Cholesterol-conjugated stapled peptides inhibit Ebola and Marburg viruses in vitro and in vivo
Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus...
Saved in:
Published in | Antiviral research Vol. 171; p. 104592 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0166-3542 1872-9096 1872-9096 |
DOI | 10.1016/j.antiviral.2019.104592 |
Cover
Abstract | Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013–2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.
•The 23 amino acid Ebola GP2 C-terminal Heptad-repeat domain was designed as an Ebola fusion inhibitor.•The peptide inhibitor has been “stapled” and conjugated with PEG/cholesterol to improve potency and systemic exposure.•Potency (EC50) versus authentic Ebola virus was in the single digit micromolar range in both human and rodent cell lines.•The best peptide provided survival advantage in mice against lethal Ebola challenge and suggested utility of the approach. |
---|---|
AbstractList | Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP
of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC
s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV. Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV. Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013–2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV. •The 23 amino acid Ebola GP2 C-terminal Heptad-repeat domain was designed as an Ebola fusion inhibitor.•The peptide inhibitor has been “stapled” and conjugated with PEG/cholesterol to improve potency and systemic exposure.•Potency (EC50) versus authentic Ebola virus was in the single digit micromolar range in both human and rodent cell lines.•The best peptide provided survival advantage in mice against lethal Ebola challenge and suggested utility of the approach. |
ArticleNumber | 104592 |
Author | Retterer, Cary Steffens, Jesse Soloveva, Veronica Donnelly, Ginger Kester, Kent E. Wells, Jay Kane, Christopher D. Vicat, Pascale Bixler, Sandra L. Gomba, Glenn Gharabeih, Dima Shiver, John Radoshitzky, Sheli Bavari, Sina Pessi, Antonello Carter, Kara Warren, Travis K. Kenny, Tara Zamani, Rouzbeh Duplantier, Allen J. Couturier, Valerie Wetzel, Kelly S. Van Tongeren, Sean A. |
Author_xml | – sequence: 1 givenname: Antonello surname: Pessi fullname: Pessi, Antonello organization: PeptiPharma, Rome, Italy – sequence: 2 givenname: Sandra L. surname: Bixler fullname: Bixler, Sandra L. organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 3 givenname: Veronica surname: Soloveva fullname: Soloveva, Veronica organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 4 givenname: Sheli surname: Radoshitzky fullname: Radoshitzky, Sheli organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 5 givenname: Cary surname: Retterer fullname: Retterer, Cary organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 6 givenname: Tara surname: Kenny fullname: Kenny, Tara organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 7 givenname: Rouzbeh surname: Zamani fullname: Zamani, Rouzbeh organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 8 givenname: Glenn surname: Gomba fullname: Gomba, Glenn organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 9 givenname: Dima surname: Gharabeih fullname: Gharabeih, Dima organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 10 givenname: Jay surname: Wells fullname: Wells, Jay organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 11 givenname: Kelly S. surname: Wetzel fullname: Wetzel, Kelly S. organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 12 givenname: Travis K. surname: Warren fullname: Warren, Travis K. organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 13 givenname: Ginger surname: Donnelly fullname: Donnelly, Ginger organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 14 givenname: Sean A. surname: Van Tongeren fullname: Van Tongeren, Sean A. organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 15 givenname: Jesse surname: Steffens fullname: Steffens, Jesse organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 16 givenname: Allen J. surname: Duplantier fullname: Duplantier, Allen J. organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 17 givenname: Christopher D. surname: Kane fullname: Kane, Christopher D. email: christopher.d.kane.civ@mail.mil organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA – sequence: 18 givenname: Pascale surname: Vicat fullname: Vicat, Pascale organization: Sanofi, Paris, France – sequence: 19 givenname: Valerie surname: Couturier fullname: Couturier, Valerie organization: Sanofi, Paris, France – sequence: 20 givenname: Kent E. surname: Kester fullname: Kester, Kent E. organization: Sanofi Pasteur, Swiftwater, PA, USA – sequence: 21 givenname: John surname: Shiver fullname: Shiver, John organization: Sanofi Pasteur, Swiftwater, PA, USA – sequence: 22 givenname: Kara surname: Carter fullname: Carter, Kara organization: Sanofi, Cambridge, MA, USA – sequence: 23 givenname: Sina surname: Bavari fullname: Bavari, Sina email: sina.bavari.civ@mail.mil organization: United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD, 21702, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31473342$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkD1vHCEQhlHkKD47-QvJlmn2wsfuAkUK6-TElmylsdsgYGdtThxsgD0p_z74znGRJq4GmOcdMc8ZOgkxAEKfCF4TTIYv27UOxe1d0n5NMZH1teslfYNWRHDaSiyHE7Sq5NCyvqOn6CznLcZ44FK8Q6eMdJyxjq7Qz81j9JALpOhbG8N2edAFxiYXPftaZ5iLGyE3Ljw640pzaaLXjQ5jc6uTWdJDU3-x5ANRjyXFQ_Nw2cf36O2kfYYPz_Uc3X-7vNtctTc_vl9vLm5a21FcWhBGD4wKPTLZ9YJJKSfOLXBNu8kOZqJcEiNGbicjeyqs4LwfhOGaTz2Rlp2jz8e5c4q_lrqP2rlswXsdIC5ZUSoYIxxLXtGPz-hidjCqObmdTr_VXycV4EfApphzgukFIVg92Vdb9WJfPdlXR_s1-fWfpHVFFxdDSdr5V-QvjnmoqvYOksrWQbAwugS2qDG6_874A9xZpwU |
CitedBy_id | crossref_primary_10_1080_21505594_2022_2054760 crossref_primary_10_1016_j_phrs_2024_107137 crossref_primary_10_1002_cplu_202100351 crossref_primary_10_3390_ijms23042060 crossref_primary_10_1002_anie_202111266 crossref_primary_10_1016_j_jconrel_2022_06_037 crossref_primary_10_1128_AAC_00717_20 crossref_primary_10_1021_acs_jmedchem_1c00477 crossref_primary_10_1007_s11908_023_00828_2 crossref_primary_10_1016_j_antiviral_2022_105401 crossref_primary_10_1016_j_steroids_2023_109273 crossref_primary_10_3390_v13102010 crossref_primary_10_1360_SSC_2024_0224 crossref_primary_10_3390_molecules25184330 crossref_primary_10_1134_S0006297922070021 crossref_primary_10_1002_pep2_24191 crossref_primary_10_1021_acschembio_3c00048 crossref_primary_10_3390_pharmaceutics15061648 crossref_primary_10_1002_ange_202111266 crossref_primary_10_1038_s41598_023_29517_9 crossref_primary_10_4103_apjtm_apjtm_932_23 crossref_primary_10_3390_v13081457 crossref_primary_10_3390_ijms24097842 crossref_primary_10_1002_biof_1822 |
