Chaotic Sparrow Search Algorithm with Deep Transfer Learning Enabled Breast Cancer Classification on Histopathological Images

Breast cancer is the major cause behind the death of women worldwide and is responsible for several deaths each year. Even though there are several means to identify breast cancer, histopathological diagnosis is now considered the gold standard in the diagnosis of cancer. However, the difficulty of...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 14; no. 11; p. 2770
Main Authors Shankar, K., Dutta, Ashit Kumar, Kumar, Sachin, Joshi, Gyanendra Prasad, Doo, Ill Chul
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 02.06.2022
MDPI
Subjects
Online AccessGet full text
ISSN2072-6694
2072-6694
DOI10.3390/cancers14112770

Cover

Abstract Breast cancer is the major cause behind the death of women worldwide and is responsible for several deaths each year. Even though there are several means to identify breast cancer, histopathological diagnosis is now considered the gold standard in the diagnosis of cancer. However, the difficulty of histopathological image and the rapid rise in workload render this process time-consuming, and the outcomes might be subjected to pathologists’ subjectivity. Hence, the development of a precise and automatic histopathological image analysis method is essential for the field. Recently, the deep learning method for breast cancer pathological image classification has made significant progress, which has become mainstream in this field. This study introduces a novel chaotic sparrow search algorithm with a deep transfer learning-enabled breast cancer classification (CSSADTL-BCC) model on histopathological images. The presented CSSADTL-BCC model mainly focused on the recognition and classification of breast cancer. To accomplish this, the CSSADTL-BCC model primarily applies the Gaussian filtering (GF) approach to eradicate the occurrence of noise. In addition, a MixNet-based feature extraction model is employed to generate a useful set of feature vectors. Moreover, a stacked gated recurrent unit (SGRU) classification approach is exploited to allot class labels. Furthermore, CSSA is applied to optimally modify the hyperparameters involved in the SGRU model. None of the earlier works have utilized the hyperparameter-tuned SGRU model for breast cancer classification on HIs. The design of the CSSA for optimal hyperparameter tuning of the SGRU model demonstrates the novelty of the work. The performance validation of the CSSADTL-BCC model is tested by a benchmark dataset, and the results reported the superior execution of the CSSADTL-BCC model over recent state-of-the-art approaches.
AbstractList Breast cancer is the major cause behind the death of women worldwide and is responsible for several deaths each year. Even though there are several means to identify breast cancer, histopathological diagnosis is now considered the gold standard in the diagnosis of cancer. However, the difficulty of histopathological image and the rapid rise in workload render this process time-consuming, and the outcomes might be subjected to pathologists' subjectivity. Hence, the development of a precise and automatic histopathological image analysis method is essential for the field. Recently, the deep learning method for breast cancer pathological image classification has made significant progress, which has become mainstream in this field. This study introduces a novel chaotic sparrow search algorithm with a deep transfer learning-enabled breast cancer classification (CSSADTL-BCC) model on histopathological images. The presented CSSADTL-BCC model mainly focused on the recognition and classification of breast cancer. To accomplish this, the CSSADTL-BCC model primarily applies the Gaussian filtering (GF) approach to eradicate the occurrence of noise. In addition, a MixNet-based feature extraction model is employed to generate a useful set of feature vectors. Moreover, a stacked gated recurrent unit (SGRU) classification approach is exploited to allot class labels. Furthermore, CSSA is applied to optimally modify the hyperparameters involved in the SGRU model. None of the earlier works have utilized the hyperparameter-tuned SGRU model for breast cancer classification on HIs. The design of the CSSA for optimal hyperparameter tuning of the SGRU model demonstrates the novelty of the work. The performance validation of the CSSADTL-BCC model is tested by a benchmark dataset, and the results reported the superior execution of the CSSADTL-BCC model over recent state-of-the-art approaches.
Simple SummaryCancer is considered the most significant public health issue which severely threatens people’s health. The occurrence and mortality rate of breast cancer have been growing consistently. Initial precise diagnostics act as primary factors in improving the endurance rate of patients. Even though there are several means to identify breast cancer, histopathological diagnosis is now considered the gold standard in the diagnosis of cancer. However, the difficulty of histopathological image and the rapid rise in workload render this process time-consuming, and the outcomes might be subjected to pathologists’ subjectivity. Hence, the development of a precise and automatic histopathological image analysis method is essential for the field. Recently, the deep learning method for breast cancer pathological image classification has made significant progress, which has become mainstream in this field. Therefore, in this work, we focused on the design of metaheuristics with deep learning based breast cancer classification process. The proposed model is found to be an effective tool to assist physicians in the decision making process.AbstractBreast cancer is the major cause behind the death of women worldwide and is responsible for several deaths each year. Even though there are several means to identify breast cancer, histopathological diagnosis is now considered the gold standard in the diagnosis of cancer. However, the difficulty of histopathological image and the rapid rise in workload render this process time-consuming, and the outcomes might be subjected to pathologists’ subjectivity. Hence, the development of a precise and automatic histopathological image analysis method is essential for the field. Recently, the deep learning method for breast cancer pathological image classification has made significant progress, which has become mainstream in this field. This study introduces a novel chaotic sparrow search algorithm with a deep transfer learning-enabled breast cancer classification (CSSADTL-BCC) model on histopathological images. The presented CSSADTL-BCC model mainly focused on the recognition and classification of breast cancer. To accomplish this, the CSSADTL-BCC model primarily applies the Gaussian filtering (GF) approach to eradicate the occurrence of noise. In addition, a MixNet-based feature extraction model is employed to generate a useful set of feature vectors. Moreover, a stacked gated recurrent unit (SGRU) classification approach is exploited to allot class labels. Furthermore, CSSA is applied to optimally modify the hyperparameters involved in the SGRU model. None of the earlier works have utilized the hyperparameter-tuned SGRU model for breast cancer classification on HIs. The design of the CSSA for optimal hyperparameter tuning of the SGRU model demonstrates the novelty of the work. The performance validation of the CSSADTL-BCC model is tested by a benchmark dataset, and the results reported the superior execution of the CSSADTL-BCC model over recent state-of-the-art approaches.
Breast cancer is the major cause behind the death of women worldwide and is responsible for several deaths each year. Even though there are several means to identify breast cancer, histopathological diagnosis is now considered the gold standard in the diagnosis of cancer. However, the difficulty of histopathological image and the rapid rise in workload render this process time-consuming, and the outcomes might be subjected to pathologists' subjectivity. Hence, the development of a precise and automatic histopathological image analysis method is essential for the field. Recently, the deep learning method for breast cancer pathological image classification has made significant progress, which has become mainstream in this field. This study introduces a novel chaotic sparrow search algorithm with a deep transfer learning-enabled breast cancer classification (CSSADTL-BCC) model on histopathological images. The presented CSSADTL-BCC model mainly focused on the recognition and classification of breast cancer. To accomplish this, the CSSADTL-BCC model primarily applies the Gaussian filtering (GF) approach to eradicate the occurrence of noise. In addition, a MixNet-based feature extraction model is employed to generate a useful set of feature vectors. Moreover, a stacked gated recurrent unit (SGRU) classification approach is exploited to allot class labels. Furthermore, CSSA is applied to optimally modify the hyperparameters involved in the SGRU model. None of the earlier works have utilized the hyperparameter-tuned SGRU model for breast cancer classification on HIs. The design of the CSSA for optimal hyperparameter tuning of the SGRU model demonstrates the novelty of the work. The performance validation of the CSSADTL-BCC model is tested by a benchmark dataset, and the results reported the superior execution of the CSSADTL-BCC model over recent state-of-the-art approaches.Breast cancer is the major cause behind the death of women worldwide and is responsible for several deaths each year. Even though there are several means to identify breast cancer, histopathological diagnosis is now considered the gold standard in the diagnosis of cancer. However, the difficulty of histopathological image and the rapid rise in workload render this process time-consuming, and the outcomes might be subjected to pathologists' subjectivity. Hence, the development of a precise and automatic histopathological image analysis method is essential for the field. Recently, the deep learning method for breast cancer pathological image classification has made significant progress, which has become mainstream in this field. This study introduces a novel chaotic sparrow search algorithm with a deep transfer learning-enabled breast cancer classification (CSSADTL-BCC) model on histopathological images. The presented CSSADTL-BCC model mainly focused on the recognition and classification of breast cancer. To accomplish this, the CSSADTL-BCC model primarily applies the Gaussian filtering (GF) approach to eradicate the occurrence of noise. In addition, a MixNet-based feature extraction model is employed to generate a useful set of feature vectors. Moreover, a stacked gated recurrent unit (SGRU) classification approach is exploited to allot class labels. Furthermore, CSSA is applied to optimally modify the hyperparameters involved in the SGRU model. None of the earlier works have utilized the hyperparameter-tuned SGRU model for breast cancer classification on HIs. The design of the CSSA for optimal hyperparameter tuning of the SGRU model demonstrates the novelty of the work. The performance validation of the CSSADTL-BCC model is tested by a benchmark dataset, and the results reported the superior execution of the CSSADTL-BCC model over recent state-of-the-art approaches.
Author Joshi, Gyanendra Prasad
Kumar, Sachin
Doo, Ill Chul
Shankar, K.
Dutta, Ashit Kumar
AuthorAffiliation 1 Big Data and Machine Learning Laboratory, South Ural State University, 454080 Chelyabinsk, Russia; drkshankar@ieee.org (K.S.); kumars@susu.ru (S.K.)
2 Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia; adotta@mcst.edu.sa
3 Department of Computer Science and Engineering, Sejong University, Seoul 05006, Korea
4 Artificial Intelligence Education, Hankuk University of Foreign Studies, Dongdaemun-gu, Seoul 02450, Korea
AuthorAffiliation_xml – name: 4 Artificial Intelligence Education, Hankuk University of Foreign Studies, Dongdaemun-gu, Seoul 02450, Korea
– name: 2 Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia; adotta@mcst.edu.sa
– name: 1 Big Data and Machine Learning Laboratory, South Ural State University, 454080 Chelyabinsk, Russia; drkshankar@ieee.org (K.S.); kumars@susu.ru (S.K.)
– name: 3 Department of Computer Science and Engineering, Sejong University, Seoul 05006, Korea
Author_xml – sequence: 1
  givenname: K.
  orcidid: 0000-0002-2803-3846
  surname: Shankar
  fullname: Shankar, K.
– sequence: 2
  givenname: Ashit Kumar
  orcidid: 0000-0002-1208-2678
  surname: Dutta
  fullname: Dutta, Ashit Kumar
– sequence: 3
  givenname: Sachin
  orcidid: 0000-0003-3949-0302
  surname: Kumar
  fullname: Kumar, Sachin
– sequence: 4
  givenname: Gyanendra Prasad
  orcidid: 0000-0002-5446-288X
  surname: Joshi
  fullname: Joshi, Gyanendra Prasad
– sequence: 5
  givenname: Ill Chul
  orcidid: 0000-0002-9439-2222
  surname: Doo
  fullname: Doo, Ill Chul
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35681749$$D View this record in MEDLINE/PubMed
BookMark eNqNUcFu1DAUtFARLaVnbsgSFy5LYzux1xekNhRaaSUOLeforfOSuHLsYCeseuDfye4WKCshYVl-lj0zmjfvJTnywSMhr1n2XgidnRvwBmNiOWNcqewZOeGZ4gspdX705H5MzlK6z-YlBFNSvSDHopBLpnJ9Qn6UHYTRGno7QIxhQ28RounohWtDtGPX08180o-IA72L4FODka5mjLe-pVce1g5rehkR0kjLnSFaOkjJNtbAaIOn8762aQwDjF1woZ3fHb3pocX0ijxvwCU8e6yn5Ounq7vyerH68vmmvFgtTM7ZuGAgaiUNIjKDmiuBtcyM5Iw3plE1Z0tZS23kslB5UzdrDQVbC7UEo2rBi1yckmyvO_kBHjbgXDVE20N8qFhWbcOsDsKcKR_2lGFa91gb9GOEP7QAtvr7x9uuasP3SjOl853Au0eBGL5NmMaqt8mgc-AxTKniUhUyU0u9tff2AHofpujnRLaoXHCpuZxRb546-m3l1zBnwPkeYGJIKWLzH00WBwxjx93U5pas-yfvJ85Qx-w
CitedBy_id crossref_primary_10_3390_cancers15030885
crossref_primary_10_1109_ACCESS_2023_3327898
crossref_primary_10_1016_j_bspc_2023_105755
crossref_primary_10_3390_diagnostics13132258
crossref_primary_10_1016_j_inffus_2024_102361
crossref_primary_10_1016_j_jare_2024_11_013
crossref_primary_10_3390_cancers14225716
crossref_primary_10_1080_00207721_2023_2293687
crossref_primary_10_3390_cancers16040700
crossref_primary_10_1007_s11042_024_18505_4
crossref_primary_10_1109_ACCESS_2024_3503413
crossref_primary_10_1016_j_bspc_2023_105418
crossref_primary_10_1016_j_engappai_2025_110439
crossref_primary_10_1007_s13721_024_00489_8
Cites_doi 10.1007/s11831-020-09470-w
10.1016/j.artmed.2020.101845
10.1016/j.bbe.2021.07.004
10.1007/s10278-019-00295-z
10.1016/j.ymeth.2019.06.014
10.1007/s10278-019-00182-7
10.1049/cvi2.12021
10.1109/ACCESS.2021.3114313
10.1109/TBME.2015.2496264
10.1007/978-981-15-6329-4_39
10.1016/j.ijepes.2020.106484
10.1155/2022/8363850
10.1038/s41598-021-85652-1
10.1016/j.irbm.2019.06.001
10.3389/fgene.2019.00080
10.1016/j.ins.2018.12.089
10.1016/j.bspc.2020.102341
10.1109/ACCESS.2021.3056516
10.1007/s00371-021-02153-y
10.1002/ima.22465
10.1109/ACCESS.2021.3052960
10.1016/j.icte.2018.10.007
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/cancers14112770
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection (Proquest)
ProQuest Biological Science Collection
Research Library (Proquest)
Biological Science Database (Proquest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 2072-6694
ExternalDocumentID 10.3390/cancers14112770
PMC9179470
35681749
10_3390_cancers14112770
Genre Journal Article
GrantInformation_xml – fundername: Hankuk University of Foreign Studies
  grantid: 2022
– fundername: Hankuk University of Foreign Studies Research Fund
  grantid: 2022
– fundername: Ministry of Science and Higher Education of the Russian Federation
  grantid: FENU-2020–0022
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
TUS
3V.
GROUPED_DOAJ
NPM
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c421t-1a3d76ceee1ce9273ed60c6212fcf7d2186d69c68574fdfb9a51b378ac7d32543
IEDL.DBID M48
ISSN 2072-6694
IngestDate Sun Oct 26 04:00:22 EDT 2025
Tue Sep 30 17:03:43 EDT 2025
Thu Sep 04 19:53:13 EDT 2025
Fri Jul 25 11:39:58 EDT 2025
Thu Jan 02 22:54:55 EST 2025
Thu Oct 16 04:27:27 EDT 2025
Thu Apr 24 23:09:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords histopathological images
deep learning
breast cancer
computer aided diagnosis
cancer
medical imaging
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-1a3d76ceee1ce9273ed60c6212fcf7d2186d69c68574fdfb9a51b378ac7d32543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1208-2678
0000-0002-9439-2222
0000-0002-5446-288X
0000-0002-2803-3846
0000-0003-3949-0302
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2072-6694/14/11/2770/pdf?version=1654504981
PMID 35681749
PQID 2674326926
PQPubID 2032421
ParticipantIDs unpaywall_primary_10_3390_cancers14112770
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9179470
proquest_miscellaneous_2675607894
proquest_journals_2674326926
pubmed_primary_35681749
crossref_primary_10_3390_cancers14112770
crossref_citationtrail_10_3390_cancers14112770
PublicationCentury 2000
PublicationDate 20220602
PublicationDateYYYYMMDD 2022-06-02
PublicationDate_xml – month: 6
  year: 2022
  text: 20220602
  day: 2
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cancers
PublicationTitleAlternate Cancers (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Carvalho (ref_3) 2020; 105
Alom (ref_12) 2019; 32
Wang (ref_18) 2021; 125
Yuan (ref_20) 2021; 9
Wang (ref_14) 2021; 65
ref_11
ref_22
ref_10
Saxena (ref_17) 2021; 31
Vo (ref_13) 2019; 482
Krithiga (ref_2) 2021; 28
Alkassar (ref_8) 2021; 15
Sohail (ref_9) 2021; 11
Alhumoud (ref_19) 2021; 9
Hirra (ref_15) 2021; 9
Demir (ref_16) 2021; 41
Yan (ref_6) 2020; 173
Kaushal (ref_5) 2019; 40
Mehra (ref_7) 2018; 4
Xie (ref_4) 2019; 10
Das (ref_1) 2020; 33
Spanhol (ref_21) 2016; 63
References_xml – volume: 28
  start-page: 2607
  year: 2021
  ident: ref_2
  article-title: Breast cancer detection, segmentation and classification on histopathology images analysis: A systematic review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09470-w
– volume: 105
  start-page: 101845
  year: 2020
  ident: ref_3
  article-title: Breast cancer diagnosis from histopathological images using textural features and CBIR
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101845
– volume: 41
  start-page: 1123
  year: 2021
  ident: ref_16
  article-title: DeepBreastNet: A novel and robust approach for automated breast cancer detection from histopathological images
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2021.07.004
– volume: 33
  start-page: 1091
  year: 2020
  ident: ref_1
  article-title: Computer-aided histopathological image analysis techniques for automated nuclear atypia scoring of breast cancer: A review
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-019-00295-z
– volume: 173
  start-page: 52
  year: 2020
  ident: ref_6
  article-title: Breast cancer histopathological image classification using a hybrid deep neural network
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.06.014
– volume: 32
  start-page: 605
  year: 2019
  ident: ref_12
  article-title: Breast cancer classification from histopathological images with inception recurrent residual convolutional neural network
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-019-00182-7
– volume: 15
  start-page: 151
  year: 2021
  ident: ref_8
  article-title: Going deeper: Magnification-invariant approach for breast cancer classification using histopathological images
  publication-title: IET Comput. Vis.
  doi: 10.1049/cvi2.12021
– volume: 9
  start-page: 137176
  year: 2021
  ident: ref_19
  article-title: Sentiment Analysis Using Stacked Gated Recurrent Unit for Arabic Tweets
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3114313
– volume: 63
  start-page: 1455
  year: 2016
  ident: ref_21
  article-title: A Dataset for Breast Cancer Histopathological Image Classification
  publication-title: IEEE Trans. Biomed. Eng. (TBME)
  doi: 10.1109/TBME.2015.2496264
– ident: ref_11
  doi: 10.1007/978-981-15-6329-4_39
– volume: 125
  start-page: 106484
  year: 2021
  ident: ref_18
  article-title: Optimizing GIS partial discharge pattern recognition in the ubiquitous power internet of things context: A MixNet deep learning model
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106484
– ident: ref_22
  doi: 10.1155/2022/8363850
– volume: 11
  start-page: 6215
  year: 2021
  ident: ref_9
  article-title: A multi-phase deep CNN based mitosis detection framework for breast cancer histopathological images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-85652-1
– volume: 40
  start-page: 211
  year: 2019
  ident: ref_5
  article-title: Recent trends in computer assisted diagnosis (CAD) systems for breast cancer diagnosis using histopathological images
  publication-title: IRBM
  doi: 10.1016/j.irbm.2019.06.001
– volume: 10
  start-page: 80
  year: 2019
  ident: ref_4
  article-title: Deep learning based analysis of histopathological images of breast cancer
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00080
– volume: 482
  start-page: 123
  year: 2019
  ident: ref_13
  article-title: Classification of breast cancer histology images using incremental boosting convolution networks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.12.089
– volume: 65
  start-page: 102341
  year: 2021
  ident: ref_14
  article-title: Automatic classification of breast cancer histopathological images based on deep feature fusion and enhanced routing
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2020.102341
– volume: 9
  start-page: 24273
  year: 2021
  ident: ref_15
  article-title: Breast cancer classification from histopathological images using patch-based deep learning modeling
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3056516
– ident: ref_10
  doi: 10.1007/s00371-021-02153-y
– volume: 31
  start-page: 168
  year: 2021
  ident: ref_17
  article-title: Breast cancer histopathology image classification using kernelized weighted extreme learning machine
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22465
– volume: 9
  start-page: 16623
  year: 2021
  ident: ref_20
  article-title: DMPPT control of photovoltaic microgrid based on improved sparrow search algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052960
– volume: 4
  start-page: 247
  year: 2018
  ident: ref_7
  article-title: Breast cancer histology images classification: Training from scratch or transfer learning?
  publication-title: ICT Express
  doi: 10.1016/j.icte.2018.10.007
SSID ssj0000331767
Score 2.3874893
Snippet Breast cancer is the major cause behind the death of women worldwide and is responsible for several deaths each year. Even though there are several means to...
Simple SummaryCancer is considered the most significant public health issue which severely threatens people’s health. The occurrence and mortality rate of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2770
SubjectTerms Algorithms
Breast cancer
Classification
Decision making
Deep learning
Diagnosis
Histopathology
Image processing
Mammography
Neural networks
Noise
Public health
Transfer learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB_qFVQQ0foVrbKCD_oQe9lsdrMPIu15pQo9RC30LWz2oydcc_Euh_jg_-7O5sPWokLesiHZndmZyezM7wfwgjPhbMl0LI2lMdO5inNnaOxKTZXXapZQbHA-nvGjE_bhNDvdglnfC4Nllb1NDIbaLDXmyPcoVstTLil_W3-LkTUKT1d7Cg3VUSuYNwFi7BpsU0TGGsH2wXT28dOQdRmn3l9y0WL8pP5_f0_j4q7WCfOBh0DK4ovu6UrMebV08samqtWP72qxuOCXDu_A7S6gJPutBtyFLVvtwPXj7sh8B261iTnS9hvdg5-TuVr6seRzHfAXSVtwTPYXZ366zfycYGqWvLO2JsGRObsiHQrrGZmGVitDDrCWvSGTMC0SmDWx5iiImfgroI8g23FvW8n7c2-51vfh5HD6ZXIUdxwMsWY0aeJEpUZw70ltoq30sY41fKy5X12nnTDIaGW41DzPBHPGlVJlSZmKXGlhUmy0fwCjalnZR0BkZny45dxYu5xlJVdc5QjAVkrLFJXjCF73S1_oDqAceTIWhf9RQVkVf8gqgpfDA3WLzfH3obu9LItuk66L3yoVwfPhtt9eeGaiKrvchDE-JhS5ZBE8bEU_vCtF8DbBZATiklIMAxC6-_Kd6us8QHhLtIP4Wa8G9fnfFB7_ewpP4CbFzgxMENFdGDWrjX3q46WmfNZtgl_zlhni
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9yBfVF6_faKhF80Ie9281mk82TXM-WKrQIelCflmw-eofXveVuT1Ho_24m-8G1RUSEvCVhs8lk5pdk5jcIvWaUW1NQFQptSEhVJsPMahLaQhHppJrGBAKcT07Z8ZR-PEvPtqL4wa3SHcXnXkmTiJOQMUFHsSvxiHAejSpt331v75IgFCd1GBdir3dY6tD4AO1MTz-Nv0JOua53w-iTuNP9SMFUrtYxdTCDQ4LibWN0A2HedJS8sykr-fOHXCy2rNDRfSS78TfOJ9-Gm7oYql_XqB3_5wd30b0WouJxI1MP0C1TPkS3T9pH-EfocjKTS1eHP1eewRE3Lst4vDhfrub17ALD5S5-b0yFvSm0ZoVbHtdzfOiDtTQ-AG_4Gk_8VGGfmxO8lrygYFc8fwnkS-60M_5w4XTf-jGaHh1-mRyHbRaHUFES12EsE82Zs8UmVkY4tGQ0ixRzJtMqyzXkxNJMKJalnFptCyHTuEh4JhXXCYTqP0GDclmaZwiLVDvAZm2kbEbTgkkmM6BwK4ShkogoQMNuOXPVUpxDpo1F7o46sP75tfUP0Ju-Q9Wwe_y56X4nH3m7zdc5gRAOwgRhAXrVV7sNCq8usjTLjW_jUCXPBA3Q00ac-m8lQP_GqQgQvyJofQMg_75aU85nngRcgCaFYb3tRfJvv_D8H9ruobsEAj3gvonso0G92pgXDn7Vxct2h_0GMRAuaA
  priority: 102
  providerName: Unpaywall
Title Chaotic Sparrow Search Algorithm with Deep Transfer Learning Enabled Breast Cancer Classification on Histopathological Images
URI https://www.ncbi.nlm.nih.gov/pubmed/35681749
https://www.proquest.com/docview/2674326926
https://www.proquest.com/docview/2675607894
https://pubmed.ncbi.nlm.nih.gov/PMC9179470
https://www.mdpi.com/2072-6694/14/11/2770/pdf?version=1654504981
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: ABDBF
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M48
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLdgk4AL4nMERmUkDnDIaBzHjg8IdaVjILWagErlFDn-WCdlaUlTwQ787_g5aaBsCKScYufDfs9-79l-vx9Czxnl1uRUhUIbElKVyjC1moQ2V0Q6raYRgQTn8YQdT-mHWTL7RQfUduDqytAO-KSmVXHw_evFGzfgX0PE6UL2Vwr6p1pF1PkOnLv4fdeZKQE8DuPW1_fTcuxMpWeUJX1OQsYEbaB-rnrHtpW65HpePkF5c10u5cU3WRS_maejO-h261fiQaMId9E1U95DN8btzvl99GM4lwtXhj8tPewibs4Z40FxuqjO6vk5hhVZ_NaYJfb2y5oKt-Crp3jkM6w0PoQj7DUe-mZgT6gJR428dLG7POgIkBxvplT8_txNWKsHaHo0-jw8DlvqhVBREtVhJGPNmTOgJlJGOBfHaNZXzNk5qyzXQGSlmVAsTTi12uZCJlEe81QqrmPIr3-IdspFaR4hLBLtvCxr-8qmNMmZZDIF3LVcGCqJ6AfoYNPVmWpxyYEeo8hcfAKyyf6QTYBedA8sG0iOv1fd38gu26hWRiDvgjBBWICedcVuVMFWiSzNYu3rOFeQp4IGaK8RdfetGDDbOBUB4ltK0FUAxO7tkvJs7pG7BUx_8FsvO3X5VxMe_39rn6BbBJIzYI2I7KOdulqbp85lqvMe2j0cTU4-9tD1d7Oo5weGuzednAy-_AQvFxwr
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1EkhKA8ulDASCDBIXTjOHZ8qFC73WqXdlcIWqm31PGjW2mbDftQ1QN_jd-Gx3nQUgGnSnuLk6wz45nxeOb7EHrLKLcmoyoQ2pCAqkQGidUksJki0mk1DQk0OA-GrHdEPx_Hx0voZ90LA2WVtU30hlpPFOTINwlUyxMmCPtUfA-ANQpOV2sKDVlRK-gtDzFWNXbsm8sLt4WbbfV3nbzfEbLXPez0goplIFCUhPMglJHmzPkKEyojnDc3mrUVcybdKss1cDZpJhRLYk6ttpmQcZhFPJGK6whayd1z76AVGlHhNn8rO93hl69NlqcdOf_MeIkpFEWivalAmNNZSF2gw4Ei-ao7vBHj3izVXF3khby8kOPxFT-49xA9qAJYvF1q3CO0ZPI1dHdQHdGvoftlIhCX_U2P0Y_OSE7cWPyt8HiPuCxwxtvjU_d556NzDKlgvGtMgb3jtGaKK9TXU9z1rV0a70Dt_Bx3_LSwZ_KEGievVtj9PNoJsCvXthz3z52lnD1BR7cijadoOZ_kZh1hEWsX3lnbVjahccYkkwkAvmXCUElEu4U-1p8-VRUgOvByjFO3MQJZpX_IqoXeNzcUJRbI34du1LJMK6MwS3-rcAu9aS675QxnNDI3k4Uf42JQngjaQs9K0TfvigAsjlPRQvyaUjQDACr8-pX8bOQhwwXYXfhbHxr1-d8Unv97Cq_Rau9wcJAe9If7L9A9Al0hkJwiG2h5Pl2Yly5Wm2evqgWB0cltr8FfFjRXdg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKK5VKCEE5ulDASCDBQ9iN49jxQ4XaPdSldFUBlfoWHB9dpG027KGqD_xBfhUe56ClAp4q5S3O4cx4ZjKe-T6EXjHKrcmoCoQ2JKAqkUFiNQlspoh0Wk1DAg3OhyO2f0w_nMQnK-hn3QsDZZW1TfSGWk8V5MjbBKrlCROEtW1VFnHUG7wvvgfAIAU7rTWdhqxoFvSOhxurmjwOzMW5-52b7wx7TvavCRn0v3T3g4pxIFCUhIsglJHmzPkNEyojnGc3mnUUc-bdKss18DdpJhRLYk6ttpmQcZhFPJGK6wjayt19b6E12PxyRmJtrz86-tRkfDqR89WMl_hCUSQ6bQWCnc1D6oIeDnTJl13jtXj3etnm7WVeyItzOZlc8omDe-huFczi3VL77qMVk2-i9cNqu34T3SmTgrjsdXqAfnTHcurG4s-Fx37EZbEz3p2cus-7GJ9hSAvjnjEF9k7UmhmuEGBPcd-3eWm8B3X0C9z108Ke1RPqnbyKYXd45BNgWq7tOh6eOas5f4iOb0Qaj9BqPs3NFsIi1i7Us7ajbELjjEkmEwB_y4ShkohOC72rP32qKnB04OiYpO4nCWSV_iGrFnrTXFCUuCB_H7pdyzKtDMQ8_a3OLfSyOe2WNuzXyNxMl36Mi0d5ImgLPS5F3zwrAuA4TkUL8StK0QwA2PCrZ_JvYw8fLsAGw2u9bdTnf1N48u8pvEDrbi2mH4ejg6dog0CDCOSpyDZaXcyW5pkL2xbZ82o9YPT1ppfgL7gxW6U
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEA9yBfVF6_faKhF80Ie9281mk82TXM-WKrQIelCflmw-eofXveVuT1Ho_24m-8G1RUSEvCVhs8lk5pdk5jcIvWaUW1NQFQptSEhVJsPMahLaQhHppJrGBAKcT07Z8ZR-PEvPtqL4wa3SHcXnXkmTiJOQMUFHsSvxiHAejSpt331v75IgFCd1GBdir3dY6tD4AO1MTz-Nv0JOua53w-iTuNP9SMFUrtYxdTCDQ4LibWN0A2HedJS8sykr-fOHXCy2rNDRfSS78TfOJ9-Gm7oYql_XqB3_5wd30b0WouJxI1MP0C1TPkS3T9pH-EfocjKTS1eHP1eewRE3Lst4vDhfrub17ALD5S5-b0yFvSm0ZoVbHtdzfOiDtTQ-AG_4Gk_8VGGfmxO8lrygYFc8fwnkS-60M_5w4XTf-jGaHh1-mRyHbRaHUFES12EsE82Zs8UmVkY4tGQ0ixRzJtMqyzXkxNJMKJalnFptCyHTuEh4JhXXCYTqP0GDclmaZwiLVDvAZm2kbEbTgkkmM6BwK4ShkogoQMNuOXPVUpxDpo1F7o46sP75tfUP0Ju-Q9Wwe_y56X4nH3m7zdc5gRAOwgRhAXrVV7sNCq8usjTLjW_jUCXPBA3Q00ac-m8lQP_GqQgQvyJofQMg_75aU85nngRcgCaFYb3tRfJvv_D8H9ruobsEAj3gvonso0G92pgXDn7Vxct2h_0GMRAuaA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic+Sparrow+Search+Algorithm+with+Deep+Transfer+Learning+Enabled+Breast+Cancer+Classification+on+Histopathological+Images&rft.jtitle=Cancers&rft.au=Shankar%2C+K.&rft.au=Dutta%2C+Ashit+Kumar&rft.au=Kumar%2C+Sachin&rft.au=Joshi%2C+Gyanendra+Prasad&rft.date=2022-06-02&rft.issn=2072-6694&rft.eissn=2072-6694&rft.volume=14&rft.issue=11&rft.spage=2770&rft_id=info:doi/10.3390%2Fcancers14112770&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_cancers14112770
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon