Risk Prediction of Coal and Gas Outburst in Deep Coal Mines Based on the SAPSO-ELM Algorithm

Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and inefficiency of coal–gas outburst prediction in deep coal mines, this study proposes a deep coal–gas outburst risk prediction method based on k...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 19; no. 19; p. 12382
Main Authors Yang, Li, Fang, Xin, Wang, Xue, Li, Shanshan, Zhu, Junqi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 28.09.2022
MDPI
Subjects
Online AccessGet full text
ISSN1660-4601
1661-7827
1660-4601
DOI10.3390/ijerph191912382

Cover

Abstract Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and inefficiency of coal–gas outburst prediction in deep coal mines, this study proposes a deep coal–gas outburst risk prediction method based on kernal principal component analysis (KPCA) and an improved extreme learning machine (SAPSO-ELM) algorithm. Firstly, high-dimensional nonlinear raw data were processed by KPCA. Secondly, the extracted sequence of outburst-causing indicator principal components were used as the input variables for the simulated annealing particle swarm algorithm (SAPSO), which was proposed to optimize the input layer weights and implied layer thresholds of the ELM. Finally, a coal and gas outburst risk prediction model for a deep coal mine based on the SAPSO-ELM algorithm was developed. The research results show that, compared with the ELM and PSO-ELM algorithms, the SAPSO-ELM optimization algorithm significantly improved the accuracy of risk prediction for coal–gas outbursts in deep coal mines, and the accuracy rate was as high as 100%. This study enriches the theory and methods of safety management in deep coal mines, and effectively helps coal mine enterprises in improving their ability to manage coal–gas outburst risks.
AbstractList Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and inefficiency of coal-gas outburst prediction in deep coal mines, this study proposes a deep coal-gas outburst risk prediction method based on kernal principal component analysis (KPCA) and an improved extreme learning machine (SAPSO-ELM) algorithm. Firstly, high-dimensional nonlinear raw data were processed by KPCA. Secondly, the extracted sequence of outburst-causing indicator principal components were used as the input variables for the simulated annealing particle swarm algorithm (SAPSO), which was proposed to optimize the input layer weights and implied layer thresholds of the ELM. Finally, a coal and gas outburst risk prediction model for a deep coal mine based on the SAPSO-ELM algorithm was developed. The research results show that, compared with the ELM and PSO-ELM algorithms, the SAPSO-ELM optimization algorithm significantly improved the accuracy of risk prediction for coal-gas outbursts in deep coal mines, and the accuracy rate was as high as 100%. This study enriches the theory and methods of safety management in deep coal mines, and effectively helps coal mine enterprises in improving their ability to manage coal-gas outburst risks.
Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and inefficiency of coal-gas outburst prediction in deep coal mines, this study proposes a deep coal-gas outburst risk prediction method based on kernal principal component analysis (KPCA) and an improved extreme learning machine (SAPSO-ELM) algorithm. Firstly, high-dimensional nonlinear raw data were processed by KPCA. Secondly, the extracted sequence of outburst-causing indicator principal components were used as the input variables for the simulated annealing particle swarm algorithm (SAPSO), which was proposed to optimize the input layer weights and implied layer thresholds of the ELM. Finally, a coal and gas outburst risk prediction model for a deep coal mine based on the SAPSO-ELM algorithm was developed. The research results show that, compared with the ELM and PSO-ELM algorithms, the SAPSO-ELM optimization algorithm significantly improved the accuracy of risk prediction for coal-gas outbursts in deep coal mines, and the accuracy rate was as high as 100%. This study enriches the theory and methods of safety management in deep coal mines, and effectively helps coal mine enterprises in improving their ability to manage coal-gas outburst risks.Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and inefficiency of coal-gas outburst prediction in deep coal mines, this study proposes a deep coal-gas outburst risk prediction method based on kernal principal component analysis (KPCA) and an improved extreme learning machine (SAPSO-ELM) algorithm. Firstly, high-dimensional nonlinear raw data were processed by KPCA. Secondly, the extracted sequence of outburst-causing indicator principal components were used as the input variables for the simulated annealing particle swarm algorithm (SAPSO), which was proposed to optimize the input layer weights and implied layer thresholds of the ELM. Finally, a coal and gas outburst risk prediction model for a deep coal mine based on the SAPSO-ELM algorithm was developed. The research results show that, compared with the ELM and PSO-ELM algorithms, the SAPSO-ELM optimization algorithm significantly improved the accuracy of risk prediction for coal-gas outbursts in deep coal mines, and the accuracy rate was as high as 100%. This study enriches the theory and methods of safety management in deep coal mines, and effectively helps coal mine enterprises in improving their ability to manage coal-gas outburst risks.
Author Yang, Li
Fang, Xin
Wang, Xue
Li, Shanshan
Zhu, Junqi
AuthorAffiliation School of Economic and Management, Anhui University of Science and Technology, Huainan 232001, China
AuthorAffiliation_xml – name: School of Economic and Management, Anhui University of Science and Technology, Huainan 232001, China
Author_xml – sequence: 1
  givenname: Li
  surname: Yang
  fullname: Yang, Li
– sequence: 2
  givenname: Xin
  surname: Fang
  fullname: Fang, Xin
– sequence: 3
  givenname: Xue
  surname: Wang
  fullname: Wang, Xue
– sequence: 4
  givenname: Shanshan
  surname: Li
  fullname: Li, Shanshan
– sequence: 5
  givenname: Junqi
  surname: Zhu
  fullname: Zhu, Junqi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36231681$$D View this record in MEDLINE/PubMed
BookMark eNqNkdtrFDEUxoNU7EWffZOAL76MzWUmk7wI27WtwpYtVt-EkMmlm3U2GZOMpf-9s2zVuiBIHk7g_L6Pc75zDA5CDBaAlxi9pVSgU7-2aVhhMT1COXkCjjBjqKoZwgeP_ofgOOc1QpTXTDwDh5QRihnHR-DrJ5-_wetkjdfFxwCjg_OoeqiCgZcqw-VYujHlAn2A760ddt0rH2yGZypbAydRWVl4M7u-WVbniys4629j8mW1eQ6eOtVn--KhnoAvF-ef5x-qxfLy43y2qHRNcKlwbZq2cZ2ggnCFa0qRsNhxp7FBTmtnO9LUmlPROW40aigxnGtRk5a3hnf0BKCd7xgGdX-n-l4OyW9UupcYyW1Qci-oSfJuJxnGbmONtqEk9UcWlZd_d4Jfydv4Q4qGMUqayeDNg0GK30ebi9z4rG3fq2DjmCVpSUMQZS2e0Nd76DqOKUyJbKma1K2gaKJePZ7o9yi_bjUBpztAp5hzsu4_lmz2FNoXtT3ztJLv_6n7CcjIt2Y
CitedBy_id crossref_primary_10_1002_ese3_1953
crossref_primary_10_1038_s41598_024_76206_2
crossref_primary_10_3390_pr11102925
crossref_primary_10_3390_math12040588
crossref_primary_10_1021_acs_energyfuels_4c05476
crossref_primary_10_3390_su17051896
crossref_primary_10_3390_su15020991
crossref_primary_10_1016_j_fuel_2023_127489
Cites_doi 10.3233/JIFS-200937
10.1155/2021/5551320
10.1016/j.eswa.2021.115441
10.1016/j.ssci.2019.02.010
10.3389/fenrg.2022.891184
10.1016/j.psep.2019.10.006
10.1016/j.jngse.2021.103942
10.1007/s12613-019-1956-9
10.1016/j.ssci.2019.104515
10.1007/s12517-020-05584-4
10.1109/TSMCB.2011.2171946
10.1007/s11269-017-1660-3
10.1007/s11053-019-09552-y
10.1155/2021/4487280
10.3139/120.111478
10.1109/TII.2021.3065377
10.1109/TNNLS.2011.2178325
10.1007/s12559-014-9255-2
10.1016/j.fuel.2020.119493
10.3390/s21175730
10.1002/ese3.289
10.1016/j.ijrmms.2020.104262
10.1007/s11053-020-09621-7
10.1109/TCYB.2019.2925015
10.1016/j.ijrmms.2012.01.005
10.1080/15567036.2019.1666188
10.1016/j.psep.2019.10.002
10.1177/0144598720913074
10.1007/s11276-021-02858-x
10.3390/en11102661
10.1109/TIE.2021.3050348
10.1007/s43153-021-00125-2
10.3233/JIFS-210466
10.1016/j.cj.2020.09.008
10.3390/en11061414
10.1016/j.coal.2018.05.012
10.1016/j.psep.2020.05.027
10.1016/j.psep.2021.08.023
10.1007/s00603-018-1411-7
10.1117/1.JRS.14.034507
10.1007/s11227-021-03964-5
10.1111/j.1466-8238.2011.00683.x
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/ijerph191912382
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Complete
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Proquest Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1660-4601
ExternalDocumentID 10.3390/ijerph191912382
PMC9566325
36231681
10_3390_ijerph191912382
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Natural Science Foundation of Anhui Province
  grantid: 2208085QG225
– fundername: National Natural Science Foundation of China
  grantid: 71971003
– fundername: National Social Science Foundation of China
  grantid: 20ZDA084
– fundername: Humanities and Social Science of Education Department of Anhui Province
  grantid: SK2020A0209
– fundername: Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining
  grantid: EC2021009
– fundername: Research Foundation of Anhui University of Science and Technology
  grantid: 2022YJRC02
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABGAM
ABUWG
ACGFO
ACGOD
ACIWK
ADBBV
AENEX
AFKRA
AFRAH
AFZYC
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESTFP
F5P
FYUFA
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
Q2X
RNS
RPM
SV3
TR2
UKHRP
XSB
2XV
3V.
