Tree planting in organic soils does not result in net carbon sequestration on decadal timescales

Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in...

Full description

Saved in:
Bibliographic Details
Published inGlobal change biology Vol. 26; no. 9; pp. 5178 - 5188
Main Authors Friggens, Nina L., Hester, Alison J., Mitchell, Ruth J., Parker, Thomas C., Subke, Jens‐Arne, Wookey, Philip A.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.09.2020
Subjects
Online AccessGet full text
ISSN1354-1013
1365-2486
1365-2486
DOI10.1111/gcb.15229

Cover

Abstract Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12–39 years after afforestation—indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive ‘priming’ of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem‐level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large‐scale tree planting in regions with considerable pre‐existing SOC stocks will have the intended policy and climate change mitigation outcomes. Planting birch trees onto heather moorland resulted in a significant reduction of soil organic carbon stocks 12 years after planting, which was not compensated for by gains in carbon stored in the growing trees. 39 years after planting birch trees, the carbon sequestered into tree biomass offset the carbon lost from the soil but, crucially, did not result in an increase in ecosystem carbon stocks. When considering both above‐ and below‐ground carbon stocks together, planting trees onto heather moorlands did not lead to an increase in net ecosystem carbon stock 12 or 39 years after planting.
AbstractList Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12-39 years after afforestation-indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive 'priming' of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem-level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large-scale tree planting in regions with considerable pre-existing SOC stocks will have the intended policy and climate change mitigation outcomes.
Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12–39 years after afforestation—indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive ‘priming’ of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem‐level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large‐scale tree planting in regions with considerable pre‐existing SOC stocks will have the intended policy and climate change mitigation outcomes.
Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12-39 years after afforestation-indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive 'priming' of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem-level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large-scale tree planting in regions with considerable pre-existing SOC stocks will have the intended policy and climate change mitigation outcomes.Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12-39 years after afforestation-indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive 'priming' of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem-level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large-scale tree planting in regions with considerable pre-existing SOC stocks will have the intended policy and climate change mitigation outcomes.
Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species (Betula pubescens and Pinus sylvestris), of widespread Eurasian distribution, onto heather (Calluna vulgaris) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12–39 years after afforestation—indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens; and no net gain at additional stands of P. sylvestris. We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive ‘priming’ of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem‐level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large‐scale tree planting in regions with considerable pre‐existing SOC stocks will have the intended policy and climate change mitigation outcomes. Planting birch trees onto heather moorland resulted in a significant reduction of soil organic carbon stocks 12 years after planting, which was not compensated for by gains in carbon stored in the growing trees. 39 years after planting birch trees, the carbon sequestered into tree biomass offset the carbon lost from the soil but, crucially, did not result in an increase in ecosystem carbon stocks. When considering both above‐ and below‐ground carbon stocks together, planting trees onto heather moorlands did not lead to an increase in net ecosystem carbon stock 12 or 39 years after planting.
Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem C storage that includes soil organic C (SOC) must be considered to determine whether planting trees for climate change mitigation results in increased C storage. We show that planting two native tree species ( Betula pubescens and Pinus sylvestris ), of widespread Eurasian distribution, onto heather ( Calluna vulgaris ) moorland with podzolic and peaty podzolic soils in Scotland, did not lead to an increase in net ecosystem C stock 12 or 39 years after planting. Plots with trees had greater soil respiration and lower SOC in organic soil horizons than heather control plots. The decline in SOC cancelled out the increment in C stocks in tree biomass on decadal timescales. At all four experimental sites sampled, there was no net gain in ecosystem C stocks 12–39 years after afforestation—indeed we found a net ecosystem C loss in one of four sites with deciduous B. pubescens stands; no net gain in ecosystem C at three sites planted with B. pubescens ; and no net gain at additional stands of P. sylvestris . We hypothesize that altered mycorrhizal communities and autotrophic C inputs have led to positive ‘priming’ of soil organic matter, resulting in SOC loss, constraining the benefits of tree planting for ecosystem C sequestration. The results are of direct relevance to current policies, which promote tree planting on the assumption that this will increase net ecosystem C storage and contribute to climate change mitigation. Ecosystem‐level biogeochemistry and C fluxes must be better quantified and understood before we can be assured that large‐scale tree planting in regions with considerable pre‐existing SOC stocks will have the intended policy and climate change mitigation outcomes.
Author Subke, Jens‐Arne
Wookey, Philip A.
Friggens, Nina L.
Hester, Alison J.
Mitchell, Ruth J.
Parker, Thomas C.
Author_xml – sequence: 1
  givenname: Nina L.
  orcidid: 0000-0002-5536-6312
  surname: Friggens
  fullname: Friggens, Nina L.
  email: n.lindstrom-friggens@exeter.ac.uk
  organization: University of Exeter
– sequence: 2
  givenname: Alison J.
  surname: Hester
  fullname: Hester, Alison J.
  organization: The James Hutton Institute
– sequence: 3
  givenname: Ruth J.
  orcidid: 0000-0001-8151-2769
  surname: Mitchell
  fullname: Mitchell, Ruth J.
  organization: The James Hutton Institute
– sequence: 4
  givenname: Thomas C.
  orcidid: 0000-0002-3648-5316
  surname: Parker
  fullname: Parker, Thomas C.
  organization: University of Stirling
– sequence: 5
  givenname: Jens‐Arne
  orcidid: 0000-0001-9244-639X
  surname: Subke
  fullname: Subke, Jens‐Arne
  organization: University of Stirling
– sequence: 6
  givenname: Philip A.
  orcidid: 0000-0001-5957-6424
  surname: Wookey
  fullname: Wookey, Philip A.
  organization: University of Stirling
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32662196$$D View this record in MEDLINE/PubMed
BookMark eNqFkUuLFDEUhYOMOA9d-Ack4EYXNZPcPKpqqY2OwoCbcV3mcbvJkE7apIph_r3p7tHFgBoCuYHvHu4955ycpJyQkNecXfJ2rjbOXnIFMD4jZ1xo1YEc9Mm-VrLjjItTcl7rHWNMANMvyKkArYGP-oz8uC2IdBdNmkPa0JBoLhuTgqM1h1ipz1hpyjMtWJc474GEM3Wm2JxoxZ8L1rmYObRfux6d8SbSOWyxOhOxviTP1yZWfPX4XpDvnz_drr50N9-uv64-3HROtkk6wTiHofcjWFgL6L1EI0bBpHGiX8Ng2QDSykExaXscgCtuQVs1gvS-90JckHdH3V3Jh6GmbagOY9sM81InUIqPSivO_o9KEAMDNuqGvn2C3uWlpLZIowRI1o9sL_jmkVrsFv20K2FrysP02-YGvD8CruRaC67_IJxN-winFuF0iLCxV09YF-aDwc3nEP_VcR8iPvxderpefTx2_ALCAams
CitedBy_id crossref_primary_10_1016_j_funeco_2024_101409
crossref_primary_10_1111_nph_18353
crossref_primary_10_1111_gcb_15654
crossref_primary_10_1016_j_scitotenv_2023_168479
crossref_primary_10_1002_ece3_70745
crossref_primary_10_1016_j_scitotenv_2023_166734
crossref_primary_10_1007_s11625_022_01242_8
crossref_primary_10_1016_j_oneear_2023_09_005
crossref_primary_10_1111_gcb_15498
crossref_primary_10_1016_j_foreco_2020_118906
crossref_primary_10_3390_f12121811
crossref_primary_10_1111_ejss_13528
crossref_primary_10_1111_rec_14096
crossref_primary_10_3390_su16146089
crossref_primary_10_1088_2515_7620_abf467
crossref_primary_10_1111_1365_2664_14003
crossref_primary_10_1007_s11356_021_17893_6
crossref_primary_10_3390_su16114538
crossref_primary_10_1016_j_tplants_2020_10_002
crossref_primary_10_1016_j_isci_2023_106641
crossref_primary_10_1038_s43247_023_00737_1
crossref_primary_10_3390_f15122127
crossref_primary_10_1177_27539687221127035
crossref_primary_10_3389_ffgc_2021_773223
crossref_primary_10_3389_fspas_2022_797146
crossref_primary_10_1111_1365_2745_14300
crossref_primary_10_1111_rec_13453
crossref_primary_10_1111_rec_13530
crossref_primary_10_1111_ecog_06893
crossref_primary_10_3390_f14040722
crossref_primary_10_1071_SR19351
crossref_primary_10_5194_soil_9_425_2023
crossref_primary_10_5194_soil_9_609_2023
crossref_primary_10_1002_fes3_371
crossref_primary_10_1007_s11104_021_04919_8
crossref_primary_10_1111_gcb_15951
crossref_primary_10_3390_plants11243456
crossref_primary_10_20332_tvk_jnatconserv_2021_27_126
crossref_primary_10_1111_1365_2745_13927
crossref_primary_10_1111_gcb_15513
crossref_primary_10_1016_j_jenvman_2025_124149
crossref_primary_10_1007_s11104_022_05757_y
crossref_primary_10_1017_qpb_2021_11
crossref_primary_10_3389_frsus_2022_980583
crossref_primary_10_1007_s11104_023_05956_1
crossref_primary_10_1016_j_envsci_2023_103636
crossref_primary_10_1016_j_foreco_2024_121895
crossref_primary_10_1002_2688_8319_12126
crossref_primary_10_1016_j_catena_2025_108886
crossref_primary_10_1029_2021GB007038
crossref_primary_10_1080_26388081_2022_2081934
crossref_primary_10_1007_s10668_021_01432_x
crossref_primary_10_1111_1365_2664_14861
crossref_primary_10_1007_s10113_023_02041_2
crossref_primary_10_1016_j_foreco_2024_122485
crossref_primary_10_1016_j_gecco_2024_e02808
crossref_primary_10_1038_s43247_022_00523_5
crossref_primary_10_3389_fenvs_2024_1411659
crossref_primary_10_1016_j_agee_2021_107437
crossref_primary_10_1515_opag_2022_0313
crossref_primary_10_1111_ecog_07167
crossref_primary_10_1002_cl2_1167
crossref_primary_10_1002_2688_8319_12338
crossref_primary_10_1038_s41561_022_00925_2
crossref_primary_10_5194_bg_19_313_2022
crossref_primary_10_1016_j_catena_2024_107868
crossref_primary_10_1111_oik_08098
crossref_primary_10_1111_rec_13594
crossref_primary_10_1002_pan3_10660
crossref_primary_10_31055_1851_2372_v58_n1_38462
crossref_primary_10_3390_app12147054
Cites_doi 10.1126/science.aan5360
10.1007/s10021-015-9912-7
10.2307/2260715
10.1111/j.1365-2745.2007.01227.x
10.1111/nph.13208
10.1016/j.foreco.2004.10.035
10.1016/j.agee.2013.12.022
10.1111/gcb.14132
10.1093/treephys/9.1-2.69
10.1079/SUM2005351
10.7717/peerj.6876
10.1038/ismej.2016.184
10.1007/s00468-008-0306-8
10.1007/s10533-004-5167-7
10.1126/science.aav0550
10.1007/BF01343734
10.1038/nature13604
10.1111/gcb.15134
10.1038/srep25607
10.1016/j.foreco.2008.08.038
10.1016/j.geoderma.2006.09.003
10.1111/gcb.12793
10.1038/nature06275
10.2307/1934820
10.5194/bg-9-565-2012
10.1038/35081058
10.1111/j.1365-2745.2005.01024.x
10.1111/gcb.12613
10.5194/soil-1-351-2015
10.1111/ele.12862
10.1038/d41586-019-01026-8
10.1111/j.0030-1299.2007.15853.x
10.2307/1311862
10.1002/ecy.2442
10.1111/1365-2745.13209
10.1038/s41396-018-0181-2
10.1146/annurev-ecolsys-110617-062331
10.1111/j.1365-2389.1964.tb00247.x
10.1111/j.1461-0248.2008.01164.x
10.1111/gcb.13213
10.1007/978-1-4612-1694-0_15
10.1046/j.1354-1013.2002.00486.x
10.1111/nph.12791
10.5194/essd-5-3-2013
10.1111/nph.16573
10.1111/j.1365-2486.2011.02408.x
10.1038/s41586-018-0577-1
10.1126/science.1094875
10.1126/science.aax0848
10.1111/1365-2664.12075
10.1016/j.rse.2019.111297
10.1111/nph.15679
10.1111/nph.15010
10.1073/pnas.1815901115
10.1038/nclimate1575
10.1029/2008GB003327
10.1111/nph.14409
10.1111/j.1365-2486.2008.01801.x
10.1046/j.1469-8137.2003.00704.x
10.1038/nclimate1858
10.1029/2018GL078820
10.1002/9780470515075
ContentType Journal Article
Copyright 2020 The Authors. published by John Wiley & Sons Ltd.
2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by John Wiley & Sons Ltd.
– notice: 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
– notice: 2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
C1K
F1W
H97
L.G
7X8
7S9
L.6
DOI 10.1111/gcb.15229
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Environmental Sciences
EISSN 1365-2486
EndPage 5188
ExternalDocumentID 32662196
10_1111_gcb_15229
GCB15229
Genre article
Journal Article
GeographicLocations Scotland
GeographicLocations_xml – name: Scotland
GrantInformation_xml – fundername: Natural Environment Research Council
  funderid: NE/K000284/1; NE/P002722/1
– fundername: Natural Environment Research Council
  grantid: NE/P002722/1
– fundername: Natural Environment Research Council
  grantid: NE/K000284/1
GroupedDBID -DZ
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
UQL
VOH
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
H97
L.G
7X8
7S9
L.6
ID FETCH-LOGICAL-c4219-3011287d92b2f327d4ea39304ac37f28b0824b48504b7e82151b26b5924dd7d33
IEDL.DBID DR2
ISSN 1354-1013
1365-2486
IngestDate Fri Jul 11 18:23:30 EDT 2025
Thu Jul 10 19:33:06 EDT 2025
Fri Jul 25 19:45:28 EDT 2025
Thu Apr 03 07:07:44 EDT 2025
Tue Jul 01 03:53:04 EDT 2025
Thu Apr 24 23:11:45 EDT 2025
Wed Jan 22 16:32:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords tree planting
afforestation
Betula pubescens
mycorrhiza
climate change mitigation
carbon stocks
Pinus sylvestris
soil carbon dynamics
Language English
License Attribution
2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4219-3011287d92b2f327d4ea39304ac37f28b0824b48504b7e82151b26b5924dd7d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3648-5316
0000-0002-5536-6312
0000-0001-5957-6424
0000-0001-9244-639X
0000-0001-8151-2769
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.15229
PMID 32662196
PQID 2432407900
PQPubID 30327
PageCount 11
ParticipantIDs proquest_miscellaneous_2551956510
proquest_miscellaneous_2423802096
proquest_journals_2432407900
pubmed_primary_32662196
crossref_primary_10_1111_gcb_15229
crossref_citationtrail_10_1111_gcb_15229
wiley_primary_10_1111_gcb_15229_GCB15229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
2020-Sep
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Global change biology
PublicationTitleAlternate Glob Chang Biol
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2018; 361
2018; 562
2013; 3
2019; 50
2013; 67
1958; 10
2005; 21
2019; 568
2011; 17
2018; 45
2006; 137
2013; 5
2003; 157
2019; 364
2019; 365
2010; 61
2014; 20
2018; 5
2013; 50
2007; 450
2005; 73
1981
1992; 42
2019; 232
2014; 203
2001; 411
2009; 15
2009; 23
2015; 1
2019; 7
2017; 20
2018; 220
2014; 513
2015; 18
2012
1991; 79
2011
2002; 8
1998
2007
2019; 223
2008; 11
2019; 106
2007; 95
2015; 205
2016; 17
1991; 9
2004; 304
2017; 213
2009; 257
2018; 24
1999
2016; 6
2012; 2
1976; 57
2007; 116
2020
2017; 11
2018; 115
2015; 21
2005; 205
2018
2017
1964; 15
2015
2005; 93
2014
2018; 12
2018; 99
2014; 185
2012; 9
2016; 22
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
R Core Team (e_1_2_9_55_1) 2017
e_1_2_9_71_1
Miles J. (e_1_2_9_40_1) 1981
Roberts J. (e_1_2_9_60_1) 1999
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
New York Declaration of Forests (e_1_2_9_43_1) 2014
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
Smith P. (e_1_2_9_64_1) 2007
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
Harrison X. A. (e_1_2_9_25_1) 2018; 5
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_61_1
Forestry Commission Scotland (e_1_2_9_20_1) 2014
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
Renou‐Wilson F. (e_1_2_9_59_1) 2010; 61
e_1_2_9_5_1
e_1_2_9_3_1
Dawson L. (e_1_2_9_15_1) 2007
Kritzler U. H. (e_1_2_9_34_1) 2016; 17
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
Sing L. (e_1_2_9_63_1) 2013; 67
References_xml – year: 2011
– volume: 205
  start-page: 227
  issue: 1–3
  year: 2005
  end-page: 240
  article-title: Soil carbon dynamics in a Sitka spruce ( (Bong.) Carr.) chronosequence on a peaty gley
