Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize
Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively impacted by climate change leading to food insecurities. This is so because extreme weather conditions induced by climate change are detrimental...
Saved in:
Published in | Agriculture (Basel) Vol. 13; no. 1; p. 225 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2077-0472 2077-0472 |
DOI | 10.3390/agriculture13010225 |
Cover
Abstract | Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively impacted by climate change leading to food insecurities. This is so because extreme weather conditions induced by climate change are detrimental to most crops and affect the expected quantity of agricultural production. Although there is no way to fully mitigate these natural phenomena, it could be much better if there is information known earlier about the future so that farmers can plan accordingly. Early information sharing about expected crop production may support food insecurity risk reduction. In this regard, this work employs data mining techniques to predict future crop (i.e., Irish potatoes and Maize) harvests using weather and yields historical data for Musanze, a district in Rwanda. The study applies machine learning techniques to predict crop harvests based on weather data and communicate the information about production trends. Weather data and crop yields for Irish potatoes and maize were gathered from various sources. The collected data were analyzed through Random Forest, Polynomial Regression, and Support Vector Regressor. Rainfall and temperature were used as predictors. The models were trained and tested. The results indicate that Random Forest is the best model with root mean square error of 510.8 and 129.9 for potato and maize, respectively, whereas R2 was 0.875 and 0.817 for the same crops datasets. The optimum weather conditions for the optimal crop yield were identified for each crop. The results suggests that Random Forest is recommended model for early crop yield prediction. The findings of this study will go a long way to enhance reliance on data for agriculture and climate change related decisions, especially in low-to-middle income countries such as Rwanda. |
---|---|
AbstractList | Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively impacted by climate change leading to food insecurities. This is so because extreme weather conditions induced by climate change are detrimental to most crops and affect the expected quantity of agricultural production. Although there is no way to fully mitigate these natural phenomena, it could be much better if there is information known earlier about the future so that farmers can plan accordingly. Early information sharing about expected crop production may support food insecurity risk reduction. In this regard, this work employs data mining techniques to predict future crop (i.e., Irish potatoes and Maize) harvests using weather and yields historical data for Musanze, a district in Rwanda. The study applies machine learning techniques to predict crop harvests based on weather data and communicate the information about production trends. Weather data and crop yields for Irish potatoes and maize were gathered from various sources. The collected data were analyzed through Random Forest, Polynomial Regression, and Support Vector Regressor. Rainfall and temperature were used as predictors. The models were trained and tested. The results indicate that Random Forest is the best model with root mean square error of 510.8 and 129.9 for potato and maize, respectively, whereas R2 was 0.875 and 0.817 for the same crops datasets. The optimum weather conditions for the optimal crop yield were identified for each crop. The results suggests that Random Forest is recommended model for early crop yield prediction. The findings of this study will go a long way to enhance reliance on data for agriculture and climate change related decisions, especially in low-to-middle income countries such as Rwanda. Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively impacted by climate change leading to food insecurities. This is so because extreme weather conditions induced by climate change are detrimental to most crops and affect the expected quantity of agricultural production. Although there is no way to fully mitigate these natural phenomena, it could be much better if there is information known earlier about the future so that farmers can plan accordingly. Early information sharing about expected crop production may support food insecurity risk reduction. In this regard, this work employs data mining techniques to predict future crop (i.e., Irish potatoes and Maize) harvests using weather and yields historical data for Musanze, a district in Rwanda. The study applies machine learning techniques to predict crop harvests based on weather data and communicate the information about production trends. Weather data and crop yields for Irish potatoes and maize were gathered from various sources. The collected data were analyzed through Random Forest, Polynomial Regression, and Support Vector Regressor. Rainfall and temperature were used as predictors. The models were trained and tested. The results indicate that Random Forest is the best model with root mean square error of 510.8 and 129.9 for potato and maize, respectively, whereas R² was 0.875 and 0.817 for the same crops datasets. The optimum weather conditions for the optimal crop yield were identified for each crop. The results suggests that Random Forest is recommended model for early crop yield prediction. The findings of this study will go a long way to enhance reliance on data for agriculture and climate change related decisions, especially in low-to-middle income countries such as Rwanda. |
Author | Mukasine, Angelique Mtonga, Kambombo Uwamahoro, Angelique Rukundo, Placide Hanyurwimfura, Damien Uwitonze, Claudette Kuradusenge, Martin Hitimana, Eric Ngabonziza, Jackson |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0001-7741-8905 surname: Kuradusenge fullname: Kuradusenge, Martin – sequence: 2 givenname: Eric surname: Hitimana fullname: Hitimana, Eric – sequence: 3 givenname: Damien surname: Hanyurwimfura fullname: Hanyurwimfura, Damien – sequence: 4 givenname: Placide surname: Rukundo fullname: Rukundo, Placide – sequence: 5 givenname: Kambombo surname: Mtonga fullname: Mtonga, Kambombo – sequence: 6 givenname: Angelique surname: Mukasine fullname: Mukasine, Angelique – sequence: 7 givenname: Claudette surname: Uwitonze fullname: Uwitonze, Claudette – sequence: 8 givenname: Jackson surname: Ngabonziza fullname: Ngabonziza, Jackson – sequence: 9 givenname: Angelique surname: Uwamahoro fullname: Uwamahoro, Angelique |
BookMark | eNp9UU1rFEEQHSSCMckv8NLgxctqf01_eJPFmIWVBDQHT01Nd_Wml8n02j1z0F9vJ6sgQaxLFa_ee1CvXnYnU56w614x-lYIS9_BriS_jPNSkAnKKOf9s-6UU61XVGp-8tf8oruodU9bWSYMVafdl3XJB_It4RjITcGQ_JzyRG5rmnbkM_i7NCHZIpTpEcgBx_qerKEiyZFsSqp35CbPMGcCU2iK9BPPu-cRxooXv_tZd3v58ev6arW9_rRZf9iuvORsXol-4FJitNFIo0SPXBkPkZshIARuegSDQlkjQ2wLThWTehA4RAkymEGcdZujb8iwd4eS7qH8cBmSewRy2Tkoc_IjusFSozwI5ZWXOlgTFbWRRhqg55b75vXm6HUo-fuCdXb3qXocR5gwL9VxY7QSkmnaqK-fUPd5KVO71HGtNFOKWdVY9sjyJddaMDqfWkwt3LlAGh2j7uF77h_fa1rxRPvnuP-pfgHST6JQ |
CitedBy_id | crossref_primary_10_1038_s44264_025_00052_6 crossref_primary_10_3390_plants13091200 crossref_primary_10_1007_s42979_023_02463_z crossref_primary_10_3390_app13169288 crossref_primary_10_3390_app14041638 crossref_primary_10_3390_geographies4030024 crossref_primary_10_3390_agriculture14081225 crossref_primary_10_3390_agriculture15010075 crossref_primary_10_1007_s12517_023_11754_x crossref_primary_10_3390_rs16183455 crossref_primary_10_1007_s10666_023_09920_2 crossref_primary_10_1007_s42535_024_00959_4 crossref_primary_10_3390_app14178018 crossref_primary_10_1016_j_rineng_2025_104451 crossref_primary_10_1016_j_aiia_2024_11_005 crossref_primary_10_3389_fpls_2023_1234555 crossref_primary_10_1007_s40333_025_0094_7 crossref_primary_10_36899_japs_2024_5_0811 crossref_primary_10_1007_s41685_023_00299_2 crossref_primary_10_3390_agronomy14092130 crossref_primary_10_1080_17538947_2023_2186505 crossref_primary_10_1117_1_JRS_18_044513 crossref_primary_10_1007_s11273_023_09971_y crossref_primary_10_3390_technologies11050116 crossref_primary_10_3390_foods13182936 crossref_primary_10_1016_j_fcr_2025_109794 crossref_primary_10_1007_s44187_025_00338_1 crossref_primary_10_1016_j_atech_2024_100718 crossref_primary_10_1007_s43926_024_00079_0 crossref_primary_10_1007_s11600_024_01312_8 crossref_primary_10_3390_software3020007 crossref_primary_10_20473_jatm_v2i2_51440 crossref_primary_10_1007_s11540_024_09803_3 crossref_primary_10_2139_ssrn_4546168 crossref_primary_10_3390_foods13233858 crossref_primary_10_2139_ssrn_4779971 crossref_primary_10_1038_s41598_023_45682_3 crossref_primary_10_3390_app14083383 crossref_primary_10_12944_CARJ_11_2_30 crossref_primary_10_3390_buildings15020288 crossref_primary_10_1038_s41597_025_04738_x crossref_primary_10_1016_j_prime_2024_100611 crossref_primary_10_32604_cmc_2024_050240 crossref_primary_10_3390_agriculture14030481 crossref_primary_10_3390_eng5040130 crossref_primary_10_1007_s41976_024_00176_2 crossref_primary_10_3390_agronomy13051297 crossref_primary_10_3390_agriculture13122259 crossref_primary_10_1007_s13198_024_02577_4 crossref_primary_10_3390_electronics13214273 crossref_primary_10_1007_s10661_024_12667_2 crossref_primary_10_3390_agriengineering6030134 crossref_primary_10_3390_app131810084 crossref_primary_10_3390_agronomy14123010 crossref_primary_10_33003_fjs_2024_0801_2220 crossref_primary_10_3390_agriculture15060582 crossref_primary_10_1007_s42979_023_02572_9 crossref_primary_10_3390_computers13060137 crossref_primary_10_1007_s40745_024_00534_3 crossref_primary_10_1109_ACCESS_2024_3383309 |
Cites_doi | 10.16929/ajas/2016.69.203 10.1109/INCET49848.2020.9154036 10.1109/ICCES48766.2020.9137868 10.3390/ijms23052838 10.3390/agronomy12102529 10.1016/B978-0-444-53199-5.00108-1 10.1371/journal.pone.0156571 10.1007/s12524-018-0825-8 10.3390/s19204363 10.1504/IJHST.2021.112651 10.3390/rs12111744 10.1007/s41324-019-00246-4 10.3389/fpls.2015.00542 10.1109/TPAMI.2009.187 10.1098/rstb.2019.0510 10.1088/1748-9326/aae159 10.1002/qj.49706628504 10.1016/0165-1684(94)90006-X 10.1109/TCSI.2017.2710627 10.1109/ICICCS51141.2021.9432236 10.1017/S0021859614000392 10.1023/B:STCO.0000035301.49549.88 10.1071/EA9920197 10.1104/pp.59.5.868 10.1109/JCSSE.2016.7748856 10.1016/j.compag.2020.105709 10.1016/j.geoderma.2022.116018 10.1007/s10584-013-0983-1 10.1088/1748-9326/ab7df9 10.1023/A:1010933404324 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 DOA |
DOI | 10.3390/agriculture13010225 |
DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2077-0472 |
ExternalDocumentID | oai_doaj_org_article_b9086ca36c6c47d98f609f0f0da5292c 10_3390_agriculture13010225 |
GeographicLocations | Europe Rwanda |
GeographicLocations_xml | – name: Europe – name: Rwanda |
GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
ID | FETCH-LOGICAL-c421t-35b244ef9f848635e268caf28bdead285ea8e36984df8ca206147b3ebf4a4d8b3 |
IEDL.DBID | BENPR |
ISSN | 2077-0472 |
IngestDate | Wed Aug 27 01:30:32 EDT 2025 Fri Sep 05 06:07:05 EDT 2025 Mon Jun 30 15:13:59 EDT 2025 Tue Jul 01 02:12:57 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-35b244ef9f848635e268caf28bdead285ea8e36984df8ca206147b3ebf4a4d8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7741-8905 |
OpenAccessLink | https://www.proquest.com/docview/2767166196?pq-origsite=%requestingapplication%&accountid=15518 |
PQID | 2767166196 |
PQPubID | 2032441 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b9086ca36c6c47d98f609f0f0da5292c proquest_miscellaneous_2887634170 proquest_journals_2767166196 crossref_citationtrail_10_3390_agriculture13010225 crossref_primary_10_3390_agriculture13010225 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Agriculture (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Kang (ref_14) 2020; 15 Zemba (ref_30) 2013; 2019 Shakoor (ref_1) 2011; 48 Ku (ref_31) 1977; 59 Drucker (ref_24) 1997; 1 Ngaruye (ref_21) 2016; 3 Obidiegwu (ref_29) 2015; 6 ref_36 ref_12 Buschjager (ref_39) 2018; 65 ref_10 ref_32 ref_19 ref_18 ref_17 ref_16 ref_15 ref_37 Keen (ref_3) 1940; 66 Javadinejad (ref_4) 2021; 11 Wright (ref_28) 1992; 32 Kassahun (ref_26) 2020; 177 Rodriguez (ref_27) 2010; 32 Matsumura (ref_35) 2015; 153 Beillouin (ref_5) 2020; 375 Breure (ref_22) 2022; 425 Ahmad (ref_38) 2018; 46 Breiman (ref_23) 2001; 45 Kironde (ref_11) 2016; 1 Uleberg (ref_6) 2014; 122 ref_20 Jeong (ref_34) 2016; 11 ref_40 Molden (ref_2) 2011; 4 Gallego (ref_8) 1994; 37 ref_9 Smola (ref_25) 2004; 14 (ref_13) 2018; 13 Ranjan (ref_33) 2019; 27 ref_7 |
References_xml | – ident: ref_9 – volume: 3 start-page: 69 year: 2016 ident: ref_21 article-title: Crop yield estimation at district level for agricultural seasons 2014 in Rwanda publication-title: Afr. J. Appl. Stat. doi: 10.16929/ajas/2016.69.203 – volume: 1 start-page: 155 year: 1997 ident: ref_24 article-title: Support vector regression machines publication-title: Adv. Neural Inf. Process Syst. – ident: ref_32 – ident: ref_16 doi: 10.1109/INCET49848.2020.9154036 – ident: ref_19 doi: 10.1109/ICCES48766.2020.9137868 – ident: ref_7 doi: 10.3390/ijms23052838 – ident: ref_12 doi: 10.3390/agronomy12102529 – volume: 4 start-page: 707 year: 2011 ident: ref_2 article-title: Water Availability and Its Use in Agriculture publication-title: Treatise Water Sci. doi: 10.1016/B978-0-444-53199-5.00108-1 – volume: 11 start-page: 1 year: 2016 ident: ref_34 article-title: Random Forests for Global and Regional Crop Yield Predictions publication-title: PLoS ONE doi: 10.1371/journal.pone.0156571 – volume: 46 start-page: 1701 year: 2018 ident: ref_38 article-title: Yield Forecasting of Spring Maize Using Remote Sensing and Crop Modeling in Faisalabad-Punjab Pakistan publication-title: J. Indian Soc. Remote. Sens. doi: 10.1007/s12524-018-0825-8 – volume: 48 start-page: 327 year: 2011 ident: ref_1 article-title: Impact of climate change on agriculture: Empirical evidence from arid region, Pakistan publication-title: J. Agric. Sci. – ident: ref_40 – ident: ref_15 doi: 10.3390/s19204363 – volume: 11 start-page: 1 year: 2021 ident: ref_4 article-title: The analysis of the most important climatic parameters affecting performance of crop variability in a changing climate publication-title: Int. J. Hydrol. Sci. Technol. doi: 10.1504/IJHST.2021.112651 – ident: ref_37 – ident: ref_18 doi: 10.3390/rs12111744 – volume: 27 start-page: 399 year: 2019 ident: ref_33 article-title: Paddy acreage mapping and yield prediction using sentinel-based optical and SAR data in Sahibganj district, Jharkhand (India) publication-title: Spat. Inf. Res. doi: 10.1007/s41324-019-00246-4 – volume: 6 start-page: 1 year: 2015 ident: ref_29 article-title: Coping with drought: Stress and adaptive responses in potato and perspectives for improvement publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00542 – volume: 32 start-page: 569 year: 2010 ident: ref_27 article-title: Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2009.187 – volume: 375 start-page: 20190510 year: 2020 ident: ref_5 article-title: Impact of extreme weather conditions on European crop production in 2018: Random forest—Yield anomalies publication-title: Philos. Trans. R. Soc. B Biol. Sci. doi: 10.1098/rstb.2019.0510 – volume: 13 start-page: 114003 year: 2018 ident: ref_13 article-title: Machine learning methods for crop yield prediction and climate change impact assessment in agriculture publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aae159 – volume: 66 start-page: 155 year: 1940 ident: ref_3 article-title: Weather and crops publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.49706628504 – volume: 37 start-page: 381 year: 1994 ident: ref_8 article-title: The relationship between AR-modelling bispectral estimation and the theory of linear prediction publication-title: Signal Process doi: 10.1016/0165-1684(94)90006-X – volume: 65 start-page: 209 year: 2018 ident: ref_39 article-title: Decision Tree and Random Forest Implementations for Fast Filtering of Sensor Data publication-title: IEEE Trans. Circuits Syst. I: Regul. Pap. doi: 10.1109/TCSI.2017.2710627 – ident: ref_17 doi: 10.1109/ICICCS51141.2021.9432236 – volume: 153 start-page: 399 year: 2015 ident: ref_35 article-title: Maize yield forecasting by linear regression and artificial neural networks in Jilin, China publication-title: J. Agric. Sci. doi: 10.1017/S0021859614000392 – volume: 1 start-page: 93 year: 2016 ident: ref_11 article-title: Rwanda State of Environment and Outlook Report publication-title: REMA – volume: 14 start-page: 199 year: 2004 ident: ref_25 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 32 start-page: 197 year: 1992 ident: ref_28 article-title: Plant population studies on peanut (Arachis hypogaea L.) in subtropical Australia. 3. Growth and water use during a terminal drought stress publication-title: Aust. J. Exp. Agric. doi: 10.1071/EA9920197 – volume: 59 start-page: 868 year: 1977 ident: ref_31 article-title: Effects of Light, Carbon Dioxide, and Temperature on Photosynthesis, Oxygen Inhibition of Photosynthesis, and Transpiration in Solanum tuberosum publication-title: Plant Physiol. doi: 10.1104/pp.59.5.868 – ident: ref_10 – ident: ref_36 doi: 10.1109/JCSSE.2016.7748856 – volume: 177 start-page: 105709 year: 2020 ident: ref_26 article-title: Crop yield prediction using machine learning: A systematic literature review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105709 – volume: 425 start-page: 116018 year: 2022 ident: ref_22 article-title: Spatial predictions of maize yields using QUEFTS—A comparison of methods publication-title: Geoderma doi: 10.1016/j.geoderma.2022.116018 – volume: 122 start-page: 27 year: 2014 ident: ref_6 article-title: Impact of climate change on agriculture in Northern Norway and potential strategies for adaptation publication-title: Clim. Change doi: 10.1007/s10584-013-0983-1 – volume: 2019 start-page: 1 year: 2013 ident: ref_30 article-title: Growth and Yield Response of Irish Potato (Solanum tuberosum) to Climate in Jos-South, Plateau State, Nigeria Growth and Yield Response of Irish Potato Solanum Tuberosumto Climate in Jos-South, Plateau State, Nigeria Strictly as per the compliance a publication-title: Int. J. Plant Res. – volume: 15 start-page: 064005 year: 2020 ident: ref_14 article-title: Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab7df9 – ident: ref_20 – volume: 45 start-page: 5 year: 2001 ident: ref_23 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 |
SSID | ssj0000913806 |
Score | 2.569006 |
Snippet | Although agriculture remains the dominant economic activity in many countries around the world, in recent years this sector has continued to be negatively... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 225 |
SubjectTerms | Agricultural economics Agricultural production Agriculture air temperature Annual reports Climate change Corn Crop production Crop yield Crops crops yield Data collection Data mining Decision trees Drought Economic conditions Extreme weather Food security Harvest Harvesting Humidity income Internet of Things Irish potato Learning algorithms Machine learning maize Meteorological data Neural networks Optimization Polynomials Potatoes Precipitation Radiation Rain Rainfall random forest regression analysis Research methodology Risk management Risk reduction Rwanda Solanum tuberosum Temperature Vegetables Weather yield forecasting |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXETxaTJM0TbzpooigLOjCeip5iiDtsq4Xf72TtK4ril685lHCZDIzX2f4BqEjrgtOg2aZdAwASrB5ZrQXmSossY5aZhMT082tuBry61Exmmv1FWvCWnrgVnAnRkHQbTUTVlheOiWDICqQQJwuqKI2Wl-iyByYSjZY5UwS0dIMMcD1J_px0pFZeDDbEecUX1xRYuz_ZpCTl7lcRStdeIjP2mOtoQVfr6Pls8-vbqC7_qQZ44dYeYYHk5hnibLFKfePb1JtpMcdbSoMxE43L6e4D94KNwGnjvJ40ECM2WBdO9jx9OY30fDy4r5_lXWtETLLaT7NWGHAL_ugguQSYgZPhbQ6UGkcqAaVhdfSM6EkdwEmaMR9pWHeBK65k4ZtocW6qf02wqUqTO4MF8RzHjjVACEMEcpAMAjYg_YQ_ZBSZTve8Ni-4rkC_BBFW_0g2h46nm0at7QZvy8_j-KfLY2c12kANKHqNKH6SxN6aO_j8qruIb5UtBSACAElih46nE3DE4p5EV375hXWyEjLx_OS7PzHOXbRUuxJ3_6n2UOL08mr34fIZWoOkpK-A5rV7OE priority: 102 providerName: Directory of Open Access Journals |
Title | Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize |
URI | https://www.proquest.com/docview/2767166196 https://www.proquest.com/docview/2887634170 https://doaj.org/article/b9086ca36c6c47d98f609f0f0da5292c |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1baxQxFA51-6IP4hXX1hLBR4dmM0kmEUTapaUIXRa1UJ-GXEtBZtbp9qW_3nOymS2i9DW3hzPJOedLznwfIR-ElYInW1c61ABQkp9VzkZVGemZD9zXPjMxnS_U2YX4eikvd8hi_BcGyypHn5gddeg93pEf8kZBag_pvvqy-l2hahS-ro4SGrZIK4TPmWLsEdkFlyzZhOwenyyW37a3LsiCqZna0A_VgPcP7dVQSC4iuHPEP_KvEJWZ_P9x1Dn6nD4jT0vaSI823_k52YndC_Lk6H7Vl-T7fOhX9CdWpNHlgO8vaHOaawLoea6ZjLTQqUIDKuDcfKJziGK0TzQrzdNlD7lnT20XYMb1XXxFLk5PfszPqiKZUHnBZ-uqlg7idUwmaaEhl4hcaW8T1y7AluFaRqtjrYwWIUEHRzzYuDq6JKwI2tWvyaTru_iG0MZINwtOKBaFSIJbgBaOKeMgSQRMwqeEj1ZqfeETR1mLXy3gCjRt-x_TTsnH7aTVhk7j4eHHaP7tUOTCzg39cNWWo9U6A7DM21p55UUTjE6KmcQSC1Zyw_2U7I8fry0H9Ka9305T8n7bDUcL30tsF_tbGKORrk_MGvb24SX2yGNUod_czOyTyXq4je8gV1m7g7IBDzLW_wPoaOvH |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE8RKGAkuLHqxvY6NlKF2tAqpU0UQSuV0-JnhYR2wyYVgh_Hb2O88aZCoN569eswHnseHn8fwCuuC06DZpl0DAOUYAeZ0V5kqrC5ddQy2yIxTaZifMo_nBVnG_C7-wsTyyq7O7G9qF1tY458mw4Fuvbo7ot38-9ZZI2Kr6sdhYZO1Apup4UYSx87jvzPHxjCLXYO3-N-v6b0YP9kNM4Sy0BmOR0sM1YYNHE-qCC5RPPrqZBWByqNQylTWXgtPRNKchewg8YQamiYN4Fr7qRhuO4N2OQxgdKDzb396ezjOssTUTdlLlZwR4ypfFufNwlUw6P5iPFW8ZdJbJkD_jEMrbU7uAt3kptKdld6dQ82fHUfbu9ervoAPo2aek4-xwo4Mmvie0_cY9LWIJBJW6PpSYJvxYbIuLN4S0ZoNUkdSMtsT2Y1-ro10ZXDGV9_-Ydwei3CewS9qq78YyBDVZiBM1zknvPAqcZQxuRCGXRKMQaifaCdlEqb8Msjjca3EuOYKNryP6Ltw5v1pPkKvuPq4XtR_OuhEXu7baib8zId5dIoDAOtZsIKy4dOySByFfKQO11QRW0ftrrNK9OFsCgv1bcPL9fdeJTj-4yufH2BY2SEB-SDYf7k6iVewM3xyeS4PD6cHj2FWxT9rlVWaAt6y-bCP0M_aWmeJ2Uk8OW69f8Ppkko1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxQxFD7UFkQfxCturRpB3xx2NslkEqFIu-3SWrssaqE-TXMtgsxsZ7eI_kR_lSez2S2i9K2vuT2cXM75kpPvA3jNdcFp0CyTjiFACXaQGe1FpgqbW0ctsx0T0_FYHJzwD6fF6Rr8Xv6FiWmVyzOxO6hdY-MdeZ-WAkN7DPdFP6S0iMne6P30IosKUvGldSmnoZPMgtvu6MbSJ48j__MHwrnZ9uEezv0bSkf7X4YHWVIcyCyng3nGCoPuzgcVJJfoij0V0upApXFocSoLr6VnQknuAlbQCKdKw7wJXHMnDcNxb8FGiV4fgeDG7v548ml14xMZOGUuFtRHjKm8r8_bRLDh0ZVE7FX85R47FYF_nETn-Ub34V4KWcnOYo09gDVfP4S7O1ejPoLPw7aZkq8xG45M2vj2E-ebdPkI5LjL1_QkUbliQVTfmb0jQ_SgpAmkU7knkwbj3obo2mGPb7_8Yzi5EeM9gfW6qf1TIKUqzMAZLnLPeeBUI6wxuVAGA1TEQ7QHdGmlyiYu8yip8b1CTBNNW_3HtD14u-o0XVB5XN98N5p_1TTycHcFTXtepW1dGYWQ0GomrLC8dEoGkauQh9zpgipqe7C1nLwqHQ6z6mop9-DVqhq3dXyr0bVvLrGNjFSBfFDmm9cP8RJu4z6oPh6Oj57BHYoh2OKCaAvW5-2lf44h09y8SGuRwNlNL_8_WqYtGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+Yield+Prediction+Using+Machine+Learning+Models%3A+Case+of+Irish+Potato+and+Maize&rft.jtitle=Agriculture+%28Basel%29&rft.au=Kuradusenge%2C+Martin&rft.au=Hitimana%2C+Eric&rft.au=Hanyurwimfura%2C+Damien&rft.au=Rukundo%2C+Placide&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=13&rft.issue=1&rft.spage=225&rft_id=info:doi/10.3390%2Fagriculture13010225&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |