Generalizing Parkinson’s disease detection using keystroke dynamics: a self-supervised approach

Objective Passive monitoring of touchscreen interactions generates keystroke dynamic signals that can be used to detect and track neurological conditions such as Parkinson’s disease (PD) and psychomotor impairment with minimal burden on the user. However, this typically requires datasets with clinic...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Medical Informatics Association : JAMIA Vol. 31; no. 6; pp. 1239 - 1246
Main Authors Tripathi, Shikha, Acien, Alejandro, Holmes, Ashley A, Arroyo-Gallego, Teresa, Giancardo, Luca
Format Journal Article
LanguageEnglish
Published England Oxford University Press 20.05.2024
Subjects
Online AccessGet full text
ISSN1067-5027
1527-974X
1527-974X
DOI10.1093/jamia/ocae050

Cover

Abstract Objective Passive monitoring of touchscreen interactions generates keystroke dynamic signals that can be used to detect and track neurological conditions such as Parkinson’s disease (PD) and psychomotor impairment with minimal burden on the user. However, this typically requires datasets with clinically confirmed labels collected in standardized environments, which is challenging, especially for a large subject pool. This study validates the efficacy of a self-supervised learning method in reducing the reliance on labels and evaluates its generalizability. Materials and Methods We propose a new type of self-supervised loss combining Barlow Twins loss, which attempts to create similar feature representations with reduced feature redundancy for samples coming from the same subject, and a Dissimilarity loss, which promotes uncorrelated features for samples generated by different subjects. An encoder is first pre-trained using this loss on unlabeled data from an uncontrolled setting, then fine-tuned with clinically validated data. Our experiments test the model generalizability with controls and subjects with PD on 2 independent datasets. Results Our approach showed better generalization compared to previous methods, including a feature engineering strategy, a deep learning model pre-trained on Parkinsonian signs, and a traditional supervised model. Discussion The absence of standardized data acquisition protocols and the limited availability of annotated datasets compromise the generalizability of supervised models. In these contexts, self-supervised models offer the advantage of learning more robust patterns from the data, bypassing the need for ground truth labels. Conclusion This approach has the potential to accelerate the clinical validation of touchscreen typing software for neurodegenerative diseases.
AbstractList Passive monitoring of touchscreen interactions generates keystroke dynamic signals that can be used to detect and track neurological conditions such as Parkinson's disease (PD) and psychomotor impairment with minimal burden on the user. However, this typically requires datasets with clinically confirmed labels collected in standardized environments, which is challenging, especially for a large subject pool. This study validates the efficacy of a self-supervised learning method in reducing the reliance on labels and evaluates its generalizability.OBJECTIVEPassive monitoring of touchscreen interactions generates keystroke dynamic signals that can be used to detect and track neurological conditions such as Parkinson's disease (PD) and psychomotor impairment with minimal burden on the user. However, this typically requires datasets with clinically confirmed labels collected in standardized environments, which is challenging, especially for a large subject pool. This study validates the efficacy of a self-supervised learning method in reducing the reliance on labels and evaluates its generalizability.We propose a new type of self-supervised loss combining Barlow Twins loss, which attempts to create similar feature representations with reduced feature redundancy for samples coming from the same subject, and a Dissimilarity loss, which promotes uncorrelated features for samples generated by different subjects. An encoder is first pre-trained using this loss on unlabeled data from an uncontrolled setting, then fine-tuned with clinically validated data. Our experiments test the model generalizability with controls and subjects with PD on 2 independent datasets.MATERIALS AND METHODSWe propose a new type of self-supervised loss combining Barlow Twins loss, which attempts to create similar feature representations with reduced feature redundancy for samples coming from the same subject, and a Dissimilarity loss, which promotes uncorrelated features for samples generated by different subjects. An encoder is first pre-trained using this loss on unlabeled data from an uncontrolled setting, then fine-tuned with clinically validated data. Our experiments test the model generalizability with controls and subjects with PD on 2 independent datasets.Our approach showed better generalization compared to previous methods, including a feature engineering strategy, a deep learning model pre-trained on Parkinsonian signs, and a traditional supervised model.RESULTSOur approach showed better generalization compared to previous methods, including a feature engineering strategy, a deep learning model pre-trained on Parkinsonian signs, and a traditional supervised model.The absence of standardized data acquisition protocols and the limited availability of annotated datasets compromise the generalizability of supervised models. In these contexts, self-supervised models offer the advantage of learning more robust patterns from the data, bypassing the need for ground truth labels.DISCUSSIONThe absence of standardized data acquisition protocols and the limited availability of annotated datasets compromise the generalizability of supervised models. In these contexts, self-supervised models offer the advantage of learning more robust patterns from the data, bypassing the need for ground truth labels.This approach has the potential to accelerate the clinical validation of touchscreen typing software for neurodegenerative diseases.CONCLUSIONThis approach has the potential to accelerate the clinical validation of touchscreen typing software for neurodegenerative diseases.
