Cholesterol-conjugated stapled peptides inhibit Ebola and Marburg viruses in vitro and in vivo

Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus...

Full description

Saved in:
Bibliographic Details
Published inAntiviral research Vol. 171; p. 104592
Main Authors Pessi, Antonello, Bixler, Sandra L., Soloveva, Veronica, Radoshitzky, Sheli, Retterer, Cary, Kenny, Tara, Zamani, Rouzbeh, Gomba, Glenn, Gharabeih, Dima, Wells, Jay, Wetzel, Kelly S., Warren, Travis K., Donnelly, Ginger, Van Tongeren, Sean A., Steffens, Jesse, Duplantier, Allen J., Kane, Christopher D., Vicat, Pascale, Couturier, Valerie, Kester, Kent E., Shiver, John, Carter, Kara, Bavari, Sina
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2019
Subjects
Online AccessGet full text
ISSN0166-3542
1872-9096
1872-9096
DOI10.1016/j.antiviral.2019.104592

Cover

Abstract Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013–2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV. •The 23 amino acid Ebola GP2 C-terminal Heptad-repeat domain was designed as an Ebola fusion inhibitor.•The peptide inhibitor has been “stapled” and conjugated with PEG/cholesterol to improve potency and systemic exposure.•Potency (EC50) versus authentic Ebola virus was in the single digit micromolar range in both human and rodent cell lines.•The best peptide provided survival advantage in mice against lethal Ebola challenge and suggested utility of the approach.
AbstractList Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.
Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.
Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013–2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV. •The 23 amino acid Ebola GP2 C-terminal Heptad-repeat domain was designed as an Ebola fusion inhibitor.•The peptide inhibitor has been “stapled” and conjugated with PEG/cholesterol to improve potency and systemic exposure.•Potency (EC50) versus authentic Ebola virus was in the single digit micromolar range in both human and rodent cell lines.•The best peptide provided survival advantage in mice against lethal Ebola challenge and suggested utility of the approach.
ArticleNumber 104592
Author Retterer, Cary
Steffens, Jesse
Soloveva, Veronica
Donnelly, Ginger
Kester, Kent E.
Wells, Jay
Kane, Christopher D.
Vicat, Pascale
Bixler, Sandra L.
Gomba, Glenn
Gharabeih, Dima
Shiver, John
Radoshitzky, Sheli
Bavari, Sina
Pessi, Antonello
Carter, Kara
Warren, Travis K.
Kenny, Tara
Zamani, Rouzbeh
Duplantier, Allen J.
Couturier, Valerie
Wetzel, Kelly S.
Van Tongeren, Sean A.
Author_xml – sequence: 1
  givenname: Antonello
  surname: Pessi
  fullname: Pessi, Antonello
  organization: PeptiPharma, Rome, Italy
– sequence: 2
  givenname: Sandra L.
  surname: Bixler
  fullname: Bixler, Sandra L.
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 3
  givenname: Veronica
  surname: Soloveva
  fullname: Soloveva, Veronica
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 4
  givenname: Sheli
  surname: Radoshitzky
  fullname: Radoshitzky, Sheli
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 5
  givenname: Cary
  surname: Retterer
  fullname: Retterer, Cary
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 6
  givenname: Tara
  surname: Kenny
  fullname: Kenny, Tara
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 7
  givenname: Rouzbeh
  surname: Zamani
  fullname: Zamani, Rouzbeh
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 8
  givenname: Glenn
  surname: Gomba
  fullname: Gomba, Glenn
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 9
  givenname: Dima
  surname: Gharabeih
  fullname: Gharabeih, Dima
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 10
  givenname: Jay
  surname: Wells
  fullname: Wells, Jay
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 11
  givenname: Kelly S.
  surname: Wetzel
  fullname: Wetzel, Kelly S.
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 12
  givenname: Travis K.
  surname: Warren
  fullname: Warren, Travis K.
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 13
  givenname: Ginger
  surname: Donnelly
  fullname: Donnelly, Ginger
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 14
  givenname: Sean A.
  surname: Van Tongeren
  fullname: Van Tongeren, Sean A.
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 15
  givenname: Jesse
  surname: Steffens
  fullname: Steffens, Jesse
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 16
  givenname: Allen J.
  surname: Duplantier
  fullname: Duplantier, Allen J.
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 17
  givenname: Christopher D.
  surname: Kane
  fullname: Kane, Christopher D.
  email: christopher.d.kane.civ@mail.mil
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
– sequence: 18
  givenname: Pascale
  surname: Vicat
  fullname: Vicat, Pascale
  organization: Sanofi, Paris, France
– sequence: 19
  givenname: Valerie
  surname: Couturier
  fullname: Couturier, Valerie
  organization: Sanofi, Paris, France
– sequence: 20
  givenname: Kent E.
  surname: Kester
  fullname: Kester, Kent E.
  organization: Sanofi Pasteur, Swiftwater, PA, USA
– sequence: 21
  givenname: John
  surname: Shiver
  fullname: Shiver, John
  organization: Sanofi Pasteur, Swiftwater, PA, USA
– sequence: 22
  givenname: Kara
  surname: Carter
  fullname: Carter, Kara
  organization: Sanofi, Cambridge, MA, USA
– sequence: 23
  givenname: Sina
  surname: Bavari
  fullname: Bavari, Sina
  email: sina.bavari.civ@mail.mil
  organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31473342$$D View this record in MEDLINE/PubMed
BookMark eNqNkD1vHCEQhlHkKD47-QvJlmn2wsfuAkUK6-TElmylsdsgYGdtThxsgD0p_z74znGRJq4GmOcdMc8ZOgkxAEKfCF4TTIYv27UOxe1d0n5NMZH1teslfYNWRHDaSiyHE7Sq5NCyvqOn6CznLcZ44FK8Q6eMdJyxjq7Qz81j9JALpOhbG8N2edAFxiYXPftaZ5iLGyE3Ljw640pzaaLXjQ5jc6uTWdJDU3-x5ANRjyXFQ_Nw2cf36O2kfYYPz_Uc3X-7vNtctTc_vl9vLm5a21FcWhBGD4wKPTLZ9YJJKSfOLXBNu8kOZqJcEiNGbicjeyqs4LwfhOGaTz2Rlp2jz8e5c4q_lrqP2rlswXsdIC5ZUSoYIxxLXtGPz-hidjCqObmdTr_VXycV4EfApphzgukFIVg92Vdb9WJfPdlXR_s1-fWfpHVFFxdDSdr5V-QvjnmoqvYOksrWQbAwugS2qDG6_874A9xZpwU
CitedBy_id crossref_primary_10_1080_21505594_2022_2054760
crossref_primary_10_1016_j_phrs_2024_107137
crossref_primary_10_1002_cplu_202100351
crossref_primary_10_3390_ijms23042060
crossref_primary_10_1002_anie_202111266
crossref_primary_10_1016_j_jconrel_2022_06_037
crossref_primary_10_1128_AAC_00717_20
crossref_primary_10_1021_acs_jmedchem_1c00477
crossref_primary_10_1007_s11908_023_00828_2
crossref_primary_10_1016_j_antiviral_2022_105401
crossref_primary_10_1016_j_steroids_2023_109273
crossref_primary_10_3390_v13102010
crossref_primary_10_1360_SSC_2024_0224
crossref_primary_10_3390_molecules25184330
crossref_primary_10_1134_S0006297922070021
crossref_primary_10_1002_pep2_24191
crossref_primary_10_1021_acschembio_3c00048
crossref_primary_10_3390_pharmaceutics15061648
crossref_primary_10_1002_ange_202111266
crossref_primary_10_1038_s41598_023_29517_9
crossref_primary_10_4103_apjtm_apjtm_932_23
crossref_primary_10_3390_v13081457
crossref_primary_10_3390_ijms24097842
crossref_primary_10_1002_biof_1822
Cites_doi 10.1074/jbc.M800200200
10.1146/annurev.bb.21.060192.000523
10.1016/S0140-6736(10)60667-8
10.1002/pro.688
10.1126/science.aad5788
10.1074/jbc.M111.254243
10.1128/mBio.00346-16
10.1038/nature10348
10.1073/pnas.1002713107
10.1038/nature13027
10.1073/pnas.96.6.2662
10.1002/psc.2706
10.1126/scitranslmed.aad9875
10.1016/S0092-8674(00)81248-9
10.1038/nature10380
10.1016/j.cell.2015.12.022
10.1038/srep19193
10.1128/AAC.02241-16
10.1038/nature17180
10.1073/pnas.0901007106
10.1074/jbc.M110.207084
10.1002/bip.10203
10.1128/JVI.02436-13
10.3390/v6114760
10.1128/JVI.00135-10
10.1021/bi3000353
10.1038/nature19790
10.1128/AAC.01105-15
10.1021/id500025n
10.1002/pro.5560070103
10.1002/bip.22877
10.1016/j.virol.2011.08.009
10.1002/anie.201310245
10.1172/JCI71856
10.1073/pnas.1934759100
10.1126/science.1110656
10.1016/S1097-2765(00)80159-8
10.1073/pnas.1002498107
10.1371/journal.ppat.1001110
10.3390/v6093663
10.1074/jbc.M111.317883
10.1146/annurev.biochem.70.1.777
10.1021/ja064058a
10.1016/j.drudis.2016.06.012
10.1016/j.antiviral.2017.12.021
10.1038/srep20514
10.1021/acs.jmedchem.6b00265
10.1128/JVI.00736-06
10.1038/nature07082
10.1038/nsmb.2922
10.1038/nrd1091
10.1038/nprot.2011.324
10.1126/science.aag3267
10.1371/journal.pntd.0004802
10.1038/nrd.2017.251
10.1371/journal.ppat.1001168
10.1073/pnas.93.5.2186
10.1021/jm030210x
10.1021/bi300976m
10.1038/srep43610
10.1093/jac/dkt529
10.1086/515386
10.1126/science.aad6117
10.1128/JVI.01153-13
10.1016/j.bmcl.2013.07.056
10.1128/JVI.02600-10
10.1021/ja0456003
10.1371/journal.ppat.1001121
ContentType Journal Article
Copyright 2019
Published by Elsevier B.V.
Copyright_xml – notice: 2019
– notice: Published by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.antiviral.2019.104592
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1872-9096
ExternalDocumentID 31473342
10_1016_j_antiviral_2019_104592
S0166354219302992
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AAAJQ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATCM
AAXUO
ABBQC
ABFNM
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CJTIS
CNWQP
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMG
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSP
SSZ
T5K
TEORI
WUQ
ZGI
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c420t-e8ba6328ad394583999f77ce7a24fc6bf2791b8d7cfb9528c877568b7a7f519c3
IEDL.DBID AIKHN
ISSN 0166-3542
1872-9096
IngestDate Fri Sep 05 11:47:11 EDT 2025
Thu Apr 03 07:05:37 EDT 2025
Tue Jul 01 01:32:11 EDT 2025
Thu Apr 24 23:10:28 EDT 2025
Fri Feb 23 02:18:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Ebola virus
Therapeutic
Peptides
Rodents
Cholesterol
Language English
License This is an open access article under the CC BY-NC-ND license.
Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-e8ba6328ad394583999f77ce7a24fc6bf2791b8d7cfb9528c877568b7a7f519c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0166354219302992
PMID 31473342
PQID 2283317097
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2283317097
pubmed_primary_31473342
crossref_primary_10_1016_j_antiviral_2019_104592
crossref_citationtrail_10_1016_j_antiviral_2019_104592
elsevier_sciencedirect_doi_10_1016_j_antiviral_2019_104592
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Antiviral research
PublicationTitleAlternate Antiviral Res
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Furuyama, Marzi, Nanbo, Haddock, Maruyama, Miyamoto, Igarashi, Yoshida, Noyori, Feldmann, Takada (bib21) 2016; 6
Mathieu, Augusto, Niewiesk, Horvat, Palermo, Sanna, Madeddu, Huey, Castanho, Porotto, Santos, Moscona (bib44) 2017; 7
Cote, Misasi, Ren, Bruchez, Lee, Filone, Hensley, Li, Ory, Chandran, Cunningham (bib13) 2011; 477
Kuhn, Andersen, Bao, Bavari, Becker, Bennett, Bergman, Blinkova, Bradfute, Brister, Bukreyev, Chandran, Chepurnov, Davey, Dietzgen, Doggett, Dolnik, Dye, Enterlein, Fenimore, Formenty, Freiberg, Garry, Garza, Gire, Gonzalez, Griffiths, Happi, Hensley, Herbert, Hevey, Hoenen, Honko, Ignatyev, Jahrling, Johnson, Johnson, Kindrachuk, Klenk, Kobinger, Kochel, Lackemeyer, Lackner, Leroy, Lever, Muhlberger, Netesov, Olinger, Omilabu, Palacios, Panchal, Park, Patterson, Paweska, Peters, Pettitt, Pitt, Radoshitzky, Ryabchikova, Saphire, Sabeti, Sealfon, Shestopalov, Smither, Sullivan, Swanepoel, Takada, Towner, van der Groen, Volchkov, Volchkova, Wahl-Jensen, Warren, Warfield, Weidmann, Nichol (bib36) 2014; 6
Malashkevich, Schneider, McNally, Milhollen, Pang, Kim (bib43) 1999; 96
Aman (bib1) 2016; 7
Bray, Davis, Geisbert, Schmaljohn, Huggins (bib9) 1998; 178
Taylor (bib62) 2002; 66
Higgins, Koellhoffer, Chandran, Lai (bib29) 2013; 23
Lambert, Barney, Lambert, Guthrie, Medinas, Davis, Bucy, Erickson, Merutka, Petteway (bib38) 1996; 93
Frei, Nyakatura, Zak, Bakken, Chandran, Dye, Lai (bib20) 2016; 6
Nyakatura, Frei, Lai (bib49) 2015; 1
Misasi, Gilman, Kanekiyo, Gui, Cagigi, Mulangu, Corti, Ledgerwood, Lanzavecchia, Cunningham, Muyembe-Tamfun, Baxa, Graham, Xiang, Sullivan, McLellan (bib46) 2016; 351
Shepherd, Hoang, Desai, Letouze, Young, Fairlie (bib59) 2006; 128
Kim, Grossmann, Verdine (bib33) 2011; 6
Aurora, Rose (bib3) 1998; 7
Harrison, Shepherd, Hoang, Ruiz-Gomez, Hill, Driver, Desai, Young, Abbenante, Fairlie (bib27) 2010; 107
Ingallinella, Bianchi, Ladwa, Wang, Hrin, Veneziano, Bonelli, Ketas, Moore, Miller, Pessi (bib32) 2009; 106
Koellhoffer, Malashkevich, Harrison, Toro, Bhosle, Chandran, Almo, Lai (bib34) 2012; 51
Bird, Boyapalle, Wong, Opoku-Nsiah, Bedi, Crannell, Perry, Nguyen, Sampayo, Devareddy, Mohapatra, Mohapatra, Walensky (bib4) 2014; 124
Bird, Madani, Perry, Princiotto, Supko, He, Gavathiotis, Sodroski, Walensky (bib6) 2010; 107
Lee, Fusco, Hessell, Oswald, Burton, Saphire (bib40) 2008; 454
Calvo, Choconta, Diaz, Orozco, Bravo, Espejo, Salazar, Guzman, Patarroyo (bib10) 2003; 46
Gallaher (bib23) 1996; 85
de Araujo, Hoang, Kok, Diness, Gupta, Hill, Driver, Price, Liras, Fairlie (bib15) 2014; 53
Pessi (bib50) 2015; 21
Weissenhorn, Carfi, Lee, Skehel, Wiley (bib66) 1998; 2
Skrip, Galvani (bib60) 2016; 10
Cross, Mire, Feldmann, Geisbert (bib14) 2018; 17
Harrison, Higgins, Chandran, Lai (bib25) 2011; 20
Fairlie, Dantas de Araujo (bib17) 2016; 106
Scholtz, Baldwin (bib57) 1992; 21
Feldmann, Geisbert (bib18) 2011; 377
Lee, Pessi, Gui, Santoprete, Talekar, Moscona, Porotto (bib41) 2011; 286
Chandran, Sullivan, Felbor, Whelan, Cunningham (bib12) 2005; 308
Mulherkar, Raaben, de la Torre, Whelan, Chandran (bib47) 2011; 419
Porotto, Yokoyama, Palermo, Mungall, Aljofan, Cortese, Pessi, Moscona (bib53) 2010; 84
Saeed, Kolokoltsov, Albrecht, Davey (bib56) 2010; 6
Augusto, Hollmann, Castanho, Porotto, Pessi, Santos (bib2) 2014; 69
Porotto, Rockx, Yokoyama, Talekar, Devito, Palermo, Liu, Cortese, Lu, Feldmann, Pessi, Moscona (bib52) 2010; 6
Haque, Hober, Blondiaux (bib24) 2015; 59
Qiu, Audet, Lv, He, Wong, Wei, Luo, Fernando, Kroeker, Fausther Bovendo, Bello, Li, Ye, Jacobs, Ippolito, Saphire, Bi, Shen, Gao, Zeitlin, Feng, Zhang, Kobinger (bib54) 2016; 8
Tan, Lane, Verma (bib61) 2016; 21
Carette, Raaben, Wong, Herbert, Obernosterer, Mulherkar, Kuehne, Kranzusch, Griffin, Ruthel, Dal Cin, Dye, Whelan, Chandran, Brummelkamp (bib11) 2011; 477
Welsch, Talekar, Mathieu, Pessi, Moscona, Horvat, Porotto (bib67) 2013; 87
Warren, Wells, Panchal, Stuthman, Garza, Van Tongeren, Dong, Retterer, Eaton, Pegoraro, Honnold, Bantia, Kotian, Chen, Taubenheim, Welch, Minning, Babu, Sheridan, Bavari (bib64) 2014; 508
Radoshitzky, Warfield, Chi, Dong, Kota, Bradfute, Gearhart, Retterer, Kranzusch, Misasi, Hogenbirk, Wahl-Jensen, Volchkov, Cunningham, Jahrling, Aman, Bavari, Farzan, Kuhn (bib55) 2011; 85
Eckert, Kim (bib16) 2001; 70
Nanbo, Imai, Watanabe, Noda, Takahashi, Neumann, Halfmann, Kawaoka (bib48) 2010; 6
LaBonte, Lebbos, Kirkpatrick (bib37) 2003; 2
Bird, Irimia, Ofek, Kwong, Wilson, Walensky (bib5) 2014; 21
Leduc, Trent, Wittliff, Bramlett, Briggs, Chirgadze, Wang, Burris, Spatola (bib39) 2003; 100
Miller, Harrison, Radoshitzky, Higgins, Chi, Dong, Kuhn, Bavari, Lai, Chandran (bib45) 2011; 286
Bixler, Bocan, Wells, Wetzel, Van Tongeren, Dong, Garza, Donnelly, Cazares, Nuss, Soloveva, Koistinen, Welch, Epstein, Liang, Giesing, Lenk, Bavari, Warren (bib7) 2018; 151
Gaillard, Galloux, Garcin, Eleouet, Le Goffic, Larcher, Rameix-Welti, Boukadiri, Heritier, Segura, Baechler, Arrell, Mottet-Osman, Nyanguile (bib22) 2017; 61
Harrison, Koellhoffer, Chandran, Lai (bib26) 2012; 51
He, Xiao, Song, Liang, Ju, Chen, Lu, Jing, Jiang, Zhang (bib28) 2008; 283
Kuhn, Andersen, Baize, Bao, Bavari, Berthet, Blinkova, Brister, Clawson, Fair, Gabriel, Garry, Gire, Goba, Gonzalez, Gunther, Happi, Jahrling, Kapetshi, Kobinger, Kugelman, Leroy, Maganga, Mbala, Moses, Muyembe-Tamfum, N'Faly, Nichol, Omilabu, Palacios, Park, Paweska, Radoshitzky, Rossi, Sabeti, Schieffelin, Schoepp, Sealfon, Swanepoel, Towner, Wada, Wauquier, Yozwiak, Formenty (bib35) 2014; 6
Li, Tang, Chi, Dong, Wang, Wang (bib42) 2013; 87
Shepherd, Hoang, Abbenante, Fairlie (bib58) 2005; 127
Yao, Chong, Zhang, Waltersperger, Wang, Cui, He (bib68) 2012; 287
Holmes, Dudas, Rambaut, Andersen (bib31) 2016; 538
Hojo, Hossain, Tailhades, Shabanpoor, Wong, Ong-Palsson, Kastman, Ma, Gundlach, Rosengren, Wade, Bathgate (bib30) 2016; 59
Wec, Nyakatura, Herbert, Howell, Holtsberg, Bakken, Mittler, Christin, Shulenin, Jangra, Bharrhan, Kuehne, Bornholdt, Flyak, Saphire, Crowe, Aman, Dye, Lai, Chandran (bib65) 2016; 354
Warren, Jordan, Lo, Ray, Mackman, Soloveva, Siegel, Perron, Bannister, Hui, Larson, Strickley, Wells, Stuthman, Van Tongeren, Garza, Donnelly, Shurtleff, Retterer, Gharaibeh, Zamani, Kenny, Eaton, Grimes, Welch, Gomba, Wilhelmsen, Nichols, Nuss, Nagle, Kugelman, Palacios, Doerffler, Neville, Carra, Clarke, Zhang, Lew, Ross, Wang, Chun, Wolfe, Babusis, Park, Stray, Trancheva, Feng, Barauskas, Xu, Wong, Braun, Flint, McMullan, Chen, Fearns, Swaminathan, Mayers, Spiropoulou, Lee, Nichol, Cihlar, Bavari (bib63) 2016; 531
Bornholdt, Turner, Murin, Li, Sok, Souders, Piper, Goff, Shamblin, Wollen, Sprague, Fusco, Pommert, Cavacini, Smith, Klempner, Reimann, Krauland, Gerngross, Wittrup, Saphire, Burton, Glass, Ward, Walker (bib8) 2016; 351
Flyak, Shen, Murin, Turner, David, Fusco, Lampley, Kose, Ilinykh, Kuzmina, Branchizio, King, Brown, Bryan, Davidson, Doranz, Slaughter, Sapparapu, Klages, Ksiazek, Saphire, Ward, Bukreyev, Crowe (bib19) 2016; 164
Porotto, Doctor, Carta, Fornabaio, Greengard, Kellogg, Moscona (bib51) 2006; 80
Eckert (10.1016/j.antiviral.2019.104592_bib16) 2001; 70
Mulherkar (10.1016/j.antiviral.2019.104592_bib47) 2011; 419
Weissenhorn (10.1016/j.antiviral.2019.104592_bib66) 1998; 2
Shepherd (10.1016/j.antiviral.2019.104592_bib58) 2005; 127
Lee (10.1016/j.antiviral.2019.104592_bib41) 2011; 286
LaBonte (10.1016/j.antiviral.2019.104592_bib37) 2003; 2
Frei (10.1016/j.antiviral.2019.104592_bib20) 2016; 6
Miller (10.1016/j.antiviral.2019.104592_bib45) 2011; 286
Feldmann (10.1016/j.antiviral.2019.104592_bib18) 2011; 377
Pessi (10.1016/j.antiviral.2019.104592_bib50) 2015; 21
Nyakatura (10.1016/j.antiviral.2019.104592_bib49) 2015; 1
Porotto (10.1016/j.antiviral.2019.104592_bib52) 2010; 6
Kuhn (10.1016/j.antiviral.2019.104592_bib36) 2014; 6
Warren (10.1016/j.antiviral.2019.104592_bib64) 2014; 508
Harrison (10.1016/j.antiviral.2019.104592_bib25) 2011; 20
Higgins (10.1016/j.antiviral.2019.104592_bib29) 2013; 23
Gallaher (10.1016/j.antiviral.2019.104592_bib23) 1996; 85
de Araujo (10.1016/j.antiviral.2019.104592_bib15) 2014; 53
Li (10.1016/j.antiviral.2019.104592_bib42) 2013; 87
Lee (10.1016/j.antiviral.2019.104592_bib40) 2008; 454
Augusto (10.1016/j.antiviral.2019.104592_bib2) 2014; 69
Haque (10.1016/j.antiviral.2019.104592_bib24) 2015; 59
Qiu (10.1016/j.antiviral.2019.104592_bib54) 2016; 8
Leduc (10.1016/j.antiviral.2019.104592_bib39) 2003; 100
Bird (10.1016/j.antiviral.2019.104592_bib6) 2010; 107
Holmes (10.1016/j.antiviral.2019.104592_bib31) 2016; 538
Malashkevich (10.1016/j.antiviral.2019.104592_bib43) 1999; 96
Porotto (10.1016/j.antiviral.2019.104592_bib53) 2010; 84
Harrison (10.1016/j.antiviral.2019.104592_bib27) 2010; 107
Carette (10.1016/j.antiviral.2019.104592_bib11) 2011; 477
Aurora (10.1016/j.antiviral.2019.104592_bib3) 1998; 7
Furuyama (10.1016/j.antiviral.2019.104592_bib21) 2016; 6
Kim (10.1016/j.antiviral.2019.104592_bib33) 2011; 6
Kuhn (10.1016/j.antiviral.2019.104592_bib35) 2014; 6
Saeed (10.1016/j.antiviral.2019.104592_bib56) 2010; 6
Bird (10.1016/j.antiviral.2019.104592_bib4) 2014; 124
Bird (10.1016/j.antiviral.2019.104592_bib5) 2014; 21
Bornholdt (10.1016/j.antiviral.2019.104592_bib8) 2016; 351
He (10.1016/j.antiviral.2019.104592_bib28) 2008; 283
Wec (10.1016/j.antiviral.2019.104592_bib65) 2016; 354
Skrip (10.1016/j.antiviral.2019.104592_bib60) 2016; 10
Flyak (10.1016/j.antiviral.2019.104592_bib19) 2016; 164
Bixler (10.1016/j.antiviral.2019.104592_bib7) 2018; 151
Cote (10.1016/j.antiviral.2019.104592_bib13) 2011; 477
Ingallinella (10.1016/j.antiviral.2019.104592_bib32) 2009; 106
Chandran (10.1016/j.antiviral.2019.104592_bib12) 2005; 308
Mathieu (10.1016/j.antiviral.2019.104592_bib44) 2017; 7
Hojo (10.1016/j.antiviral.2019.104592_bib30) 2016; 59
Cross (10.1016/j.antiviral.2019.104592_bib14) 2018; 17
Scholtz (10.1016/j.antiviral.2019.104592_bib57) 1992; 21
Fairlie (10.1016/j.antiviral.2019.104592_bib17) 2016; 106
Yao (10.1016/j.antiviral.2019.104592_bib68) 2012; 287
Aman (10.1016/j.antiviral.2019.104592_bib1) 2016; 7
Lambert (10.1016/j.antiviral.2019.104592_bib38) 1996; 93
Porotto (10.1016/j.antiviral.2019.104592_bib51) 2006; 80
Shepherd (10.1016/j.antiviral.2019.104592_bib59) 2006; 128
Calvo (10.1016/j.antiviral.2019.104592_bib10) 2003; 46
Nanbo (10.1016/j.antiviral.2019.104592_bib48) 2010; 6
Welsch (10.1016/j.antiviral.2019.104592_bib67) 2013; 87
Tan (10.1016/j.antiviral.2019.104592_bib61) 2016; 21
Gaillard (10.1016/j.antiviral.2019.104592_bib22) 2017; 61
Taylor (10.1016/j.antiviral.2019.104592_bib62) 2002; 66
Radoshitzky (10.1016/j.antiviral.2019.104592_bib55) 2011; 85
Misasi (10.1016/j.antiviral.2019.104592_bib46) 2016; 351
Bray (10.1016/j.antiviral.2019.104592_bib9) 1998; 178
Warren (10.1016/j.antiviral.2019.104592_bib63) 2016; 531
Koellhoffer (10.1016/j.antiviral.2019.104592_bib34) 2012; 51
Harrison (10.1016/j.antiviral.2019.104592_bib26) 2012; 51
References_xml – volume: 454
  start-page: 177
  year: 2008
  end-page: 182
  ident: bib40
  article-title: Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor
  publication-title: Nature
– volume: 351
  start-page: 1343
  year: 2016
  end-page: 1346
  ident: bib46
  article-title: Structural and molecular basis for Ebola virus neutralization by protective human antibodies
  publication-title: Science
– volume: 8
  start-page: 329ra333
  year: 2016
  ident: bib54
  article-title: Two-mAb cocktail protects macaques against the Makona variant of Ebola virus
  publication-title: Sci. Transl. Med.
– volume: 6
  start-page: 19193
  year: 2016
  ident: bib20
  article-title: Bispecific antibody affords complete post-exposure protection of mice from both ebola (Zaire) and Sudan viruses
  publication-title: Sci. Rep.
– volume: 351
  start-page: 1078
  year: 2016
  end-page: 1083
  ident: bib8
  article-title: Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak
  publication-title: Science
– volume: 6
  start-page: 20514
  year: 2016
  ident: bib21
  article-title: Discovery of an antibody for pan-ebolavirus therapy
  publication-title: Sci. Rep.
– volume: 531
  start-page: 381
  year: 2016
  end-page: 385
  ident: bib63
  article-title: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys
  publication-title: Nature
– volume: 93
  start-page: 2186
  year: 1996
  end-page: 2191
  ident: bib38
  article-title: Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 127
  start-page: 2974
  year: 2005
  end-page: 2983
  ident: bib58
  article-title: Single turn peptide alpha helices with exceptional stability in water
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 5892
  year: 2015
  end-page: 5902
  ident: bib24
  article-title: Addressing therapeutic options for ebola virus infection in current and future outbreaks
  publication-title: Antimicrob. Agents Chemother.
– volume: 21
  start-page: 1642
  year: 2016
  end-page: 1653
  ident: bib61
  article-title: Stapled peptide design: principles and roles of computation
  publication-title: Drug Discov. Today
– volume: 87
  start-page: 9223
  year: 2013
  end-page: 9232
  ident: bib42
  article-title: A cholesterol tag at the N terminus of the relatively broad-spectrum fusion inhibitory peptide targets an earlier stage of fusion glycoprotein activation and increases the peptide's antiviral potency in vivo
  publication-title: J. Virol.
– volume: 23
  start-page: 5356
  year: 2013
  end-page: 5360
  ident: bib29
  article-title: C-peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: effects of conjugation to cholesterol and side chain-side chain crosslinking
  publication-title: Bioorg. Med. Chem. Lett
– volume: 6
  year: 2010
  ident: bib56
  article-title: Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes
  publication-title: PLoS Pathog.
– volume: 61
  year: 2017
  ident: bib22
  article-title: A short double-stapled peptide inhibits respiratory syncytial virus entry and spreading
  publication-title: Antimicrob. Agents Chemother.
– volume: 87
  start-page: 13785
  year: 2013
  end-page: 13794
  ident: bib67
  article-title: Fatal measles virus infection prevented by brain-penetrant fusion inhibitors
  publication-title: J. Virol.
– volume: 69
  start-page: 1286
  year: 2014
  end-page: 1297
  ident: bib2
  article-title: Improvement of HIV fusion inhibitor C34 efficacy by membrane anchoring and enhanced exposure
  publication-title: J. Antimicrob. Chemother.
– volume: 477
  start-page: 340
  year: 2011
  end-page: 343
  ident: bib11
  article-title: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1
  publication-title: Nature
– volume: 354
  start-page: 350
  year: 2016
  end-page: 354
  ident: bib65
  article-title: A “Trojan horse” bispecific-antibody strategy for broad protection against ebolaviruses
  publication-title: Science
– volume: 6
  start-page: 3663
  year: 2014
  end-page: 3682
  ident: bib36
  article-title: Filovirus RefSeq entries: evaluation and selection of filovirus type variants, type sequences, and names
  publication-title: Viruses
– volume: 7
  start-page: 43610
  year: 2017
  ident: bib44
  article-title: Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides
  publication-title: Sci. Rep.
– volume: 107
  start-page: 14093
  year: 2010
  end-page: 14098
  ident: bib6
  article-title: Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 508
  start-page: 402
  year: 2014
  end-page: 405
  ident: bib64
  article-title: Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430
  publication-title: Nature
– volume: 51
  start-page: 2515
  year: 2012
  end-page: 2525
  ident: bib26
  article-title: Marburg virus glycoprotein GP2: pH-dependent stability of the ectodomain alpha-helical bundle
  publication-title: Biochemistry
– volume: 70
  start-page: 777
  year: 2001
  end-page: 810
  ident: bib16
  article-title: Mechanisms of viral membrane fusion and its inhibition
  publication-title: Annu. Rev. Biochem.
– volume: 7
  start-page: 21
  year: 1998
  end-page: 38
  ident: bib3
  article-title: Helix capping
  publication-title: Protein Sci.
– volume: 106
  start-page: 5801
  year: 2009
  end-page: 5806
  ident: bib32
  article-title: Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 59
  start-page: 7445
  year: 2016
  end-page: 7456
  ident: bib30
  article-title: Development of a single-chain peptide agonist of the relaxin-3 receptor using hydrocarbon stapling
  publication-title: J. Med. Chem.
– volume: 106
  start-page: 843
  year: 2016
  end-page: 852
  ident: bib17
  article-title: Review stapling peptides using cysteine crosslinking
  publication-title: Biopolymers
– volume: 21
  start-page: 379
  year: 2015
  end-page: 386
  ident: bib50
  article-title: Cholesterol-conjugated peptide antivirals: a path to a rapid response to emerging viral diseases
  publication-title: J. Pept. Sci.
– volume: 96
  start-page: 2662
  year: 1999
  end-page: 2667
  ident: bib43
  article-title: Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 85
  start-page: 8502
  year: 2011
  end-page: 8513
  ident: bib55
  article-title: Ebolavirus delta-peptide immunoadhesins inhibit marburgvirus and ebolavirus cell entry
  publication-title: J. Virol.
– volume: 21
  start-page: 95
  year: 1992
  end-page: 118
  ident: bib57
  article-title: The mechanism of alpha-helix formation by peptides
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 20
  start-page: 1587
  year: 2011
  end-page: 1596
  ident: bib25
  article-title: Designed protein mimics of the Ebola virus glycoprotein GP2 alpha-helical bundle: stability and pH effects
  publication-title: Protein Sci.
– volume: 51
  start-page: 7665
  year: 2012
  end-page: 7675
  ident: bib34
  article-title: Crystal structure of the Marburg virus GP2 core domain in its postfusion conformation
  publication-title: Biochemistry
– volume: 538
  start-page: 193
  year: 2016
  end-page: 200
  ident: bib31
  article-title: The evolution of Ebola virus: insights from the 2013-2016 epidemic
  publication-title: Nature
– volume: 85
  start-page: 477
  year: 1996
  end-page: 478
  ident: bib23
  article-title: Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses
  publication-title: Cell
– volume: 128
  start-page: 13284
  year: 2006
  end-page: 13289
  ident: bib59
  article-title: Modular alpha-helical mimetics with antiviral activity against respiratory syncitial virus
  publication-title: J. Am. Chem. Soc.
– volume: 84
  start-page: 6760
  year: 2010
  end-page: 6768
  ident: bib53
  article-title: Viral entry inhibitors targeted to the membrane site of action
  publication-title: J. Virol.
– volume: 6
  year: 2010
  ident: bib52
  article-title: Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry
  publication-title: PLoS Pathog.
– volume: 6
  start-page: 4760
  year: 2014
  end-page: 4799
  ident: bib35
  article-title: Nomenclature- and database-compatible names for the two Ebola virus variants that emerged in Guinea and the Democratic Republic of the Congo in 2014
  publication-title: Viruses
– volume: 100
  start-page: 11273
  year: 2003
  end-page: 11278
  ident: bib39
  article-title: Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 2
  start-page: 605
  year: 1998
  end-page: 616
  ident: bib66
  article-title: Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain
  publication-title: Mol. Cell
– volume: 1
  start-page: 42
  year: 2015
  end-page: 52
  ident: bib49
  article-title: Chemical and structural aspects of ebola virus entry inhibitors
  publication-title: ACS Infect. Dis.
– volume: 151
  start-page: 97
  year: 2018
  end-page: 104
  ident: bib7
  article-title: Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus
  publication-title: Antivir. Res.
– volume: 53
  start-page: 6965
  year: 2014
  end-page: 6969
  ident: bib15
  article-title: Comparative alpha-helicity of cyclic pentapeptides in water
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 17
  start-page: 413
  year: 2018
  end-page: 434
  ident: bib14
  article-title: Post-exposure treatments for Ebola and Marburg virus infections
  publication-title: Nat. Rev. Drug Discov.
– volume: 178
  start-page: 651
  year: 1998
  end-page: 661
  ident: bib9
  article-title: A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever
  publication-title: J. Infect. Dis.
– volume: 377
  start-page: 849
  year: 2011
  end-page: 862
  ident: bib18
  article-title: Ebola haemorrhagic fever
  publication-title: Lancet
– volume: 419
  start-page: 72
  year: 2011
  end-page: 83
  ident: bib47
  article-title: The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway
  publication-title: Virology
– volume: 80
  start-page: 9837
  year: 2006
  end-page: 9849
  ident: bib51
  article-title: Inhibition of hendra virus fusion
  publication-title: J. Virol.
– volume: 10
  year: 2016
  ident: bib60
  article-title: Next steps for ebola vaccination: deployment in non-epidemic, high-risk settings
  publication-title: PLoS Neglected Trop. Dis.
– volume: 287
  start-page: 6788
  year: 2012
  end-page: 6796
  ident: bib68
  article-title: Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide
  publication-title: J. Biol. Chem.
– volume: 286
  start-page: 15854
  year: 2011
  end-page: 15861
  ident: bib45
  article-title: Inhibition of Ebola virus entry by a C-peptide targeted to endosomes
  publication-title: J. Biol. Chem.
– volume: 7
  year: 2016
  ident: bib1
  article-title: Chasing ebola through the endosomal labyrinth
  publication-title: mBio
– volume: 66
  start-page: 49
  year: 2002
  end-page: 75
  ident: bib62
  article-title: The synthesis and study of side-chain lactam-bridged peptides
  publication-title: Biopolymers
– volume: 46
  start-page: 5389
  year: 2003
  end-page: 5394
  ident: bib10
  article-title: An alpha helix conformationally restricted peptide is recognized by cervical carcinoma patients' sera
  publication-title: J. Med. Chem.
– volume: 2
  start-page: 345
  year: 2003
  end-page: 346
  ident: bib37
  article-title: Enfuvirtide
  publication-title: Nat. Rev. Drug Discov.
– volume: 6
  year: 2010
  ident: bib48
  article-title: Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner
  publication-title: PLoS Pathog.
– volume: 6
  start-page: 761
  year: 2011
  end-page: 771
  ident: bib33
  article-title: Synthesis of all-hydrocarbon stapled alpha-helical peptides by ring-closing olefin metathesis
  publication-title: Nat. Protoc.
– volume: 308
  start-page: 1643
  year: 2005
  end-page: 1645
  ident: bib12
  article-title: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection
  publication-title: Science
– volume: 286
  start-page: 42141
  year: 2011
  end-page: 42149
  ident: bib41
  article-title: Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus
  publication-title: J. Biol. Chem.
– volume: 164
  start-page: 392
  year: 2016
  end-page: 405
  ident: bib19
  article-title: Cross-reactive and potent neutralizing antibody responses in human survivors of natural ebolavirus infection
  publication-title: Cell
– volume: 477
  start-page: 344
  year: 2011
  end-page: 348
  ident: bib13
  article-title: Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection
  publication-title: Nature
– volume: 283
  start-page: 11126
  year: 2008
  end-page: 11134
  ident: bib28
  article-title: Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor
  publication-title: J. Biol. Chem.
– volume: 21
  start-page: 1058
  year: 2014
  end-page: 1067
  ident: bib5
  article-title: Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies
  publication-title: Nat. Struct. Mol. Biol.
– volume: 124
  start-page: 2113
  year: 2014
  end-page: 2124
  ident: bib4
  article-title: Mucosal delivery of a double-stapled RSV peptide prevents nasopulmonary infection
  publication-title: J. Clin. Investig.
– volume: 107
  start-page: 11686
  year: 2010
  end-page: 11691
  ident: bib27
  article-title: Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 283
  start-page: 11126
  year: 2008
  ident: 10.1016/j.antiviral.2019.104592_bib28
  article-title: Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M800200200
– volume: 21
  start-page: 95
  year: 1992
  ident: 10.1016/j.antiviral.2019.104592_bib57
  article-title: The mechanism of alpha-helix formation by peptides
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.bb.21.060192.000523
– volume: 377
  start-page: 849
  year: 2011
  ident: 10.1016/j.antiviral.2019.104592_bib18
  article-title: Ebola haemorrhagic fever
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60667-8
– volume: 20
  start-page: 1587
  year: 2011
  ident: 10.1016/j.antiviral.2019.104592_bib25
  article-title: Designed protein mimics of the Ebola virus glycoprotein GP2 alpha-helical bundle: stability and pH effects
  publication-title: Protein Sci.
  doi: 10.1002/pro.688
– volume: 351
  start-page: 1078
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib8
  article-title: Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak
  publication-title: Science
  doi: 10.1126/science.aad5788
– volume: 286
  start-page: 42141
  year: 2011
  ident: 10.1016/j.antiviral.2019.104592_bib41
  article-title: Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.254243
– volume: 7
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib1
  article-title: Chasing ebola through the endosomal labyrinth
  publication-title: mBio
  doi: 10.1128/mBio.00346-16
– volume: 477
  start-page: 340
  year: 2011
  ident: 10.1016/j.antiviral.2019.104592_bib11
  article-title: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1
  publication-title: Nature
  doi: 10.1038/nature10348
– volume: 107
  start-page: 14093
  year: 2010
  ident: 10.1016/j.antiviral.2019.104592_bib6
  article-title: Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1002713107
– volume: 508
  start-page: 402
  year: 2014
  ident: 10.1016/j.antiviral.2019.104592_bib64
  article-title: Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430
  publication-title: Nature
  doi: 10.1038/nature13027
– volume: 96
  start-page: 2662
  year: 1999
  ident: 10.1016/j.antiviral.2019.104592_bib43
  article-title: Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.96.6.2662
– volume: 21
  start-page: 379
  year: 2015
  ident: 10.1016/j.antiviral.2019.104592_bib50
  article-title: Cholesterol-conjugated peptide antivirals: a path to a rapid response to emerging viral diseases
  publication-title: J. Pept. Sci.
  doi: 10.1002/psc.2706
– volume: 8
  start-page: 329ra333
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib54
  article-title: Two-mAb cocktail protects macaques against the Makona variant of Ebola virus
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aad9875
– volume: 85
  start-page: 477
  year: 1996
  ident: 10.1016/j.antiviral.2019.104592_bib23
  article-title: Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81248-9
– volume: 477
  start-page: 344
  year: 2011
  ident: 10.1016/j.antiviral.2019.104592_bib13
  article-title: Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection
  publication-title: Nature
  doi: 10.1038/nature10380
– volume: 164
  start-page: 392
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib19
  article-title: Cross-reactive and potent neutralizing antibody responses in human survivors of natural ebolavirus infection
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.022
– volume: 6
  start-page: 19193
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib20
  article-title: Bispecific antibody affords complete post-exposure protection of mice from both ebola (Zaire) and Sudan viruses
  publication-title: Sci. Rep.
  doi: 10.1038/srep19193
– volume: 61
  year: 2017
  ident: 10.1016/j.antiviral.2019.104592_bib22
  article-title: A short double-stapled peptide inhibits respiratory syncytial virus entry and spreading
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02241-16
– volume: 531
  start-page: 381
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib63
  article-title: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys
  publication-title: Nature
  doi: 10.1038/nature17180
– volume: 106
  start-page: 5801
  year: 2009
  ident: 10.1016/j.antiviral.2019.104592_bib32
  article-title: Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0901007106
– volume: 286
  start-page: 15854
  year: 2011
  ident: 10.1016/j.antiviral.2019.104592_bib45
  article-title: Inhibition of Ebola virus entry by a C-peptide targeted to endosomes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.207084
– volume: 66
  start-page: 49
  year: 2002
  ident: 10.1016/j.antiviral.2019.104592_bib62
  article-title: The synthesis and study of side-chain lactam-bridged peptides
  publication-title: Biopolymers
  doi: 10.1002/bip.10203
– volume: 87
  start-page: 13785
  year: 2013
  ident: 10.1016/j.antiviral.2019.104592_bib67
  article-title: Fatal measles virus infection prevented by brain-penetrant fusion inhibitors
  publication-title: J. Virol.
  doi: 10.1128/JVI.02436-13
– volume: 6
  start-page: 4760
  year: 2014
  ident: 10.1016/j.antiviral.2019.104592_bib35
  article-title: Nomenclature- and database-compatible names for the two Ebola virus variants that emerged in Guinea and the Democratic Republic of the Congo in 2014
  publication-title: Viruses
  doi: 10.3390/v6114760
– volume: 84
  start-page: 6760
  year: 2010
  ident: 10.1016/j.antiviral.2019.104592_bib53
  article-title: Viral entry inhibitors targeted to the membrane site of action
  publication-title: J. Virol.
  doi: 10.1128/JVI.00135-10
– volume: 51
  start-page: 2515
  year: 2012
  ident: 10.1016/j.antiviral.2019.104592_bib26
  article-title: Marburg virus glycoprotein GP2: pH-dependent stability of the ectodomain alpha-helical bundle
  publication-title: Biochemistry
  doi: 10.1021/bi3000353
– volume: 538
  start-page: 193
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib31
  article-title: The evolution of Ebola virus: insights from the 2013-2016 epidemic
  publication-title: Nature
  doi: 10.1038/nature19790
– volume: 59
  start-page: 5892
  year: 2015
  ident: 10.1016/j.antiviral.2019.104592_bib24
  article-title: Addressing therapeutic options for ebola virus infection in current and future outbreaks
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.01105-15
– volume: 1
  start-page: 42
  year: 2015
  ident: 10.1016/j.antiviral.2019.104592_bib49
  article-title: Chemical and structural aspects of ebola virus entry inhibitors
  publication-title: ACS Infect. Dis.
  doi: 10.1021/id500025n
– volume: 7
  start-page: 21
  year: 1998
  ident: 10.1016/j.antiviral.2019.104592_bib3
  article-title: Helix capping
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560070103
– volume: 106
  start-page: 843
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib17
  article-title: Review stapling peptides using cysteine crosslinking
  publication-title: Biopolymers
  doi: 10.1002/bip.22877
– volume: 419
  start-page: 72
  year: 2011
  ident: 10.1016/j.antiviral.2019.104592_bib47
  article-title: The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway
  publication-title: Virology
  doi: 10.1016/j.virol.2011.08.009
– volume: 53
  start-page: 6965
  year: 2014
  ident: 10.1016/j.antiviral.2019.104592_bib15
  article-title: Comparative alpha-helicity of cyclic pentapeptides in water
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201310245
– volume: 124
  start-page: 2113
  year: 2014
  ident: 10.1016/j.antiviral.2019.104592_bib4
  article-title: Mucosal delivery of a double-stapled RSV peptide prevents nasopulmonary infection
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI71856
– volume: 100
  start-page: 11273
  year: 2003
  ident: 10.1016/j.antiviral.2019.104592_bib39
  article-title: Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1934759100
– volume: 308
  start-page: 1643
  year: 2005
  ident: 10.1016/j.antiviral.2019.104592_bib12
  article-title: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection
  publication-title: Science
  doi: 10.1126/science.1110656
– volume: 2
  start-page: 605
  year: 1998
  ident: 10.1016/j.antiviral.2019.104592_bib66
  article-title: Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80159-8
– volume: 107
  start-page: 11686
  year: 2010
  ident: 10.1016/j.antiviral.2019.104592_bib27
  article-title: Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1002498107
– volume: 6
  year: 2010
  ident: 10.1016/j.antiviral.2019.104592_bib56
  article-title: Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1001110
– volume: 6
  start-page: 3663
  year: 2014
  ident: 10.1016/j.antiviral.2019.104592_bib36
  article-title: Filovirus RefSeq entries: evaluation and selection of filovirus type variants, type sequences, and names
  publication-title: Viruses
  doi: 10.3390/v6093663
– volume: 287
  start-page: 6788
  year: 2012
  ident: 10.1016/j.antiviral.2019.104592_bib68
  article-title: Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.317883
– volume: 70
  start-page: 777
  year: 2001
  ident: 10.1016/j.antiviral.2019.104592_bib16
  article-title: Mechanisms of viral membrane fusion and its inhibition
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.70.1.777
– volume: 128
  start-page: 13284
  year: 2006
  ident: 10.1016/j.antiviral.2019.104592_bib59
  article-title: Modular alpha-helical mimetics with antiviral activity against respiratory syncitial virus
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja064058a
– volume: 21
  start-page: 1642
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib61
  article-title: Stapled peptide design: principles and roles of computation
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2016.06.012
– volume: 151
  start-page: 97
  year: 2018
  ident: 10.1016/j.antiviral.2019.104592_bib7
  article-title: Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2017.12.021
– volume: 6
  start-page: 20514
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib21
  article-title: Discovery of an antibody for pan-ebolavirus therapy
  publication-title: Sci. Rep.
  doi: 10.1038/srep20514
– volume: 59
  start-page: 7445
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib30
  article-title: Development of a single-chain peptide agonist of the relaxin-3 receptor using hydrocarbon stapling
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b00265
– volume: 80
  start-page: 9837
  year: 2006
  ident: 10.1016/j.antiviral.2019.104592_bib51
  article-title: Inhibition of hendra virus fusion
  publication-title: J. Virol.
  doi: 10.1128/JVI.00736-06
– volume: 454
  start-page: 177
  year: 2008
  ident: 10.1016/j.antiviral.2019.104592_bib40
  article-title: Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor
  publication-title: Nature
  doi: 10.1038/nature07082
– volume: 21
  start-page: 1058
  year: 2014
  ident: 10.1016/j.antiviral.2019.104592_bib5
  article-title: Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2922
– volume: 2
  start-page: 345
  year: 2003
  ident: 10.1016/j.antiviral.2019.104592_bib37
  article-title: Enfuvirtide
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1091
– volume: 6
  start-page: 761
  year: 2011
  ident: 10.1016/j.antiviral.2019.104592_bib33
  article-title: Synthesis of all-hydrocarbon stapled alpha-helical peptides by ring-closing olefin metathesis
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.324
– volume: 354
  start-page: 350
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib65
  article-title: A “Trojan horse” bispecific-antibody strategy for broad protection against ebolaviruses
  publication-title: Science
  doi: 10.1126/science.aag3267
– volume: 10
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib60
  article-title: Next steps for ebola vaccination: deployment in non-epidemic, high-risk settings
  publication-title: PLoS Neglected Trop. Dis.
  doi: 10.1371/journal.pntd.0004802
– volume: 17
  start-page: 413
  year: 2018
  ident: 10.1016/j.antiviral.2019.104592_bib14
  article-title: Post-exposure treatments for Ebola and Marburg virus infections
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.251
– volume: 6
  year: 2010
  ident: 10.1016/j.antiviral.2019.104592_bib52
  article-title: Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1001168
– volume: 93
  start-page: 2186
  year: 1996
  ident: 10.1016/j.antiviral.2019.104592_bib38
  article-title: Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.93.5.2186
– volume: 46
  start-page: 5389
  year: 2003
  ident: 10.1016/j.antiviral.2019.104592_bib10
  article-title: An alpha helix conformationally restricted peptide is recognized by cervical carcinoma patients' sera
  publication-title: J. Med. Chem.
  doi: 10.1021/jm030210x
– volume: 51
  start-page: 7665
  year: 2012
  ident: 10.1016/j.antiviral.2019.104592_bib34
  article-title: Crystal structure of the Marburg virus GP2 core domain in its postfusion conformation
  publication-title: Biochemistry
  doi: 10.1021/bi300976m
– volume: 7
  start-page: 43610
  year: 2017
  ident: 10.1016/j.antiviral.2019.104592_bib44
  article-title: Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides
  publication-title: Sci. Rep.
  doi: 10.1038/srep43610
– volume: 69
  start-page: 1286
  year: 2014
  ident: 10.1016/j.antiviral.2019.104592_bib2
  article-title: Improvement of HIV fusion inhibitor C34 efficacy by membrane anchoring and enhanced exposure
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkt529
– volume: 178
  start-page: 651
  year: 1998
  ident: 10.1016/j.antiviral.2019.104592_bib9
  article-title: A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever
  publication-title: J. Infect. Dis.
  doi: 10.1086/515386
– volume: 351
  start-page: 1343
  year: 2016
  ident: 10.1016/j.antiviral.2019.104592_bib46
  article-title: Structural and molecular basis for Ebola virus neutralization by protective human antibodies
  publication-title: Science
  doi: 10.1126/science.aad6117
– volume: 87
  start-page: 9223
  year: 2013
  ident: 10.1016/j.antiviral.2019.104592_bib42
  article-title: A cholesterol tag at the N terminus of the relatively broad-spectrum fusion inhibitory peptide targets an earlier stage of fusion glycoprotein activation and increases the peptide's antiviral potency in vivo
  publication-title: J. Virol.
  doi: 10.1128/JVI.01153-13
– volume: 23
  start-page: 5356
  year: 2013
  ident: 10.1016/j.antiviral.2019.104592_bib29
  article-title: C-peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: effects of conjugation to cholesterol and side chain-side chain crosslinking
  publication-title: Bioorg. Med. Chem. Lett
  doi: 10.1016/j.bmcl.2013.07.056
– volume: 85
  start-page: 8502
  year: 2011
  ident: 10.1016/j.antiviral.2019.104592_bib55
  article-title: Ebolavirus delta-peptide immunoadhesins inhibit marburgvirus and ebolavirus cell entry
  publication-title: J. Virol.
  doi: 10.1128/JVI.02600-10
– volume: 127
  start-page: 2974
  year: 2005
  ident: 10.1016/j.antiviral.2019.104592_bib58
  article-title: Single turn peptide alpha helices with exceptional stability in water
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0456003
– volume: 6
  year: 2010
  ident: 10.1016/j.antiviral.2019.104592_bib48
  article-title: Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1001121
SSID ssj0006798
Score 2.403635
Snippet Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104592
SubjectTerms Cholesterol
Ebola virus
Peptides
Rodents
Therapeutic
Title Cholesterol-conjugated stapled peptides inhibit Ebola and Marburg viruses in vitro and in vivo
URI https://dx.doi.org/10.1016/j.antiviral.2019.104592
https://www.ncbi.nlm.nih.gov/pubmed/31473342
https://www.proquest.com/docview/2283317097
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xRbviglj2VV7KSnvNNomdOOZWVUVlUbmwSJzWsh1nCaqSiqZIXPjtzORRiQPiwClxkpFHY3vmc2Y8A_Ar56nJEIf6SRLTBiWQvnba-QEXTGSIUbWlw8nzy2R2zf_cxDdbMOnPwlBYZaf7W53eaOvuyaiT5mhZFKMrBCtoLTkuORagUkU9vB2htU8HsD0-v5hdbhQyORraFN-JTwQvwryQ_4LCackNEUpyecYyes1IvQZCG2N0tge7HYr0xi2jn2HLlfvwsa0r-bgPn-adx_wL_JtQAVzKhlAtfNz73q3pv1nmIShcLvC6pKiWzK28orwtTFF7U4ObXU-XmTfXJPH_HvK9XjVf4G19XzUvm8ZD9RWuz6Z_JzO_q6ngWx4Fte9SoxMWpTpjklymiA9zIawTOuK5TUweCRmaNBM2NzKOUpsKESepEVrkCPYs-waDsirdD_BCGzAW6zDj0nDCEprApzE6NrlhuRxC0gtR2S7hONW9WKg-suxObaSvSPqqlf4Qgg3hss258TbJaT9K6sX0UWgZ3ib-2Y-rwsVFHhNdumq9UpQbCAFWIMUQvrcDvuGIhTidGY8O3tP1IexQqz3ceASD-n7tjhHl1OYEPvx-Ck-6ufwM-PT8PA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6hIlguaIF9lF3YrLTXqEnsxPHeUAUqj_ayIHFay3YcCKqSiqZI_Htm8qjEAXHglIcz8mhsz3zOjGcA_uQ8NRniUD9JYtqgBNLXTjs_4IKJDDGqtnQ4eTpLJjf84ja-3YBxfxaGwio73d_q9EZbd29GnTRHi6IY_UOwgtaS45JjASpV1MObnIpaD2Dz5PxyMlsrZHI0tCm-E58IXoV5If8FhdOSGyKU5PKMZfSWkXoLhDbG6Owz7HYo0jtpGd2DDVfuw1ZbV_J5H7anncf8AP6PqQAuZUOo5j7ufR9W9N8s8xAULuZ4XVBUS-aWXlHeF6aovVODm11Pl5k31STxOw_5Xi2bL_C2fqyaxubhqfoCN2en1-OJ39VU8C2Pgtp3qdEJi1KdMUkuU8SHuRDWCR3x3CYmj4QMTZoJmxsZR6lNhYiT1AgtcgR7ln2FQVmV7jt4oQ0Yi3WYcWk4YQlN4NMYHZvcsFwOIemFqGyXcJzqXsxVH1n2oNbSVyR91Up_CMGacNHm3Hif5G8_SurV9FFoGd4n_t2Pq8LFRR4TXbpqtVSUGwgBViDFEL61A77miIU4nRmPDj_S9S_4NLmeXqmr89nlD9ihlvag408Y1I8rd4SIpzbH3Yx-Aep2_iI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholesterol-conjugated+stapled+peptides+inhibit+Ebola+and+Marburg+viruses+in+vitro+and+in+vivo&rft.jtitle=Antiviral+research&rft.au=Pessi%2C+Antonello&rft.au=Bixler%2C+Sandra+L&rft.au=Soloveva%2C+Veronica&rft.au=Radoshitzky%2C+Sheli&rft.date=2019-11-01&rft.eissn=1872-9096&rft.volume=171&rft.spage=104592&rft_id=info:doi/10.1016%2Fj.antiviral.2019.104592&rft_id=info%3Apmid%2F31473342&rft.externalDocID=31473342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3542&client=summon