  publication-title: Forest Ecology and Management
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  end-page: 11
  article-title: Plant‐derived compounds stimulate the decomposition of organic matter in arctic permafrost soils
  publication-title: Scientific Reports
– volume: 568
  start-page: 25
  year: 2019
  end-page: 28
  article-title: Restoring natural forests is the best way to remove atmospheric carbon
  publication-title: Nature
– year: 2020
  article-title: Rhizosphere allocation by canopy‐forming species dominates soil CO efflux in a subarctic landscape
  publication-title: New Phytologist
– start-page: 5
  year: 2014
– volume: 18
  start-page: 1472
  issue: 8
  year: 2015
  end-page: 1488
  article-title: Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid‐successional boreal forest
  publication-title: Ecosystems
– volume: 24
  start-page: 3317
  issue: 8
  year: 2018
  end-page: 3330
  article-title: Tree mycorrhizal type predicts within‐site variability in the storage and distribution of soil organic matter
  publication-title: Global Change Biology
– volume: 61
  start-page: 59
  issue: 3–4
  year: 2010
  end-page: 76
  article-title: The potential of birch afforestation as an after‐use option for industrial cutaway peatlands
  publication-title: Suo
– year: 2018
– year: 2014
– volume: 7
  year: 2019
  article-title: Hierarchical generalized additive models in ecology: An introduction with mgcv
  publication-title: PeerJ
– volume: 11
  start-page: 516
  issue: 5
  year: 2008
  end-page: 531
  article-title: Plant functional traits and soil carbon sequestration in contrasting biomes
  publication-title: Ecology Letters
– volume: 106
  start-page: 2808
  issue: 6
  year: 2019
  end-page: 2822
  article-title: Carbon use efficiency of mycorrhizal fungal mycelium increases during the growing season but decreases with forest age across a chronosequence
  publication-title: Journal of Ecology
– volume: 67
  start-page: 18
  issue: 4
  year: 2013
  end-page: 25
  article-title: Woodland expansion in Scotland: An assessment of the opportunities and constraints using GIS
  publication-title: RSFS Scottish Forestry
– volume: 42
  start-page: 433
  issue: 6
  year: 1992
  end-page: 441
  article-title: Global change and the carbon balance of arctic ecosystems
  publication-title: BioScience
– volume: 22
  start-page: 1880
  issue: 5
  year: 2016
  end-page: 1889
  article-title: Vascular plants promote ancient peatland carbon loss with climate warming
  publication-title: Global Change Biology
– volume: 137
  start-page: 253
  issue: 3–4
  year: 2006
  end-page: 268
  article-title: How strongly can forest management influence soil carbon sequestration?
  publication-title: Geoderma
– year: 2020
  article-title: Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils
  publication-title: Global Change Biology
– volume: 115
  start-page: 11652
  issue: 46
  year: 2018
  end-page: 11656
  article-title: Opinion: Soil carbon sequestration is an elusive climate mitigation tool
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 9
  start-page: 565
  issue: 1
  year: 2012
  end-page: 576
  article-title: Plant‐driven variation in decomposition rates improves projections of global litter stock distribution
  publication-title: Biogeosciences
– volume: 57
  start-page: 324
  issue: 2
  year: 1976
  end-page: 331
  article-title: Character and significance of forest tree root exudates
  publication-title: Ecology
– start-page: 1
  year: 1981
  end-page: 18
– volume: 365
  issue: 6455
  year: 2019
  article-title: The global soil community and its influence on biogeochemistry
  publication-title: Science
– volume: 562
  start-page: 259
  issue: 7726
  year: 2018
  end-page: 262
  article-title: Trade‐offs in using European forests to meet climate objectives
  publication-title: Nature
– volume: 232
  start-page: 111297
  year: 2019
  article-title: A raster version of the Circumpolar Arctic Vegetation Map (CAVM)
  publication-title: Remote Sensing of Environment
– volume: 213
  start-page: 996
  issue: 3
  year: 2017
  end-page: 999
  article-title: Mycorrhizal fungi as drivers and modulators of terrestrial ecosystem processes
  publication-title: New Phytologist
– volume: 205
  start-page: 1525
  issue: 4
  year: 2015
  end-page: 1536
  article-title: Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests
  publication-title: New Phytologist
– volume: 157
  start-page: 475
  issue: 3
  year: 2003
  end-page: 492
  article-title: Mycorrhizas and nutrient cycling in ecosystems – A journey towards relevance?
  publication-title: New Phytologist
– volume: 95
  start-page: 540
  issue: 3
  year: 2007
  end-page: 554
  article-title: The cascading effects of birch on heather moorland: A test for the top‐down control of an ecosystem engineer
  publication-title: Journal of Ecology
– volume: 5
  start-page: 1
  year: 2018
  end-page: 32
  article-title: A brief introduction to mixed effects modelling and multi‐model inference in ecology
  publication-title: PeerJ
– volume: 17
  start-page: 2415
  issue: 7
  year: 2011
  end-page: 2427
  article-title: Temporal dynamics of soil organic carbon after land‐use change in the temperate zone – Carbon response functions as a model approach
  publication-title: Global Change Biology
– year: 2015
– volume: 21
  start-page: 2070
  issue: 5
  year: 2015
  end-page: 2081
  article-title: Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline
  publication-title: Global Change Biology
– volume: 203
  start-page: 245
  issue: 1
  year: 2014
  end-page: 256
  article-title: Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems
  publication-title: New Phytologist
– volume: 1
  start-page: 351
  issue: 1
  year: 2015
  end-page: 365
  article-title: Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world
  publication-title: Soil
– volume: 45
  start-page: 9206
  issue: 17
  year: 2018
  end-page: 9215
  article-title: Spatial heterogeneity of the temporal dynamics of arctic tundra vegetation
  publication-title: Geophysical Research Letters
– volume: 513
  start-page: 81
  issue: 7516
  year: 2014
  end-page: 84
  article-title: Temperature sensitivity of soil respiration rates enhanced by microbial community response
  publication-title: Nature
– volume: 223
  start-page: 33
  issue: 1
  year: 2019
  end-page: 39
  article-title: Exploring the role of ectomycorrhizal fungi in soil carbon dynamics
  publication-title: New Phytologist
– volume: 3
  start-page: 673
  issue: 7
  year: 2013
  end-page: 677
  article-title: Shifts in Arctic vegetation and associated feedbacks under climate change
  publication-title: Nature Climate Change
– volume: 12
  start-page: 2187
  issue: 9
  year: 2018
  end-page: 2197
  article-title: Contrasting effects of ectomycorrhizal fungi on early and late stage decomposition in a boreal forest
  publication-title: The ISME Journal
– year: 2007
– volume: 450
  start-page: 277
  issue: 7167
  year: 2007
  end-page: 280
  article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply
  publication-title: Nature
– volume: 15
  start-page: 84
  issue: 1
  year: 1964
  end-page: 92
  article-title: Loss‐On‐Ignition as estimate of organic matter + organic carbon in non‐calcareous soils
  publication-title: Journal of Soil Science
– volume: 11
  start-page: 863
  issue: 4
  year: 2017
  end-page: 874
  article-title: Shift in fungal communities and associated enzyme activities along an age gradient of managed stands
  publication-title: The ISME Journal
– volume: 50
  start-page: 614
  issue: 3
  year: 2013
  end-page: 624
  article-title: Matrix modelling of prescribed burning in ‐dominated moorland: Short burning rotations minimize carbon loss at increased wildfire frequencies
  publication-title: Journal of Applied Ecology
– volume: 10
  start-page: 9
  issue: 1
  year: 1958
  end-page: 31
  article-title: The effect of soil drying on humus decomposition and nitrogen availability
  publication-title: Plant and Soil
– volume: 23
  start-page: 611
  issue: 3
  year: 2009
  end-page: 621
  article-title: Carbon balance and allocation of assimilated CO in Scots pine, Norway spruce, and Silver birch seedlings determined with gas exchange measurements and C pulse labelling
  publication-title: Trees
– volume: 304
  start-page: 1629
  issue: 5677
  year: 2004
  end-page: 1633
  article-title: Ecological linkages between aboveground and belowground biota
  publication-title: Science
– volume: 79
  start-page: 317
  issue: 2
  year: 1991
  end-page: 327
  article-title: Succession from heather moorland to birch woodland. II. Growth and competition between , and
  publication-title: Journal of Ecology
– volume: 364
  start-page: 76
  issue: 6448
  year: 2019
  end-page: 79
  article-title: The global tree restoration potential
  publication-title: Science
– volume: 21
  start-page: 363
  issue: 4
  year: 2005
  end-page: 369
  article-title: A soil carbon and land use database for the United Kingdom
  publication-title: Soil Use and Management
– volume: 411
  start-page: 789
  issue: June
  year: 2001
  end-page: 792
  article-title: Large‐scale forest girdling shows that current photosynthesis drives soil respiration
  publication-title: Nature
– year: 2012
– volume: 20
  start-page: 3530
  issue: 11
  year: 2014
  end-page: 3543
  article-title: Treeline advances along the Urals mountain range – Driven by improved winter conditions?
  publication-title: Global Change Biology
– volume: 5
  start-page: 3
  issue: 1
  year: 2013
  end-page: 13
  article-title: The northern circumpolar soil carbon database: Spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions
  publication-title: Earth System Science Data
– volume: 17
  start-page: 1
  year: 2016
  end-page: 13
  article-title: Soil CO efflux in a degraded raised bog is regulated by water table depth rather than recent plant assimilate
  publication-title: Mires and Peat
– volume: 361
  start-page: 920
  issue: August
  year: 2018
  end-page: 923
  article-title: Past and future global transformation of terrestrial ecosystems under climate change
  publication-title: Science
– volume: 23
  start-page: 1
  issue: 2
  year: 2009
  end-page: 11
  article-title: Soil organic carbon pools in the northern circumpolar permafrost region
  publication-title: Global Biogeochemical Cycles
– volume: 15
  start-page: 1153
  issue: 5
  year: 2009
  end-page: 1172
  article-title: Ecosystem feedbacks and cascade processes: Understanding their role in the responses of Arctic and alpine ecosystems to environmental change
  publication-title: Global Change Biology
– volume: 93
  start-page: 817
  issue: 4
  year: 2005
  end-page: 828
  article-title: Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient?
  publication-title: Journal of Ecology
– volume: 99
  start-page: 2284
  issue: 10
  year: 2018
  end-page: 2294
  article-title: Exploring drivers of litter decomposition in a greening Arctic: Results from a transplant experiment across a treeline
  publication-title: Ecology
– volume: 9
  start-page: 69
  issue: 1–2
  year: 1991
  end-page: 86
  article-title: Carbon budgets of temperate forest ecosystems
  publication-title: Tree Physiology
– volume: 220
  start-page: 1122
  year: 2018
  end-page: 1128
  article-title: Does genotypic and species diversity of mycorrhizal plants and fungi affect ecosystem function?
  publication-title: New Phytologist
– volume: 73
  start-page: 3
  issue: 1
  year: 2005
  end-page: 27
  article-title: Interpreting, measuring, and modeling soil respiration
  publication-title: Biogeochemistry
– volume: 257
  start-page: 244
  issue: 1
  year: 2009
  end-page: 257
  article-title: Above ground biomass changes in the mountain birch forests and mountain heaths of Finnmarksvidda, northern Norway, in the period 1957–2006
  publication-title: Forest Ecology and Management
– volume: 116
  start-page: 1831
  issue: 11
  year: 2007
  end-page: 1840
  article-title: Chemical diversity – Highlighting a species richness and ecosystem function disconnect
  publication-title: Oikos
– volume: 2
  start-page: 875
  issue: 12
  year: 2012
  end-page: 879
  article-title: A potential loss of carbon associated with greater plant growth in the European Arctic
  publication-title: Nature Climate Change
– volume: 185
  start-page: 133
  year: 2014
  end-page: 143
  article-title: Restoration of upland heath from a graminoid‐ to a ‐dominated community provides a carbon benefit
  publication-title: Agriculture, Ecosystems and Environment
– volume: 20
  start-page: 1546
  issue: 12
  year: 2017
  end-page: 1555
  article-title: Below‐ground organic matter accumulation along a boreal forest fertility gradient relates to guild interaction within fungal communities
  publication-title: Ecology Letters
– year: 2017
– start-page: 181
  year: 1999
  end-page: 236
– start-page: 199
  year: 1998
  end-page: 213
– volume: 8
  start-page: 345
  issue: 4
  year: 2002
  end-page: 360
  article-title: Soil carbon stocks and land use change: A meta analysis
  publication-title: Global Change Biology
– volume: 50
  start-page: 237
  year: 2019
  end-page: 259
  article-title: Mycorrhizal fungi as mediators of soil organic matter dynamics
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– ident: e_1_2_9_42_1
– ident: e_1_2_9_44_1
  doi: 10.1126/science.aan5360
– ident: e_1_2_9_39_1
  doi: 10.1007/s10021-015-9912-7
– volume: 67
  start-page: 18
  issue: 4
  year: 2013
  ident: e_1_2_9_63_1
  article-title: Woodland expansion in Scotland: An assessment of the opportunities and constraints using GIS
  publication-title: RSFS Scottish Forestry
– ident: e_1_2_9_28_1
  doi: 10.2307/2260715
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1365-2745.2007.01227.x
– volume-title: UN climate summit 2014
  year: 2014
  ident: e_1_2_9_43_1
– ident: e_1_2_9_11_1
  doi: 10.1111/nph.13208
– ident: e_1_2_9_78_1
  doi: 10.1016/j.foreco.2004.10.035
– ident: e_1_2_9_54_1
  doi: 10.1016/j.agee.2013.12.022
– ident: e_1_2_9_12_1
  doi: 10.1111/gcb.14132
– volume: 61
  start-page: 59
  issue: 3
  year: 2010
  ident: e_1_2_9_59_1
  article-title: The potential of birch afforestation as an after‐use option for industrial cutaway peatlands
  publication-title: Suo
– ident: e_1_2_9_71_1
  doi: 10.1093/treephys/9.1-2.69
– ident: e_1_2_9_51_1
– ident: e_1_2_9_9_1
  doi: 10.1079/SUM2005351
– ident: e_1_2_9_50_1
  doi: 10.7717/peerj.6876
– ident: e_1_2_9_35_1
  doi: 10.1038/ismej.2016.184
– ident: e_1_2_9_53_1
  doi: 10.1007/s00468-008-0306-8
– ident: e_1_2_9_61_1
  doi: 10.1007/s10533-004-5167-7
– ident: e_1_2_9_14_1
  doi: 10.1126/science.aav0550
– ident: e_1_2_9_7_1
  doi: 10.1007/BF01343734
– ident: e_1_2_9_32_1
  doi: 10.1038/nature13604
– ident: e_1_2_9_67_1
  doi: 10.1111/gcb.15134
– ident: e_1_2_9_74_1
  doi: 10.1038/srep25607
– ident: e_1_2_9_69_1
  doi: 10.1016/j.foreco.2008.08.038
– ident: e_1_2_9_31_1
  doi: 10.1016/j.geoderma.2006.09.003
– ident: e_1_2_9_48_1
  doi: 10.1111/gcb.12793
– ident: e_1_2_9_19_1
  doi: 10.1038/nature06275
– ident: e_1_2_9_65_1
  doi: 10.2307/1934820
– ident: e_1_2_9_10_1
  doi: 10.5194/bg-9-565-2012
– ident: e_1_2_9_29_1
  doi: 10.1038/35081058
– start-page: 181
  volume-title: Eco‐hydrology: Plants and water in terrestrial and aquatic environments
  year: 1999
  ident: e_1_2_9_60_1
– ident: e_1_2_9_17_1
  doi: 10.1111/j.1365-2745.2005.01024.x
– ident: e_1_2_9_23_1
  doi: 10.1111/gcb.12613
– volume-title: Carbon dynamics in heather moorland – Impact of tree establishment (poster)
  year: 2007
  ident: e_1_2_9_15_1
– volume-title: ECOSSE: Estimating carbon in organic soils – Sequestration and emissions
  year: 2007
  ident: e_1_2_9_64_1
– ident: e_1_2_9_33_1
  doi: 10.5194/soil-1-351-2015
– ident: e_1_2_9_36_1
  doi: 10.1111/ele.12862
– ident: e_1_2_9_37_1
  doi: 10.1038/d41586-019-01026-8
– ident: e_1_2_9_18_1
  doi: 10.1111/j.0030-1299.2007.15853.x
– ident: e_1_2_9_62_1
  doi: 10.2307/1311862
– ident: e_1_2_9_70_1
– ident: e_1_2_9_47_1
  doi: 10.1002/ecy.2442
– ident: e_1_2_9_24_1
  doi: 10.1111/1365-2745.13209
– ident: e_1_2_9_66_1
  doi: 10.1038/s41396-018-0181-2
– ident: e_1_2_9_21_1
  doi: 10.1146/annurev-ecolsys-110617-062331
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1365-2389.1964.tb00247.x
– ident: e_1_2_9_16_1
  doi: 10.1111/j.1461-0248.2008.01164.x
– start-page: 5
  volume-title: Forestry on peatland habitats. Supplementary guidance to support the FC forests and peatland habitats guideline note (2000)
  year: 2014
  ident: e_1_2_9_20_1
– ident: e_1_2_9_72_1
  doi: 10.1111/gcb.13213
– ident: e_1_2_9_2_1
  doi: 10.1007/978-1-4612-1694-0_15
– ident: e_1_2_9_22_1
  doi: 10.1046/j.1354-1013.2002.00486.x
– ident: e_1_2_9_8_1
  doi: 10.1111/nph.12791
– ident: e_1_2_9_30_1
  doi: 10.5194/essd-5-3-2013
– ident: e_1_2_9_46_1
  doi: 10.1111/nph.16573
– ident: e_1_2_9_52_1
  doi: 10.1111/j.1365-2486.2011.02408.x
– ident: e_1_2_9_38_1
  doi: 10.1038/s41586-018-0577-1
– ident: e_1_2_9_73_1
  doi: 10.1126/science.1094875
– ident: e_1_2_9_6_1
  doi: 10.1126/science.aax0848
– ident: e_1_2_9_3_1
  doi: 10.1111/1365-2664.12075
– ident: e_1_2_9_56_1
  doi: 10.1016/j.rse.2019.111297
– ident: e_1_2_9_77_1
  doi: 10.1111/nph.15679
– ident: e_1_2_9_27_1
  doi: 10.1111/nph.15010
– ident: e_1_2_9_4_1
  doi: 10.1073/pnas.1815901115
– ident: e_1_2_9_26_1
  doi: 10.1038/nclimate1575
– volume-title: R: A language and environment for statistical computing
  year: 2017
  ident: e_1_2_9_55_1
– ident: e_1_2_9_68_1
  doi: 10.1029/2008GB003327
– ident: e_1_2_9_76_1
  doi: 10.1111/nph.14409
– volume: 5
  start-page: 1
  year: 2018
  ident: e_1_2_9_25_1
  article-title: A brief introduction to mixed effects modelling and multi‐model inference in ecology
  publication-title: PeerJ
– ident: e_1_2_9_75_1
  doi: 10.1111/j.1365-2486.2008.01801.x
– ident: e_1_2_9_57_1
  doi: 10.1046/j.1469-8137.2003.00704.x
– ident: e_1_2_9_49_1
  doi: 10.1038/nclimate1858
– ident: e_1_2_9_58_1
  doi: 10.1029/2018GL078820
– ident: e_1_2_9_13_1
  doi: 10.1002/9780470515075
– volume: 17
  start-page: 1
  year: 2016
  ident: e_1_2_9_34_1
  article-title: Soil CO2 efflux in a degraded raised bog is regulated by water table depth rather than recent plant assimilate
  publication-title: Mires and Peat
– start-page: 1
  volume-title: Effect of birch on moorlands
  year: 1981
  ident: e_1_2_9_40_1
– ident: e_1_2_9_45_1
SSID ssj0003206
Score 2.6003034
Snippet Tree planting is increasingly being proposed as a strategy to combat climate change through carbon (C) sequestration in tree biomass. However, total ecosystem...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5178
SubjectTerms Afforestation
Betula pubescens
Biogeochemistry
Biomass
Calluna vulgaris
Carbon - analysis
Carbon Sequestration
carbon sinks
carbon stocks
Climate change
Climate change mitigation
Ecosystem
Ecosystems
Fluxes
heathlands
Indigenous species
issues and policy
Mitigation
Moorland
mycorrhiza
Organic matter
Organic soils
Pine trees
Pinus sylvestris
Plant species
Planting
Podzolic soils
Priming
Scotland
Soil
soil carbon dynamics
Soil horizons
soil organic carbon
Soil organic matter
soil respiration
Soils
Stocks
Storage
Tree planting
Trees
Title Tree planting in organic soils does not result in net carbon sequestration on decadal timescales
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgcb.15229
https://www.ncbi.nlm.nih.gov/pubmed/32662196
https://www.proquest.com/docview/2432407900
https://www.proquest.com/docview/2423802096
https://www.proquest.com/docview/2551956510
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5qQfDFy9FqtJZVRPqSkuwlOcEnPbYWoSLSQh-EuJc5cjAk5STnQX-9s5tLrTdEyENCJmSzmcs3yc43AM9QGaVELmNEo2K51C4ujDQxWgpWqTAUVH2988m77PhMvj1X51vwYqyF6fkhpg9u3jKCv_YGrk37g5F_tsY37-G-eC8VmefNf_3hkjpK8NBXMxVKkqtJxcAq5FfxTFdejUW_AMyreDUEnKNb8HEcar_O5MvBpjMH9ttPLI7_-Sy34eYARNnLXnPuwBbWM7jet6b8OoOdw8sKOBIbXEA7g-iEYHazDmLsOVtUK8K84egufDpdI7KLSof2E2xVs75plGVts6pa5hpsWd10jHL8TdV5gRo7ZvXaNDULq7pHGl9Gm0OrHd2882UqpEvY3oOzo8PTxXE8tHCIrSRfGHv3QTmZK7jhS8FzJ1GLQiRSW5Ev-dwQApFGzlUiTY5zjz8Mz4yirNC53AmxA9t1U-MDYPNUGcrXLSapldky0aqgOKMFL9ApndsI9seXWdqB39y32ajKMc-hWS7DLEfwdBK96Ek9fie0O2pEOdh1W_JAYJgXSRLBk-k0WaT_zaJrbDZehmAQofAi-4uM8qw-GTnECO732jaNhAB1RnNHV-8HnfnzEMs3i1dh5-G_iz6CG9x_MgjL5HZhu1tv8DHhqs7swTUu3-8FM_oOqwkdxA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD7UiuiL6Go1WnUUkb4EsnNJNuCLLq2rdosPW-hbnMtZWQhJ2WQf-u97ZnLR4gUhDwn5Qoac23cmM-cAvEVllBKZjBGNiuVauzg30sRoKVhNhaGg6vc7L8_Sxbn8cqEu9uD9sBemqw8xTrh5ywj-2hu4n5D-xcp_WOO79_D8FtyWKaUuvq6z_Db6YcFDZ82pUJKczVT0dYX8Op7x0ZvR6DeKeZOxhpBz8gDu91yRfeiE-xD2sJrAna575NUEDo5_blIjWG-lzQSiJTHhehtg7B2blxuipeHqEXxfbRHZZalDhwi2qVjX18mypt6UDXM1NqyqW0Zp-K5sPaDCllm9NXXFwsLrodIuo8Oh1Y5eHlrUk7ixeQznJ8er-SLuuyzEVpK7ir2FU9rkcm74WvDMSdQiF4nUVmRrPjNEEqSRM5VIk-HMUwTDU6MocXMuc0IcwH5VV_gU2GyqDKXUFpOplek60SqnUKAFz9EpndkIjoavXdi-BLnvhFEWQypCgimCYCJ4M0Ivu7obfwIdDiIretNrCh5qDGZ5kkTwerxNRuP_hOgK653HEFMhopyn_8AoX3gnJZ8VwZNOHcaREOclhfNPHwX9-PsQi0_zj-Hk2f9DX8HdxWp5Wpx-Pvv6HO5xn-GHVW2HsN9ud_iCaFBrXgZtvwb6iABe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFD60FYsvRVdbU6uOpZS-BJK5JBt80rVr1bb0oYW-xblFFkKybLIP_nvPTC5abEXIQ0JOyDDn9p1k5nwAR1YoIVjKQ2uVCHkhTZgprkKrMVnFTGFSdfudLy6Tsxv-9VbcbsD7YS9M1x9i_ODmPMPHa-fgS1P84eQ_tHLkPTTbhEcc7c6ZN-VXYxhm1BNrxkxwjDUx69sKuWU846N3k9FfCPMuYPUZZ_4UdnqoSD50un0GG7aawOOOPPLnBHZPf-9RQ7HeSZsJBBcIhOuVFyPHZFYuEJX6q-fw_XplLVmW0hNEkEVFOlonTZp6UTbE1LYhVd0SrMLXZesEKtsSLVeqrohfdz002iV4GKulwZd7hnrUtm1ewM389Hp2FvYkC6HmGK1C5-BYNZmMKlowmhpuJctYxKVmaUGnCjECV3wqIq5SO3UIQdFECazbjEkNY7uwVdWVfQlkGguFFbW2Uax5UkRSZJgJJKOZNUKmOoCTYbZz3Xcgd0QYZT5UIqiY3CsmgMNRdNm13bhP6GBQWd57XpNT32IwzaIogHfjbfQZ9yNEVrZeOxkEKoiTs-QfMsL13UkwZAWw15nDOBKEvAnOHT594u3j4SHmn2cf_cn-_4u-he2rT_P8_Mvlt1fwhLr63q9pO4CtdrW2rxEEteqNN_ZflP3_ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tree+planting+in+organic+soils+does+not+result+in+net+carbon+sequestration+on+decadal+timescales&rft.jtitle=Global+change+biology&rft.au=Friggens%2C+Nina+L&rft.au=Hester%2C+Alison+J&rft.au=Mitchell%2C+R.+J.+%28Ruth+J.%29&rft.au=Parker%2C+Thomas+C.&rft.date=2020-09-01&rft.issn=1354-1013&rft.volume=26&rft.issue=9+p.5178-5188&rft.spage=5178&rft.epage=5188&rft_id=info:doi/10.1111%2Fgcb.15229&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1354-1013&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1354-1013&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1354-1013&client=summon