Passive monitoring of touchscreen interactions generates keystroke dynamic signals that can be used to detect and track neurological conditions such as Parkinson's disease (PD) and psychomotor impairment with minimal burden on the user. However, this typically requires datasets with clinically confirmed labels collected in standardized environments, which is challenging, especially for a large subject pool. This study validates the efficacy of a self-supervised learning method in reducing the reliance on labels and evaluates its generalizability. We propose a new type of self-supervised loss combining Barlow Twins loss, which attempts to create similar feature representations with reduced feature redundancy for samples coming from the same subject, and a Dissimilarity loss, which promotes uncorrelated features for samples generated by different subjects. An encoder is first pre-trained using this loss on unlabeled data from an uncontrolled setting, then fine-tuned with clinically validated data. Our experiments test the model generalizability with controls and subjects with PD on 2 independent datasets. Our approach showed better generalization compared to previous methods, including a feature engineering strategy, a deep learning model pre-trained on Parkinsonian signs, and a traditional supervised model. The absence of standardized data acquisition protocols and the limited availability of annotated datasets compromise the generalizability of supervised models. In these contexts, self-supervised models offer the advantage of learning more robust patterns from the data, bypassing the need for ground truth labels. This approach has the potential to accelerate the clinical validation of touchscreen typing software for neurodegenerative diseases.
Objective Passive monitoring of touchscreen interactions generates keystroke dynamic signals that can be used to detect and track neurological conditions such as Parkinson’s disease (PD) and psychomotor impairment with minimal burden on the user. However, this typically requires datasets with clinically confirmed labels collected in standardized environments, which is challenging, especially for a large subject pool. This study validates the efficacy of a self-supervised learning method in reducing the reliance on labels and evaluates its generalizability. Materials and Methods We propose a new type of self-supervised loss combining Barlow Twins loss, which attempts to create similar feature representations with reduced feature redundancy for samples coming from the same subject, and a Dissimilarity loss, which promotes uncorrelated features for samples generated by different subjects. An encoder is first pre-trained using this loss on unlabeled data from an uncontrolled setting, then fine-tuned with clinically validated data. Our experiments test the model generalizability with controls and subjects with PD on 2 independent datasets. Results Our approach showed better generalization compared to previous methods, including a feature engineering strategy, a deep learning model pre-trained on Parkinsonian signs, and a traditional supervised model. Discussion The absence of standardized data acquisition protocols and the limited availability of annotated datasets compromise the generalizability of supervised models. In these contexts, self-supervised models offer the advantage of learning more robust patterns from the data, bypassing the need for ground truth labels. Conclusion This approach has the potential to accelerate the clinical validation of touchscreen typing software for neurodegenerative diseases.