Cites_doi | 10.1074/jbc.M800200200 10.1146/annurev.bb.21.060192.000523 10.1016/S0140-6736(10)60667-8 10.1002/pro.688 10.1126/science.aad5788 10.1074/jbc.M111.254243 10.1128/mBio.00346-16 10.1038/nature10348 10.1073/pnas.1002713107 10.1038/nature13027 10.1073/pnas.96.6.2662 10.1002/psc.2706 10.1126/scitranslmed.aad9875 10.1016/S0092-8674(00)81248-9 10.1038/nature10380 10.1016/j.cell.2015.12.022 10.1038/srep19193 10.1128/AAC.02241-16 10.1038/nature17180 10.1073/pnas.0901007106 10.1074/jbc.M110.207084 10.1002/bip.10203 10.1128/JVI.02436-13 10.3390/v6114760 10.1128/JVI.00135-10 10.1021/bi3000353 10.1038/nature19790 10.1128/AAC.01105-15 10.1021/id500025n 10.1002/pro.5560070103 10.1002/bip.22877 10.1016/j.virol.2011.08.009 10.1002/anie.201310245 10.1172/JCI71856 10.1073/pnas.1934759100 10.1126/science.1110656 10.1016/S1097-2765(00)80159-8 10.1073/pnas.1002498107 10.1371/journal.ppat.1001110 10.3390/v6093663 10.1074/jbc.M111.317883 10.1146/annurev.biochem.70.1.777 10.1021/ja064058a 10.1016/j.drudis.2016.06.012 10.1016/j.antiviral.2017.12.021 10.1038/srep20514 10.1021/acs.jmedchem.6b00265 10.1128/JVI.00736-06 10.1038/nature07082 10.1038/nsmb.2922 10.1038/nrd1091 10.1038/nprot.2011.324 10.1126/science.aag3267 10.1371/journal.pntd.0004802 10.1038/nrd.2017.251 10.1371/journal.ppat.1001168 10.1073/pnas.93.5.2186 10.1021/jm030210x 10.1021/bi300976m 10.1038/srep43610 10.1093/jac/dkt529 10.1086/515386 10.1126/science.aad6117 10.1128/JVI.01153-13 10.1016/j.bmcl.2013.07.056 10.1128/JVI.02600-10 10.1021/ja0456003 10.1371/journal.ppat.1001121 |
ContentType | Journal Article |
Copyright | 2019 Published by Elsevier B.V. |
Copyright_xml | – notice: 2019 – notice: Published by Elsevier B.V. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.antiviral.2019.104592 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1872-9096 |
ExternalDocumentID | 31473342 10_1016_j_antiviral_2019_104592 S0166354219302992 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AAAJQ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATCM AAXUO ABBQC ABFNM ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ABZDS ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CJTIS CNWQP CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMG HVGLF HZ~ IHE J1W KOM LCYCR LUGTX M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SIN SPCBC SSH SSI SSP SSZ T5K TEORI WUQ ZGI ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c420t-e8ba6328ad394583999f77ce7a24fc6bf2791b8d7cfb9528c877568b7a7f519c3 |
IEDL.DBID | AIKHN |
ISSN | 0166-3542 1872-9096 |
IngestDate | Fri Sep 05 11:47:11 EDT 2025 Thu Apr 03 07:05:37 EDT 2025 Tue Jul 01 01:32:11 EDT 2025 Thu Apr 24 23:10:28 EDT 2025 Fri Feb 23 02:18:14 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Ebola virus Therapeutic Peptides Rodents Cholesterol |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-e8ba6328ad394583999f77ce7a24fc6bf2791b8d7cfb9528c877568b7a7f519c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0166354219302992 |
PMID | 31473342 |
PQID | 2283317097 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2283317097 pubmed_primary_31473342 crossref_primary_10_1016_j_antiviral_2019_104592 crossref_citationtrail_10_1016_j_antiviral_2019_104592 elsevier_sciencedirect_doi_10_1016_j_antiviral_2019_104592 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Antiviral research |
PublicationTitleAlternate | Antiviral Res |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Furuyama, Marzi, Nanbo, Haddock, Maruyama, Miyamoto, Igarashi, Yoshida, Noyori, Feldmann, Takada (bib21) 2016; 6 Mathieu, Augusto, Niewiesk, Horvat, Palermo, Sanna, Madeddu, Huey, Castanho, Porotto, Santos, Moscona (bib44) 2017; 7 Cote, Misasi, Ren, Bruchez, Lee, Filone, Hensley, Li, Ory, Chandran, Cunningham (bib13) 2011; 477 Kuhn, Andersen, Bao, Bavari, Becker, Bennett, Bergman, Blinkova, Bradfute, Brister, Bukreyev, Chandran, Chepurnov, Davey, Dietzgen, Doggett, Dolnik, Dye, Enterlein, Fenimore, Formenty, Freiberg, Garry, Garza, Gire, Gonzalez, Griffiths, Happi, Hensley, Herbert, Hevey, Hoenen, Honko, Ignatyev, Jahrling, Johnson, Johnson, Kindrachuk, Klenk, Kobinger, Kochel, Lackemeyer, Lackner, Leroy, Lever, Muhlberger, Netesov, Olinger, Omilabu, Palacios, Panchal, Park, Patterson, Paweska, Peters, Pettitt, Pitt, Radoshitzky, Ryabchikova, Saphire, Sabeti, Sealfon, Shestopalov, Smither, Sullivan, Swanepoel, Takada, Towner, van der Groen, Volchkov, Volchkova, Wahl-Jensen, Warren, Warfield, Weidmann, Nichol (bib36) 2014; 6 Malashkevich, Schneider, McNally, Milhollen, Pang, Kim (bib43) 1999; 96 Aman (bib1) 2016; 7 Bray, Davis, Geisbert, Schmaljohn, Huggins (bib9) 1998; 178 Taylor (bib62) 2002; 66 Higgins, Koellhoffer, Chandran, Lai (bib29) 2013; 23 Lambert, Barney, Lambert, Guthrie, Medinas, Davis, Bucy, Erickson, Merutka, Petteway (bib38) 1996; 93 Frei, Nyakatura, Zak, Bakken, Chandran, Dye, Lai (bib20) 2016; 6 Nyakatura, Frei, Lai (bib49) 2015; 1 Misasi, Gilman, Kanekiyo, Gui, Cagigi, Mulangu, Corti, Ledgerwood, Lanzavecchia, Cunningham, Muyembe-Tamfun, Baxa, Graham, Xiang, Sullivan, McLellan (bib46) 2016; 351 Shepherd, Hoang, Desai, Letouze, Young, Fairlie (bib59) 2006; 128 Kim, Grossmann, Verdine (bib33) 2011; 6 Aurora, Rose (bib3) 1998; 7 Harrison, Shepherd, Hoang, Ruiz-Gomez, Hill, Driver, Desai, Young, Abbenante, Fairlie (bib27) 2010; 107 Ingallinella, Bianchi, Ladwa, Wang, Hrin, Veneziano, Bonelli, Ketas, Moore, Miller, Pessi (bib32) 2009; 106 Koellhoffer, Malashkevich, Harrison, Toro, Bhosle, Chandran, Almo, Lai (bib34) 2012; 51 Bird, Boyapalle, Wong, Opoku-Nsiah, Bedi, Crannell, Perry, Nguyen, Sampayo, Devareddy, Mohapatra, Mohapatra, Walensky (bib4) 2014; 124 Bird, Madani, Perry, Princiotto, Supko, He, Gavathiotis, Sodroski, Walensky (bib6) 2010; 107 Lee, Fusco, Hessell, Oswald, Burton, Saphire (bib40) 2008; 454 Calvo, Choconta, Diaz, Orozco, Bravo, Espejo, Salazar, Guzman, Patarroyo (bib10) 2003; 46 Gallaher (bib23) 1996; 85 de Araujo, Hoang, Kok, Diness, Gupta, Hill, Driver, Price, Liras, Fairlie (bib15) 2014; 53 Pessi (bib50) 2015; 21 Weissenhorn, Carfi, Lee, Skehel, Wiley (bib66) 1998; 2 Skrip, Galvani (bib60) 2016; 10 Cross, Mire, Feldmann, Geisbert (bib14) 2018; 17 Harrison, Higgins, Chandran, Lai (bib25) 2011; 20 Fairlie, Dantas de Araujo (bib17) 2016; 106 Scholtz, Baldwin (bib57) 1992; 21 Feldmann, Geisbert (bib18) 2011; 377 Lee, Pessi, Gui, Santoprete, Talekar, Moscona, Porotto (bib41) 2011; 286 Chandran, Sullivan, Felbor, Whelan, Cunningham (bib12) 2005; 308 Mulherkar, Raaben, de la Torre, Whelan, Chandran (bib47) 2011; 419 Porotto, Yokoyama, Palermo, Mungall, Aljofan, Cortese, Pessi, Moscona (bib53) 2010; 84 Saeed, Kolokoltsov, Albrecht, Davey (bib56) 2010; 6 Augusto, Hollmann, Castanho, Porotto, Pessi, Santos (bib2) 2014; 69 Porotto, Rockx, Yokoyama, Talekar, Devito, Palermo, Liu, Cortese, Lu, Feldmann, Pessi, Moscona (bib52) 2010; 6 Haque, Hober, Blondiaux (bib24) 2015; 59 Qiu, Audet, Lv, He, Wong, Wei, Luo, Fernando, Kroeker, Fausther Bovendo, Bello, Li, Ye, Jacobs, Ippolito, Saphire, Bi, Shen, Gao, Zeitlin, Feng, Zhang, Kobinger (bib54) 2016; 8 Tan, Lane, Verma (bib61) 2016; 21 Carette, Raaben, Wong, Herbert, Obernosterer, Mulherkar, Kuehne, Kranzusch, Griffin, Ruthel, Dal Cin, Dye, Whelan, Chandran, Brummelkamp (bib11) 2011; 477 Welsch, Talekar, Mathieu, Pessi, Moscona, Horvat, Porotto (bib67) 2013; 87 Warren, Wells, Panchal, Stuthman, Garza, Van Tongeren, Dong, Retterer, Eaton, Pegoraro, Honnold, Bantia, Kotian, Chen, Taubenheim, Welch, Minning, Babu, Sheridan, Bavari (bib64) 2014; 508 Radoshitzky, Warfield, Chi, Dong, Kota, Bradfute, Gearhart, Retterer, Kranzusch, Misasi, Hogenbirk, Wahl-Jensen, Volchkov, Cunningham, Jahrling, Aman, Bavari, Farzan, Kuhn (bib55) 2011; 85 Eckert, Kim (bib16) 2001; 70 Nanbo, Imai, Watanabe, Noda, Takahashi, Neumann, Halfmann, Kawaoka (bib48) 2010; 6 LaBonte, Lebbos, Kirkpatrick (bib37) 2003; 2 Bird, Irimia, Ofek, Kwong, Wilson, Walensky (bib5) 2014; 21 Leduc, Trent, Wittliff, Bramlett, Briggs, Chirgadze, Wang, Burris, Spatola (bib39) 2003; 100 Miller, Harrison, Radoshitzky, Higgins, Chi, Dong, Kuhn, Bavari, Lai, Chandran (bib45) 2011; 286 Bixler, Bocan, Wells, Wetzel, Van Tongeren, Dong, Garza, Donnelly, Cazares, Nuss, Soloveva, Koistinen, Welch, Epstein, Liang, Giesing, Lenk, Bavari, Warren (bib7) 2018; 151 Gaillard, Galloux, Garcin, Eleouet, Le Goffic, Larcher, Rameix-Welti, Boukadiri, Heritier, Segura, Baechler, Arrell, Mottet-Osman, Nyanguile (bib22) 2017; 61 Harrison, Koellhoffer, Chandran, Lai (bib26) 2012; 51 He, Xiao, Song, Liang, Ju, Chen, Lu, Jing, Jiang, Zhang (bib28) 2008; 283 Kuhn, Andersen, Baize, Bao, Bavari, Berthet, Blinkova, Brister, Clawson, Fair, Gabriel, Garry, Gire, Goba, Gonzalez, Gunther, Happi, Jahrling, Kapetshi, Kobinger, Kugelman, Leroy, Maganga, Mbala, Moses, Muyembe-Tamfum, N'Faly, Nichol, Omilabu, Palacios, Park, Paweska, Radoshitzky, Rossi, Sabeti, Schieffelin, Schoepp, Sealfon, Swanepoel, Towner, Wada, Wauquier, Yozwiak, Formenty (bib35) 2014; 6 Li, Tang, Chi, Dong, Wang, Wang (bib42) 2013; 87 Shepherd, Hoang, Abbenante, Fairlie (bib58) 2005; 127 Yao, Chong, Zhang, Waltersperger, Wang, Cui, He (bib68) 2012; 287 Holmes, Dudas, Rambaut, Andersen (bib31) 2016; 538 Hojo, Hossain, Tailhades, Shabanpoor, Wong, Ong-Palsson, Kastman, Ma, Gundlach, Rosengren, Wade, Bathgate (bib30) 2016; 59 Wec, Nyakatura, Herbert, Howell, Holtsberg, Bakken, Mittler, Christin, Shulenin, Jangra, Bharrhan, Kuehne, Bornholdt, Flyak, Saphire, Crowe, Aman, Dye, Lai, Chandran (bib65) 2016; 354 Warren, Jordan, Lo, Ray, Mackman, Soloveva, Siegel, Perron, Bannister, Hui, Larson, Strickley, Wells, Stuthman, Van Tongeren, Garza, Donnelly, Shurtleff, Retterer, Gharaibeh, Zamani, Kenny, Eaton, Grimes, Welch, Gomba, Wilhelmsen, Nichols, Nuss, Nagle, Kugelman, Palacios, Doerffler, Neville, Carra, Clarke, Zhang, Lew, Ross, Wang, Chun, Wolfe, Babusis, Park, Stray, Trancheva, Feng, Barauskas, Xu, Wong, Braun, Flint, McMullan, Chen, Fearns, Swaminathan, Mayers, Spiropoulou, Lee, Nichol, Cihlar, Bavari (bib63) 2016; 531 Bornholdt, Turner, Murin, Li, Sok, Souders, Piper, Goff, Shamblin, Wollen, Sprague, Fusco, Pommert, Cavacini, Smith, Klempner, Reimann, Krauland, Gerngross, Wittrup, Saphire, Burton, Glass, Ward, Walker (bib8) 2016; 351 Flyak, Shen, Murin, Turner, David, Fusco, Lampley, Kose, Ilinykh, Kuzmina, Branchizio, King, Brown, Bryan, Davidson, Doranz, Slaughter, Sapparapu, Klages, Ksiazek, Saphire, Ward, Bukreyev, Crowe (bib19) 2016; 164 Porotto, Doctor, Carta, Fornabaio, Greengard, Kellogg, Moscona (bib51) 2006; 80 Eckert (10.1016/j.antiviral.2019.104592_bib16) 2001; 70 Mulherkar (10.1016/j.antiviral.2019.104592_bib47) 2011; 419 Weissenhorn (10.1016/j.antiviral.2019.104592_bib66) 1998; 2 Shepherd (10.1016/j.antiviral.2019.104592_bib58) 2005; 127 Lee (10.1016/j.antiviral.2019.104592_bib41) 2011; 286 LaBonte (10.1016/j.antiviral.2019.104592_bib37) 2003; 2 Frei (10.1016/j.antiviral.2019.104592_bib20) 2016; 6 Miller (10.1016/j.antiviral.2019.104592_bib45) 2011; 286 Feldmann (10.1016/j.antiviral.2019.104592_bib18) 2011; 377 Pessi (10.1016/j.antiviral.2019.104592_bib50) 2015; 21 Nyakatura (10.1016/j.antiviral.2019.104592_bib49) 2015; 1 Porotto (10.1016/j.antiviral.2019.104592_bib52) 2010; 6 Kuhn (10.1016/j.antiviral.2019.104592_bib36) 2014; 6 Warren (10.1016/j.antiviral.2019.104592_bib64) 2014; 508 Harrison (10.1016/j.antiviral.2019.104592_bib25) 2011; 20 Higgins (10.1016/j.antiviral.2019.104592_bib29) 2013; 23 Gallaher (10.1016/j.antiviral.2019.104592_bib23) 1996; 85 de Araujo (10.1016/j.antiviral.2019.104592_bib15) 2014; 53 Li (10.1016/j.antiviral.2019.104592_bib42) 2013; 87 Lee (10.1016/j.antiviral.2019.104592_bib40) 2008; 454 Augusto (10.1016/j.antiviral.2019.104592_bib2) 2014; 69 Haque (10.1016/j.antiviral.2019.104592_bib24) 2015; 59 Qiu (10.1016/j.antiviral.2019.104592_bib54) 2016; 8 Leduc (10.1016/j.antiviral.2019.104592_bib39) 2003; 100 Bird (10.1016/j.antiviral.2019.104592_bib6) 2010; 107 Holmes (10.1016/j.antiviral.2019.104592_bib31) 2016; 538 Malashkevich (10.1016/j.antiviral.2019.104592_bib43) 1999; 96 Porotto (10.1016/j.antiviral.2019.104592_bib53) 2010; 84 Harrison (10.1016/j.antiviral.2019.104592_bib27) 2010; 107 Carette (10.1016/j.antiviral.2019.104592_bib11) 2011; 477 Aurora (10.1016/j.antiviral.2019.104592_bib3) 1998; 7 Furuyama (10.1016/j.antiviral.2019.104592_bib21) 2016; 6 Kim (10.1016/j.antiviral.2019.104592_bib33) 2011; 6 Kuhn (10.1016/j.antiviral.2019.104592_bib35) 2014; 6 Saeed (10.1016/j.antiviral.2019.104592_bib56) 2010; 6 Bird (10.1016/j.antiviral.2019.104592_bib4) 2014; 124 Bird (10.1016/j.antiviral.2019.104592_bib5) 2014; 21 Bornholdt (10.1016/j.antiviral.2019.104592_bib8) 2016; 351 He (10.1016/j.antiviral.2019.104592_bib28) 2008; 283 Wec (10.1016/j.antiviral.2019.104592_bib65) 2016; 354 Skrip (10.1016/j.antiviral.2019.104592_bib60) 2016; 10 Flyak (10.1016/j.antiviral.2019.104592_bib19) 2016; 164 Bixler (10.1016/j.antiviral.2019.104592_bib7) 2018; 151 Cote (10.1016/j.antiviral.2019.104592_bib13) 2011; 477 Ingallinella (10.1016/j.antiviral.2019.104592_bib32) 2009; 106 Chandran (10.1016/j.antiviral.2019.104592_bib12) 2005; 308 Mathieu (10.1016/j.antiviral.2019.104592_bib44) 2017; 7 Hojo (10.1016/j.antiviral.2019.104592_bib30) 2016; 59 Cross (10.1016/j.antiviral.2019.104592_bib14) 2018; 17 Scholtz (10.1016/j.antiviral.2019.104592_bib57) 1992; 21 Fairlie (10.1016/j.antiviral.2019.104592_bib17) 2016; 106 Yao (10.1016/j.antiviral.2019.104592_bib68) 2012; 287 Aman (10.1016/j.antiviral.2019.104592_bib1) 2016; 7 Lambert (10.1016/j.antiviral.2019.104592_bib38) 1996; 93 Porotto (10.1016/j.antiviral.2019.104592_bib51) 2006; 80 Shepherd (10.1016/j.antiviral.2019.104592_bib59) 2006; 128 Calvo (10.1016/j.antiviral.2019.104592_bib10) 2003; 46 Nanbo (10.1016/j.antiviral.2019.104592_bib48) 2010; 6 Welsch (10.1016/j.antiviral.2019.104592_bib67) 2013; 87 Tan (10.1016/j.antiviral.2019.104592_bib61) 2016; 21 Gaillard (10.1016/j.antiviral.2019.104592_bib22) 2017; 61 Taylor (10.1016/j.antiviral.2019.104592_bib62) 2002; 66 Radoshitzky (10.1016/j.antiviral.2019.104592_bib55) 2011; 85 Misasi (10.1016/j.antiviral.2019.104592_bib46) 2016; 351 Bray (10.1016/j.antiviral.2019.104592_bib9) 1998; 178 Warren (10.1016/j.antiviral.2019.104592_bib63) 2016; 531 Koellhoffer (10.1016/j.antiviral.2019.104592_bib34) 2012; 51 Harrison (10.1016/j.antiviral.2019.104592_bib26) 2012; 51 |
References_xml | – volume: 454 start-page: 177 year: 2008 end-page: 182 ident: bib40 article-title: Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor publication-title: Nature – volume: 351 start-page: 1343 year: 2016 end-page: 1346 ident: bib46 article-title: Structural and molecular basis for Ebola virus neutralization by protective human antibodies publication-title: Science – volume: 8 start-page: 329ra333 year: 2016 ident: bib54 article-title: Two-mAb cocktail protects macaques against the Makona variant of Ebola virus publication-title: Sci. Transl. Med. – volume: 6 start-page: 19193 year: 2016 ident: bib20 article-title: Bispecific antibody affords complete post-exposure protection of mice from both ebola (Zaire) and Sudan viruses publication-title: Sci. Rep. – volume: 351 start-page: 1078 year: 2016 end-page: 1083 ident: bib8 article-title: Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak publication-title: Science – volume: 6 start-page: 20514 year: 2016 ident: bib21 article-title: Discovery of an antibody for pan-ebolavirus therapy publication-title: Sci. Rep. – volume: 531 start-page: 381 year: 2016 end-page: 385 ident: bib63 article-title: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys publication-title: Nature – volume: 93 start-page: 2186 year: 1996 end-page: 2191 ident: bib38 article-title: Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 127 start-page: 2974 year: 2005 end-page: 2983 ident: bib58 article-title: Single turn peptide alpha helices with exceptional stability in water publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 5892 year: 2015 end-page: 5902 ident: bib24 article-title: Addressing therapeutic options for ebola virus infection in current and future outbreaks publication-title: Antimicrob. Agents Chemother. – volume: 21 start-page: 1642 year: 2016 end-page: 1653 ident: bib61 article-title: Stapled peptide design: principles and roles of computation publication-title: Drug Discov. Today – volume: 87 start-page: 9223 year: 2013 end-page: 9232 ident: bib42 article-title: A cholesterol tag at the N terminus of the relatively broad-spectrum fusion inhibitory peptide targets an earlier stage of fusion glycoprotein activation and increases the peptide's antiviral potency in vivo publication-title: J. Virol. – volume: 23 start-page: 5356 year: 2013 end-page: 5360 ident: bib29 article-title: C-peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: effects of conjugation to cholesterol and side chain-side chain crosslinking publication-title: Bioorg. Med. Chem. Lett – volume: 6 year: 2010 ident: bib56 article-title: Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes publication-title: PLoS Pathog. – volume: 61 year: 2017 ident: bib22 article-title: A short double-stapled peptide inhibits respiratory syncytial virus entry and spreading publication-title: Antimicrob. Agents Chemother. – volume: 87 start-page: 13785 year: 2013 end-page: 13794 ident: bib67 article-title: Fatal measles virus infection prevented by brain-penetrant fusion inhibitors publication-title: J. Virol. – volume: 69 start-page: 1286 year: 2014 end-page: 1297 ident: bib2 article-title: Improvement of HIV fusion inhibitor C34 efficacy by membrane anchoring and enhanced exposure publication-title: J. Antimicrob. Chemother. – volume: 477 start-page: 340 year: 2011 end-page: 343 ident: bib11 article-title: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1 publication-title: Nature – volume: 354 start-page: 350 year: 2016 end-page: 354 ident: bib65 article-title: A “Trojan horse” bispecific-antibody strategy for broad protection against ebolaviruses publication-title: Science – volume: 6 start-page: 3663 year: 2014 end-page: 3682 ident: bib36 article-title: Filovirus RefSeq entries: evaluation and selection of filovirus type variants, type sequences, and names publication-title: Viruses – volume: 7 start-page: 43610 year: 2017 ident: bib44 article-title: Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides publication-title: Sci. Rep. – volume: 107 start-page: 14093 year: 2010 end-page: 14098 ident: bib6 article-title: Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 508 start-page: 402 year: 2014 end-page: 405 ident: bib64 article-title: Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430 publication-title: Nature – volume: 51 start-page: 2515 year: 2012 end-page: 2525 ident: bib26 article-title: Marburg virus glycoprotein GP2: pH-dependent stability of the ectodomain alpha-helical bundle publication-title: Biochemistry – volume: 70 start-page: 777 year: 2001 end-page: 810 ident: bib16 article-title: Mechanisms of viral membrane fusion and its inhibition publication-title: Annu. Rev. Biochem. – volume: 7 start-page: 21 year: 1998 end-page: 38 ident: bib3 article-title: Helix capping publication-title: Protein Sci. – volume: 106 start-page: 5801 year: 2009 end-page: 5806 ident: bib32 article-title: Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 59 start-page: 7445 year: 2016 end-page: 7456 ident: bib30 article-title: Development of a single-chain peptide agonist of the relaxin-3 receptor using hydrocarbon stapling publication-title: J. Med. Chem. – volume: 106 start-page: 843 year: 2016 end-page: 852 ident: bib17 article-title: Review stapling peptides using cysteine crosslinking publication-title: Biopolymers – volume: 21 start-page: 379 year: 2015 end-page: 386 ident: bib50 article-title: Cholesterol-conjugated peptide antivirals: a path to a rapid response to emerging viral diseases publication-title: J. Pept. Sci. – volume: 96 start-page: 2662 year: 1999 end-page: 2667 ident: bib43 article-title: Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 85 start-page: 8502 year: 2011 end-page: 8513 ident: bib55 article-title: Ebolavirus delta-peptide immunoadhesins inhibit marburgvirus and ebolavirus cell entry publication-title: J. Virol. – volume: 21 start-page: 95 year: 1992 end-page: 118 ident: bib57 article-title: The mechanism of alpha-helix formation by peptides publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 20 start-page: 1587 year: 2011 end-page: 1596 ident: bib25 article-title: Designed protein mimics of the Ebola virus glycoprotein GP2 alpha-helical bundle: stability and pH effects publication-title: Protein Sci. – volume: 51 start-page: 7665 year: 2012 end-page: 7675 ident: bib34 article-title: Crystal structure of the Marburg virus GP2 core domain in its postfusion conformation publication-title: Biochemistry – volume: 538 start-page: 193 year: 2016 end-page: 200 ident: bib31 article-title: The evolution of Ebola virus: insights from the 2013-2016 epidemic publication-title: Nature – volume: 85 start-page: 477 year: 1996 end-page: 478 ident: bib23 article-title: Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses publication-title: Cell – volume: 128 start-page: 13284 year: 2006 end-page: 13289 ident: bib59 article-title: Modular alpha-helical mimetics with antiviral activity against respiratory syncitial virus publication-title: J. Am. Chem. Soc. – volume: 84 start-page: 6760 year: 2010 end-page: 6768 ident: bib53 article-title: Viral entry inhibitors targeted to the membrane site of action publication-title: J. Virol. – volume: 6 year: 2010 ident: bib52 article-title: Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry publication-title: PLoS Pathog. – volume: 6 start-page: 4760 year: 2014 end-page: 4799 ident: bib35 article-title: Nomenclature- and database-compatible names for the two Ebola virus variants that emerged in Guinea and the Democratic Republic of the Congo in 2014 publication-title: Viruses – volume: 100 start-page: 11273 year: 2003 end-page: 11278 ident: bib39 article-title: Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 2 start-page: 605 year: 1998 end-page: 616 ident: bib66 article-title: Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain publication-title: Mol. Cell – volume: 1 start-page: 42 year: 2015 end-page: 52 ident: bib49 article-title: Chemical and structural aspects of ebola virus entry inhibitors publication-title: ACS Infect. Dis. – volume: 151 start-page: 97 year: 2018 end-page: 104 ident: bib7 article-title: Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus publication-title: Antivir. Res. – volume: 53 start-page: 6965 year: 2014 end-page: 6969 ident: bib15 article-title: Comparative alpha-helicity of cyclic pentapeptides in water publication-title: Angew Chem. Int. Ed. Engl. – volume: 17 start-page: 413 year: 2018 end-page: 434 ident: bib14 article-title: Post-exposure treatments for Ebola and Marburg virus infections publication-title: Nat. Rev. Drug Discov. – volume: 178 start-page: 651 year: 1998 end-page: 661 ident: bib9 article-title: A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever publication-title: J. Infect. Dis. – volume: 377 start-page: 849 year: 2011 end-page: 862 ident: bib18 article-title: Ebola haemorrhagic fever publication-title: Lancet – volume: 419 start-page: 72 year: 2011 end-page: 83 ident: bib47 article-title: The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway publication-title: Virology – volume: 80 start-page: 9837 year: 2006 end-page: 9849 ident: bib51 article-title: Inhibition of hendra virus fusion publication-title: J. Virol. – volume: 10 year: 2016 ident: bib60 article-title: Next steps for ebola vaccination: deployment in non-epidemic, high-risk settings publication-title: PLoS Neglected Trop. Dis. – volume: 287 start-page: 6788 year: 2012 end-page: 6796 ident: bib68 article-title: Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide publication-title: J. Biol. Chem. – volume: 286 start-page: 15854 year: 2011 end-page: 15861 ident: bib45 article-title: Inhibition of Ebola virus entry by a C-peptide targeted to endosomes publication-title: J. Biol. Chem. – volume: 7 year: 2016 ident: bib1 article-title: Chasing ebola through the endosomal labyrinth publication-title: mBio – volume: 66 start-page: 49 year: 2002 end-page: 75 ident: bib62 article-title: The synthesis and study of side-chain lactam-bridged peptides publication-title: Biopolymers – volume: 46 start-page: 5389 year: 2003 end-page: 5394 ident: bib10 article-title: An alpha helix conformationally restricted peptide is recognized by cervical carcinoma patients' sera publication-title: J. Med. Chem. – volume: 2 start-page: 345 year: 2003 end-page: 346 ident: bib37 article-title: Enfuvirtide publication-title: Nat. Rev. Drug Discov. – volume: 6 year: 2010 ident: bib48 article-title: Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner publication-title: PLoS Pathog. – volume: 6 start-page: 761 year: 2011 end-page: 771 ident: bib33 article-title: Synthesis of all-hydrocarbon stapled alpha-helical peptides by ring-closing olefin metathesis publication-title: Nat. Protoc. – volume: 308 start-page: 1643 year: 2005 end-page: 1645 ident: bib12 article-title: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection publication-title: Science – volume: 286 start-page: 42141 year: 2011 end-page: 42149 ident: bib41 article-title: Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus publication-title: J. Biol. Chem. – volume: 164 start-page: 392 year: 2016 end-page: 405 ident: bib19 article-title: Cross-reactive and potent neutralizing antibody responses in human survivors of natural ebolavirus infection publication-title: Cell – volume: 477 start-page: 344 year: 2011 end-page: 348 ident: bib13 article-title: Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection publication-title: Nature – volume: 283 start-page: 11126 year: 2008 end-page: 11134 ident: bib28 article-title: Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor publication-title: J. Biol. Chem. – volume: 21 start-page: 1058 year: 2014 end-page: 1067 ident: bib5 article-title: Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies publication-title: Nat. Struct. Mol. Biol. – volume: 124 start-page: 2113 year: 2014 end-page: 2124 ident: bib4 article-title: Mucosal delivery of a double-stapled RSV peptide prevents nasopulmonary infection publication-title: J. Clin. Investig. – volume: 107 start-page: 11686 year: 2010 end-page: 11691 ident: bib27 article-title: Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 283 start-page: 11126 year: 2008 ident: 10.1016/j.antiviral.2019.104592_bib28 article-title: Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor publication-title: J. Biol. Chem. doi: 10.1074/jbc.M800200200 – volume: 21 start-page: 95 year: 1992 ident: 10.1016/j.antiviral.2019.104592_bib57 article-title: The mechanism of alpha-helix formation by peptides publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.bb.21.060192.000523 – volume: 377 start-page: 849 year: 2011 ident: 10.1016/j.antiviral.2019.104592_bib18 article-title: Ebola haemorrhagic fever publication-title: Lancet doi: 10.1016/S0140-6736(10)60667-8 – volume: 20 start-page: 1587 year: 2011 ident: 10.1016/j.antiviral.2019.104592_bib25 article-title: Designed protein mimics of the Ebola virus glycoprotein GP2 alpha-helical bundle: stability and pH effects publication-title: Protein Sci. doi: 10.1002/pro.688 – volume: 351 start-page: 1078 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib8 article-title: Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak publication-title: Science doi: 10.1126/science.aad5788 – volume: 286 start-page: 42141 year: 2011 ident: 10.1016/j.antiviral.2019.104592_bib41 article-title: Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.254243 – volume: 7 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib1 article-title: Chasing ebola through the endosomal labyrinth publication-title: mBio doi: 10.1128/mBio.00346-16 – volume: 477 start-page: 340 year: 2011 ident: 10.1016/j.antiviral.2019.104592_bib11 article-title: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1 publication-title: Nature doi: 10.1038/nature10348 – volume: 107 start-page: 14093 year: 2010 ident: 10.1016/j.antiviral.2019.104592_bib6 article-title: Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1002713107 – volume: 508 start-page: 402 year: 2014 ident: 10.1016/j.antiviral.2019.104592_bib64 article-title: Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430 publication-title: Nature doi: 10.1038/nature13027 – volume: 96 start-page: 2662 year: 1999 ident: 10.1016/j.antiviral.2019.104592_bib43 article-title: Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.96.6.2662 – volume: 21 start-page: 379 year: 2015 ident: 10.1016/j.antiviral.2019.104592_bib50 article-title: Cholesterol-conjugated peptide antivirals: a path to a rapid response to emerging viral diseases publication-title: J. Pept. Sci. doi: 10.1002/psc.2706 – volume: 8 start-page: 329ra333 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib54 article-title: Two-mAb cocktail protects macaques against the Makona variant of Ebola virus publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad9875 – volume: 85 start-page: 477 year: 1996 ident: 10.1016/j.antiviral.2019.104592_bib23 article-title: Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses publication-title: Cell doi: 10.1016/S0092-8674(00)81248-9 – volume: 477 start-page: 344 year: 2011 ident: 10.1016/j.antiviral.2019.104592_bib13 article-title: Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection publication-title: Nature doi: 10.1038/nature10380 – volume: 164 start-page: 392 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib19 article-title: Cross-reactive and potent neutralizing antibody responses in human survivors of natural ebolavirus infection publication-title: Cell doi: 10.1016/j.cell.2015.12.022 – volume: 6 start-page: 19193 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib20 article-title: Bispecific antibody affords complete post-exposure protection of mice from both ebola (Zaire) and Sudan viruses publication-title: Sci. Rep. doi: 10.1038/srep19193 – volume: 61 year: 2017 ident: 10.1016/j.antiviral.2019.104592_bib22 article-title: A short double-stapled peptide inhibits respiratory syncytial virus entry and spreading publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02241-16 – volume: 531 start-page: 381 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib63 article-title: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys publication-title: Nature doi: 10.1038/nature17180 – volume: 106 start-page: 5801 year: 2009 ident: 10.1016/j.antiviral.2019.104592_bib32 article-title: Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0901007106 – volume: 286 start-page: 15854 year: 2011 ident: 10.1016/j.antiviral.2019.104592_bib45 article-title: Inhibition of Ebola virus entry by a C-peptide targeted to endosomes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.207084 – volume: 66 start-page: 49 year: 2002 ident: 10.1016/j.antiviral.2019.104592_bib62 article-title: The synthesis and study of side-chain lactam-bridged peptides publication-title: Biopolymers doi: 10.1002/bip.10203 – volume: 87 start-page: 13785 year: 2013 ident: 10.1016/j.antiviral.2019.104592_bib67 article-title: Fatal measles virus infection prevented by brain-penetrant fusion inhibitors publication-title: J. Virol. doi: 10.1128/JVI.02436-13 – volume: 6 start-page: 4760 year: 2014 ident: 10.1016/j.antiviral.2019.104592_bib35 article-title: Nomenclature- and database-compatible names for the two Ebola virus variants that emerged in Guinea and the Democratic Republic of the Congo in 2014 publication-title: Viruses doi: 10.3390/v6114760 – volume: 84 start-page: 6760 year: 2010 ident: 10.1016/j.antiviral.2019.104592_bib53 article-title: Viral entry inhibitors targeted to the membrane site of action publication-title: J. Virol. doi: 10.1128/JVI.00135-10 – volume: 51 start-page: 2515 year: 2012 ident: 10.1016/j.antiviral.2019.104592_bib26 article-title: Marburg virus glycoprotein GP2: pH-dependent stability of the ectodomain alpha-helical bundle publication-title: Biochemistry doi: 10.1021/bi3000353 – volume: 538 start-page: 193 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib31 article-title: The evolution of Ebola virus: insights from the 2013-2016 epidemic publication-title: Nature doi: 10.1038/nature19790 – volume: 59 start-page: 5892 year: 2015 ident: 10.1016/j.antiviral.2019.104592_bib24 article-title: Addressing therapeutic options for ebola virus infection in current and future outbreaks publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.01105-15 – volume: 1 start-page: 42 year: 2015 ident: 10.1016/j.antiviral.2019.104592_bib49 article-title: Chemical and structural aspects of ebola virus entry inhibitors publication-title: ACS Infect. Dis. doi: 10.1021/id500025n – volume: 7 start-page: 21 year: 1998 ident: 10.1016/j.antiviral.2019.104592_bib3 article-title: Helix capping publication-title: Protein Sci. doi: 10.1002/pro.5560070103 – volume: 106 start-page: 843 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib17 article-title: Review stapling peptides using cysteine crosslinking publication-title: Biopolymers doi: 10.1002/bip.22877 – volume: 419 start-page: 72 year: 2011 ident: 10.1016/j.antiviral.2019.104592_bib47 article-title: The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway publication-title: Virology doi: 10.1016/j.virol.2011.08.009 – volume: 53 start-page: 6965 year: 2014 ident: 10.1016/j.antiviral.2019.104592_bib15 article-title: Comparative alpha-helicity of cyclic pentapeptides in water publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201310245 – volume: 124 start-page: 2113 year: 2014 ident: 10.1016/j.antiviral.2019.104592_bib4 article-title: Mucosal delivery of a double-stapled RSV peptide prevents nasopulmonary infection publication-title: J. Clin. Investig. doi: 10.1172/JCI71856 – volume: 100 start-page: 11273 year: 2003 ident: 10.1016/j.antiviral.2019.104592_bib39 article-title: Helix-stabilized cyclic peptides as selective inhibitors of steroid receptor-coactivator interactions publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1934759100 – volume: 308 start-page: 1643 year: 2005 ident: 10.1016/j.antiviral.2019.104592_bib12 article-title: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection publication-title: Science doi: 10.1126/science.1110656 – volume: 2 start-page: 605 year: 1998 ident: 10.1016/j.antiviral.2019.104592_bib66 article-title: Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain publication-title: Mol. Cell doi: 10.1016/S1097-2765(00)80159-8 – volume: 107 start-page: 11686 year: 2010 ident: 10.1016/j.antiviral.2019.104592_bib27 article-title: Downsizing human, bacterial, and viral proteins to short water-stable alpha helices that maintain biological potency publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1002498107 – volume: 6 year: 2010 ident: 10.1016/j.antiviral.2019.104592_bib56 article-title: Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001110 – volume: 6 start-page: 3663 year: 2014 ident: 10.1016/j.antiviral.2019.104592_bib36 article-title: Filovirus RefSeq entries: evaluation and selection of filovirus type variants, type sequences, and names publication-title: Viruses doi: 10.3390/v6093663 – volume: 287 start-page: 6788 year: 2012 ident: 10.1016/j.antiviral.2019.104592_bib68 article-title: Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.317883 – volume: 70 start-page: 777 year: 2001 ident: 10.1016/j.antiviral.2019.104592_bib16 article-title: Mechanisms of viral membrane fusion and its inhibition publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.70.1.777 – volume: 128 start-page: 13284 year: 2006 ident: 10.1016/j.antiviral.2019.104592_bib59 article-title: Modular alpha-helical mimetics with antiviral activity against respiratory syncitial virus publication-title: J. Am. Chem. Soc. doi: 10.1021/ja064058a – volume: 21 start-page: 1642 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib61 article-title: Stapled peptide design: principles and roles of computation publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2016.06.012 – volume: 151 start-page: 97 year: 2018 ident: 10.1016/j.antiviral.2019.104592_bib7 article-title: Efficacy of favipiravir (T-705) in nonhuman primates infected with Ebola virus or Marburg virus publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2017.12.021 – volume: 6 start-page: 20514 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib21 article-title: Discovery of an antibody for pan-ebolavirus therapy publication-title: Sci. Rep. doi: 10.1038/srep20514 – volume: 59 start-page: 7445 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib30 article-title: Development of a single-chain peptide agonist of the relaxin-3 receptor using hydrocarbon stapling publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b00265 – volume: 80 start-page: 9837 year: 2006 ident: 10.1016/j.antiviral.2019.104592_bib51 article-title: Inhibition of hendra virus fusion publication-title: J. Virol. doi: 10.1128/JVI.00736-06 – volume: 454 start-page: 177 year: 2008 ident: 10.1016/j.antiviral.2019.104592_bib40 article-title: Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor publication-title: Nature doi: 10.1038/nature07082 – volume: 21 start-page: 1058 year: 2014 ident: 10.1016/j.antiviral.2019.104592_bib5 article-title: Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2922 – volume: 2 start-page: 345 year: 2003 ident: 10.1016/j.antiviral.2019.104592_bib37 article-title: Enfuvirtide publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1091 – volume: 6 start-page: 761 year: 2011 ident: 10.1016/j.antiviral.2019.104592_bib33 article-title: Synthesis of all-hydrocarbon stapled alpha-helical peptides by ring-closing olefin metathesis publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.324 – volume: 354 start-page: 350 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib65 article-title: A “Trojan horse” bispecific-antibody strategy for broad protection against ebolaviruses publication-title: Science doi: 10.1126/science.aag3267 – volume: 10 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib60 article-title: Next steps for ebola vaccination: deployment in non-epidemic, high-risk settings publication-title: PLoS Neglected Trop. Dis. doi: 10.1371/journal.pntd.0004802 – volume: 17 start-page: 413 year: 2018 ident: 10.1016/j.antiviral.2019.104592_bib14 article-title: Post-exposure treatments for Ebola and Marburg virus infections publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.251 – volume: 6 year: 2010 ident: 10.1016/j.antiviral.2019.104592_bib52 article-title: Inhibition of Nipah virus infection in vivo: targeting an early stage of paramyxovirus fusion activation during viral entry publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001168 – volume: 93 start-page: 2186 year: 1996 ident: 10.1016/j.antiviral.2019.104592_bib38 article-title: Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.93.5.2186 – volume: 46 start-page: 5389 year: 2003 ident: 10.1016/j.antiviral.2019.104592_bib10 article-title: An alpha helix conformationally restricted peptide is recognized by cervical carcinoma patients' sera publication-title: J. Med. Chem. doi: 10.1021/jm030210x – volume: 51 start-page: 7665 year: 2012 ident: 10.1016/j.antiviral.2019.104592_bib34 article-title: Crystal structure of the Marburg virus GP2 core domain in its postfusion conformation publication-title: Biochemistry doi: 10.1021/bi300976m – volume: 7 start-page: 43610 year: 2017 ident: 10.1016/j.antiviral.2019.104592_bib44 article-title: Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides publication-title: Sci. Rep. doi: 10.1038/srep43610 – volume: 69 start-page: 1286 year: 2014 ident: 10.1016/j.antiviral.2019.104592_bib2 article-title: Improvement of HIV fusion inhibitor C34 efficacy by membrane anchoring and enhanced exposure publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkt529 – volume: 178 start-page: 651 year: 1998 ident: 10.1016/j.antiviral.2019.104592_bib9 article-title: A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever publication-title: J. Infect. Dis. doi: 10.1086/515386 – volume: 351 start-page: 1343 year: 2016 ident: 10.1016/j.antiviral.2019.104592_bib46 article-title: Structural and molecular basis for Ebola virus neutralization by protective human antibodies publication-title: Science doi: 10.1126/science.aad6117 – volume: 87 start-page: 9223 year: 2013 ident: 10.1016/j.antiviral.2019.104592_bib42 article-title: A cholesterol tag at the N terminus of the relatively broad-spectrum fusion inhibitory peptide targets an earlier stage of fusion glycoprotein activation and increases the peptide's antiviral potency in vivo publication-title: J. Virol. doi: 10.1128/JVI.01153-13 – volume: 23 start-page: 5356 year: 2013 ident: 10.1016/j.antiviral.2019.104592_bib29 article-title: C-peptide inhibitors of Ebola virus glycoprotein-mediated cell entry: effects of conjugation to cholesterol and side chain-side chain crosslinking publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2013.07.056 – volume: 85 start-page: 8502 year: 2011 ident: 10.1016/j.antiviral.2019.104592_bib55 article-title: Ebolavirus delta-peptide immunoadhesins inhibit marburgvirus and ebolavirus cell entry publication-title: J. Virol. doi: 10.1128/JVI.02600-10 – volume: 127 start-page: 2974 year: 2005 ident: 10.1016/j.antiviral.2019.104592_bib58 article-title: Single turn peptide alpha helices with exceptional stability in water publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0456003 – volume: 6 year: 2010 ident: 10.1016/j.antiviral.2019.104592_bib48 article-title: Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1001121 |
SSID | ssj0006798 |
Score | 2.403635 |
Snippet | Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 104592 |
SubjectTerms | Cholesterol Ebola virus Peptides Rodents Therapeutic |
Title | Cholesterol-conjugated stapled peptides inhibit Ebola and Marburg viruses in vitro and in vivo |
URI | https://dx.doi.org/10.1016/j.antiviral.2019.104592 https://www.ncbi.nlm.nih.gov/pubmed/31473342 https://www.proquest.com/docview/2283317097 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xRbviglj2VV7KSnvNNomdOOZWVUVlUbmwSJzWsh1nCaqSiqZIXPjtzORRiQPiwClxkpFHY3vmc2Y8A_Ar56nJEIf6SRLTBiWQvnba-QEXTGSIUbWlw8nzy2R2zf_cxDdbMOnPwlBYZaf7W53eaOvuyaiT5mhZFKMrBCtoLTkuORagUkU9vB2htU8HsD0-v5hdbhQyORraFN-JTwQvwryQ_4LCackNEUpyecYyes1IvQZCG2N0tge7HYr0xi2jn2HLlfvwsa0r-bgPn-adx_wL_JtQAVzKhlAtfNz73q3pv1nmIShcLvC6pKiWzK28orwtTFF7U4ObXU-XmTfXJPH_HvK9XjVf4G19XzUvm8ZD9RWuz6Z_JzO_q6ngWx4Fte9SoxMWpTpjklymiA9zIawTOuK5TUweCRmaNBM2NzKOUpsKESepEVrkCPYs-waDsirdD_BCGzAW6zDj0nDCEprApzE6NrlhuRxC0gtR2S7hONW9WKg-suxObaSvSPqqlf4Qgg3hss258TbJaT9K6sX0UWgZ3ib-2Y-rwsVFHhNdumq9UpQbCAFWIMUQvrcDvuGIhTidGY8O3tP1IexQqz3ceASD-n7tjhHl1OYEPvx-Ck-6ufwM-PT8PA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6hIlguaIF9lF3YrLTXqEnsxPHeUAUqj_ayIHFay3YcCKqSiqZI_Htm8qjEAXHglIcz8mhsz3zOjGcA_uQ8NRniUD9JYtqgBNLXTjs_4IKJDDGqtnQ4eTpLJjf84ja-3YBxfxaGwio73d_q9EZbd29GnTRHi6IY_UOwgtaS45JjASpV1MObnIpaD2Dz5PxyMlsrZHI0tCm-E58IXoV5If8FhdOSGyKU5PKMZfSWkXoLhDbG6Owz7HYo0jtpGd2DDVfuw1ZbV_J5H7anncf8AP6PqQAuZUOo5j7ufR9W9N8s8xAULuZ4XVBUS-aWXlHeF6aovVODm11Pl5k31STxOw_5Xi2bL_C2fqyaxubhqfoCN2en1-OJ39VU8C2Pgtp3qdEJi1KdMUkuU8SHuRDWCR3x3CYmj4QMTZoJmxsZR6lNhYiT1AgtcgR7ln2FQVmV7jt4oQ0Yi3WYcWk4YQlN4NMYHZvcsFwOIemFqGyXcJzqXsxVH1n2oNbSVyR91Up_CMGacNHm3Hif5G8_SurV9FFoGd4n_t2Pq8LFRR4TXbpqtVSUGwgBViDFEL61A77miIU4nRmPDj_S9S_4NLmeXqmr89nlD9ihlvag408Y1I8rd4SIpzbH3Yx-Aep2_iI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholesterol-conjugated+stapled+peptides+inhibit+Ebola+and+Marburg+viruses+in+vitro+and+in+vivo&rft.jtitle=Antiviral+research&rft.au=Pessi%2C+Antonello&rft.au=Bixler%2C+Sandra+L&rft.au=Soloveva%2C+Veronica&rft.au=Radoshitzky%2C+Sheli&rft.date=2019-11-01&rft.eissn=1872-9096&rft.volume=171&rft.spage=104592&rft_id=info:doi/10.1016%2Fj.antiviral.2019.104592&rft_id=info%3Apmid%2F31473342&rft.externalDocID=31473342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-3542&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-3542&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-3542&client=summon |