An Enhanced Histopathology Analysis: An AI-Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue

Oral squamous cell carcinoma is most frequent histological neoplasm of head and neck cancers, and although it is localized in a region that is accessible to see and can be detected very early, this usually does not occur. The standard procedure for the diagnosis of oral cancer is based on histopatho...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 13; no. 8; p. 1784
Main Authors Musulin, Jelena, Štifanić, Daniel, Zulijani, Ana, Ćabov, Tomislav, Dekanić, Andrea, Car, Zlatan
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 08.04.2021
MDPI
Subjects
Online AccessGet full text
ISSN2072-6694
2072-6694
DOI10.3390/cancers13081784

Cover

Abstract Oral squamous cell carcinoma is most frequent histological neoplasm of head and neck cancers, and although it is localized in a region that is accessible to see and can be detected very early, this usually does not occur. The standard procedure for the diagnosis of oral cancer is based on histopathological examination, however, the main problem in this kind of procedure is tumor heterogeneity where a subjective component of the examination could directly impact patient-specific treatment intervention. For this reason, artificial intelligence (AI) algorithms are widely used as computational aid in the diagnosis for classification and segmentation of tumors, in order to reduce inter- and intra-observer variability. In this research, a two-stage AI-based system for automatic multiclass grading (the first stage) and segmentation of the epithelial and stromal tissue (the second stage) from oral histopathological images is proposed in order to assist the clinician in oral squamous cell carcinoma diagnosis. The integration of Xception and SWT resulted in the highest classification value of 0.963 (σ = 0.042) AUCmacro and 0.966 (σ = 0.027) AUCmicro while using DeepLabv3+ along with Xception_65 as backbone and data preprocessing, semantic segmentation prediction resulted in 0.878 (σ = 0.027) mIOU and 0.955 (σ = 0.014) F1 score. Obtained results reveal that the proposed AI-based system has great potential in the diagnosis of OSCC.
AbstractList Oral squamous cell carcinoma is most frequent histological neoplasm of head and neck cancers, and although it is localized in a region that is accessible to see and can be detected very early, this usually does not occur. The standard procedure for the diagnosis of oral cancer is based on histopathological examination, however, the main problem in this kind of procedure is tumor heterogeneity where a subjective component of the examination could directly impact patient-specific treatment intervention. For this reason, artificial intelligence (AI) algorithms are widely used as computational aid in the diagnosis for classification and segmentation of tumors, in order to reduce inter- and intra-observer variability. In this research, a two-stage AI-based system for automatic multiclass grading (the first stage) and segmentation of the epithelial and stromal tissue (the second stage) from oral histopathological images is proposed in order to assist the clinician in oral squamous cell carcinoma diagnosis. The integration of Xception and SWT resulted in the highest classification value of 0.963 (σ = 0.042) AUCmacro and 0.966 (σ = 0.027) AUCmicro while using DeepLabv3+ along with Xception_65 as backbone and data preprocessing, semantic segmentation prediction resulted in 0.878 (σ = 0.027) mIOU and 0.955 (σ = 0.014) F1 score. Obtained results reveal that the proposed AI-based system has great potential in the diagnosis of OSCC.
Oral squamous cell carcinoma is most frequent histological neoplasm of head and neck cancers, and although it is localized in a region that is accessible to see and can be detected very early, this usually does not occur. The standard procedure for the diagnosis of oral cancer is based on histopathological examination, however, the main problem in this kind of procedure is tumor heterogeneity where a subjective component of the examination could directly impact patient-specific treatment intervention. For this reason, artificial intelligence (AI) algorithms are widely used as computational aid in the diagnosis for classification and segmentation of tumors, in order to reduce inter- and intra-observer variability. In this research, a two-stage AI-based system for automatic multiclass grading (the first stage) and segmentation of the epithelial and stromal tissue (the second stage) from oral histopathological images is proposed in order to assist the clinician in oral squamous cell carcinoma diagnosis. The integration of Xception and SWT resulted in the highest classification value of 0.963 (σ = 0.042) AUCmacro and 0.966 (σ = 0.027) AUCmicro while using DeepLabv3+ along with Xception_65 as backbone and data preprocessing, semantic segmentation prediction resulted in 0.878 (σ = 0.027) mIOU and 0.955 (σ = 0.014) F1 score. Obtained results reveal that the proposed AI-based system has great potential in the diagnosis of OSCC.Oral squamous cell carcinoma is most frequent histological neoplasm of head and neck cancers, and although it is localized in a region that is accessible to see and can be detected very early, this usually does not occur. The standard procedure for the diagnosis of oral cancer is based on histopathological examination, however, the main problem in this kind of procedure is tumor heterogeneity where a subjective component of the examination could directly impact patient-specific treatment intervention. For this reason, artificial intelligence (AI) algorithms are widely used as computational aid in the diagnosis for classification and segmentation of tumors, in order to reduce inter- and intra-observer variability. In this research, a two-stage AI-based system for automatic multiclass grading (the first stage) and segmentation of the epithelial and stromal tissue (the second stage) from oral histopathological images is proposed in order to assist the clinician in oral squamous cell carcinoma diagnosis. The integration of Xception and SWT resulted in the highest classification value of 0.963 (σ = 0.042) AUCmacro and 0.966 (σ = 0.027) AUCmicro while using DeepLabv3+ along with Xception_65 as backbone and data preprocessing, semantic segmentation prediction resulted in 0.878 (σ = 0.027) mIOU and 0.955 (σ = 0.014) F1 score. Obtained results reveal that the proposed AI-based system has great potential in the diagnosis of OSCC.
Simple SummaryAn established dataset of histopathology images obtained by biopsy and reviewed by two pathologists is used to create a two-stage oral squamous cell carcinoma diagnostic AI-based system. In the first stage, automated multiclass grading of OSCC is performed to improve the objectivity and reproducibility of histopathological examination. Furthermore, in the second stage, semantic segmentation of OSCC on epithelial and stromal tissue is performed in order to assist the clinician in discovering new informative features. Proposed AI-system based on deep convolutional neural networks and preprocessing methods achieved satisfactory results in terms of multiclass grading and segmenting. This research is the first step in analysing the tumor microenvironment, i.e., tumor-stroma ratio and segmentation of the microenvironment cells.AbstractOral squamous cell carcinoma is most frequent histological neoplasm of head and neck cancers, and although it is localized in a region that is accessible to see and can be detected very early, this usually does not occur. The standard procedure for the diagnosis of oral cancer is based on histopathological examination, however, the main problem in this kind of procedure is tumor heterogeneity where a subjective component of the examination could directly impact patient-specific treatment intervention. For this reason, artificial intelligence (AI) algorithms are widely used as computational aid in the diagnosis for classification and segmentation of tumors, in order to reduce inter- and intra-observer variability. In this research, a two-stage AI-based system for automatic multiclass grading (the first stage) and segmentation of the epithelial and stromal tissue (the second stage) from oral histopathological images is proposed in order to assist the clinician in oral squamous cell carcinoma diagnosis. The integration of Xception and SWT resulted in the highest classification value of 0.963 (σ = 0.042) AUCmacro and 0.966 (σ = 0.027) AUCmicro while using DeepLabv3+ along with Xception_65 as backbone and data preprocessing, semantic segmentation prediction resulted in 0.878 (σ = 0.027) mIOU and 0.955 (σ = 0.014) F1 score. Obtained results reveal that the proposed AI-based system has great potential in the diagnosis of OSCC.
Author Dekanić, Andrea
Ćabov, Tomislav
Musulin, Jelena
Štifanić, Daniel
Car, Zlatan
Zulijani, Ana
AuthorAffiliation 3 Faculty of Dental Medicine, University of Rijeka, Krešimirova Ul. 40, 51000 Rijeka, Croatia
2 Department of Oral Surgery, Clinical Hospital Center Rijeka, Krešimirova Ul. 40, 51000 Rijeka, Croatia; ana.zulijani@sz.uniri.hr
4 Department of Pathology and Cytology, Clinical Hospital Center Rijeka, Krešimirova Ul. 42, 51000 Rijeka, Croatia; andrea.dekanic@medri.uniri.hr
5 Faculty of Medicine, University of Rijeka, Ul. Braće Branchetta 20/1, 51000 Rijeka, Croatia
1 Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia; jmusulin@riteh.hr (J.M.); car@riteh.hr (Z.C.)
AuthorAffiliation_xml – name: 4 Department of Pathology and Cytology, Clinical Hospital Center Rijeka, Krešimirova Ul. 42, 51000 Rijeka, Croatia; andrea.dekanic@medri.uniri.hr
– name: 3 Faculty of Dental Medicine, University of Rijeka, Krešimirova Ul. 40, 51000 Rijeka, Croatia
– name: 5 Faculty of Medicine, University of Rijeka, Ul. Braće Branchetta 20/1, 51000 Rijeka, Croatia
– name: 1 Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia; jmusulin@riteh.hr (J.M.); car@riteh.hr (Z.C.)
– name: 2 Department of Oral Surgery, Clinical Hospital Center Rijeka, Krešimirova Ul. 40, 51000 Rijeka, Croatia; ana.zulijani@sz.uniri.hr
Author_xml – sequence: 1
  givenname: Jelena
  orcidid: 0000-0002-5213-1550
  surname: Musulin
  fullname: Musulin, Jelena
– sequence: 2
  givenname: Daniel
  orcidid: 0000-0001-9396-2441
  surname: Štifanić
  fullname: Štifanić, Daniel
– sequence: 3
  givenname: Ana
  orcidid: 0000-0003-2618-2263
  surname: Zulijani
  fullname: Zulijani, Ana
– sequence: 4
  givenname: Tomislav
  orcidid: 0000-0002-8872-2811
  surname: Ćabov
  fullname: Ćabov, Tomislav
– sequence: 5
  givenname: Andrea
  orcidid: 0000-0003-1723-6354
  surname: Dekanić
  fullname: Dekanić, Andrea
– sequence: 6
  givenname: Zlatan
  orcidid: 0000-0003-2817-9252
  surname: Car
  fullname: Car, Zlatan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33917952$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9v1DAQxS1UREvpmRuyxIVLqO0k_sMBaVktbaWiHlrOkeM4u64cO7WdonwZPitedqnKSkj44pHm957mzbwGR847DcBbjD6WpUDnSjqlQ8Ql4pjx6gU4IYiRglJRHT2rj8FZjPcov7LEjLJX4DjLMRM1OQE_Fw6u3Gbr1MFLE5MfZdp469czXDhp52jip1zBxVXxRcYM3c4x6QH2PsBvk01GWRkjvAiyM24NfQ9vgrTw9mGSg58iXGpr4VIGZZwfJJQuO-j1oF3a46vRpI22Jot-N1PInIV3JsZJvwEve2mjPtv_p-D719Xd8rK4vrm4Wi6uC1URnAqsaiWFwKRTQmOuRCtoR0kp2hqRukeqqxmhjDAme1Fp1DLc86rSmvd9zWlbngK0853cKOcf0tpmDGaQYW4warbbbg62nSWfd5JxagfdqZwoB3-SeWmavzvObJq1f2w4orwkNBt82BsE_zDpmJrBRJXXJZ3Om2tITRDPIWqW0fcH6L2fQj7PlqoYxYIhnql3zyd6GuXPtTNwvgNU8DEG3f9HyPpAoUySyfhtJGP_qfsFnnXSeg
CitedBy_id crossref_primary_10_1155_2023_2662719
crossref_primary_10_1007_s00521_022_08094_4
crossref_primary_10_3390_cancers14051199
crossref_primary_10_3389_fonc_2024_1396887
crossref_primary_10_1016_j_bspc_2023_105881
crossref_primary_10_1016_j_compbiomed_2022_105209
crossref_primary_10_3390_diagnostics13223461
crossref_primary_10_3390_diagnostics12081899
crossref_primary_10_1016_j_compbiomed_2025_109918
crossref_primary_10_18231_j_jooo_2024_032
crossref_primary_10_1615_CritRevOncog_2023047772
crossref_primary_10_1016_j_ibmed_2024_100185
crossref_primary_10_1016_j_bspc_2023_104704
crossref_primary_10_3390_diagnostics11081485
crossref_primary_10_1016_j_jormas_2024_101840
crossref_primary_10_3389_froh_2021_686863
crossref_primary_10_3390_cancers14143518
crossref_primary_10_1016_j_oooo_2024_11_087
crossref_primary_10_1111_jop_13578
crossref_primary_10_4018_IJGHPC_320474
crossref_primary_10_3390_biomimetics8060499
crossref_primary_10_1007_s11082_023_05716_6
crossref_primary_10_1097_SCS_0000000000010663
crossref_primary_10_2174_1573405618666220408103549
crossref_primary_10_3390_diagnostics13040699
crossref_primary_10_1186_s40537_023_00703_w
crossref_primary_10_1038_s41368_023_00249_w
crossref_primary_10_1016_j_reth_2025_01_011
crossref_primary_10_1111_ors_12848
crossref_primary_10_1186_s12903_024_03993_5
crossref_primary_10_1016_j_procs_2024_04_300
crossref_primary_10_1016_j_asoc_2023_110947
crossref_primary_10_3390_diagnostics11061004
crossref_primary_10_1016_j_bbe_2024_03_001
crossref_primary_10_3389_froh_2021_794248
crossref_primary_10_3390_cancers15215247
Cites_doi 10.1109/CVPR.2017.195
10.1016/bs.adcom.2016.12.001
10.1016/B978-0-12-381479-1.00009-5
10.1109/CVPR.2019.00075
10.1109/ACCESS.2020.3010180
10.1007/s00521-019-04516-y
10.1109/BIBE.2018.00044
10.1109/RBME.2009.2034865
10.1109/CVPR.2018.00474
10.1111/den.13653
10.1016/j.patrec.2017.09.015
10.1186/s12864-019-6413-7
10.3322/caac.21660
10.1016/j.oraloncology.2010.03.009
10.1038/s41598-019-46718-3
10.1016/j.techfore.2020.120392
10.1155/2017/9854050
10.1016/j.media.2020.101742
10.1109/ACCESS.2020.2984522
10.1109/TBCAS.2019.2918244
10.1007/978-3-030-01234-2_49
10.1158/1055-9965.EPI-15-0578
10.1016/j.energy.2018.07.202
10.1007/s00432-018-02834-7
10.1007/978-3-030-17989-2
10.1007/s11517-017-1685-z
10.1007/s11042-020-09384-6
10.1007/s11042-018-6970-9
10.1016/j.oraloncology.2020.104799
10.1016/j.coms.2018.08.002
10.1007/s10916-019-1515-y
10.1016/j.aci.2018.08.003
10.1016/S1042-3699(18)30092-X
10.1109/CVPR.2016.90
10.1016/j.neunet.2020.05.003
10.21873/anticanres.12587
10.1007/s00428-020-02947-w
10.1016/j.oooo.2018.10.002
10.3390/en12224352
10.4065/83.4.489
10.3389/fgene.2020.00768
10.1186/s12885-017-3317-2
10.1016/j.media.2017.07.005
10.1007/978-3-030-33904-3_34
10.1111/j.1600-0714.2007.00584.x
10.1038/sj.bdj.2018.926
10.1007/s10278-019-00307-y
10.1109/ACCESS.2019.2950286
10.4103/0973-029X.185933
10.1097/PAS.0000000000001323
10.1111/his.14202
10.3390/cancers11091367
10.1186/s40537-019-0197-0
10.3390/jimaging6060052
10.1016/j.gie.2018.07.037
10.1002/lary.27228
10.1109/TPAMI.2017.2699184
10.1111/jgh.15327
10.1007/978-3-030-05318-5_1
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/cancers13081784
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
Biological Sciences
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID 10.3390/cancers13081784
PMC8068326
33917952
10_3390_cancers13081784
Genre Journal Article
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
TUS
NPM
3V.
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c421t-1c5ca9912dc9e18c9b96d6239b5025f0cd57267277af94e0b71f844ee8ff586b3
IEDL.DBID M48
ISSN 2072-6694
IngestDate Sun Oct 26 04:11:47 EDT 2025
Tue Sep 30 16:19:48 EDT 2025
Fri Sep 05 13:55:04 EDT 2025
Fri Jul 25 10:37:50 EDT 2025
Thu Apr 03 06:58:03 EDT 2025
Thu Oct 16 04:38:59 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords histopathological images
data preprocessing
oral squamous cell carcinoma
AI-based system
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-1c5ca9912dc9e18c9b96d6239b5025f0cd57267277af94e0b71f844ee8ff586b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5213-1550
0000-0002-8872-2811
0000-0003-2618-2263
0000-0001-9396-2441
0000-0003-1723-6354
0000-0003-2817-9252
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers13081784
PMID 33917952
PQID 2547619708
PQPubID 2032421
ParticipantIDs unpaywall_primary_10_3390_cancers13081784
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8068326
proquest_miscellaneous_2520862357
proquest_journals_2547619708
pubmed_primary_33917952
crossref_primary_10_3390_cancers13081784
crossref_citationtrail_10_3390_cancers13081784
PublicationCentury 2000
PublicationDate 20210408
PublicationDateYYYYMMDD 2021-04-08
PublicationDate_xml – month: 4
  year: 2021
  text: 20210408
  day: 8
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cancers
PublicationTitleAlternate Cancers (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Tharwat (ref_51) 2020; 17
ref_13
Chen (ref_10) 2021; 36
ref_55
Wu (ref_19) 2020; 11
ref_54
Chen (ref_47) 2017; 40
ref_53
Rashmi (ref_68) 2020; 8
Mehlum (ref_9) 2018; 128
ref_16
Jeyaraj (ref_25) 2019; 145
Li (ref_58) 2018; 79
ref_22
ref_66
ref_65
ref_64
Warnakulasuriya (ref_8) 2008; 37
Chan (ref_29) 2019; 13
Qayyum (ref_40) 2017; 2017
Agarwal (ref_63) 2016; 20
Tamashiro (ref_24) 2020; 32
Das (ref_31) 2020; 128
ref_36
Xu (ref_27) 2019; 7
ref_33
ref_32
Marur (ref_2) 2008; 83
Sharma (ref_18) 2020; 33
Bhandari (ref_26) 2020; 79
Ersoy (ref_59) 2019; 119
Welikala (ref_28) 2020; 8
Heikkinen (ref_62) 2019; 43
ref_39
ref_37
Almangush (ref_60) 2020; 107
Kaba (ref_15) 2018; 162
Shorten (ref_35) 2019; 6
Stolte (ref_11) 2020; 64
Haefner (ref_14) 2021; 162
Gurcan (ref_17) 2009; 2
Tabibu (ref_20) 2019; 9
Torre (ref_1) 2015; 25
Mumtaz (ref_56) 2018; 56
Ariji (ref_21) 2019; 127
Litjens (ref_12) 2017; 42
Fraz (ref_30) 2020; 32
Ganesh (ref_5) 2018; 38
ref_46
ref_45
ref_44
ref_43
ref_42
ref_41
Musulin (ref_38) 2020; 2020
Leonard (ref_52) 2017; Volume 105
ref_3
Mascitti (ref_61) 2020; 77
Bagan (ref_4) 2010; 46
ref_49
ref_48
Ettinger (ref_6) 2019; 31
Horie (ref_23) 2019; 89
Speight (ref_57) 2018; 225
Jakovac (ref_34) 2021; 478
ref_7
Fauzi (ref_67) 2019; 44
References_xml – ident: ref_44
  doi: 10.1109/CVPR.2017.195
– volume: Volume 105
  start-page: 1
  year: 2017
  ident: ref_52
  article-title: Web-Based Behavioral Modeling for Continuous User Authentication (CUA)
  publication-title: Advances in Computers
  doi: 10.1016/bs.adcom.2016.12.001
– ident: ref_36
  doi: 10.1016/B978-0-12-381479-1.00009-5
– ident: ref_53
  doi: 10.1109/CVPR.2019.00075
– ident: ref_32
– ident: ref_55
– volume: 8
  start-page: 132677
  year: 2020
  ident: ref_28
  article-title: Automated Detection and Classification of Oral Lesions Using Deep Learning for Early Detection of Oral Cancer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010180
– volume: 32
  start-page: 9915
  year: 2020
  ident: ref_30
  article-title: FABnet: Feature attention-based network for simultaneous segmentation of microvessels and nerves in routine histology images of oral cancer
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04516-y
– ident: ref_65
  doi: 10.1109/BIBE.2018.00044
– volume: 2
  start-page: 147
  year: 2009
  ident: ref_17
  article-title: Histopathological Image Analysis: A Review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2009.2034865
– ident: ref_46
  doi: 10.1109/CVPR.2018.00474
– volume: 32
  start-page: 1057
  year: 2020
  ident: ref_24
  article-title: Artificial intelligence-based detection of pharyngeal cancer using convolutional neural networks
  publication-title: Dig. Endosc.
  doi: 10.1111/den.13653
– volume: 119
  start-page: 214
  year: 2019
  ident: ref_59
  article-title: Integrating segmentation with deep learning for enhanced classification of epithelial and stromal tissues in H&E images
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.09.015
– ident: ref_54
  doi: 10.1186/s12864-019-6413-7
– ident: ref_3
  doi: 10.3322/caac.21660
– volume: 2020
  start-page: 1
  year: 2020
  ident: ref_38
  article-title: Impact of COVID-19 on Forecasting Stock Prices: An Integration of Stationary Wavelet Transform and Bidirectional Long Short-Term Memory
  publication-title: Complexity
– volume: 46
  start-page: 414
  year: 2010
  ident: ref_4
  article-title: Oral cancer: Clinical features
  publication-title: Oral Oncol.
  doi: 10.1016/j.oraloncology.2010.03.009
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_20
  article-title: Pan-Renal Cell Carcinoma classification and survival prediction from histopathology images using deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-46718-3
– volume: 162
  start-page: 120392
  year: 2021
  ident: ref_14
  article-title: Artificial intelligence and innovation management: A review, framework, and research agenda
  publication-title: Technol. Forecast. Soc. Chang.
  doi: 10.1016/j.techfore.2020.120392
– volume: 2017
  start-page: 1
  year: 2017
  ident: ref_40
  article-title: Facial Expression Recognition Using Stationary Wavelet Transform Features
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2017/9854050
– volume: 64
  start-page: 101742
  year: 2020
  ident: ref_11
  article-title: A survey on medical image analysis in diabetic retinopathy
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2020.101742
– volume: 8
  start-page: 64331
  year: 2020
  ident: ref_68
  article-title: A Comparative Evaluation of Texture Features for Semantic Segmentation of Breast Histopathological Images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984522
– volume: 13
  start-page: 766
  year: 2019
  ident: ref_29
  article-title: Texture-Map-Based Branch-Collaborative Network for Oral Cancer Detection
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2019.2918244
– ident: ref_49
  doi: 10.1007/978-3-030-01234-2_49
– ident: ref_48
– volume: 25
  start-page: 16
  year: 2015
  ident: ref_1
  article-title: Global Cancer Incidence and Mortality Rates and Trends—An Update
  publication-title: Cancer Epidemiol. Biomark. Prev.
  doi: 10.1158/1055-9965.EPI-15-0578
– volume: 162
  start-page: 126
  year: 2018
  ident: ref_15
  article-title: Estimation of daily global solar radiation using deep learning model
  publication-title: Energy
  doi: 10.1016/j.energy.2018.07.202
– volume: 145
  start-page: 829
  year: 2019
  ident: ref_25
  article-title: Computer-assisted medical image classification for early diagnosis of oral cancer employing deep learning algorithm
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-018-02834-7
– ident: ref_39
  doi: 10.1007/978-3-030-17989-2
– ident: ref_41
– volume: 56
  start-page: 233
  year: 2018
  ident: ref_56
  article-title: A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD)
  publication-title: Med Biol. Eng. Comput.
  doi: 10.1007/s11517-017-1685-z
– volume: 79
  start-page: 1
  year: 2020
  ident: ref_26
  article-title: Deep learning neural network for texture feature extraction in oral cancer: Enhanced loss function
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09384-6
– volume: 79
  start-page: 14509
  year: 2018
  ident: ref_58
  article-title: Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6970-9
– volume: 107
  start-page: 104799
  year: 2020
  ident: ref_60
  article-title: Staging and grading of oral squamous cell carcinoma: An update
  publication-title: Oral Oncol.
  doi: 10.1016/j.oraloncology.2020.104799
– volume: 31
  start-page: 13
  year: 2019
  ident: ref_6
  article-title: Oral Cavity Cancer
  publication-title: Oral Maxillofac. Surg. Clin. N. Am.
  doi: 10.1016/j.coms.2018.08.002
– volume: 44
  start-page: 38
  year: 2019
  ident: ref_67
  article-title: Tumor Budding Detection System in Whole Slide Pathology Images
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-019-1515-y
– volume: 17
  start-page: 168
  year: 2020
  ident: ref_51
  article-title: Classification assessment methods
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.08.003
– ident: ref_7
  doi: 10.1016/S1042-3699(18)30092-X
– ident: ref_45
  doi: 10.1109/CVPR.2016.90
– volume: 128
  start-page: 47
  year: 2020
  ident: ref_31
  article-title: Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.05.003
– volume: 38
  start-page: 3223
  year: 2018
  ident: ref_5
  article-title: Potentially Malignant Oral Disorders and Cancer Transformation
  publication-title: Anticancer Res.
  doi: 10.21873/anticanres.12587
– volume: 478
  start-page: 735
  year: 2021
  ident: ref_34
  article-title: Expression profiles of metallothionein-I/II and megalin/LRP-2 in uterine cervical squamous lesions
  publication-title: Virchows Archiv
  doi: 10.1007/s00428-020-02947-w
– volume: 127
  start-page: 458
  year: 2019
  ident: ref_21
  article-title: Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence
  publication-title: Oral Surg. Oral Med. Oral Pathol. Oral Radiol.
  doi: 10.1016/j.oooo.2018.10.002
– ident: ref_16
  doi: 10.3390/en12224352
– volume: 83
  start-page: 489
  year: 2008
  ident: ref_2
  article-title: Head and Neck Cancer: Changing Epidemiology, Diagnosis, and Treatment
  publication-title: Mayo Clin. Proc.
  doi: 10.4065/83.4.489
– volume: 11
  start-page: 768
  year: 2020
  ident: ref_19
  article-title: DeepLRHE: A Deep Convolutional Neural Network Framework to Evaluate the Risk of Lung Cancer Recurrence and Metastasis from Histopathology Images
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.00768
– ident: ref_64
  doi: 10.1186/s12885-017-3317-2
– volume: 42
  start-page: 60
  year: 2017
  ident: ref_12
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: ref_66
  doi: 10.1007/978-3-030-33904-3_34
– volume: 37
  start-page: 127
  year: 2008
  ident: ref_8
  article-title: Oral epithelial dysplasia classification systems: Predictive value, utility, weaknesses and scope for improvement
  publication-title: J. Oral Pathol. Med.
  doi: 10.1111/j.1600-0714.2007.00584.x
– ident: ref_37
– volume: 225
  start-page: 841
  year: 2018
  ident: ref_57
  article-title: The pathology of oral cancer
  publication-title: Br. Dent. J.
  doi: 10.1038/sj.bdj.2018.926
– volume: 33
  start-page: 632
  year: 2020
  ident: ref_18
  article-title: Conventional Machine Learning and Deep Learning Approach for Multi-Classification of Breast Cancer Histopathology Images—A Comparative Insight
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-019-00307-y
– volume: 7
  start-page: 158603
  year: 2019
  ident: ref_27
  article-title: An Early Diagnosis of Oral Cancer based on Three-Dimensional Convolutional Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950286
– volume: 20
  start-page: 173
  year: 2016
  ident: ref_63
  article-title: Evaluation of natural killer cell (CD57) as a prognostic marker in oral squamous cell carcinoma: An immunohistochemistry study
  publication-title: J. Oral Maxillofac. Pathol.
  doi: 10.4103/0973-029X.185933
– volume: 43
  start-page: 1392
  year: 2019
  ident: ref_62
  article-title: Assessment of Tumor-infiltrating Lymphocytes Predicts the Behavior of Early-stage Oral Tongue Cancer
  publication-title: Am. J. Surg. Pathol.
  doi: 10.1097/PAS.0000000000001323
– volume: 77
  start-page: 810
  year: 2020
  ident: ref_61
  article-title: Addition of the tumour–stroma ratio to the 8th edition American Joint Committee on Cancer staging system improves survival prediction for patients with oral tongue squamous cell carcinoma
  publication-title: Histopathology
  doi: 10.1111/his.14202
– ident: ref_22
  doi: 10.3390/cancers11091367
– ident: ref_50
– ident: ref_33
– volume: 6
  start-page: 60
  year: 2019
  ident: ref_35
  article-title: A survey on Image Data Augmentation for Deep Learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– ident: ref_13
  doi: 10.3390/jimaging6060052
– volume: 89
  start-page: 25
  year: 2019
  ident: ref_23
  article-title: Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks
  publication-title: Gastrointest. Endosc.
  doi: 10.1016/j.gie.2018.07.037
– volume: 128
  start-page: 2375
  year: 2018
  ident: ref_9
  article-title: Laryngeal precursor lesions: Interrater and intrarater reliability of histopathological assessment
  publication-title: Laryngoscope
  doi: 10.1002/lary.27228
– ident: ref_43
– volume: 40
  start-page: 834
  year: 2017
  ident: ref_47
  article-title: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 36
  start-page: 31
  year: 2021
  ident: ref_10
  article-title: Potentials of AI in medical image analysis in Gastroenterology and Hepatology
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.15327
– ident: ref_42
  doi: 10.1007/978-3-030-05318-5_1
SSID ssj0000331767
Score 2.440388
Snippet Oral squamous cell carcinoma is most frequent histological neoplasm of head and neck cancers, and although it is localized in a region that is accessible to...
Simple SummaryAn established dataset of histopathology images obtained by biopsy and reviewed by two pathologists is used to create a two-stage oral squamous...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1784
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Automation
Biopsy
Classification
Computer applications
Datasets
Deep learning
Diagnosis
Esophageal cancer
Head & neck cancer
Hospitals
Lung cancer
Medical prognosis
Metastasis
Neoplasia
Neural networks
Oral cancer
Oral squamous cell carcinoma
Patients
Reproducibility
Segmentation
Semantics
Squamous cell carcinoma
Stroma
Throat cancer
Tumor microenvironment
Tumors
Wavelet transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-NTgJeEJ8jMJCReICHsHzbQUKoqzoG0gqCTdpbZDs2Qwpu17VC_DP8rdw5H1Am4K2SL0mTO9-3fwfwNE6S2ohUEfKxDtFeq1Ci5xuaWiupbWoyS_mOo1lxeJK9O81Pt2DWn4WhtspeJ3pFXc815cj3MJChiJtH4vXiPKSpUVRd7UdoyG60Qv3KQ4xdge2EkLFGsL0_nX34OGRdohTtZcFbjJ8U4_09TR93eYGqXMRcZJvm6ZLPebl18traLeT3b7JpfrNLBzfhRudQsnErAbdgy7jbcPWoK5nfgR9jx6buzBf6mQcFoSHEPpnOekSSl_iLjd-G-2jSataCmDP0Zpk_nqvJwWZvlr7bns0te49_iX06X0tKG7CJaRo2oZFEbv5VMunwDuaz70JqyacLOvfRoKC3i6sl0jXs2LP8LpwcTI8nh2E3lCHUWRKvwljnWqJTmdS6NLHQpSqLGn2oUuXoPtlI1zlPqLzLpS0zEykeW5Flxghrc1Go9B6M3NyZ-8CsKso6l6UtLd47MkoKa9IcA0DD0e-SAbzoeVHpDrGcBmc0FUYuxLzqD-YF8Gy4YNGCdfyddLdnbtXt2ovql4wF8GRYxv1GRRTpDH5UpEkoCkxzHsBOKwvDs_BBqN_yJAC-ISUDAWF5b664L2ce01tEBerWIoDngzz97xUe_PsVHsL1hPpvqMtI7MJotVybR-hArdTjblf8BHyXIA0
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQVwIuvB-BBRmJAxzSPJ3YXFCpuixIuyCxlZZTsB2bXRHc0qYg-DH8VmbyEt0VQohbJI-d2Bnb34zH3xDyOIrj0vBEIfOx9mG_Vr4E5OubUiupbWJSi_6Og8Nsf56-PmbHXZ7TdRdWCab4abNIx2Ee-1km0iBKAh5EOU-DZWmff-1cSYjNRSYY3t_ayRiA8RHZmR--nbzHlHJ95ZbQJwHjPtA4kqs1rNscG9vei84BzPNxkpc2bim_f5NV9dsmtHeVfOg_v409-TTe1Gqsf5xhdvyP_l0jVzqASietRl0nF4y7QS4edEfwN8nPiaMzd9IEDtCGZASTGjfOedoznDyDJzp55b-ALbKkLSk6BXRMm-u-GgE7fblqovfpwtI30Gv67stGohuCTk1V0SmmOHKLz5JKBy2Yj01UUys-W-I9kgomTltYr0CuokeNCt0i873Z0XTf75I8-DqNo9qPNNMSQGpcamEiroUSWQmYTCgGcMyGumR5jMfFubQiNaHKI8vT1BhuLeOZSm6TkVs4c5dQqzJRMimssNB2aJTk1iQMDEqTA46THhn3v7vQHQM6JuKoCrCEUD-KM_rhkSdDhWVL_vFn0d1ef4puFVgXYHyjlygPuUceDcUwf_FQRjoDgwoyMVqVCcs9cqdVt-Fd8CJQABZ7JN9SxEEAucG3S9zpScMRzsMM1urMI08Hlf1bF-79g-x9cjnG4B4MYeK7ZFSvNuYBoLNaPexm4C-w7DlB
  priority: 102
  providerName: Unpaywall
Title An Enhanced Histopathology Analysis: An AI-Based System for Multiclass Grading of Oral Squamous Cell Carcinoma and Segmenting of Epithelial and Stromal Tissue
URI https://www.ncbi.nlm.nih.gov/pubmed/33917952
https://www.proquest.com/docview/2547619708
https://www.proquest.com/docview/2520862357
https://pubmed.ncbi.nlm.nih.gov/PMC8068326
https://www.mdpi.com/2072-6694/13/8/1784/pdf?version=1617969501
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: ABDBF
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M48
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xTRp7QXyOwKiMxAM8ZOQ7DhJCXdVtILVMsErlKbIdmyGFtMtawf4Z_lbunDRQNoTEWxRfvnxn3-_sy-8AnvlBUGgeSmI-Vi76a-kKRL6uLpQUyoQ6MrTeMRonx5Po3TSe_ioH1HbgxbWhHdWTmtTl_vfzyzc44F9TxIkh-0tF_VNf4GzM_ZRHG7CFbiqjOg6jFuvbaTlEV5mkDb3PddftwDaeRgONg3UndQV5Xk2gvLms5uLymyjL37zT4W241cJK1m_s4A7c0NVd2B61G-f34Ee_YsPqzG73M0sNQqWI7ZI6W_GSvMIj1n_rHqBjK1hDZc4Q0zL7k64imM2Oaptzz2aGvcdXYh_Pl4IWD9hAlyUbUGGiavZVMFHhHfRnm4vUiA_n9PdHiebeNC5qlCvZqVX8fZgcDk8Hx25bmsFVUeAvXF_FSiC0DAqVaZ-rTGZJgUgqkzGCKOOpIk4D2uRNhcki7cnUNzyKtObGxDyR4QPYrGaVfgjMyCQrYpGZzOC9PS0FNzqMMQzUKaIv4cD-She5annLqXxGmWP8QnrM_9CjA8-7C-YNZcffRfdWys1XppdjyExrO6nHHXjaNeOoo60UUWnsVJQJKBYM49SB3cYWumetjMiBdM1KOgFi9F5vqb6cWWZv7iU4wyYOvOjs6V-f8Oi_n_IYdgJK0KE0JL4Hm4t6qZ8gwlrIHmwdDMcnH3qwcTT1e3Yc4bnJ-KT_6SeHry7q
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VVqK8IO4YCiwSSPBg6rvXSBVKQ0pCm4BoKvXNrNe7FMk4aS6q-jN8Ct_GzPoCoQKe-hZpN-s4MztzZnb2DMAz1_Nyxf2MmI-ljf46swUiX1vlMhNS-yrQlO8YjqL-UfD-ODxegx_NXRgqq2xsojHU-URSjnwbAxmKuGOHv5me2tQ1ik5XmxYaom6tkO8YirH6Yse-Oj_DEG6-M3iL8n7ueXu9cbdv110GbBl47sJ2ZSgFoiQvl4lyuUyyJMoRFCRZiHhAOzIPY4_OK2Ohk0A5WexqHgRKca1DHmU-rnsFNgI_SDD429jtjT5-arM8jo_-OYorTiHfT5xtScKczdF1cDfmwao7vIBxL5Zqbi7LqTg_E0Xxmx_cuwHXawDLOpXG3YQ1Vd6Cq8P6iP42fO-UrFeemMICZkhIqOmxSd6zhgHlNX5inYG9iy40ZxVpOkP0zMx1YEmAnr2bmep-NtHsA_4kdni6FJSmYF1VFKxLLZDKyTfBRIkrqC-m6qma3pvSPZMCN1Y1uJjhvIKNjYrdgaNLEc9dWC8npboPTGdRkoci0YnGtR2VCa6VH2LAqWLEecKCV40sUlkzpFOjjiLFSImEl_4hPAtetF-YVuQgf5-61Qg3ra3EPP2l0xY8bYdxf9OhjSgV_qk4x6Oo0w9jC-5VutA-Cx-E9jT0LIhXtKSdQNzhqyPl1xPDIc6dCG15ZMHLVp_-9woP_v0KT2CzPx4epAeD0f5DuOZR7Q9VOPEtWF_MluoRgrdF9rjeIQw-X_am_Alk-Fyl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VViq8IG4MBRYJJHgw8e01UoXSNKGhNFTQSn0z6_VuW8k4aQ5V_TP8IH4VM-sDQgU89S3SbtZx5vrm2BmAF67n5Yr7GXU-ljba68wWiHxtlctMSO2rQFO8Y28U7RwGH47CoxX40dyFobLKRicaRZ2PJcXIO-jIkMcdO7yj67KI_e3Bu8mZTROkKNPajNMQ9ZiFfNO0G6sveeyqi3N052abw22k_UvPG_QPejt2PXHAloHnzm1XhlIgYvJymSiXyyRLohwBQpKFiA20I_Mw9ih3GQudBMrJYlfzIFCKax3yKPPx3GuwRskvVBJrW_3R_uc24uP4aKujuOov5PuJ05FE2OkMzQh3Yx4sm8ZLePdy2eb1RTkRF-eiKH6ziYNbcLMGs6xbcd9tWFHlHVjfq9P1d-F7t2T98sQUGTDTkIQGIJtAPmu6obzFT6w7tLfQnOasaqDOEEkzczVYErhn76em0p-NNfuEP4l9OVsIClmwnioK1qNxSOX4m2CixBPUsamAqrb3J3TnpEAhqxbnU9xXsAPDbvfg8ErIcx9Wy3GpHgLTWZTkoUh0ovFsR2WCa-WH6HyqGDGfsOBNQ4tU1t3SaWhHkaLXRMRL_yCeBa_aL0yqRiF_37rREDetNcYs_cXfFjxvl1HWKYEjSoV_Ku7xyAP1w9iCBxUvtM_CB6FuDT0L4iUuaTdQH_HllfL0xPQT506Eej2y4HXLT_97hUf_foVnsI7CmX4cjnYfww2PyoCo2IlvwOp8ulBPEMfNs6e1gDD4etUy-RNNjWDU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQVwIuvB-BBRmJAxzSPJ3YXFCpuixIuyCxlZZTsB2bXRHc0qYg-DH8VmbyEt0VQohbJI-d2Bnb34zH3xDyOIrj0vBEIfOx9mG_Vr4E5OubUiupbWJSi_6Og8Nsf56-PmbHXZ7TdRdWCab4abNIx2Ee-1km0iBKAh5EOU-DZWmff-1cSYjNRSYY3t_ayRiA8RHZmR--nbzHlHJ95ZbQJwHjPtA4kqs1rNscG9vei84BzPNxkpc2bim_f5NV9dsmtHeVfOg_v409-TTe1Gqsf5xhdvyP_l0jVzqASietRl0nF4y7QS4edEfwN8nPiaMzd9IEDtCGZASTGjfOedoznDyDJzp55b-ALbKkLSk6BXRMm-u-GgE7fblqovfpwtI30Gv67stGohuCTk1V0SmmOHKLz5JKBy2Yj01UUys-W-I9kgomTltYr0CuokeNCt0i873Z0XTf75I8-DqNo9qPNNMSQGpcamEiroUSWQmYTCgGcMyGumR5jMfFubQiNaHKI8vT1BhuLeOZSm6TkVs4c5dQqzJRMimssNB2aJTk1iQMDEqTA46THhn3v7vQHQM6JuKoCrCEUD-KM_rhkSdDhWVL_vFn0d1ef4puFVgXYHyjlygPuUceDcUwf_FQRjoDgwoyMVqVCcs9cqdVt-Fd8CJQABZ7JN9SxEEAucG3S9zpScMRzsMM1urMI08Hlf1bF-79g-x9cjnG4B4MYeK7ZFSvNuYBoLNaPexm4C-w7DlB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Enhanced+Histopathology+Analysis%3A+An+AI-Based+System+for+Multiclass+Grading+of+Oral+Squamous+Cell+Carcinoma+and+Segmenting+of+Epithelial+and+Stromal+Tissue&rft.jtitle=Cancers&rft.au=Musulin%2C+Jelena&rft.au=%C5%A0tifani%C4%87%2C+Daniel&rft.au=Zulijani%2C+Ana&rft.au=%C4%86abov%2C+Tomislav&rft.date=2021-04-08&rft.pub=MDPI&rft.eissn=2072-6694&rft.volume=13&rft.issue=8&rft_id=info:doi/10.3390%2Fcancers13081784&rft_id=info%3Apmid%2F33917952&rft.externalDocID=PMC8068326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon