Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize

Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively impacted by climate change leading to food insecurities. This is so because extreme weather conditions induced by climate change are detrimental...

Full description

Saved in:
Bibliographic Details
Published inAgriculture (Basel) Vol. 13; no. 1; p. 225
Main Authors Kuradusenge, Martin, Hitimana, Eric, Hanyurwimfura, Damien, Rukundo, Placide, Mtonga, Kambombo, Mukasine, Angelique, Uwitonze, Claudette, Ngabonziza, Jackson, Uwamahoro, Angelique
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2023
Subjects
Online AccessGet full text
ISSN2077-0472
2077-0472
DOI10.3390/agriculture13010225

Cover

Abstract Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively impacted by climate change leading to food insecurities. This is so because extreme weather conditions induced by climate change are detrimental to most crops and affect the expected quantity of agricultural production. Although there is no way to fully mitigate these natural phenomena, it could be much better if there is information known earlier about the future so that farmers can plan accordingly. Early information sharing about expected crop production may support food insecurity risk reduction. In this regard, this work employs data mining techniques to predict future crop (i.e., Irish potatoes and Maize) harvests using weather and yields historical data for Musanze, a district in Rwanda. The study applies machine learning techniques to predict crop harvests based on weather data and communicate the information about production trends. Weather data and crop yields for Irish potatoes and maize were gathered from various sources. The collected data were analyzed through Random Forest, Polynomial Regression, and Support Vector Regressor. Rainfall and temperature were used as predictors. The models were trained and tested. The results indicate that Random Forest is the best model with root mean square error of 510.8 and 129.9 for potato and maize, respectively, whereas R2 was 0.875 and 0.817 for the same crops datasets. The optimum weather conditions for the optimal crop yield were identified for each crop. The results suggests that Random Forest is recommended model for early crop yield prediction. The findings of this study will go a long way to enhance reliance on data for agriculture and climate change related decisions, especially in low-to-middle income countries such as Rwanda.
AbstractList Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively impacted by climate change leading to food insecurities. This is so because extreme weather conditions induced by climate change are detrimental to most crops and affect the expected quantity of agricultural production. Although there is no way to fully mitigate these natural phenomena, it could be much better if there is information known earlier about the future so that farmers can plan accordingly. Early information sharing about expected crop production may support food insecurity risk reduction. In this regard, this work employs data mining techniques to predict future crop (i.e., Irish potatoes and Maize) harvests using weather and yields historical data for Musanze, a district in Rwanda. The study applies machine learning techniques to predict crop harvests based on weather data and communicate the information about production trends. Weather data and crop yields for Irish potatoes and maize were gathered from various sources. The collected data were analyzed through Random Forest, Polynomial Regression, and Support Vector Regressor. Rainfall and temperature were used as predictors. The models were trained and tested. The results indicate that Random Forest is the best model with root mean square error of 510.8 and 129.9 for potato and maize, respectively, whereas R2 was 0.875 and 0.817 for the same crops datasets. The optimum weather conditions for the optimal crop yield were identified for each crop. The results suggests that Random Forest is recommended model for early crop yield prediction. The findings of this study will go a long way to enhance reliance on data for agriculture and climate change related decisions, especially in low-to-middle income countries such as Rwanda.
Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively impacted by climate change leading to food insecurities. This is so because extreme weather conditions induced by climate change are detrimental to most crops and affect the expected quantity of agricultural production. Although there is no way to fully mitigate these natural phenomena, it could be much better if there is information known earlier about the future so that farmers can plan accordingly. Early information sharing about expected crop production may support food insecurity risk reduction. In this regard, this work employs data mining techniques to predict future crop (i.e., Irish potatoes and Maize) harvests using weather and yields historical data for Musanze, a district in Rwanda. The study applies machine learning techniques to predict crop harvests based on weather data and communicate the information about production trends. Weather data and crop yields for Irish potatoes and maize were gathered from various sources. The collected data were analyzed through Random Forest, Polynomial Regression, and Support Vector Regressor. Rainfall and temperature were used as predictors. The models were trained and tested. The results indicate that Random Forest is the best model with root mean square error of 510.8 and 129.9 for potato and maize, respectively, whereas R² was 0.875 and 0.817 for the same crops datasets. The optimum weather conditions for the optimal crop yield were identified for each crop. The results suggests that Random Forest is recommended model for early crop yield prediction. The findings of this study will go a long way to enhance reliance on data for agriculture and climate change related decisions, especially in low-to-middle income countries such as Rwanda.
Author Mukasine, Angelique
Mtonga, Kambombo
Uwamahoro, Angelique
Rukundo, Placide
Hanyurwimfura, Damien
Uwitonze, Claudette
Kuradusenge, Martin
Hitimana, Eric
Ngabonziza, Jackson
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0001-7741-8905
  surname: Kuradusenge
  fullname: Kuradusenge, Martin
– sequence: 2
  givenname: Eric
  surname: Hitimana
  fullname: Hitimana, Eric
– sequence: 3
  givenname: Damien
  surname: Hanyurwimfura
  fullname: Hanyurwimfura, Damien
– sequence: 4
  givenname: Placide
  surname: Rukundo
  fullname: Rukundo, Placide
– sequence: 5
  givenname: Kambombo
  surname: Mtonga
  fullname: Mtonga, Kambombo
– sequence: 6
  givenname: Angelique
  surname: Mukasine
  fullname: Mukasine, Angelique
– sequence: 7
  givenname: Claudette
  surname: Uwitonze
  fullname: Uwitonze, Claudette
– sequence: 8
  givenname: Jackson
  surname: Ngabonziza
  fullname: Ngabonziza, Jackson
– sequence: 9
  givenname: Angelique
  surname: Uwamahoro
  fullname: Uwamahoro, Angelique
BookMark eNp9UU1rFEEQHSSCMckv8NLgxctqf01_eJPFmIWVBDQHT01Nd_Wml8n02j1z0F9vJ6sgQaxLFa_ee1CvXnYnU56w614x-lYIS9_BriS_jPNSkAnKKOf9s-6UU61XVGp-8tf8oruodU9bWSYMVafdl3XJB_It4RjITcGQ_JzyRG5rmnbkM_i7NCHZIpTpEcgBx_qerKEiyZFsSqp35CbPMGcCU2iK9BPPu-cRxooXv_tZd3v58ev6arW9_rRZf9iuvORsXol-4FJitNFIo0SPXBkPkZshIARuegSDQlkjQ2wLThWTehA4RAkymEGcdZujb8iwd4eS7qH8cBmSewRy2Tkoc_IjusFSozwI5ZWXOlgTFbWRRhqg55b75vXm6HUo-fuCdXb3qXocR5gwL9VxY7QSkmnaqK-fUPd5KVO71HGtNFOKWdVY9sjyJddaMDqfWkwt3LlAGh2j7uF77h_fa1rxRPvnuP-pfgHST6JQ
CitedBy_id crossref_primary_10_1038_s44264_025_00052_6
crossref_primary_10_3390_plants13091200
crossref_primary_10_1007_s42979_023_02463_z
crossref_primary_10_3390_app13169288
crossref_primary_10_3390_app14041638
crossref_primary_10_3390_geographies4030024
crossref_primary_10_3390_agriculture14081225
crossref_primary_10_3390_agriculture15010075
crossref_primary_10_1007_s12517_023_11754_x
crossref_primary_10_3390_rs16183455
crossref_primary_10_1007_s10666_023_09920_2
crossref_primary_10_1007_s42535_024_00959_4
crossref_primary_10_3390_app14178018
crossref_primary_10_1016_j_rineng_2025_104451
crossref_primary_10_1016_j_aiia_2024_11_005
crossref_primary_10_3389_fpls_2023_1234555
crossref_primary_10_1007_s40333_025_0094_7
crossref_primary_10_36899_japs_2024_5_0811
crossref_primary_10_1007_s41685_023_00299_2
crossref_primary_10_3390_agronomy14092130
crossref_primary_10_1080_17538947_2023_2186505
crossref_primary_10_1117_1_JRS_18_044513
crossref_primary_10_1007_s11273_023_09971_y
crossref_primary_10_3390_technologies11050116
crossref_primary_10_3390_foods13182936
crossref_primary_10_1016_j_fcr_2025_109794
crossref_primary_10_1007_s44187_025_00338_1
crossref_primary_10_1016_j_atech_2024_100718
crossref_primary_10_1007_s43926_024_00079_0
crossref_primary_10_1007_s11600_024_01312_8
crossref_primary_10_3390_software3020007
crossref_primary_10_20473_jatm_v2i2_51440
crossref_primary_10_1007_s11540_024_09803_3
crossref_primary_10_2139_ssrn_4546168
crossref_primary_10_3390_foods13233858
crossref_primary_10_2139_ssrn_4779971
crossref_primary_10_1038_s41598_023_45682_3
crossref_primary_10_3390_app14083383
crossref_primary_10_12944_CARJ_11_2_30
crossref_primary_10_3390_buildings15020288
crossref_primary_10_1038_s41597_025_04738_x
crossref_primary_10_1016_j_prime_2024_100611
crossref_primary_10_32604_cmc_2024_050240
crossref_primary_10_3390_agriculture14030481
crossref_primary_10_3390_eng5040130
crossref_primary_10_1007_s41976_024_00176_2
crossref_primary_10_3390_agronomy13051297
crossref_primary_10_3390_agriculture13122259
crossref_primary_10_1007_s13198_024_02577_4
crossref_primary_10_3390_electronics13214273
crossref_primary_10_1007_s10661_024_12667_2
crossref_primary_10_3390_agriengineering6030134
crossref_primary_10_3390_app131810084
crossref_primary_10_3390_agronomy14123010
crossref_primary_10_33003_fjs_2024_0801_2220
crossref_primary_10_3390_agriculture15060582
crossref_primary_10_1007_s42979_023_02572_9
crossref_primary_10_3390_computers13060137
crossref_primary_10_1007_s40745_024_00534_3
crossref_primary_10_1109_ACCESS_2024_3383309
Cites_doi 10.16929/ajas/2016.69.203
10.1109/INCET49848.2020.9154036
10.1109/ICCES48766.2020.9137868
10.3390/ijms23052838
10.3390/agronomy12102529
10.1016/B978-0-444-53199-5.00108-1
10.1371/journal.pone.0156571
10.1007/s12524-018-0825-8
10.3390/s19204363
10.1504/IJHST.2021.112651
10.3390/rs12111744
10.1007/s41324-019-00246-4
10.3389/fpls.2015.00542
10.1109/TPAMI.2009.187
10.1098/rstb.2019.0510
10.1088/1748-9326/aae159
10.1002/qj.49706628504
10.1016/0165-1684(94)90006-X
10.1109/TCSI.2017.2710627
10.1109/ICICCS51141.2021.9432236
10.1017/S0021859614000392
10.1023/B:STCO.0000035301.49549.88
10.1071/EA9920197
10.1104/pp.59.5.868
10.1109/JCSSE.2016.7748856
10.1016/j.compag.2020.105709
10.1016/j.geoderma.2022.116018
10.1007/s10584-013-0983-1
10.1088/1748-9326/ab7df9
10.1023/A:1010933404324
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SS
7ST
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
HCIFZ
M0K
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
DOA
DOI 10.3390/agriculture13010225
DatabaseName CrossRef
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2077-0472
ExternalDocumentID oai_doaj_org_article_b9086ca36c6c47d98f609f0f0da5292c
10_3390_agriculture13010225
GeographicLocations Europe
Rwanda
GeographicLocations_xml – name: Europe
– name: Rwanda
GroupedDBID 2XV
5VS
7X2
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADBBV
AEUYN
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAG
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
3V.
7SS
7ST
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c421t-35b244ef9f848635e268caf28bdead285ea8e36984df8ca206147b3ebf4a4d8b3
IEDL.DBID BENPR
ISSN 2077-0472
IngestDate Wed Aug 27 01:30:32 EDT 2025
Fri Sep 05 06:07:05 EDT 2025
Mon Jun 30 15:13:59 EDT 2025
Tue Jul 01 02:12:57 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-35b244ef9f848635e268caf28bdead285ea8e36984df8ca206147b3ebf4a4d8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7741-8905
OpenAccessLink https://www.proquest.com/docview/2767166196?pq-origsite=%requestingapplication%&accountid=15518
PQID 2767166196
PQPubID 2032441
ParticipantIDs doaj_primary_oai_doaj_org_article_b9086ca36c6c47d98f609f0f0da5292c
proquest_miscellaneous_2887634170
proquest_journals_2767166196
crossref_citationtrail_10_3390_agriculture13010225
crossref_primary_10_3390_agriculture13010225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agriculture (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kang (ref_14) 2020; 15
Zemba (ref_30) 2013; 2019
Shakoor (ref_1) 2011; 48
Ku (ref_31) 1977; 59
Drucker (ref_24) 1997; 1
Ngaruye (ref_21) 2016; 3
Obidiegwu (ref_29) 2015; 6
ref_36
ref_12
Buschjager (ref_39) 2018; 65
ref_10
ref_32
ref_19
ref_18
ref_17
ref_16
ref_15
ref_37
Keen (ref_3) 1940; 66
Javadinejad (ref_4) 2021; 11
Wright (ref_28) 1992; 32
Kassahun (ref_26) 2020; 177
Rodriguez (ref_27) 2010; 32
Matsumura (ref_35) 2015; 153
Beillouin (ref_5) 2020; 375
Breure (ref_22) 2022; 425
Ahmad (ref_38) 2018; 46
Breiman (ref_23) 2001; 45
Kironde (ref_11) 2016; 1
Uleberg (ref_6) 2014; 122
ref_20
Jeong (ref_34) 2016; 11
ref_40
Molden (ref_2) 2011; 4
Gallego (ref_8) 1994; 37
ref_9
Smola (ref_25) 2004; 14
(ref_13) 2018; 13
Ranjan (ref_33) 2019; 27
ref_7
References_xml – ident: ref_9
– volume: 3
  start-page: 69
  year: 2016
  ident: ref_21
  article-title: Crop yield estimation at district level for agricultural seasons 2014 in Rwanda
  publication-title: Afr. J. Appl. Stat.
  doi: 10.16929/ajas/2016.69.203
– volume: 1
  start-page: 155
  year: 1997
  ident: ref_24
  article-title: Support vector regression machines
  publication-title: Adv. Neural Inf. Process Syst.
– ident: ref_32
– ident: ref_16
  doi: 10.1109/INCET49848.2020.9154036
– ident: ref_19
  doi: 10.1109/ICCES48766.2020.9137868
– ident: ref_7
  doi: 10.3390/ijms23052838
– ident: ref_12
  doi: 10.3390/agronomy12102529
– volume: 4
  start-page: 707
  year: 2011
  ident: ref_2
  article-title: Water Availability and Its Use in Agriculture
  publication-title: Treatise Water Sci.
  doi: 10.1016/B978-0-444-53199-5.00108-1
– volume: 11
  start-page: 1
  year: 2016
  ident: ref_34
  article-title: Random Forests for Global and Regional Crop Yield Predictions
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0156571
– volume: 46
  start-page: 1701
  year: 2018
  ident: ref_38
  article-title: Yield Forecasting of Spring Maize Using Remote Sensing and Crop Modeling in Faisalabad-Punjab Pakistan
  publication-title: J. Indian Soc. Remote. Sens.
  doi: 10.1007/s12524-018-0825-8
– volume: 48
  start-page: 327
  year: 2011
  ident: ref_1
  article-title: Impact of climate change on agriculture: Empirical evidence from arid region, Pakistan
  publication-title: J. Agric. Sci.
– ident: ref_40
– ident: ref_15
  doi: 10.3390/s19204363
– volume: 11
  start-page: 1
  year: 2021
  ident: ref_4
  article-title: The analysis of the most important climatic parameters affecting performance of crop variability in a changing climate
  publication-title: Int. J. Hydrol. Sci. Technol.
  doi: 10.1504/IJHST.2021.112651
– ident: ref_37
– ident: ref_18
  doi: 10.3390/rs12111744
– volume: 27
  start-page: 399
  year: 2019
  ident: ref_33
  article-title: Paddy acreage mapping and yield prediction using sentinel-based optical and SAR data in Sahibganj district, Jharkhand (India)
  publication-title: Spat. Inf. Res.
  doi: 10.1007/s41324-019-00246-4
– volume: 6
  start-page: 1
  year: 2015
  ident: ref_29
  article-title: Coping with drought: Stress and adaptive responses in potato and perspectives for improvement
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00542
– volume: 32
  start-page: 569
  year: 2010
  ident: ref_27
  article-title: Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2009.187
– volume: 375
  start-page: 20190510
  year: 2020
  ident: ref_5
  article-title: Impact of extreme weather conditions on European crop production in 2018: Random forest—Yield anomalies
  publication-title: Philos. Trans. R. Soc. B Biol. Sci.
  doi: 10.1098/rstb.2019.0510
– volume: 13
  start-page: 114003
  year: 2018
  ident: ref_13
  article-title: Machine learning methods for crop yield prediction and climate change impact assessment in agriculture
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aae159
– volume: 66
  start-page: 155
  year: 1940
  ident: ref_3
  article-title: Weather and crops
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49706628504
– volume: 37
  start-page: 381
  year: 1994
  ident: ref_8
  article-title: The relationship between AR-modelling bispectral estimation and the theory of linear prediction
  publication-title: Signal Process
  doi: 10.1016/0165-1684(94)90006-X
– volume: 65
  start-page: 209
  year: 2018
  ident: ref_39
  article-title: Decision Tree and Random Forest Implementations for Fast Filtering of Sensor Data
  publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap.
  doi: 10.1109/TCSI.2017.2710627
– ident: ref_17
  doi: 10.1109/ICICCS51141.2021.9432236
– volume: 153
  start-page: 399
  year: 2015
  ident: ref_35
  article-title: Maize yield forecasting by linear regression and artificial neural networks in Jilin, China
  publication-title: J. Agric. Sci.
  doi: 10.1017/S0021859614000392
– volume: 1
  start-page: 93
  year: 2016
  ident: ref_11
  article-title: Rwanda State of Environment and Outlook Report
  publication-title: REMA
– volume: 14
  start-page: 199
  year: 2004
  ident: ref_25
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 32
  start-page: 197
  year: 1992
  ident: ref_28
  article-title: Plant population studies on peanut (Arachis hypogaea L.) in subtropical Australia. 3. Growth and water use during a terminal drought stress
  publication-title: Aust. J. Exp. Agric.
  doi: 10.1071/EA9920197
– volume: 59
  start-page: 868
  year: 1977
  ident: ref_31
  article-title: Effects of Light, Carbon Dioxide, and Temperature on Photosynthesis, Oxygen Inhibition of Photosynthesis, and Transpiration in Solanum tuberosum
  publication-title: Plant Physiol.
  doi: 10.1104/pp.59.5.868
– ident: ref_10
– ident: ref_36
  doi: 10.1109/JCSSE.2016.7748856
– volume: 177
  start-page: 105709
  year: 2020
  ident: ref_26
  article-title: Crop yield prediction using machine learning: A systematic literature review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105709
– volume: 425
  start-page: 116018
  year: 2022
  ident: ref_22
  article-title: Spatial predictions of maize yields using QUEFTS—A comparison of methods
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2022.116018
– volume: 122
  start-page: 27
  year: 2014
  ident: ref_6
  article-title: Impact of climate change on agriculture in Northern Norway and potential strategies for adaptation
  publication-title: Clim. Change
  doi: 10.1007/s10584-013-0983-1
– volume: 2019
  start-page: 1
  year: 2013
  ident: ref_30
  article-title: Growth and Yield Response of Irish Potato (Solanum tuberosum) to Climate in Jos-South, Plateau State, Nigeria Growth and Yield Response of Irish Potato Solanum Tuberosumto Climate in Jos-South, Plateau State, Nigeria Strictly as per the compliance a
  publication-title: Int. J. Plant Res.
– volume: 15
  start-page: 064005
  year: 2020
  ident: ref_14
  article-title: Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab7df9
– ident: ref_20
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_23
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
SSID ssj0000913806
Score 2.569006
Snippet Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 225
SubjectTerms Agricultural economics
Agricultural production
Agriculture
air temperature
Annual reports
Climate change
Corn
Crop production
Crop yield
Crops
crops yield
Data collection
Data mining
Decision trees
Drought
Economic conditions
Extreme weather
Food security
Harvest
Harvesting
Humidity
income
Internet of Things
Irish potato
Learning algorithms
Machine learning
maize
Meteorological data
Neural networks
Optimization
Polynomials
Potatoes
Precipitation
Radiation
Rain
Rainfall
random forest
regression analysis
Research methodology
Risk management
Risk reduction
Rwanda
Solanum tuberosum
Temperature
Vegetables
Weather
yield forecasting
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXETxaTJM0TbzpooigLOjCeip5iiDtsq4Xf72TtK4ril685lHCZDIzX2f4BqEjrgtOg2aZdAwASrB5ZrQXmSossY5aZhMT082tuBry61Exmmv1FWvCWnrgVnAnRkHQbTUTVlheOiWDICqQQJwuqKI2Wl-iyByYSjZY5UwS0dIMMcD1J_px0pFZeDDbEecUX1xRYuz_ZpCTl7lcRStdeIjP2mOtoQVfr6Pls8-vbqC7_qQZ44dYeYYHk5hnibLFKfePb1JtpMcdbSoMxE43L6e4D94KNwGnjvJ40ECM2WBdO9jx9OY30fDy4r5_lXWtETLLaT7NWGHAL_ugguQSYgZPhbQ6UGkcqAaVhdfSM6EkdwEmaMR9pWHeBK65k4ZtocW6qf02wqUqTO4MF8RzHjjVACEMEcpAMAjYg_YQ_ZBSZTve8Ni-4rkC_BBFW_0g2h46nm0at7QZvy8_j-KfLY2c12kANKHqNKH6SxN6aO_j8qruIb5UtBSACAElih46nE3DE4p5EV375hXWyEjLx_OS7PzHOXbRUuxJ3_6n2UOL08mr34fIZWoOkpK-A5rV7OE
  priority: 102
  providerName: Directory of Open Access Journals
Title Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize
URI https://www.proquest.com/docview/2767166196
https://www.proquest.com/docview/2887634170
https://doaj.org/article/b9086ca36c6c47d98f609f0f0da5292c
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA51-6IP4hXX1hLBR4dmM0kmEUTapaUIXRa1UJ-GXEtBZtbp9qW_3nOymS2i9DW3hzPJOedLznwfIR-ElYInW1c61ABQkp9VzkZVGemZD9zXPjMxnS_U2YX4eikvd8hi_BcGyypHn5gddeg93pEf8kZBag_pvvqy-l2hahS-ro4SGrZIK4TPmWLsEdkFlyzZhOwenyyW37a3LsiCqZna0A_VgPcP7dVQSC4iuHPEP_KvEJWZ_P9x1Dn6nD4jT0vaSI823_k52YndC_Lk6H7Vl-T7fOhX9CdWpNHlgO8vaHOaawLoea6ZjLTQqUIDKuDcfKJziGK0TzQrzdNlD7lnT20XYMb1XXxFLk5PfszPqiKZUHnBZ-uqlg7idUwmaaEhl4hcaW8T1y7AluFaRqtjrYwWIUEHRzzYuDq6JKwI2tWvyaTru_iG0MZINwtOKBaFSIJbgBaOKeMgSQRMwqeEj1ZqfeETR1mLXy3gCjRt-x_TTsnH7aTVhk7j4eHHaP7tUOTCzg39cNWWo9U6A7DM21p55UUTjE6KmcQSC1Zyw_2U7I8fry0H9Ka9305T8n7bDUcL30tsF_tbGKORrk_MGvb24SX2yGNUod_czOyTyXq4je8gV1m7g7IBDzLW_wPoaOvH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE8RKGAkuLHqxvY6NlKF2tAqpU0UQSuV0-JnhYR2wyYVgh_Hb2O88aZCoN569eswHnseHn8fwCuuC06DZpl0DAOUYAeZ0V5kqrC5ddQy2yIxTaZifMo_nBVnG_C7-wsTyyq7O7G9qF1tY458mw4Fuvbo7ot38-9ZZI2Kr6sdhYZO1Apup4UYSx87jvzPHxjCLXYO3-N-v6b0YP9kNM4Sy0BmOR0sM1YYNHE-qCC5RPPrqZBWByqNQylTWXgtPRNKchewg8YQamiYN4Fr7qRhuO4N2OQxgdKDzb396ezjOssTUTdlLlZwR4ypfFufNwlUw6P5iPFW8ZdJbJkD_jEMrbU7uAt3kptKdld6dQ82fHUfbu9ervoAPo2aek4-xwo4Mmvie0_cY9LWIJBJW6PpSYJvxYbIuLN4S0ZoNUkdSMtsT2Y1-ro10ZXDGV9_-Ydwei3CewS9qq78YyBDVZiBM1zknvPAqcZQxuRCGXRKMQaifaCdlEqb8Msjjca3EuOYKNryP6Ltw5v1pPkKvuPq4XtR_OuhEXu7baib8zId5dIoDAOtZsIKy4dOySByFfKQO11QRW0ftrrNK9OFsCgv1bcPL9fdeJTj-4yufH2BY2SEB-SDYf7k6iVewM3xyeS4PD6cHj2FWxT9rlVWaAt6y-bCP0M_aWmeJ2Uk8OW69f8Ppkko1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD7UFkQfxCturRpB3xx2NslkEqFIu-3SWrssaqE-TXMtgsxsZ7eI_kR_lSez2S2i9K2vuT2cXM75kpPvA3jNdcFp0CyTjiFACXaQGe1FpgqbW0ctsx0T0_FYHJzwD6fF6Rr8Xv6FiWmVyzOxO6hdY-MdeZ-WAkN7DPdFP6S0iMne6P30IosKUvGldSmnoZPMgtvu6MbSJ48j__MHwrnZ9uEezv0bSkf7X4YHWVIcyCyng3nGCoPuzgcVJJfoij0V0upApXFocSoLr6VnQknuAlbQCKdKw7wJXHMnDcNxb8FGiV4fgeDG7v548ml14xMZOGUuFtRHjKm8r8_bRLDh0ZVE7FX85R47FYF_nETn-Ub34V4KWcnOYo09gDVfP4S7O1ejPoLPw7aZkq8xG45M2vj2E-ebdPkI5LjL1_QkUbliQVTfmb0jQ_SgpAmkU7knkwbj3obo2mGPb7_8Yzi5EeM9gfW6qf1TIKUqzMAZLnLPeeBUI6wxuVAGA1TEQ7QHdGmlyiYu8yip8b1CTBNNW_3HtD14u-o0XVB5XN98N5p_1TTycHcFTXtepW1dGYWQ0GomrLC8dEoGkauQh9zpgipqe7C1nLwqHQ6z6mop9-DVqhq3dXyr0bVvLrGNjFSBfFDmm9cP8RJu4z6oPh6Oj57BHYoh2OKCaAvW5-2lf44h09y8SGuRwNlNL_8_WqYtGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+Yield+Prediction+Using+Machine+Learning+Models%3A+Case+of+Irish+Potato+and+Maize&rft.jtitle=Agriculture+%28Basel%29&rft.au=Kuradusenge%2C+Martin&rft.au=Hitimana%2C+Eric&rft.au=Hanyurwimfura%2C+Damien&rft.au=Rukundo%2C+Placide&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=13&rft.issue=1&rft.spage=225&rft_id=info:doi/10.3390%2Fagriculture13010225&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon