Global Asymptotic Saturated PID Control for Robot Manipulators

This paper addresses the global asymptotic regulation of robot manipulators under input constraints, both with and without velocity measurements. It is proven that robot systems subject to bounded inputs can be globally asymptotically stabilized via a saturated proportional-integral-derivative (PID)...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control systems technology Vol. 18; no. 6; pp. 1280 - 1288
Main Authors Su, Yuxin, Muller, Peter C., Zheng, Chunhong
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.11.2010
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6536
1558-0865
DOI10.1109/TCST.2009.2035924

Cover

More Information
Summary:This paper addresses the global asymptotic regulation of robot manipulators under input constraints, both with and without velocity measurements. It is proven that robot systems subject to bounded inputs can be globally asymptotically stabilized via a saturated proportional-integral-derivative (PID) control in agreement with Lyapunov's direct method and LaSalle's invariance principle. Advantages of the proposed controller include an absence of modeling parameters in the control law formulation and an ability to ensure actuator constraints are not breached. This is accomplished by selecting control gains a priori, removing the possibility of actuator failure due to excessive torque input levels. The effectiveness of the proposed approach is illustrated via simulations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1063-6536
1558-0865
DOI:10.1109/TCST.2009.2035924