ABJCF
ALIPV
ATCPS
AZQEC
BHPHI
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
HCIFZ
IAO
IEP
M2P
M7S
M~E
NPM
PATMY
PYCSY
7XB
8FK
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c421t-14d575fb93928a143309e1f8fc1d0fccfeb254c839bf8dc0532d88c942787d8b3
IEDL.DBID M48
ISSN 1660-4601
1661-7827
IngestDate Sun Oct 26 04:15:48 EDT 2025
Tue Sep 30 17:18:53 EDT 2025
Mon Sep 08 13:45:34 EDT 2025
Tue Oct 07 07:28:48 EDT 2025
Wed Feb 19 02:26:06 EST 2025
Thu Oct 16 04:31:20 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords coal and gas outburst
deep coal mine
risk prediction
SAPSO
extreme learning machine algorithm
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-14d575fb93928a143309e1f8fc1d0fccfeb254c839bf8dc0532d88c942787d8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1660-4601/19/19/12382/pdf?version=1664516742
PMID 36231681
PQID 2724247930
PQPubID 54923
ParticipantIDs unpaywall_primary_10_3390_ijerph191912382
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9566325
proquest_miscellaneous_2725203671
proquest_journals_2724247930
pubmed_primary_36231681
crossref_primary_10_3390_ijerph191912382
crossref_citationtrail_10_3390_ijerph191912382
PublicationCentury 2000
PublicationDate 20220928
PublicationDateYYYYMMDD 2022-09-28
PublicationDate_xml – month: 9
  year: 2022
  text: 20220928
  day: 28
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of environmental research and public health
PublicationTitleAlternate Int J Environ Res Public Health
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wang (ref_9) 2021; 2021
Hansen (ref_38) 2012; 23
Li (ref_43) 2012; 42
Sait (ref_45) 2020; 62
Wang (ref_24) 2021; 154
ref_13
(ref_48) 2012; 21
ref_10
Jin (ref_33) 2018; 194
Chen (ref_46) 2021; 9
Mostafa (ref_42) 2021; 183
Liu (ref_1) 2011; 4
Li (ref_20) 2020; 38
Ma (ref_31) 2020; 27
Wang (ref_19) 2022; 10
ref_25
Wang (ref_35) 2020; 140
Shi (ref_41) 2021; 18
Zhang (ref_15) 2021; 41
Wu (ref_16) 2021; 2021
Zhao (ref_5) 2018; 51
Torno (ref_26) 2012; 50
Du (ref_2) 2020; 29
Song (ref_44) 2021; 69
Zhou (ref_27) 2020; 128
Liu (ref_17) 2020; 2020
Zou (ref_6) 2020; 122
Li (ref_11) 2019; 7
Chen (ref_22) 2020; 18
ref_34
Xue (ref_28) 2020; 13
ref_30
Zhou (ref_8) 2020; 29
Zhang (ref_32) 2013; 6
Li (ref_12) 2021; 90
Lin (ref_37) 2020; 14
Pani (ref_36) 2022; 39
Huang (ref_40) 2014; 6
Wu (ref_23) 2020; 133
Li (ref_29) 2010; 20
Liu (ref_47) 2021; 51
Liu (ref_39) 2022; 78
Chen (ref_7) 2019; 115
Chen (ref_21) 2017; 13
Ru (ref_18) 2020; 2020
Wang (ref_3) 2020; 133
Zhang (ref_4) 2021; 287
Liu (ref_14) 2020; 39
Naghibi (ref_49) 2017; 31
References_xml – volume: 20
  start-page: 209
  year: 2010
  ident: ref_29
  article-title: Catastrophic mechanism of coal and gas outbursts and their prevention and control
  publication-title: Min. Sci. Technol.
