: 21
  year: 2013
  ident: 2023030909021787800_
  article-title: Heterochromatin protein Sir3 induces contacts between the amino terminus of histone H4 and nucleosomal DNA.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1300126110
– volume: 5
  start-page: 1751
  issue: 8
  year: 2015
  ident: 2023030909021787800_
  article-title: On the mechanism of gene silencing in Saccharomyces cerevisiae.
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.115.018515
– volume: 42
  start-page: 127
  issue: 1
  year: 2011
  ident: 2023030909021787800_
  article-title: A common telomeric gene silencing assay is affected by nucleotide metabolism.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.03.007
– volume: 22
  start-page: 653
  issue: 8
  year: 2005
  ident: 2023030909021787800_
  article-title: A novel yeast genomic DNA library on a geneticin-resistance vector.
  publication-title: Yeast
  doi: 10.1002/yea.1250
– volume: 13
  start-page: 1805
  issue: 3
  year: 1993
  ident: 2023030909021787800_
  article-title: Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein.
  publication-title: Mol. Cell. Biol.
– volume: 54
  start-page: 691
  issue: 4
  year: 2014
  ident: 2023030909021787800_
  article-title: The histone deacetylases sir2 and rpd3 act on ribosomal DNA to control the replication program in budding yeast.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.04.032
– volume: 9
  start-page: 2888
  issue: 23
  year: 1995
  ident: 2023030909021787800_
  article-title: The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability.
  publication-title: Genes Dev.
  doi: 10.1101/gad.9.23.2888
– volume: 291
  start-page: 650
  issue: 5504
  year: 2001
  ident: 2023030909021787800_
  article-title: Establishment of transcriptional silencing in the absence of DNA replication.
  publication-title: Science
  doi: 10.1126/science.291.5504.650
– volume: 16
  start-page: 4281
  issue: 8
  year: 1996
  ident: 2023030909021787800_
  article-title: SUM1-1, a dominant suppressor of SIR mutations in Saccharomyces cerevisiae, increases transcriptional silencing at telomeres and HM mating-type loci and decreases chromosome stability.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.8.4281
– volume: 32
  start-page: 378
  issue: 3
  year: 2002
  ident: 2023030909021787800_
  article-title: Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin.
  publication-title: Nat. Genet.
  doi: 10.1038/ng1017
– volume: 264
  start-page: 1768
  issue: 5166
  year: 1994
  ident: 2023030909021787800_
  article-title: Silencers and domains of generalized repression.
  publication-title: Science
  doi: 10.1126/science.8209257
– volume: 31
  start-page: 650
  issue: 5
  year: 2008
  ident: 2023030909021787800_
  article-title: Bypassing Sir2 and O-acetyl-ADP-ribose in transcriptional silencing.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2008.06.020
– volume: 23
  start-page: 1638
  issue: 17
  year: 2013
  ident: 2023030909021787800_
  article-title: Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.06.050
– volume: 15
  start-page: 3169
  issue: 23
  year: 2001
  ident: 2023030909021787800_
  article-title: The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae.
  publication-title: Genes Dev.
  doi: 10.1101/gad.929001
– volume: 97
  start-page: 14178
  issue: 26
  year: 2000
  ident: 2023030909021787800_
  article-title: Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.250422697
– volume: 89
  start-page: 349
  issue: 3
  year: 1997
  ident: 2023030909021787800_
  article-title: Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression.
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80215-9
– volume: 14
  start-page: 178
  issue: 2
  year: 2013
  ident: 2023030909021787800_
  article-title: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbs017
– volume: 20
  start-page: 7051
  issue: 19
  year: 2000
  ident: 2023030909021787800_
  article-title: Type B histone acetyltransferase Hat1p participates in telomeric silencing.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.20.19.7051-7058.2000
– volume: 30
  start-page: 626
  issue: 3
  year: 2010
  ident: 2023030909021787800_
  article-title: Expanded roles of the origin recognition complex in the architecture and function of silenced chromatin in Saccharomyces cerevisiae.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00614-09
– volume: 277
  start-page: 45099
  issue: 47
  year: 2002
  ident: 2023030909021787800_
  article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M205670200
– volume: 383
  start-page: 174
  issue: 2
  year: 2008
  ident: 2023030909021787800_
  article-title: Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose.
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2008.08.033
– volume: 14
  start-page: 953
  issue: 10
  year: 1998
  ident: 2023030909021787800_
  article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae.
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
– volume: 10
  start-page: 4932
  issue: 9
  year: 1990
  ident: 2023030909021787800_
  article-title: Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML.
  publication-title: Mol. Cell. Biol.
– volume: 17
  start-page: 5287
  issue: 12
  year: 2006
  ident: 2023030909021787800_
  article-title: Bypassing the catalytic activity of SIR2 for SIR protein spreading in Saccharomyces cerevisiae.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e06-08-0669
– volume: 19
  start-page: 4993
  issue: 11
  year: 2008
  ident: 2023030909021787800_
  article-title: HST3/HST4-dependent deacetylation of lysine 56 of histone H3 in silent chromatin.
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e08-05-0524
– ident: 2023030909021787800_
– volume: 12
  start-page: 624
  issue: 7
  year: 2005
  ident: 2023030909021787800_
  article-title: Splicing regulates NAD metabolite binding to histone macroH2A.
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb956
– volume: 17
  start-page: 4852
  issue: 8
  year: 1997
  ident: 2023030909021787800_
  article-title: A large protein complex containing the yeast Sin3p and Rpd3p transcriptional regulators.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.17.8.4852
– volume: 129
  start-page: 685
  year: 1991
  ident: 2023030909021787800_
  article-title: SUM1-1: a suppressor of silencing defects in Saccharomyces cerevisiae.
  publication-title: Genetics
  doi: 10.1093/genetics/129.3.685
– volume: 22
  start-page: 56
  issue: 1
  year: 2012
  ident: 2023030909021787800_
  article-title: The Rpd3 core complex is a chromatin stabilization module.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2011.11.042
– volume: 2
  start-page: 18
  issue: 1
  year: 2009
  ident: 2023030909021787800_
  article-title: Repressive and non-repressive chromatin at native telomeres in Saccharomyces cerevisiae.
  publication-title: Epigenetics Chromatin
  doi: 10.1186/1756-8935-2-18
– volume: 16
  start-page: 4215
  issue: 8
  year: 1996
  ident: 2023030909021787800_
  article-title: SIN3-dependent transcriptional repression by interaction with the Mad1 DNA-binding protein.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.16.8.4215
– volume: 97
  start-page: 5807
  issue: 11
  year: 2000
  ident: 2023030909021787800_
  article-title: The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.110148297
– volume: 18
  start-page: 5392
  issue: 9
  year: 1998
  ident: 2023030909021787800_
  article-title: High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLalpha.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.9.5392
– volume: 21
  start-page: 2057
  issue: 6
  year: 2001
  ident: 2023030909021787800_
  article-title: Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.21.6.2057-2069.2001
– volume: 93
  start-page: 14503
  issue: 25
  year: 1996
  ident: 2023030909021787800_
  article-title: HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that regulate silencing and transcription.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.25.14503
– volume: 121
  start-page: 515
  issue: 4
  year: 2005
  ident: 2023030909021787800_
  article-title: Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation.
  publication-title: Cell
  doi: 10.1016/j.cell.2005.03.035
– volume: 334
  start-page: 977
  issue: 6058
  year: 2011
  ident: 2023030909021787800_
  article-title: Structural basis of silencing: Sir3 BAH domain in complex with a nucleosome at 3.0 Å resolution.
  publication-title: Science
  doi: 10.1126/science.1210915
– volume: 152
  start-page: 921
  year: 1999
  ident: 2023030909021787800_
  article-title: A general requirement for the Sin3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae.
  publication-title: Genetics
  doi: 10.1093/genetics/152.3.921
– volume: 28
  start-page: 245
  issue: 3
  year: 2014
  ident: 2023030909021787800_
  article-title: The molecular topography of silenced chromatin in Saccharomyces cerevisiae.
  publication-title: Genes Dev.
  doi: 10.1101/gad.230532.113
– volume: 277
  start-page: 18535
  issue: 21
  year: 2002
  ident: 2023030909021787800_
  article-title: Structural identification of 2′- and 3′-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases.
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M200671200
– volume: 8
  start-page: 473
  issue: 2
  year: 2001
  ident: 2023030909021787800_
  article-title: Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin.
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00301-X
– volume: 24
  start-page: 4769
  issue: 11
  year: 2004
  ident: 2023030909021787800_
  article-title: The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.11.4769-4780.2004
– volume: 109
  start-page: 437
  issue: 4
  year: 2002
  ident: 2023030909021787800_
  article-title: Microarray deacetylation maps determine genome-wide functions for yeast histone deacetylases.
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00746-8
– volume: 75
  start-page: 435
  year: 2006
  ident: 2023030909021787800_
  article-title: The biochemistry of sirtuins.
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.74.082803.133500
– volume: 16
  start-page: 1280
  issue: 13
  year: 2006
  ident: 2023030909021787800_
  article-title: The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2006.06.023
– volume: 32
  start-page: 370
  issue: 3
  year: 2002
  ident: 2023030909021787800_
  article-title: Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing.
  publication-title: Nat. Genet.
  doi: 10.1038/ng993
– volume: 27
  start-page: 2156
  issue: 15
  year: 2011
  ident: 2023030909021787800_
  article-title: The variant call format and VCFtools.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr330
– volume: 186
  start-page: 1127
  year: 2010
  ident: 2023030909021787800_
  article-title: Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole-genome sequencing.
  publication-title: Genetics
  doi: 10.1534/genetics.110.123232
– volume: 57
  start-page: 267
  issue: 2-3
  year: 1987
  ident: 2023030909021787800_
  article-title: A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli.
  publication-title: Gene
  doi: 10.1016/0378-1119(87)90131-4
– volume: 102
  start-page: 8489
  issue: 24
  year: 2005
  ident: 2023030909021787800_
  article-title: Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing.
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0503525102
– volume: 72
  start-page: 481
  year: 2003
  ident: 2023030909021787800_
  article-title: The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae.
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.72.121801.161547
– volume: 42
  start-page: 118
  issue: 1
  year: 2011
  ident: 2023030909021787800_
  article-title: Dot1 and histone H3K79 methylation in natural telomeric and HM silencing.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.03.006
– volume: 7
  start-page: 1133
  year: 1993
  ident: 2023030909021787800_
  article-title: Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage.
  publication-title: Genes Dev.
  doi: 10.1101/gad.7.7a.1133
– volume: 63
  start-page: 751
  issue: 4
  year: 1990
  ident: 2023030909021787800_
  article-title: Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription.
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90141-Z
– volume: 136
  start-page: 1073
  issue: 6
  year: 2009
  ident: 2023030909021787800_
  article-title: Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.033
– volume: 15
  start-page: 955
  issue: 8
  year: 2001
  ident: 2023030909021787800_
  article-title: Conversion of a gene-specific repressor to a regional silencer.
  publication-title: Genes Dev.
  doi: 10.1101/gad.873601
– volume: 30
  start-page: 2610
  issue: 13
  year: 2011
  ident: 2023030909021787800_
  article-title: A dual role of H4K16 acetylation in the establishment of yeast silent chromatin.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.170
– volume: 19
  start-page: 7944
  issue: 12
  year: 1999
  ident: 2023030909021787800_
  article-title: High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating-type locus HMRa.
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.19.12.7944
– volume: 5
  start-page: 38
  year: 2007
  ident: 2023030909021787800_
  article-title: Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p.
  publication-title: BMC Biol.
  doi: 10.1186/1741-7007-5-38
– reference: 24856221 - Mol Cell. 2014 May 22;54(4):691-7
– reference: 21159817 - Genes Dev. 2010 Dec 15;24(24):2766-71
– reference: 23973296 - Curr Biol. 2013 Sep 9;23(17):1638-48
– reference: 11158676 - Science. 2001 Jan 26;291(5504):646-50
– reference: 12379856 - Nat Genet. 2002 Nov;32(3):378-83
– reference: 20923977 - Genetics. 2010 Dec;186(4):1127-37
– reference: 16286007 - Cell. 2005 Nov 18;123(4):581-92
– reference: 11731480 - Genes Dev. 2001 Dec 1;15(23):3169-82
– reference: 25891403 - Curr Biol. 2015 May 4;25(9):1215-20
– reference: 21653522 - Bioinformatics. 2011 Aug 1;27(15):2156-8
– reference: 17314980 - Nature. 2007 Apr 12;446(7137):806-10
– reference: 12024030 - Mol Cell Biol. 2002 Jun;22(12):4167-80
– reference: 19372273 - Nucleic Acids Res. 2009 Jun;37(11):3699-713
– reference: 11238941 - Mol Cell Biol. 2001 Mar;21(6):2057-69
– reference: 20971827 - Eukaryot Cell. 2010 Dec;9(12):1835-44
– reference: 11306585 - J Biol Chem. 2001 Jun 29;276(26):24068-74
– reference: 15965484 - Nat Struct Mol Biol. 2005 Jul;12(7):624-5
– reference: 21666601 - EMBO J. 2011 Jun 10;30(13):2610-21
– reference: 10693811 - Nature. 2000 Feb 17;403(6771):795-800
– reference: 11545749 - Mol Cell. 2001 Aug;8(2):473-9
– reference: 8754829 - Mol Cell Biol. 1996 Aug;16(8):4281-94
– reference: 20133733 - Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5522-7
– reference: 12297502 - J Biol Chem. 2002 Nov 22;277(47):45099-107
– reference: 12410229 - Nat Genet. 2002 Nov;32(3):370-7
– reference: 16756498 - Annu Rev Biochem. 2006;75:435-65
– reference: 19948882 - Mol Cell Biol. 2010 Feb;30(3):626-39
– reference: 11893743 - J Biol Chem. 2002 May 24;277(21):18535-44
– reference: 25581000 - Elife. 2015 Jan 12;4:e05007
– reference: 8754821 - Mol Cell Biol. 1996 Aug;16(8):4215-21
– reference: 15186774 - Cell. 2004 Jun 11;117(6):721-33
– reference: 22177115 - Curr Biol. 2012 Jan 10;22(1):56-63
– reference: 11158677 - Science. 2001 Jan 26;291(5504):650-3
– reference: 16428461 - Mol Cell Biol. 2006 Feb;26(3):1098-108
– reference: 21474074 - Mol Cell. 2011 Apr 8;42(1):127-36
– reference: 19303850 - Cell. 2009 Mar 20;136(6):1073-84
– reference: 22579291 - Cell. 2012 May 11;149(4):936-48
– reference: 18799617 - Mol Biol Cell. 2008 Nov;19(11):4993-5005
– reference: 16815704 - Curr Biol. 2006 Jul 11;16(13):1280-9
– reference: 10982821 - Mol Cell Biol. 2000 Oct;20(19):7051-8
– reference: 12086601 - Cell. 2002 May 17;109(4):437-46
– reference: 10388812 - Genetics. 1999 Jul;152(3):921-32
– reference: 11106374 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14178-82
– reference: 11731479 - Genes Dev. 2001 Dec 1;15(23):3155-68
– reference: 3905506 - Genetics. 1985 Dec;111(4):745-58
– reference: 1752414 - Genetics. 1991 Nov;129(3):685-96
– reference: 8266072 - Science. 1993 Dec 17;262(5141):1844-9
– reference: 15542839 - Mol Cell Biol. 2004 Dec;24(23):10300-12
– reference: 16034826 - Yeast. 2005 Jun;22(8):653-7
– reference: 2117703 - Mol Cell Biol. 1990 Sep;10(9):4932-4
– reference: 25823445 - Genetics. 2015 Jun;200(2):505-21
– reference: 22865919 - Mol Cell Proteomics. 2012 Nov;11(11):1510-22
– reference: 26082137 - G3 (Bethesda). 2015 Jun 16;5(8):1751-63
– reference: 9150134 - Cell. 1997 May 2;89(3):349-56
– reference: 21151344 - PLoS Biol. 2010 Nov 30;8(11):e1000550
– reference: 15143171 - Mol Cell Biol. 2004 Jun;24(11):4769-80
– reference: 21474073 - Mol Cell. 2011 Apr 8;42(1):118-26
– reference: 12198162 - EMBO J. 2002 Sep 2;21(17):4600-11
– reference: 18265358 - Curr Protoc Mol Biol. 2005 Feb;Chapter 21:Unit 21.3
– reference: 10567520 - Mol Cell Biol. 1999 Dec;19(12):7944-50
– reference: 15907466 - Cell. 2005 May 20;121(4):515-27
– reference: 18812159 - Anal Biochem. 2008 Dec 15;383(2):174-9
– reference: 19251690 - J Biol Chem. 2009 Apr 24;284(17):11256-66
– reference: 17889663 - Mol Cell. 2007 Sep 21;27(6):890-900
– reference: 9710623 - Mol Cell Biol. 1998 Sep;18(9):5392-403
– reference: 15932939 - Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8489-94
– reference: 10811920 - Proc Natl Acad Sci U S A. 2000 May 23;97(11):5807-11
– reference: 22096199 - Science. 2011 Nov 18;334(6058):977-82
– reference: 19217406 - Mol Cell. 2009 Feb 13;33(3):323-34
– reference: 24493645 - Genes Dev. 2014 Feb 1;28(3):245-58
– reference: 8209257 - Science. 1994 Jun 17;264(5166):1768-71
– reference: 18775325 - Mol Cell. 2008 Sep 5;31(5):650-9
– reference: 3319781 - Gene. 1987;57(2-3):267-72
– reference: 7498786 - Genes Dev. 1995 Dec 1;9(23):2888-902
– reference: 10228166 - EMBO J. 1999 May 4;18(9):2522-37
– reference: 11316790 - Genes Dev. 2001 Apr 15;15(8):955-67
– reference: 11024051 - J Biol Chem. 2000 Dec 29;275(52):40961-6
– reference: 6394957 - Mol Gen Genet. 1984;197(2):345-6
– reference: 8955276 - Nature. 1996 Dec 12;384(6609):589-91
– reference: 8978024 - Genetics. 1996 Dec;144(4):1343-53
– reference: 8441414 - Mol Cell Biol. 1993 Mar;13(3):1805-14
– reference: 8962081 - Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14503-8
– reference: 6390211 - Nature. 1984 Nov 15-21;312(5991):247-51
– reference: 8319906 - Genes Dev. 1993 Jul;7(7A):1133-45
– reference: 9234741 - Mol Cell Biol. 1997 Aug;17(8):4852-8
– reference: 12676793 - Annu Rev Biochem. 2003;72:481-516
– reference: 17035629 - Mol Biol Cell. 2006 Dec;17(12):5287-97
– reference: 19954519 - Epigenetics Chromatin. 2009 Dec 02;2(1):18
– reference: 23650358 - Proc Natl Acad Sci U S A. 2013 May 21;110(21):8495-500
– reference: 2201024 - Proc Natl Acad Sci U S A. 1990 Aug;87(16):6286-90
– reference: 22517427 - Brief Bioinform. 2013 Mar;14(2):178-92
– reference: 19451168 - Bioinformatics. 2009 Jul 15;25(14):1754-60
– reference: 17880717 - BMC Biol. 2007 Sep 19;5:38
– reference: 9717241 - Yeast. 1998 Jul;14(10):953-61
– reference: 2225075 - Cell. 1990 Nov 16;63(4):751-62
– reference: 12134062 - Mol Biol Cell. 2002 Jul;13(7):2207-22
SSID ssj0006958
Score 2.2726054
Snippet As the only catalytic member of the Sir-protein gene-silencing complex, Sir2’s catalytic activity is necessary for silencing. The only known role for Sir2’s...
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2's catalytic activity is necessary for silencing. The only known role for Sir2's...
As the only catalytic member of the Sir-protein gene-silencing complex, Sir2 ’s catalytic activity is necessary for silencing. The only known role for Sir2 ’s...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 177
SubjectTerms Acetylation
Chromatin
Chromatin Assembly and Disassembly - genetics
Colleges & universities
Gene Silencing
Genes
Heterochromatin
Heterochromatin - genetics
Heterochromatin - metabolism
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Histones - metabolism
Hypotheses
Investigations
Mutation
Proteins
Roles
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics
Silent Information Regulator Proteins, Saccharomyces cerevisiae - metabolism
Sirtuin 2 - genetics
Sirtuin 2 - metabolism
Transcription, Genetic
Yeast
Title Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation
URI https://www.ncbi.nlm.nih.gov/pubmed/27489001
https://www.proquest.com/docview/1820261363
https://www.proquest.com/docview/1817848711
https://www.proquest.com/docview/1827927073
https://pubmed.ncbi.nlm.nih.gov/PMC5012384
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEB9si-CL-N1oe6zgo7HZ7GY3eZK29jgEi1QL9xb2K_SgzVXv-nD_vTPJJrYK9zwTWGYm87E78xuAD7k01poqpM5on8ogQ2oKL9LSWYnVAA9VRsPJ387V7FJ-nRfzeOG2im2Vg0_sHLVfOrojPyKgccz2hRKfb3-ltDWKXlfjCo0d2KMZUCq-ytO_LR6qKqInVtTiziPqUCHkEWqHhgRX6DLUJwyKZbfv7V5k-i_d_Ldr8l4Ymj6DpzF_ZMe9wp_Do9C-gMf9RsnNS7Ad7Ecb2Bd0dWG9wdw4rBhdtrLjlh6g2g6YmV0QjhNbtOyHcTR4tbzZoMNgruv6XS1MYDPqk1m6KySh8lo2HaYcX8Hl9Ozn6SyNaxRSJ3O-TunlM69ssE5Yr1E3DqWYh0w1WmP1pYsmyz3nJvOKG9kIGzKtGhkwl2iCU414DbstnnwfmBWh4o7LhhslrRCV994WGOOs5410eQL5IMLaRYxxWnVxXVOtgXKvB7lj5aHqXu4JfBw_uu0hNrazHwy6qeP_huTROhJ4P5LxT6HnD9OG5R3xcF1ifcb5Nh4CVNTo9xJ406t7PFNOQD1oSwnoB4YwMhBS90NKu7jqELtJRKKUb7cf_R08yclUuw62A9hd_74Lh5jyrO0EdvRcTzrrnsDeydn594s_ni4Geg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxRBEC5iRPQiPuNo1Bb05pjpx_TsHESCcdmYx0ET2NvYryEL2hvdDbJ_yt9o1bxIFPaWc_c0TXU9p6q-AngtlLHWlCF1pvCpCiqkJvcyHTmrMBrgocyoOfnoWE9O1edpPt2AP30vDJVV9jqxUdR-7ugf-Q4BjaO3L7X8cP4zpalRlF3tR2i0bHEQVr8xZFu839_D930jxPjTycdJ2k0VSJ0SfJlSIlCUNlgnrS_wqg4PFSHTdVFgMFLkdSY85ybzmhtVSxsw1K9VQNNaB6driefegJuKUowoP8V0CPAyXead5tdUUs87lKNcqh3kBmpKXKCK0u_QCI-a-XKXLOF_7u2_VZqXzN74Htzt_FW22zLYfdgI8QHcaidYrh6CbWBGYmB7qFrDcoW-eFgw-rnLdiMlvGIDBM2-EG4Um0X21Thq9Jr_WKGCYq6pMl7MTGATqsuZuzNcQmaJbNx3VT6C02sh8GPYjHjzJ8CsDCV3XNXcaGWlLL33Nkebaj2vlRMJiJ6EleswzWm0xveKYhuke9XTHSMdXbV0T-Dt8NF5C-mxfvt2_zZVJ9-4PHBjAq-GZZRMSreYGOYXtIcXI4wHOV-3hwAcC9SzCWy1zz3cSRAwEPJSAsUVRhg2EDL41ZU4O2sQwolEcqSerr_6S7g9OTk6rA73jw-ewR1BbNtUz23D5vLXRXiO7tbSvmh4nMG36xaqv46hQQ0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VViAuiDeGAosEN0y8D-_GhwoV0iilEFWFSr2ZfVmJ1DqlSYXyF_lVzDhrqwUpt553ba9nZ-exM_MNIW-5NNaaIqTOaJ_KIENqci_SvrMSvAEWigyLk7-N1ehYfjnJTzbIn7YWBtMqW5nYCGo_c3hH3kOgcbD2hRK9KqZFHA6GH89_pdhBCiOtbTsNE9ss-J0GbiwWeRyE5W9w5-Y7-wPY-3ecD_d-fB6lseNA6iRnixSDhLywwTphvYbfcPBBHjJVaQ2Ois6rjHvGTOYVM7ISNmRaVTKA2q2CU5WA994iWxq0PjiCW5_2xodHnV5QRR71gsKEexYxkHIhe8ArWLI4BwGmPoCK7jfd567oyf-M339zOK8oxeF9ci9as3R3xX4PyEaoH5Lbq_6Wy0fENiAkdaADELxhsQRLPcwpXv3S3RrDYXUDE02PEFWKTmv6Hag6MRezsyWIL-qaHOT51AQ6wqydmZvAELBSTYdtzeVjcnwjJH5CNmtY-TNCrQgFc0xWzChphSi89zYHjWs9q6TjCeEtCUsXEc-x8cZpiZ4P0L1s6Q5-kCpXdE_I--6h8xXgx_rp2-3elPH0w3DHqwl50w3DucVgjKnD7BLnMN0Hb5GxdXMQ3lGDFE7I09V2d2viCBsEvJQQfY0RugmIG359pJ5OGvxwJJHoy-frl_6a3IEDVn7dHx-8IHc5cm2TWrdNNhcXl-El2GIL-yoyOSU_b_pc_QVNkEvo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histone+Deacetylases+with+Antagonistic+Roles+in+Saccharomyces+cerevisiae+Heterochromatin+Formation&rft.jtitle=Genetics+%28Austin%29&rft.au=Thurtle-Schmidt%2C+Deborah+M&rft.au=Dodson%2C+Anne+E&rft.au=Rine%2C+Jasper&rft.date=2016-09-01&rft.issn=1943-2631&rft.eissn=1943-2631&rft.volume=204&rft.issue=1&rft.spage=177&rft.epage=190&rft_id=info:doi/10.1534%2Fgenetics.116.190835&rft.externalDBID=n%2Fa&rft.externalDocID=10_1534_genetics_116_190835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-2631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-2631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-2631&client=summon