Author Tripathi, Shikha
Arroyo-Gallego, Teresa
Holmes, Ashley A
Giancardo, Luca
Acien, Alejandro
Author_xml – sequence: 1
  givenname: Shikha
  surname: Tripathi
  fullname: Tripathi, Shikha
– sequence: 2
  givenname: Alejandro
  surname: Acien
  fullname: Acien, Alejandro
– sequence: 3
  givenname: Ashley A
  surname: Holmes
  fullname: Holmes, Ashley A
– sequence: 4
  givenname: Teresa
  surname: Arroyo-Gallego
  fullname: Arroyo-Gallego, Teresa
– sequence: 5
  givenname: Luca
  orcidid: 0000-0002-4862-2277
  surname: Giancardo
  fullname: Giancardo, Luca
  email: luca.giancardo@uth.tmc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38497957$$D View this record in MEDLINE/PubMed
BookMark eNqFUc1u1DAQtlAR_YEj1ypHLmnH8TrecKlQBQWpEhxA4mZN7EnrbtYOdtJqOfEafb0-CV52qShS1YvH0nw_M9_ssx0fPDH2msMRh0YcX-HS4XEwSCDhGdvjslJlo2bfd_IfalVKqNQu20_pCoDXlZAv2K6YzxrVSLXH8Iw8RezdT-cvii8YF86n4O9-3abCukSYqLA0khld8MWU1qgFrdIYwyJ3Vj7bm_S2wCJR35VpGiheZ54tcBhiQHP5kj3vsE_0alsP2LcP77-efizPP599On13XppZxccyj0Y4r3gLVkqqrFUdCc5bXncGBO9qECTnAHWrLHStqW3XgcivbblsVSUO2NFGd_IDrm6w7_UQ3RLjSnPQ66z0n6z0NqtMONkQhqldkjXkxxzEPSmg0w873l3qi3CtOecguVBZ4c1WIYYfE6VRL10y1PfoKUxJV02tQEoFa7PDf83uXf5eIgPEBmBiSClSp40bcZ169nb9ozuU_7Ge2nk7cZiGJ6C_AX-ewUs
CitedBy_id crossref_primary_10_3389_fncom_2024_1414462
Cites_doi 10.1016/S1474-4422(21)00030-2
10.1016/j.eswa.2023.119522
10.1109/TBME.2022.3187309
10.1038/sdata.2016.11
10.1109/TBME.2017.2664802
10.1038/srep34468
10.1001/jamaneurol.2017.3299
10.1038/s41598-020-69369-1
10.1038/s41598-020-78418-8
10.1002/mds.27772
10.1038/s41598-022-11865-7
10.1002/mds.26424
10.1038/srep09678
10.1093/braincomms/fcac194
10.2196/jmir.9462
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com 2024
The Author(s) 2024. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/jamia/ocae050
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1527-974X
EndPage 1246
ExternalDocumentID oai:pubmedcentral.nih.gov:11105137
PMC11105137
38497957
10_1093_jamia_ocae050
10.1093/jamia/ocae050
Genre Journal Article
GrantInformation_xml – fundername: nQ-Medical Inc.
– fundername: NIH HHS
  grantid: R01NS121154
– fundername: NIA NIH HHS
  grantid: U01 AG070112
– fundername: ;
– fundername: ;
  grantid: R01NS121154; R21EB029575; U01AG070112
GroupedDBID ---
--K
.DC
.GJ
0R~
18M
1B1
1TH
29L
2WC
4.4
48X
53G
5GY
5RE
5WD
6PF
7RV
7X7
7~T
88E
88I
8AF
8AO
8FE
8FG
8FI
8FJ
8FW
AABZA
AACZT
AAEDT
AAJQQ
AALRI
AAMVS
AAOGV
AAPGJ
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWTL
AAXUO
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABNHQ
ABOCM
ABPQP
ABPTD
ABQLI
ABQNK
ABSMQ
ABUWG
ABVGC
ABWST
ABWVN
ABXVV
ACFRR
ACGFO
ACGFS
ACGOD
ACHQT
ACRPL
ACUFI
ACUTJ
ACVCV
ACYHN
ACZBC
ADBBV
ADGZP
ADHKW
ADHZD
ADIPN
ADJOM
ADMTO
ADMUD
ADNBA
ADNMO
ADQBN
ADRTK
ADVEK
ADYVW
AEGPL
AEJOX
AEKSI
AEMDU
AEMQT
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFQV
AFFZL
AFIYH
AFKRA
AFOFC
AFXAL
AFYAG
AGINJ
AGKRT
AGMDO
AGORE
AGQXC
AGSYK
AGUTN
AHGBF
AHMBA
AHMMS
AJBYB
AJDVS
AJEEA
AJNCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APJGH
AQDSO
AQKUS
AQUVI
ARAPS
ATGXG
AVNTJ
AVWKF
AXUDD
AYCSE
AZQEC
BAWUL
BAYMD
BCRHZ
BENPR
BEYMZ
BGLVJ
BHONS
BKEYQ
BPHCQ
BTRTY
BVRKM
BVXVI
BZKNY
C1A
C45
CCPQU
CDBKE
CS3
DAKXR
DIK
DILTD
DU5
DWQXO
E3Z
EBD
EBS
EIHJH
EJD
EMOBN
ENERS
EO8
EX3
F5P
FDB
FECEO
FLUFQ
FOEOM
FOTVD
FQBLK
FYUFA
G-Q
GAUVT
GJXCC
GNUQQ
GX1
H13
HAR
HCIFZ
HMCUK
IH2
IHE
J21
JXSIZ
K6V
K7-
KBUDW
KOP
KSI
KSN
LSO
M0T
M1P
M2P
M2Q
M41
MBLQV
MHKGH
NAPCQ
NOMLY
NOYVH
NQ-
NU-
NVLIB
O9-
OAUYM
OAWHX
OBFPC
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P62
PAFKI
PCD
PEELM
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q5Y
R53
RIG
ROL
ROX
ROZ
RPM
RPZ
RUSNO
RWL
RXO
S0X
SSZ
SV3
TAE
TEORI
TJX
TMA
UKHRP
WOQ
WOW
YAYTL
YHZ
YKOAZ
YXANX
ZGI
~S-
77I
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
PJZUB
PPXIY
PQGLB
UNPAY
ID FETCH-LOGICAL-c421t-162ea821b0d55e2dd7fe311b16fc031f603e58006b7d0fbc6dff036dfdb15b723
IEDL.DBID UNPAY
ISSN 1067-5027
1527-974X
IngestDate Sun Oct 26 01:52:34 EDT 2025
Tue Sep 30 17:04:37 EDT 2025
Wed Oct 01 15:08:39 EDT 2025
Thu Mar 20 02:21:14 EDT 2025
Thu Apr 24 22:54:27 EDT 2025
Wed Oct 01 02:43:54 EDT 2025
Mon Jun 30 08:34:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords neurodegenerative diseases
self-supervised learning
machine learning
Parkinson’s disease
user-device interaction
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)
https://academic.oup.com/pages/standard-publication-reuse-rights
The Author(s) 2024. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-162ea821b0d55e2dd7fe311b16fc031f603e58006b7d0fbc6dff036dfdb15b723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4862-2277
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/11105137
PMID 38497957
PQID 2967055700
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1093_jamia_ocae050
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11105137
proquest_miscellaneous_2967055700
pubmed_primary_38497957
crossref_citationtrail_10_1093_jamia_ocae050
crossref_primary_10_1093_jamia_ocae050
oup_primary_10_1093_jamia_ocae050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-20
PublicationDateYYYYMMDD 2024-05-20
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the American Medical Informatics Association : JAMIA
PublicationTitleAlternate J Am Med Inform Assoc
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Alfalahi (2024052019464257400_ocae050-B13) 2022; 12
Klingelhoefer (2024052019464257400_ocae050-B16) 2017
Tolosa (2024052019464257400_ocae050-B1) 2021; 20
Arroyo-Gallego (2024052019464257400_ocae050-B4) 2018; 20
Iakovakis (2024052019464257400_ocae050-B15) 2019; 2019
Klingelhoefer (2024052019464257400_ocae050-B19) 2019; 34
Tripathi (2024052019464257400_ocae050-B8) 2023; 70
Papadopoulos (2024052019464257400_ocae050-B9) 2020; 10
Iakovakis (2024052019464257400_ocae050-B10) 2020; 10
Dorsey (2024052019464257400_ocae050-B2) 2018; 75
Dhir (2024052019464257400_ocae050-B12) 2020
Matarazzo (2024052019464257400_ocae050-B14) 2019; 34
Roy (2024052019464257400_ocae050-B11) 2023; 217
Holmes (2024052019464257400_ocae050-B7) 2022; 4
Giancardo (2024052019464257400_ocae050-B3) 2015; 5
Postuma (2024052019464257400_ocae050-B20) 2015; 30
Giancardo (2024052019464257400_ocae050-B6) 2016; 6
Jiang (2024052019464257400_ocae050-B17) 2021
Zbontar (2024052019464257400_ocae050-B21) 2021
Arroyo-Gallego (2024052019464257400_ocae050-B5) 2017; 64
Bot (2024052019464257400_ocae050-B18) 2016; 3
References_xml – volume: 20
  start-page: 385
  issue: 5
  year: 2021
  ident: 2024052019464257400_ocae050-B1
  article-title: Challenges in the diagnosis of Parkinson’s disease
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(21)00030-2
– volume: 217
  start-page: 119522
  year: 2023
  ident: 2024052019464257400_ocae050-B11
  article-title: Imbalanced ensemble learning in determining Parkinson’s disease using keystroke dynamics
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119522
– volume: 34
  issue: suppl 2
  year: 2019
  ident: 2024052019464257400_ocae050-B19
  article-title: Medical evaluation as gold standard to control iPrognosis application derived data for early Parkinson’s disease detection [abstract]
  publication-title: Mov Disord
– volume: 70
  start-page: 182
  issue: 1
  year: 2023
  ident: 2024052019464257400_ocae050-B8
  article-title: Keystroke-dynamics for Parkinson’s disease signs detection in an at-home uncontrolled population: a new benchmark and method
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2022.3187309
– start-page: 578
  year: 2020
  ident: 2024052019464257400_ocae050-B12
– volume: 3
  start-page: 160011
  issue: 1
  year: 2016
  ident: 2024052019464257400_ocae050-B18
  article-title: The mPower study, Parkinson disease mobile data collected using ResearchKit
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.11
– volume: 64
  start-page: 1994
  issue: 9
  year: 2017
  ident: 2024052019464257400_ocae050-B5
  article-title: Detection of motor impairment in Parkinson’s disease via mobile touchscreen typing
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2664802
– start-page: 3960
  year: 2021
  ident: 2024052019464257400_ocae050-B17
– volume: 6
  start-page: 34468
  issue: 1
  year: 2016
  ident: 2024052019464257400_ocae050-B6
  article-title: Computer keyboard interaction as an indicator of early Parkinson’s disease
  publication-title: Sci Rep
  doi: 10.1038/srep34468
– volume: 75
  start-page: 9
  issue: 1
  year: 2018
  ident: 2024052019464257400_ocae050-B2
  article-title: The Parkinson pandemic—a call to action
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2017.3299
– year: 2017
  ident: 2024052019464257400_ocae050-B16
– volume: 10
  start-page: 12623
  issue: 1
  year: 2020
  ident: 2024052019464257400_ocae050-B10
  article-title: Screening of Parkinsonian subtle fine-motor impairment from touchscreen typing via deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-69369-1
– volume: 10
  start-page: 21370
  issue: 1
  year: 2020
  ident: 2024052019464257400_ocae050-B9
  article-title: Unobtrusive detection of Parkinson’s disease from multi-modal and in-the-wild sensor data using deep learning techniques
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-78418-8
– start-page: 12310
  year: 2021
  ident: 2024052019464257400_ocae050-B21
– volume: 34
  start-page: 1488
  issue: 10
  year: 2019
  ident: 2024052019464257400_ocae050-B14
  article-title: Remote monitoring of treatment response in Parkinson’s disease: the habit of typing on a computer
  publication-title: Mov Disord
  doi: 10.1002/mds.27772
– volume: 12
  start-page: 7690
  issue: 1
  year: 2022
  ident: 2024052019464257400_ocae050-B13
  article-title: Diagnostic accuracy of keystroke dynamics as digital biomarkers for fine motor decline in neuropsychiatric disorders: a systematic review and meta-analysis
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-11865-7
– volume: 30
  start-page: 1591
  issue: 12
  year: 2015
  ident: 2024052019464257400_ocae050-B20
  article-title: MDS clinical diagnostic criteria for Parkinson’s disease
  publication-title: Mov Disord
  doi: 10.1002/mds.26424
– volume: 2019
  start-page: 3535
  year: 2019
  ident: 2024052019464257400_ocae050-B15
  article-title: Early Parkinson’s disease detection via touchscreen typing analysis using convolutional neural networks
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 5
  start-page: 9678
  issue: 1
  year: 2015
  ident: 2024052019464257400_ocae050-B3
  article-title: Psychomotor impairment detection via finger interactions with a computer keyboard during natural typing
  publication-title: Sci Rep
  doi: 10.1038/srep09678
– volume: 4
  start-page: fcac194
  issue: 4
  year: 2022
  ident: 2024052019464257400_ocae050-B7
  article-title: A novel framework to estimate cognitive impairment via finger interaction with digital devices
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcac194
– volume: 20
  start-page: e89
  issue: 3
  year: 2018
  ident: 2024052019464257400_ocae050-B4
  article-title: Detecting motor impairment in early Parkinson’s disease via natural typing interaction with keyboards: validation of the neuroQWERTY approach in an uncontrolled at-home setting
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.9462
SSID ssj0016235
Score 2.4376342
Snippet Objective Passive monitoring of touchscreen interactions generates keystroke dynamic signals that can be used to detect and track neurological conditions such...
Passive monitoring of touchscreen interactions generates keystroke dynamic signals that can be used to detect and track neurological conditions such as...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1239
SubjectTerms Aged
Algorithms
Female
Humans
Male
Middle Aged
Parkinson Disease - diagnosis
Research and Applications
Supervised Machine Learning
Title Generalizing Parkinson’s disease detection using keystroke dynamics: a self-supervised approach
URI https://www.ncbi.nlm.nih.gov/pubmed/38497957
https://www.proquest.com/docview/2967055700
https://pubmed.ncbi.nlm.nih.gov/PMC11105137
https://www.ncbi.nlm.nih.gov/pmc/articles/11105137
UnpaywallVersion submittedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1527-974X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016235
  issn: 1527-974X
  databaseCode: DIK
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1527-974X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016235
  issn: 1527-974X
  databaseCode: GX1
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1527-974X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016235
  issn: 1527-974X
  databaseCode: RPM
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61Wwm48H4sj8pICC5kN7FjO-FWIUqF1IoDKy2nyI6dsmqaXTWJED3xN_h7_BLGTrLaBfE6exQlmhnPF8033wA8Y4ZZam0aGKVoEEvDg4QxGUjllizIwsbcDScfn4ijWfxuzuc7QIdZGE_az_ViUpXnk2rxyXMrV-f5dOCJTTE5MZCY3IU9wRF_j2BvdvL-4KNva2LW89DvaXXrWgMEy_NeWBP_3J3U0EJNsUbY0M3ZbxSireG2DYz5K1Xyalut1JfPqiw36tDhjW42sPbyhY5-cjZpGz3JL38Sd_y_T7wJ13tYSg66s1uwY6vbcOW4b7zfAdXLUy8usdQRNyrtp8a-f_1Wk77HQ4xtPK-rIo5Mf0rweqibi-UZnnRr7-tXRJHalkVQtyt3R9XWkEHU_C7MDt98eH0U9NsZgjymURNEglqV0EiHhnNLjUHHsijSkShyvCkKETLLEY4KLU1Y6FyYosByaQqjI64lZfdgVC0r-wBIqpLCIBBLY2VjRnPNlbRCKyycKqUqHcPLwVVZ3kuXuw0aZda10FnmPZv1nh3D87X5qtPs-J3hU_T7X22GqMgw81w7RVV22dYZTYX0CmZoc7-LkvWjWBKnMuVyDMlW_KwNnKr39glGglf3Hpw_hhfrUPvzKz78Z8tHcI0iKHPsBxo-hlFz0donCKoavQ-7b-fRfp9LPwBgRilO
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELXKVgIulK-WpYCMhOBCdhM7thNuFaKqkFpxYKXlFNmxDaum2VWTCNETf4O_xy9h7DirXRBfZ4-iRDPjedG8eYPQM6qpIcbkkZaSRKnQLMooFZGQbsmCsCZlbjj59IyfzNK3czbfQWSYhfGk_VItJnV1MakXnzy3cnVRTgee2BSSEwKJimtolzPA3yO0Ozt7d_TBtzUh61ns97S6da0RgOV5ENaEP3cnNbSQU6gRJnZz9huFaGu4bQNj_kqVvNHVK_nls6yqjTp0vNfPBjZevtDRT84nXasm5dVP4o7_94m30a0AS_FRf3YH7Zj6Lrp-Ghrv95AM8tSLKyh12I1K-6mx71-_NTj0eLA2red11diR6T9iuB6a9nJ5Dif92vvmFZa4MZWNmm7l7qjGaDyImt9Hs-M371-fRGE7Q1SmJGmjhBMjM5KoWDNmiNbgWJokKuG2hJvC8pgaBnCUK6Fjq0qurYVyqa1WCVOC0H00qpe1eYBwLjOrAYjlqTQpJaViUhiuJBROmROZj9HLwVVFGaTL3QaNquhb6LTwni2CZ8fo-dp81Wt2_M7wKfj9rzZDVBSQea6dImuz7JqC5Fx4BTOwOeijZP0omqW5yJkYo2wrftYGTtV7-wQiwat7D84foxfrUPvzKz78Z8tDdJMAKHPsBxI_QqP2sjOPAVS16knIoh9uKyhd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalizing+Parkinson%E2%80%99s+disease+detection+using+keystroke+dynamics%3A+a+self-supervised+approach&rft.jtitle=Journal+of+the+American+Medical+Informatics+Association+%3A+JAMIA&rft.au=Tripathi%2C+Shikha&rft.au=Acien%2C+Alejandro&rft.au=Holmes%2C+Ashley+A&rft.au=Arroyo-Gallego%2C+Teresa&rft.date=2024-05-20&rft.pub=Oxford+University+Press&rft.issn=1067-5027&rft.eissn=1527-974X&rft.volume=31&rft.issue=6&rft.spage=1239&rft.epage=1246&rft_id=info:doi/10.1093%2Fjamia%2Focae050&rft_id=info%3Apmid%2F38497957&rft.externalDocID=PMC11105137
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1067-5027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1067-5027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1067-5027&client=summon