– volume: 39
  start-page: 7671
  year: 2020
  ident: ref_14
  article-title: A novel hybrid feature selection and modified KNN prediction model for coal and gas outbursts
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-200937
– volume: 2021
  start-page: 5551320
  year: 2021
  ident: ref_16
  article-title: Advanced computational methods for mitigating shock and vibration hazards in Deep Mines gas outburst prediction using SVM optimized by grey relational analysis and APSO algorithm
  publication-title: Shock Vib.
  doi: 10.1155/2021/5551320
– volume: 183
  start-page: 115441
  year: 2021
  ident: ref_42
  article-title: Integrating Elman recurrent neural network with particle swarm optimization algorithms for an improved hybrid training of multidisciplinary datasets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115441
– volume: 6
  start-page: 256
  year: 2013
  ident: ref_32
  article-title: Risk degree of coal and gas outburst based on the matter-element model
  publication-title: Disaster Adv.
– volume: 115
  start-page: 229
  year: 2019
  ident: ref_7
  article-title: The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in China
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2019.02.010
– volume: 10
  start-page: 891184
  year: 2022
  ident: ref_19
  article-title: Prediction method of coal and gas outburst intensity based on digital twin and deep learning
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.891184
– volume: 133
  start-page: 1
  year: 2020
  ident: ref_3
  article-title: Coal-gas compound dynamic disasters in China: A review
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2019.10.006
– volume: 90
  start-page: 103942
  year: 2021
  ident: ref_12
  article-title: Deep learning approach to coal and gas outburst recognition employing modified AE and EMR signal from empirical mode decomposition and time-frequency analysis
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2021.103942
– volume: 27
  start-page: 872
  year: 2020
  ident: ref_31
  article-title: Mechanism investigation on coal and gas outburst: An overview
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-019-1956-9
– volume: 122
  start-page: 104515
  year: 2020
  ident: ref_6
  article-title: Rationality evaluation of production deployment of outburst-prone coal mines: A case study of nantong coal mine in Chongqing, China
  publication-title: Saf. Sci.
  doi: 10.1016/j.ssci.2019.104515
– volume: 13
  start-page: 1
  year: 2020
  ident: ref_28
  article-title: Destabilization mechanism and energy evolution of coal pillar in rockburst disaster
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-020-05584-4
– volume: 42
  start-page: 627
  year: 2012
  ident: ref_43
  article-title: A self-learning particle swarm optimizer for global optimization problems
  publication-title: IEEE Trans. Syst. Man Cybern. Part B
  doi: 10.1109/TSMCB.2011.2171946
– volume: 31
  start-page: 2761
  year: 2017
  ident: ref_49
  article-title: Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1660-3
– volume: 29
  start-page: 1617
  year: 2020
  ident: ref_8
  article-title: Experimental analysis of the dynamic effects of coal–gas outburst and a protean contraction and expansion flow model
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09552-y
– volume: 2021
  start-page: 4487280
  year: 2021
  ident: ref_9
  article-title: Theoretical study and experiment validation on drilling cutting weight during the whole process of drilling
  publication-title: Shock Vib.
  doi: 10.1155/2021/4487280
– volume: 62
  start-page: 251
  year: 2020
  ident: ref_45
  article-title: A novel hybrid Harris hawks-simulated annealing algorithm and RBF-based metamodel for design optimization of highway guardrails
  publication-title: Mater. Test.
  doi: 10.3139/120.111478
– volume: 4
  start-page: 55
  year: 2011
  ident: ref_1
  article-title: Experimental study of the mechanism of coal and gas delay outburst
  publication-title: Disaster Adv.
– volume: 2020
  start-page: 8863425
  year: 2020
  ident: ref_17
  article-title: Gas outburst prediction model using improved entropy weight grey correlation analysis and IPSO-LSSVM
  publication-title: Math. Probl. Eng.
– volume: 18
  start-page: 1009
  year: 2021
  ident: ref_41
  article-title: Novel L1 regularized extreme learning machine for soft-sensing of an industrial process
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3065377
– volume: 23
  start-page: 163
  year: 2012
  ident: ref_38
  article-title: Model selection for Gaussian kernel PCA denoising
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2011.2178325
– volume: 6
  start-page: 376
  year: 2014
  ident: ref_40
  article-title: An insight into extreme learning machines: Random neurons, random features and kernels
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-014-9255-2
– volume: 287
  start-page: 119493
  year: 2021
  ident: ref_4
  article-title: A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119493
– ident: ref_25
  doi: 10.3390/s21175730
– volume: 7
  start-page: 443
  year: 2019
  ident: ref_11
  article-title: Acoustic emission monitoring technology for coal and gas outburst
  publication-title: Energy Sci. Eng.
  doi: 10.1002/ese3.289
– volume: 128
  start-page: 104262
  year: 2020
  ident: ref_27
  article-title: Airflow disturbance induced by coal mine outburst shock waves: A case study of a gas outburst disaster in China
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2020.104262
– volume: 29
  start-page: 2481
  year: 2020
  ident: ref_2
  article-title: Experimental study of coal–gas outburst: Insights from coal–rock structure, gas pressure and adsorptivity
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-020-09621-7
– volume: 18
  start-page: 73
  year: 2020
  ident: ref_22
  article-title: Prediction of coal and gas outburst risk at driving working face based on Bayes discriminant analysis model
  publication-title: Earthq. Struct.
– volume: 51
  start-page: 1085
  year: 2021
  ident: ref_47
  article-title: A novel sigmoid-function-based adaptive weighted particle swarm optimizer
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2925015
– volume: 2020
  start-page: 2432806
  year: 2020
  ident: ref_18
  article-title: Real-Time prediction model of coal and gas outburst
  publication-title: Math. Probl. Eng.
– volume: 50
  start-page: 94
  year: 2012
  ident: ref_26
  article-title: Application of outburst risk indices in the underground coal mines by sublevel caving
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2012.01.005
– ident: ref_30
  doi: 10.1080/15567036.2019.1666188
– volume: 133
  start-page: 64
  year: 2020
  ident: ref_23
  article-title: Prediction of coal and gas outburst: A method based on the BP neural network optimized by GASA
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2019.10.002
– volume: 38
  start-page: 1320
  year: 2020
  ident: ref_20
  article-title: Prediction of coal and gas outbursts by a novel model based on multisource information fusion
  publication-title: Energy Explor. Exploit.
  doi: 10.1177/0144598720913074
– ident: ref_10
  doi: 10.1007/s11276-021-02858-x
– ident: ref_34
  doi: 10.3390/en11102661
– volume: 69
  start-page: 763
  year: 2021
  ident: ref_44
  article-title: Self-triggered sliding mode control for networked PMSM speed regulation system: A PSO-optimized super-twisting algorithm
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3050348
– volume: 39
  start-page: 327
  year: 2022
  ident: ref_36
  article-title: Non-linear process monitoring using kernel principal component analysis: A review of the basic and modified techniques with industrial applications
  publication-title: Braz. J. Chem. Eng.
  doi: 10.1007/s43153-021-00125-2
– volume: 41
  start-page: 3201
  year: 2021
  ident: ref_15
  article-title: Outburst prediction and influencing factors analysis based on Boruta-Apriori and BO-SVM algorithms
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-210466
– volume: 9
  start-page: 823
  year: 2021
  ident: ref_46
  article-title: The G-protein α subunit GhGPA positively regulates Gossypium hirsutum resistance to Verticillium dahliae via induction of SA and JA signaling pathways and ROS accumulation
  publication-title: Crop J.
  doi: 10.1016/j.cj.2020.09.008
– ident: ref_13
  doi: 10.3390/en11061414
– volume: 194
  start-page: 45
  year: 2018
  ident: ref_33
  article-title: Experimental investigation on the formation and transport mechanism of outburst coal-gas flow: Implications for the role of gas desorption in the development stage of outburst
  publication-title: Int. J. Coal Geol.
  doi: 10.1016/j.coal.2018.05.012
– volume: 13
  start-page: 861
  year: 2017
  ident: ref_21
  article-title: Hazard prediction of coal and gas outburst based on Fisher discriminant analysis
  publication-title: Geomech. Eng.
– volume: 140
  start-page: 356
  year: 2020
  ident: ref_35
  article-title: Study on factors influencing and the critical value of the drilling cuttings weight: An index for outburst risk prediction
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2020.05.027
– volume: 154
  start-page: 329
  year: 2021
  ident: ref_24
  article-title: Coal and gas outburst prediction model based on extension theory and its application
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2021.08.023
– volume: 51
  start-page: 1539
  year: 2018
  ident: ref_5
  article-title: Case studies of rock bursts under complicated geological conditions during multi-seam mining at a depth of 800 m
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-018-1411-7
– volume: 14
  start-page: 34507
  year: 2020
  ident: ref_37
  article-title: Hyperspectral estimation of soil composition contents based on kernel principal component analysis and machine learning model
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.14.034507
– volume: 78
  start-page: 2909
  year: 2022
  ident: ref_39
  article-title: Coal and gas outbursts prediction based on combination of hybrid feature extraction DWT+ FICA–LDA and optimized QPSO-DELM classifier
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-03964-5
– volume: 21
  start-page: 498
  year: 2012
  ident: ref_48
  article-title: Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/j.1466-8238.2011.00683.x
SSID ssj0038469
Score 2.3922281
Snippet Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 12382
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Coal - analysis
Coal Mining
Deep learning
Digital twins
Discriminant analysis
Lithology
Mines
Neural networks
Permeability
Principal components analysis
Stress concentration
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N7gGkCW3jY4GBPIkHeAirE6dxHtDUjY5pol21MWkPSJFjO6xQkrKmmvbfc5cvVibYWyLbinx39v0u9wXwxvCECyOUq7n1XBHhkUoMPoVKiCToKRVKSnAejnpH5-L4IrhYgVGTC0Nhlc2dWF7UJtf0j3zXCymRAaWpuzf75VLXKPKuNi00VN1awXwoS4w9gFWPKmN1YHV_MBqfNnezj9qWADFHreSibgyrYj8-Gv67k-8Wd4bmS4SXufSW9dQd8Hk3hvLhIpupm2s1nd5SUIfr8LhGlqxficIGrNhsE9aq33KsyjZ6Al9PJ_MfbHxF7hliCctTdpDjMpUZ9knN2cmiQDLPCzbJ2EdrZ9XokILj2T5qPMNwEYJGdtYfn524g89D1p9-Q0IVlz-fwvnh4MvBkVs3WHC18HjhIpcQraVJhCBJKkROfjeyPJWp5qabap2i2R0IjRgqSaXR1ETCSKkjas8RGpn4z6CT5Zndogip1Bdo-piodJYmMgqCUBkb9Qy-ct-B9w05Y11XH6cmGNMYrRCif_wX_R142y6YVYU3_j11u-FPXJ_AefxHXhzYaYfx7JBDRGU2X5RzAnLEhtyB5xU722-hYqeeXjgSLjG6nUB1uZdHssllWZ8bTc6e7wUOvGtF4r4tvPj_Fl7CI4_SLsgbJrehU1wt7CsEQ0Xyupbw3x4HByg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAJ8Q0LDGQkHuAhbZ04if2EytiYEN0qRiWQJkX-CstWkqpNQPDXc46TiG5CCCH1IZXPTa07536_3PkOoeeaSEI1Fb4iJvAphy0lNVwlglIZxUIkzB5wnh7GB3P67lPUZROu27RKoOJ585AmcTz2KVCGEeHNB_xLMFrq7NW39mUSSNhOs8DvrqKtOAI4PkBb88PZ5LMlWt10d0188IaJK-8TAtUf5WcG1gKEhTc_vOmZLsHNy1mT1-piKX58F4vFby5p_xaS3WJcJsr5sK7kUP28UOfxv1Z7G91sASueOAu7g66Y4i664d72YXeI6R46-ZCvz_FsZaM-VtO4zPBuCdNEofFbscZH8OdqAJo4L_AbY5ZudGpz7vFrcKQawyTAovh4Mjs-8vfeT_Fk8aVc5dXp1_tovr_3cffAb_s2-IoGpPJB-QACM8kBezEBgCwcc0Mylimix5lSGbD5iCqAZjJjWtneFJoxxW3Xj0QzGT5Ag6IszLZNvMpCCoxK8yYGKxmPokRow2MNX0nooWGns1S1Rc1tb41FCuTGKjm9oGQPvegnLF09jz-L7nRGkLYbe50GiT1PAw-1sYee9cOwJW2cRRSmrBuZyMZ3E-Khh85m-nsBXrCtwmAk2bCmXsCW-94cKfLTpuw3MNk4DCIPvezt7m9LePQPso_R9cAe7bARN7aDBtWqNk8AcFXyabulfgFFoSF3
  priority: 102
  providerName: Unpaywall
Title Risk Prediction of Coal and Gas Outburst in Deep Coal Mines Based on the SAPSO-ELM Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/36231681
https://www.proquest.com/docview/2724247930
https://www.proquest.com/docview/2725203671
https://pubmed.ncbi.nlm.nih.gov/PMC9566325
https://www.mdpi.com/1660-4601/19/19/12382/pdf?version=1664516742
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: A8Z
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: DIK
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: GX1
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central Journals
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 20250731
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: M48
  dateStart: 20050501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgewAJIb4JG5WReICHjDpxYucBoa60mxDtqo1KRUKKHNthgZB0bSrYf89d02YrG4KXKJHtfNzZvt8vZ98R8tKwhHHDlauZ9VwewZBKDJwJxXkShEoJiRucB8PwcMw_TILJRTqglQDn11I7zCc1nuV7v87O38GAf4uMEyj7m-ybhXcC4hHBNCxhPt4GMxVhHocBb1wKPhhaxMIsDNsuBxpSx_m57gabJuoK7ry6fPLWopiq858qzy_Zpv49cncFKmmn7gX3yQ1bPCB36j9ytN5o9JB8Oc7m3-lohp4Z1AYtU9otoZkqDD1Qc3q0qEDC84pmBX1v7bQuHeC6eLoPxs5QaAR4kZ50RidHbu_jgHbyr-Usq05_PCLjfu9T99Bd5VZwNfdY5YKCAKilSQT4SCoATX47siyVqWamnWqdAuMOuAb4lKTSaMwfYaTUEWbmEEYm_mOyVZSFfYqLo1KfA-sx0dJPmsgoCIQyNgoNXDLfIXtrccZ6FXgc81_kMRAQlH_8h_wd8qppMK1jbvy96u5aP_G678SewD0vMPG0HfKiKYZhg74QVdhysawToA9WMIc8qdXZPAtsOqbzghKxoeimAobk3iwpstNlaG5gm6HvBQ553XSJf33Cs___2h1y28PdF-gUk7tkq5ot7HPARFXSIjfFRMBRdhke-wctsr3fG46OW8tRAFfj4ajz-TcrUw3v
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8TAkhPgmMMBIIMFDtjpxGucBobIPOtZuE9ukPiAFx3ZYoSRlSTXtn-Jv5C5pAmUCnvbWyHaa3IfvdznfHcBzwxMujFCu5tZzRYQqlRj8FSohkqCrVCgpwXm41-0fi_ejYLQEP5pcGDpW2eyJ1UZtck3fyNe9kBIZUJo6b6bfXeoaRdHVpoVGLRa79vwMXbbi9c4m8veF521vHW303XlXAVcLj5cuPhpClDSJEBlIhXDB70SWpzLV3HRSrVP0NQOhETgkqTSaOicYKXVEPSlCIxMf73sFrgof9xLUn3DUOng-2nKC2xxtnouWN6xLCfl-1Fkff7FIN3SOIjQV0lu0gheg7cUTmiuzbKrOz9Rk8pv5274JN-a4lfVqQbsFSza7Ddfrj36szmW6Ax8_jIuv7OCUgj_EcJanbCPHZSoz7J0q2P6sRCYWJRtnbNPaaT06pKP37C3aU8NwEUJSdtg7ONx3twZD1pt8RjaUJ9_uwvGlEPoeLGd5Zh_Q-avUF-hYmagKxSYyCoJQGRt1DV5y34G1hpyxntc2pxYbkxh9HKJ__Af9HXjZLpjWZT3-PnW14U881-8i_iWNDjxrh1EzKdyiMpvPqjkBhXlD7sD9mp3tfyFsoI5hOBIuMLqdQFW_F0ey8UlV_Rsd2q7vBQ68akXif6_w8N-v8BRW-kfDQTzY2dt9BNc8SvCguJtcheXydGYfI-wqkyeVrDP4dNnK9RNJRj1l
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIkElhLhrKLBIIMGDSXxl1w8IhaahpU0bUSrlAcmsd9c0EOxQO6r61_h1zPiCUAFPfUu0u4k9h-cbzwXwVDux42tf2soxru2HqFKxxk9c-n4c9KTkggqcR_u97SP_3SSYrMCPphaG0iqbZ2L5oNaZonfkHZdTIQNKU7eT1GkR48Hw9fy7TROkKNLajNOoRGTXnJ2i-5a_2hkgr5-57nDrw-a2XU8YsJXvOoWNl4lwJYlDRAlCInTwuqFxEpEoR3cTpRL0OwNfIYiIE6EVTVHQQqiQ5lNwLWIPf_cSXOaeF1I6IZ-0zp6Hdp2gt4P2z0YrzKu2Qrix25l-MUhDdJRCNBvCXbaI52Du-WzNq4t0Ls9O5Wz2mykc3oDrNYZl_UrobsKKSW_BteoFIKvqmm7Dx_fT_Csbn1AgiJjPsoRtZnhMppq9lTk7WBTI0Lxg05QNjJlXqyNKw2dv0LZqhocQnrLD_vjwwN7aG7H-7DOyoTj-dgeOLoTQd2E1zVKzTrlYieejk6XDMiwbizAIuNQm7Gn86ngWvGzIGam6zzmN25hF6O8Q_aM_6G_B8_bAvGrx8fetGw1_olrX8-iXZFrwpF1GLaXQi0xNtij3BBTy5Y4F9yp2tv-FEIKmh-EKX2J0u4E6gC-vpNPjshM4Orc9zw0seNGKxP9u4f6_b-ExXEG1ivZ29ncfwJpLtR4UghMbsFqcLMxDRGBF_KgUdQafLlq3fgJJtUGo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAJ8Q0LDGQkHuAhbZ04if2EytiYEN0qRiWQJkX-CstWkqpNQPDXc46TiG5CCCH1IZXPTa07536_3PkOoeeaSEI1Fb4iJvAphy0lNVwlglIZxUIkzB5wnh7GB3P67lPUZROu27RKoOJ585AmcTz2KVCGEeHNB_xLMFrq7NW39mUSSNhOs8DvrqKtOAI4PkBb88PZ5LMlWt10d0188IaJK-8TAtUf5WcG1gKEhTc_vOmZLsHNy1mT1-piKX58F4vFby5p_xaS3WJcJsr5sK7kUP28UOfxv1Z7G91sASueOAu7g66Y4i664d72YXeI6R46-ZCvz_FsZaM-VtO4zPBuCdNEofFbscZH8OdqAJo4L_AbY5ZudGpz7vFrcKQawyTAovh4Mjs-8vfeT_Fk8aVc5dXp1_tovr_3cffAb_s2-IoGpPJB-QACM8kBezEBgCwcc0Mylimix5lSGbD5iCqAZjJjWtneFJoxxW3Xj0QzGT5Ag6IszLZNvMpCCoxK8yYGKxmPokRow2MNX0nooWGns1S1Rc1tb41FCuTGKjm9oGQPvegnLF09jz-L7nRGkLYbe50GiT1PAw-1sYee9cOwJW2cRRSmrBuZyMZ3E-Khh85m-nsBXrCtwmAk2bCmXsCW-94cKfLTpuw3MNk4DCIPvezt7m9LePQPso_R9cAe7bARN7aDBtWqNk8AcFXyabulfgFFoSF3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+Prediction+of+Coal+and+Gas+Outburst+in+Deep+Coal+Mines+Based+on+the+SAPSO-ELM+Algorithm&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Yang%2C+Li&rft.au=Fang%2C+Xin&rft.au=Wang%2C+Xue&rft.au=Li%2C+Shanshan&rft.date=2022-09-28&rft.issn=1660-4601&rft.eissn=1660-4601&rft.volume=19&rft.issue=19&rft.spage=12382&rft_id=info:doi/10.3390%2Fijerph191912382&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijerph191912382
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon