Risk Prediction of Coal and Gas Outburst in Deep Coal Mines Based on the SAPSO-ELM Algorithm
Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and inefficiency of coal–gas outburst prediction in deep coal mines, this study proposes a deep coal–gas outburst risk prediction method based on k...
Saved in:
| Published in | International journal of environmental research and public health Vol. 19; no. 19; p. 12382 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
28.09.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1660-4601 1661-7827 1660-4601 |
| DOI | 10.3390/ijerph191912382 |
Cover
| Abstract | Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and inefficiency of coal–gas outburst prediction in deep coal mines, this study proposes a deep coal–gas outburst risk prediction method based on kernal principal component analysis (KPCA) and an improved extreme learning machine (SAPSO-ELM) algorithm. Firstly, high-dimensional nonlinear raw data were processed by KPCA. Secondly, the extracted sequence of outburst-causing indicator principal components were used as the input variables for the simulated annealing particle swarm algorithm (SAPSO), which was proposed to optimize the input layer weights and implied layer thresholds of the ELM. Finally, a coal and gas outburst risk prediction model for a deep coal mine based on the SAPSO-ELM algorithm was developed. The research results show that, compared with the ELM and PSO-ELM algorithms, the SAPSO-ELM optimization algorithm significantly improved the accuracy of risk prediction for coal–gas outbursts in deep coal mines, and the accuracy rate was as high as 100%. This study enriches the theory and methods of safety management in deep coal mines, and effectively helps coal mine enterprises in improving their ability to manage coal–gas outburst risks. |
|---|---|
| AbstractList | Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and inefficiency of coal-gas outburst prediction in deep coal mines, this study proposes a deep coal-gas outburst risk prediction method based on kernal principal component analysis (KPCA) and an improved extreme learning machine (SAPSO-ELM) algorithm. Firstly, high-dimensional nonlinear raw data were processed by KPCA. Secondly, the extracted sequence of outburst-causing indicator principal components were used as the input variables for the simulated annealing particle swarm algorithm (SAPSO), which was proposed to optimize the input layer weights and implied layer thresholds of the ELM. Finally, a coal and gas outburst risk prediction model for a deep coal mine based on the SAPSO-ELM algorithm was developed. The research results show that, compared with the ELM and PSO-ELM algorithms, the SAPSO-ELM optimization algorithm significantly improved the accuracy of risk prediction for coal-gas outbursts in deep coal mines, and the accuracy rate was as high as 100%. This study enriches the theory and methods of safety management in deep coal mines, and effectively helps coal mine enterprises in improving their ability to manage coal-gas outburst risks. Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and inefficiency of coal-gas outburst prediction in deep coal mines, this study proposes a deep coal-gas outburst risk prediction method based on kernal principal component analysis (KPCA) and an improved extreme learning machine (SAPSO-ELM) algorithm. Firstly, high-dimensional nonlinear raw data were processed by KPCA. Secondly, the extracted sequence of outburst-causing indicator principal components were used as the input variables for the simulated annealing particle swarm algorithm (SAPSO), which was proposed to optimize the input layer weights and implied layer thresholds of the ELM. Finally, a coal and gas outburst risk prediction model for a deep coal mine based on the SAPSO-ELM algorithm was developed. The research results show that, compared with the ELM and PSO-ELM algorithms, the SAPSO-ELM optimization algorithm significantly improved the accuracy of risk prediction for coal-gas outbursts in deep coal mines, and the accuracy rate was as high as 100%. This study enriches the theory and methods of safety management in deep coal mines, and effectively helps coal mine enterprises in improving their ability to manage coal-gas outburst risks.Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and inefficiency of coal-gas outburst prediction in deep coal mines, this study proposes a deep coal-gas outburst risk prediction method based on kernal principal component analysis (KPCA) and an improved extreme learning machine (SAPSO-ELM) algorithm. Firstly, high-dimensional nonlinear raw data were processed by KPCA. Secondly, the extracted sequence of outburst-causing indicator principal components were used as the input variables for the simulated annealing particle swarm algorithm (SAPSO), which was proposed to optimize the input layer weights and implied layer thresholds of the ELM. Finally, a coal and gas outburst risk prediction model for a deep coal mine based on the SAPSO-ELM algorithm was developed. The research results show that, compared with the ELM and PSO-ELM algorithms, the SAPSO-ELM optimization algorithm significantly improved the accuracy of risk prediction for coal-gas outbursts in deep coal mines, and the accuracy rate was as high as 100%. This study enriches the theory and methods of safety management in deep coal mines, and effectively helps coal mine enterprises in improving their ability to manage coal-gas outburst risks. |
| Author | Yang, Li Fang, Xin Wang, Xue Li, Shanshan Zhu, Junqi |
| AuthorAffiliation | School of Economic and Management, Anhui University of Science and Technology, Huainan 232001, China |
| AuthorAffiliation_xml | – name: School of Economic and Management, Anhui University of Science and Technology, Huainan 232001, China |
| Author_xml | – sequence: 1 givenname: Li surname: Yang fullname: Yang, Li – sequence: 2 givenname: Xin surname: Fang fullname: Fang, Xin – sequence: 3 givenname: Xue surname: Wang fullname: Wang, Xue – sequence: 4 givenname: Shanshan surname: Li fullname: Li, Shanshan – sequence: 5 givenname: Junqi surname: Zhu fullname: Zhu, Junqi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36231681$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkdtrFDEUxoNU7EWffZOAL76MzWUmk7wI27WtwpYtVt-EkMmlm3U2GZOMpf-9s2zVuiBIHk7g_L6Pc75zDA5CDBaAlxi9pVSgU7-2aVhhMT1COXkCjjBjqKoZwgeP_ofgOOc1QpTXTDwDh5QRihnHR-DrJ5-_wetkjdfFxwCjg_OoeqiCgZcqw-VYujHlAn2A760ddt0rH2yGZypbAydRWVl4M7u-WVbniys4629j8mW1eQ6eOtVn--KhnoAvF-ef5x-qxfLy43y2qHRNcKlwbZq2cZ2ggnCFa0qRsNhxp7FBTmtnO9LUmlPROW40aigxnGtRk5a3hnf0BKCd7xgGdX-n-l4OyW9UupcYyW1Qci-oSfJuJxnGbmONtqEk9UcWlZd_d4Jfydv4Q4qGMUqayeDNg0GK30ebi9z4rG3fq2DjmCVpSUMQZS2e0Nd76DqOKUyJbKma1K2gaKJePZ7o9yi_bjUBpztAp5hzsu4_lmz2FNoXtT3ztJLv_6n7CcjIt2Y |
| CitedBy_id | crossref_primary_10_1002_ese3_1953 crossref_primary_10_1038_s41598_024_76206_2 crossref_primary_10_3390_pr11102925 crossref_primary_10_3390_math12040588 crossref_primary_10_1021_acs_energyfuels_4c05476 crossref_primary_10_3390_su17051896 crossref_primary_10_3390_su15020991 crossref_primary_10_1016_j_fuel_2023_127489 |
| Cites_doi | 10.3233/JIFS-200937 10.1155/2021/5551320 10.1016/j.eswa.2021.115441 10.1016/j.ssci.2019.02.010 10.3389/fenrg.2022.891184 10.1016/j.psep.2019.10.006 10.1016/j.jngse.2021.103942 10.1007/s12613-019-1956-9 10.1016/j.ssci.2019.104515 10.1007/s12517-020-05584-4 10.1109/TSMCB.2011.2171946 10.1007/s11269-017-1660-3 10.1007/s11053-019-09552-y 10.1155/2021/4487280 10.3139/120.111478 10.1109/TII.2021.3065377 10.1109/TNNLS.2011.2178325 10.1007/s12559-014-9255-2 10.1016/j.fuel.2020.119493 10.3390/s21175730 10.1002/ese3.289 10.1016/j.ijrmms.2020.104262 10.1007/s11053-020-09621-7 10.1109/TCYB.2019.2925015 10.1016/j.ijrmms.2012.01.005 10.1080/15567036.2019.1666188 10.1016/j.psep.2019.10.002 10.1177/0144598720913074 10.1007/s11276-021-02858-x 10.3390/en11102661 10.1109/TIE.2021.3050348 10.1007/s43153-021-00125-2 10.3233/JIFS-210466 10.1016/j.cj.2020.09.008 10.3390/en11061414 10.1016/j.coal.2018.05.012 10.1016/j.psep.2020.05.027 10.1016/j.psep.2021.08.023 10.1007/s00603-018-1411-7 10.1117/1.JRS.14.034507 10.1007/s11227-021-03964-5 10.1111/j.1466-8238.2011.00683.x |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| DOI | 10.3390/ijerph191912382 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Complete ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Proquest Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: Proquest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Public Health |
| EISSN | 1660-4601 |
| ExternalDocumentID | 10.3390/ijerph191912382 PMC9566325 36231681 10_3390_ijerph191912382 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GrantInformation_xml | – fundername: Natural Science Foundation of Anhui Province grantid: 2208085QG225 – fundername: National Natural Science Foundation of China grantid: 71971003 – fundername: National Social Science Foundation of China grantid: 20ZDA084 – fundername: Humanities and Social Science of Education Department of Anhui Province grantid: SK2020A0209 – fundername: Open Research Grant of Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining grantid: EC2021009 – fundername: Research Foundation of Anhui University of Science and Technology grantid: 2022YJRC02 |
| GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 A8Z AADQD AAFWJ AAHBH AAYXX ABGAM ABUWG ACGFO ACGOD ACIWK ADBBV AENEX AFKRA AFRAH AFZYC AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN ESTFP F5P FYUFA GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO Q2X RNS RPM SV3 TR2 UKHRP XSB 2XV 3V. ABJCF ALIPV ATCPS AZQEC BHPHI CGR CUY CVF ECM EIF GROUPED_DOAJ HCIFZ IAO IEP M2P M7S M~E NPM PATMY PYCSY 7XB 8FK DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c421t-14d575fb93928a143309e1f8fc1d0fccfeb254c839bf8dc0532d88c942787d8b3 |
| IEDL.DBID | M48 |
| ISSN | 1660-4601 1661-7827 |
| IngestDate | Sun Oct 26 04:15:48 EDT 2025 Tue Sep 30 17:18:53 EDT 2025 Mon Sep 08 13:45:34 EDT 2025 Tue Oct 07 07:28:48 EDT 2025 Wed Feb 19 02:26:06 EST 2025 Thu Oct 16 04:31:20 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Keywords | coal and gas outburst deep coal mine risk prediction SAPSO extreme learning machine algorithm |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c421t-14d575fb93928a143309e1f8fc1d0fccfeb254c839bf8dc0532d88c942787d8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1660-4601/19/19/12382/pdf?version=1664516742 |
| PMID | 36231681 |
| PQID | 2724247930 |
| PQPubID | 54923 |
| ParticipantIDs | unpaywall_primary_10_3390_ijerph191912382 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9566325 proquest_miscellaneous_2725203671 proquest_journals_2724247930 pubmed_primary_36231681 crossref_primary_10_3390_ijerph191912382 crossref_citationtrail_10_3390_ijerph191912382 |
| PublicationCentury | 2000 |
| PublicationDate | 20220928 |
| PublicationDateYYYYMMDD | 2022-09-28 |
| PublicationDate_xml | – month: 9 year: 2022 text: 20220928 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | International journal of environmental research and public health |
| PublicationTitleAlternate | Int J Environ Res Public Health |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Wang (ref_9) 2021; 2021 Hansen (ref_38) 2012; 23 Li (ref_43) 2012; 42 Sait (ref_45) 2020; 62 Wang (ref_24) 2021; 154 ref_13 (ref_48) 2012; 21 ref_10 Jin (ref_33) 2018; 194 Chen (ref_46) 2021; 9 Mostafa (ref_42) 2021; 183 Liu (ref_1) 2011; 4 Li (ref_20) 2020; 38 Ma (ref_31) 2020; 27 Wang (ref_19) 2022; 10 ref_25 Wang (ref_35) 2020; 140 Shi (ref_41) 2021; 18 Zhang (ref_15) 2021; 41 Wu (ref_16) 2021; 2021 Zhao (ref_5) 2018; 51 Torno (ref_26) 2012; 50 Du (ref_2) 2020; 29 Song (ref_44) 2021; 69 Zhou (ref_27) 2020; 128 Liu (ref_17) 2020; 2020 Zou (ref_6) 2020; 122 Li (ref_11) 2019; 7 Chen (ref_22) 2020; 18 ref_34 Xue (ref_28) 2020; 13 ref_30 Zhou (ref_8) 2020; 29 Zhang (ref_32) 2013; 6 Li (ref_12) 2021; 90 Lin (ref_37) 2020; 14 Pani (ref_36) 2022; 39 Huang (ref_40) 2014; 6 Wu (ref_23) 2020; 133 Li (ref_29) 2010; 20 Liu (ref_47) 2021; 51 Liu (ref_39) 2022; 78 Chen (ref_7) 2019; 115 Chen (ref_21) 2017; 13 Ru (ref_18) 2020; 2020 Wang (ref_3) 2020; 133 Zhang (ref_4) 2021; 287 Liu (ref_14) 2020; 39 Naghibi (ref_49) 2017; 31 |
| References_xml | – volume: 20 start-page: 209 year: 2010 ident: ref_29 article-title: Catastrophic mechanism of coal and gas outbursts and their prevention and control publication-title: Min. Sci. Technol. – volume: 39 start-page: 7671 year: 2020 ident: ref_14 article-title: A novel hybrid feature selection and modified KNN prediction model for coal and gas outbursts publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-200937 – volume: 2021 start-page: 5551320 year: 2021 ident: ref_16 article-title: Advanced computational methods for mitigating shock and vibration hazards in Deep Mines gas outburst prediction using SVM optimized by grey relational analysis and APSO algorithm publication-title: Shock Vib. doi: 10.1155/2021/5551320 – volume: 183 start-page: 115441 year: 2021 ident: ref_42 article-title: Integrating Elman recurrent neural network with particle swarm optimization algorithms for an improved hybrid training of multidisciplinary datasets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115441 – volume: 6 start-page: 256 year: 2013 ident: ref_32 article-title: Risk degree of coal and gas outburst based on the matter-element model publication-title: Disaster Adv. – volume: 115 start-page: 229 year: 2019 ident: ref_7 article-title: The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in China publication-title: Saf. Sci. doi: 10.1016/j.ssci.2019.02.010 – volume: 10 start-page: 891184 year: 2022 ident: ref_19 article-title: Prediction method of coal and gas outburst intensity based on digital twin and deep learning publication-title: Front. Energy Res. doi: 10.3389/fenrg.2022.891184 – volume: 133 start-page: 1 year: 2020 ident: ref_3 article-title: Coal-gas compound dynamic disasters in China: A review publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.10.006 – volume: 90 start-page: 103942 year: 2021 ident: ref_12 article-title: Deep learning approach to coal and gas outburst recognition employing modified AE and EMR signal from empirical mode decomposition and time-frequency analysis publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2021.103942 – volume: 27 start-page: 872 year: 2020 ident: ref_31 article-title: Mechanism investigation on coal and gas outburst: An overview publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-019-1956-9 – volume: 122 start-page: 104515 year: 2020 ident: ref_6 article-title: Rationality evaluation of production deployment of outburst-prone coal mines: A case study of nantong coal mine in Chongqing, China publication-title: Saf. Sci. doi: 10.1016/j.ssci.2019.104515 – volume: 13 start-page: 1 year: 2020 ident: ref_28 article-title: Destabilization mechanism and energy evolution of coal pillar in rockburst disaster publication-title: Arab. J. Geosci. doi: 10.1007/s12517-020-05584-4 – volume: 42 start-page: 627 year: 2012 ident: ref_43 article-title: A self-learning particle swarm optimizer for global optimization problems publication-title: IEEE Trans. Syst. Man Cybern. Part B doi: 10.1109/TSMCB.2011.2171946 – volume: 31 start-page: 2761 year: 2017 ident: ref_49 article-title: Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping publication-title: Water Resour. Manag. doi: 10.1007/s11269-017-1660-3 – volume: 29 start-page: 1617 year: 2020 ident: ref_8 article-title: Experimental analysis of the dynamic effects of coal–gas outburst and a protean contraction and expansion flow model publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09552-y – volume: 2021 start-page: 4487280 year: 2021 ident: ref_9 article-title: Theoretical study and experiment validation on drilling cutting weight during the whole process of drilling publication-title: Shock Vib. doi: 10.1155/2021/4487280 – volume: 62 start-page: 251 year: 2020 ident: ref_45 article-title: A novel hybrid Harris hawks-simulated annealing algorithm and RBF-based metamodel for design optimization of highway guardrails publication-title: Mater. Test. doi: 10.3139/120.111478 – volume: 4 start-page: 55 year: 2011 ident: ref_1 article-title: Experimental study of the mechanism of coal and gas delay outburst publication-title: Disaster Adv. – volume: 2020 start-page: 8863425 year: 2020 ident: ref_17 article-title: Gas outburst prediction model using improved entropy weight grey correlation analysis and IPSO-LSSVM publication-title: Math. Probl. Eng. – volume: 18 start-page: 1009 year: 2021 ident: ref_41 article-title: Novel L1 regularized extreme learning machine for soft-sensing of an industrial process publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2021.3065377 – volume: 23 start-page: 163 year: 2012 ident: ref_38 article-title: Model selection for Gaussian kernel PCA denoising publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2011.2178325 – volume: 6 start-page: 376 year: 2014 ident: ref_40 article-title: An insight into extreme learning machines: Random neurons, random features and kernels publication-title: Cogn. Comput. doi: 10.1007/s12559-014-9255-2 – volume: 287 start-page: 119493 year: 2021 ident: ref_4 article-title: A new method for coal and gas outburst prediction and prevention based on the fragmentation of ejected coal publication-title: Fuel doi: 10.1016/j.fuel.2020.119493 – ident: ref_25 doi: 10.3390/s21175730 – volume: 7 start-page: 443 year: 2019 ident: ref_11 article-title: Acoustic emission monitoring technology for coal and gas outburst publication-title: Energy Sci. Eng. doi: 10.1002/ese3.289 – volume: 128 start-page: 104262 year: 2020 ident: ref_27 article-title: Airflow disturbance induced by coal mine outburst shock waves: A case study of a gas outburst disaster in China publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2020.104262 – volume: 29 start-page: 2481 year: 2020 ident: ref_2 article-title: Experimental study of coal–gas outburst: Insights from coal–rock structure, gas pressure and adsorptivity publication-title: Nat. Resour. Res. doi: 10.1007/s11053-020-09621-7 – volume: 18 start-page: 73 year: 2020 ident: ref_22 article-title: Prediction of coal and gas outburst risk at driving working face based on Bayes discriminant analysis model publication-title: Earthq. Struct. – volume: 51 start-page: 1085 year: 2021 ident: ref_47 article-title: A novel sigmoid-function-based adaptive weighted particle swarm optimizer publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2925015 – volume: 2020 start-page: 2432806 year: 2020 ident: ref_18 article-title: Real-Time prediction model of coal and gas outburst publication-title: Math. Probl. Eng. – volume: 50 start-page: 94 year: 2012 ident: ref_26 article-title: Application of outburst risk indices in the underground coal mines by sublevel caving publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2012.01.005 – ident: ref_30 doi: 10.1080/15567036.2019.1666188 – volume: 133 start-page: 64 year: 2020 ident: ref_23 article-title: Prediction of coal and gas outburst: A method based on the BP neural network optimized by GASA publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.10.002 – volume: 38 start-page: 1320 year: 2020 ident: ref_20 article-title: Prediction of coal and gas outbursts by a novel model based on multisource information fusion publication-title: Energy Explor. Exploit. doi: 10.1177/0144598720913074 – ident: ref_10 doi: 10.1007/s11276-021-02858-x – ident: ref_34 doi: 10.3390/en11102661 – volume: 69 start-page: 763 year: 2021 ident: ref_44 article-title: Self-triggered sliding mode control for networked PMSM speed regulation system: A PSO-optimized super-twisting algorithm publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3050348 – volume: 39 start-page: 327 year: 2022 ident: ref_36 article-title: Non-linear process monitoring using kernel principal component analysis: A review of the basic and modified techniques with industrial applications publication-title: Braz. J. Chem. Eng. doi: 10.1007/s43153-021-00125-2 – volume: 41 start-page: 3201 year: 2021 ident: ref_15 article-title: Outburst prediction and influencing factors analysis based on Boruta-Apriori and BO-SVM algorithms publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-210466 – volume: 9 start-page: 823 year: 2021 ident: ref_46 article-title: The G-protein α subunit GhGPA positively regulates Gossypium hirsutum resistance to Verticillium dahliae via induction of SA and JA signaling pathways and ROS accumulation publication-title: Crop J. doi: 10.1016/j.cj.2020.09.008 – ident: ref_13 doi: 10.3390/en11061414 – volume: 194 start-page: 45 year: 2018 ident: ref_33 article-title: Experimental investigation on the formation and transport mechanism of outburst coal-gas flow: Implications for the role of gas desorption in the development stage of outburst publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2018.05.012 – volume: 13 start-page: 861 year: 2017 ident: ref_21 article-title: Hazard prediction of coal and gas outburst based on Fisher discriminant analysis publication-title: Geomech. Eng. – volume: 140 start-page: 356 year: 2020 ident: ref_35 article-title: Study on factors influencing and the critical value of the drilling cuttings weight: An index for outburst risk prediction publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2020.05.027 – volume: 154 start-page: 329 year: 2021 ident: ref_24 article-title: Coal and gas outburst prediction model based on extension theory and its application publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2021.08.023 – volume: 51 start-page: 1539 year: 2018 ident: ref_5 article-title: Case studies of rock bursts under complicated geological conditions during multi-seam mining at a depth of 800 m publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-018-1411-7 – volume: 14 start-page: 34507 year: 2020 ident: ref_37 article-title: Hyperspectral estimation of soil composition contents based on kernel principal component analysis and machine learning model publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.14.034507 – volume: 78 start-page: 2909 year: 2022 ident: ref_39 article-title: Coal and gas outbursts prediction based on combination of hybrid feature extraction DWT+ FICA–LDA and optimized QPSO-DELM classifier publication-title: J. Supercomput. doi: 10.1007/s11227-021-03964-5 – volume: 21 start-page: 498 year: 2012 ident: ref_48 article-title: Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/j.1466-8238.2011.00683.x |
| SSID | ssj0038469 |
| Score | 2.3922281 |
| Snippet | Effective risk prevention and management in deep coal mines can reduce the occurrences of outburst accidents and casualties. To address the low accuracy and... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 12382 |
| SubjectTerms | Accuracy Algorithms Artificial intelligence Coal - analysis Coal Mining Deep learning Digital twins Discriminant analysis Lithology Mines Neural networks Permeability Principal components analysis Stress concentration Support vector machines |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwED-N7gGkCW3jY4GBPIkHeAirE6dxHtDUjY5pol21MWkPSJFjO6xQkrKmmvbfc5cvVibYWyLbinx39v0u9wXwxvCECyOUq7n1XBHhkUoMPoVKiCToKRVKSnAejnpH5-L4IrhYgVGTC0Nhlc2dWF7UJtf0j3zXCymRAaWpuzf75VLXKPKuNi00VN1awXwoS4w9gFWPKmN1YHV_MBqfNnezj9qWADFHreSibgyrYj8-Gv67k-8Wd4bmS4SXufSW9dQd8Hk3hvLhIpupm2s1nd5SUIfr8LhGlqxficIGrNhsE9aq33KsyjZ6Al9PJ_MfbHxF7hliCctTdpDjMpUZ9knN2cmiQDLPCzbJ2EdrZ9XokILj2T5qPMNwEYJGdtYfn524g89D1p9-Q0IVlz-fwvnh4MvBkVs3WHC18HjhIpcQraVJhCBJKkROfjeyPJWp5qabap2i2R0IjRgqSaXR1ETCSKkjas8RGpn4z6CT5Zndogip1Bdo-piodJYmMgqCUBkb9Qy-ct-B9w05Y11XH6cmGNMYrRCif_wX_R142y6YVYU3_j11u-FPXJ_AefxHXhzYaYfx7JBDRGU2X5RzAnLEhtyB5xU722-hYqeeXjgSLjG6nUB1uZdHssllWZ8bTc6e7wUOvGtF4r4tvPj_Fl7CI4_SLsgbJrehU1wt7CsEQ0Xyupbw3x4HByg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAJ8Q0LDGQkHuAhbZ04if2EytiYEN0qRiWQJkX-CstWkqpNQPDXc46TiG5CCCH1IZXPTa07536_3PkOoeeaSEI1Fb4iJvAphy0lNVwlglIZxUIkzB5wnh7GB3P67lPUZROu27RKoOJ585AmcTz2KVCGEeHNB_xLMFrq7NW39mUSSNhOs8DvrqKtOAI4PkBb88PZ5LMlWt10d0188IaJK-8TAtUf5WcG1gKEhTc_vOmZLsHNy1mT1-piKX58F4vFby5p_xaS3WJcJsr5sK7kUP28UOfxv1Z7G91sASueOAu7g66Y4i664d72YXeI6R46-ZCvz_FsZaM-VtO4zPBuCdNEofFbscZH8OdqAJo4L_AbY5ZudGpz7vFrcKQawyTAovh4Mjs-8vfeT_Fk8aVc5dXp1_tovr_3cffAb_s2-IoGpPJB-QACM8kBezEBgCwcc0Mylimix5lSGbD5iCqAZjJjWtneFJoxxW3Xj0QzGT5Ag6IszLZNvMpCCoxK8yYGKxmPokRow2MNX0nooWGns1S1Rc1tb41FCuTGKjm9oGQPvegnLF09jz-L7nRGkLYbe50GiT1PAw-1sYee9cOwJW2cRRSmrBuZyMZ3E-Khh85m-nsBXrCtwmAk2bCmXsCW-94cKfLTpuw3MNk4DCIPvezt7m9LePQPso_R9cAe7bARN7aDBtWqNk8AcFXyabulfgFFoSF3 priority: 102 providerName: Unpaywall |
| Title | Risk Prediction of Coal and Gas Outburst in Deep Coal Mines Based on the SAPSO-ELM Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36231681 https://www.proquest.com/docview/2724247930 https://www.proquest.com/docview/2725203671 https://pubmed.ncbi.nlm.nih.gov/PMC9566325 https://www.mdpi.com/1660-4601/19/19/12382/pdf?version=1664516742 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: HH5 dateStart: 20040101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: A8Z dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: DIK dateStart: 20040101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: GX1 dateStart: 20040101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central Journals customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: 8C1 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1660-4601 dateEnd: 20250731 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: M48 dateStart: 20050501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgewAJIb4JG5WReICHjDpxYucBoa60mxDtqo1KRUKKHNthgZB0bSrYf89d02YrG4KXKJHtfNzZvt8vZ98R8tKwhHHDlauZ9VwewZBKDJwJxXkShEoJiRucB8PwcMw_TILJRTqglQDn11I7zCc1nuV7v87O38GAf4uMEyj7m-ybhXcC4hHBNCxhPt4GMxVhHocBb1wKPhhaxMIsDNsuBxpSx_m57gabJuoK7ry6fPLWopiq858qzy_Zpv49cncFKmmn7gX3yQ1bPCB36j9ytN5o9JB8Oc7m3-lohp4Z1AYtU9otoZkqDD1Qc3q0qEDC84pmBX1v7bQuHeC6eLoPxs5QaAR4kZ50RidHbu_jgHbyr-Usq05_PCLjfu9T99Bd5VZwNfdY5YKCAKilSQT4SCoATX47siyVqWamnWqdAuMOuAb4lKTSaMwfYaTUEWbmEEYm_mOyVZSFfYqLo1KfA-sx0dJPmsgoCIQyNgoNXDLfIXtrccZ6FXgc81_kMRAQlH_8h_wd8qppMK1jbvy96u5aP_G678SewD0vMPG0HfKiKYZhg74QVdhysawToA9WMIc8qdXZPAtsOqbzghKxoeimAobk3iwpstNlaG5gm6HvBQ553XSJf33Cs___2h1y28PdF-gUk7tkq5ot7HPARFXSIjfFRMBRdhke-wctsr3fG46OW8tRAFfj4ajz-TcrUw3v |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8TAkhPgmMMBIIMFDtjpxGucBobIPOtZuE9ukPiAFx3ZYoSRlSTXtn-Jv5C5pAmUCnvbWyHaa3IfvdznfHcBzwxMujFCu5tZzRYQqlRj8FSohkqCrVCgpwXm41-0fi_ejYLQEP5pcGDpW2eyJ1UZtck3fyNe9kBIZUJo6b6bfXeoaRdHVpoVGLRa79vwMXbbi9c4m8veF521vHW303XlXAVcLj5cuPhpClDSJEBlIhXDB70SWpzLV3HRSrVP0NQOhETgkqTSaOicYKXVEPSlCIxMf73sFrgof9xLUn3DUOng-2nKC2xxtnouWN6xLCfl-1Fkff7FIN3SOIjQV0lu0gheg7cUTmiuzbKrOz9Rk8pv5274JN-a4lfVqQbsFSza7Ddfrj36szmW6Ax8_jIuv7OCUgj_EcJanbCPHZSoz7J0q2P6sRCYWJRtnbNPaaT06pKP37C3aU8NwEUJSdtg7ONx3twZD1pt8RjaUJ9_uwvGlEPoeLGd5Zh_Q-avUF-hYmagKxSYyCoJQGRt1DV5y34G1hpyxntc2pxYbkxh9HKJ__Af9HXjZLpjWZT3-PnW14U881-8i_iWNDjxrh1EzKdyiMpvPqjkBhXlD7sD9mp3tfyFsoI5hOBIuMLqdQFW_F0ey8UlV_Rsd2q7vBQ68akXif6_w8N-v8BRW-kfDQTzY2dt9BNc8SvCguJtcheXydGYfI-wqkyeVrDP4dNnK9RNJRj1l |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VIkElhLhrKLBIIMGDSXxl1w8IhaahpU0bUSrlAcmsd9c0EOxQO6r61_h1zPiCUAFPfUu0u4k9h-cbzwXwVDux42tf2soxru2HqFKxxk9c-n4c9KTkggqcR_u97SP_3SSYrMCPphaG0iqbZ2L5oNaZonfkHZdTIQNKU7eT1GkR48Hw9fy7TROkKNLajNOoRGTXnJ2i-5a_2hkgr5-57nDrw-a2XU8YsJXvOoWNl4lwJYlDRAlCInTwuqFxEpEoR3cTpRL0OwNfIYiIE6EVTVHQQqiQ5lNwLWIPf_cSXOaeF1I6IZ-0zp6Hdp2gt4P2z0YrzKu2Qrix25l-MUhDdJRCNBvCXbaI52Du-WzNq4t0Ls9O5Wz2mykc3oDrNYZl_UrobsKKSW_BteoFIKvqmm7Dx_fT_Csbn1AgiJjPsoRtZnhMppq9lTk7WBTI0Lxg05QNjJlXqyNKw2dv0LZqhocQnrLD_vjwwN7aG7H-7DOyoTj-dgeOLoTQd2E1zVKzTrlYieejk6XDMiwbizAIuNQm7Gn86ngWvGzIGam6zzmN25hF6O8Q_aM_6G_B8_bAvGrx8fetGw1_olrX8-iXZFrwpF1GLaXQi0xNtij3BBTy5Y4F9yp2tv-FEIKmh-EKX2J0u4E6gC-vpNPjshM4Orc9zw0seNGKxP9u4f6_b-ExXEG1ivZ29ncfwJpLtR4UghMbsFqcLMxDRGBF_KgUdQafLlq3fgJJtUGo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAJ8Q0LDGQkHuAhbZ04if2EytiYEN0qRiWQJkX-CstWkqpNQPDXc46TiG5CCCH1IZXPTa07536_3PkOoeeaSEI1Fb4iJvAphy0lNVwlglIZxUIkzB5wnh7GB3P67lPUZROu27RKoOJ585AmcTz2KVCGEeHNB_xLMFrq7NW39mUSSNhOs8DvrqKtOAI4PkBb88PZ5LMlWt10d0188IaJK-8TAtUf5WcG1gKEhTc_vOmZLsHNy1mT1-piKX58F4vFby5p_xaS3WJcJsr5sK7kUP28UOfxv1Z7G91sASueOAu7g66Y4i664d72YXeI6R46-ZCvz_FsZaM-VtO4zPBuCdNEofFbscZH8OdqAJo4L_AbY5ZudGpz7vFrcKQawyTAovh4Mjs-8vfeT_Fk8aVc5dXp1_tovr_3cffAb_s2-IoGpPJB-QACM8kBezEBgCwcc0Mylimix5lSGbD5iCqAZjJjWtneFJoxxW3Xj0QzGT5Ag6IszLZNvMpCCoxK8yYGKxmPokRow2MNX0nooWGns1S1Rc1tb41FCuTGKjm9oGQPvegnLF09jz-L7nRGkLYbe50GiT1PAw-1sYee9cOwJW2cRRSmrBuZyMZ3E-Khh85m-nsBXrCtwmAk2bCmXsCW-94cKfLTpuw3MNk4DCIPvezt7m9LePQPso_R9cAe7bARN7aDBtWqNk8AcFXyabulfgFFoSF3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+Prediction+of+Coal+and+Gas+Outburst+in+Deep+Coal+Mines+Based+on+the+SAPSO-ELM+Algorithm&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Yang%2C+Li&rft.au=Fang%2C+Xin&rft.au=Wang%2C+Xue&rft.au=Li%2C+Shanshan&rft.date=2022-09-28&rft.issn=1660-4601&rft.eissn=1660-4601&rft.volume=19&rft.issue=19&rft.spage=12382&rft_id=info:doi/10.3390%2Fijerph191912382&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijerph191912382 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon |