Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data

•Summary of recent work identifying sub-groups of energy consumption in buildings.•Clusterwise (or latent class) regression gives superior prediction accuracy.•K-means gives more stable clusters when the correct number of clusters is chosen.•A tradeoff between prediction accuracy and cluster stabili...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 160; no. C; pp. 153 - 163
Main Author Hsu, David
Format Journal Article
LanguageEnglish
Published United Kingdom Elsevier Ltd 15.12.2015
Elsevier
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2015.08.126

Cover

Abstract •Summary of recent work identifying sub-groups of energy consumption in buildings.•Clusterwise (or latent class) regression gives superior prediction accuracy.•K-means gives more stable clusters when the correct number of clusters is chosen.•A tradeoff between prediction accuracy and cluster stability seems to exist. Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking. This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression, also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes.
AbstractList Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking. This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression, also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes.
•Summary of recent work identifying sub-groups of energy consumption in buildings.•Clusterwise (or latent class) regression gives superior prediction accuracy.•K-means gives more stable clusters when the correct number of clusters is chosen.•A tradeoff between prediction accuracy and cluster stability seems to exist. Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking. This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression, also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes.
Author Hsu, David
Author_xml – sequence: 1
  givenname: David
  surname: Hsu
  fullname: Hsu, David
  email: ydh@mit.edu
  organization: Department of Urban Studies & Planning, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
BackLink https://www.osti.gov/biblio/1250054$$D View this record in Osti.gov
BookMark eNqFUU1v1DAUtFArsW35C8jixCXps7P2JhIH0Kq0SJW4wNly7JetV4kdbAep_x6HwKWXnnx4M-P5uCIXPngk5D2DmgGTt-daz-gxnp5rDkzU0NaMyzdkx9oDrzrG2guygwZkxSXr3pKrlM4AwBmHHYnHMM06uhQ8DQN1PuMp6oyWmnFJGaPzJzphfgo20SFEqo1ZVgDV3tKUdT8inSNaZ7LbNPrFjXalbaaoCT4t0_z3bHXWN-Ry0GPCd__ea_Lz692P40P1-P3-2_HLY2X2HHJl-6FltuVa7MXhIBCwGGZWy143xnQ4NEy0XQeNlKxHCaYF6AXwQXBpesmba_Jh0w0pO5WMy2ieihmPJivGBYDYF9DHDTTH8GvBlNXkksFx1B7DkhQvTTWlzlYU6KcNamJIKeKgiqReY-Wo3agYqHUPdVb_91DrHgra8pssdPmCPkc36fj8OvHzRsRS1m-Hcc2C3pTO4xrFBveaxB_QFK1o
CitedBy_id crossref_primary_10_1002_esp_4984
crossref_primary_10_1080_10298436_2018_1521970
crossref_primary_10_1016_j_scs_2020_102431
crossref_primary_10_1016_j_apenergy_2016_05_074
crossref_primary_10_1016_j_apenergy_2017_07_009
crossref_primary_10_1016_j_buildenv_2018_05_035
crossref_primary_10_1016_j_enbuild_2023_113637
crossref_primary_10_1016_j_apenergy_2019_03_078
crossref_primary_10_1016_j_energy_2018_09_144
crossref_primary_10_3390_pr7100731
crossref_primary_10_1016_j_jclepro_2022_131602
crossref_primary_10_1007_s40430_021_03005_5
crossref_primary_10_1016_j_buildenv_2022_108958
crossref_primary_10_1016_j_future_2018_02_022
crossref_primary_10_1016_j_egyr_2022_06_117
crossref_primary_10_1016_j_scs_2020_102385
crossref_primary_10_1016_j_enbuild_2021_110754
crossref_primary_10_1016_j_eneco_2017_05_014
crossref_primary_10_1109_ACCESS_2021_3075175
crossref_primary_10_1016_j_apenergy_2020_114920
crossref_primary_10_1016_j_eswa_2022_117040
crossref_primary_10_1155_2021_7873310
crossref_primary_10_1108_JEDT_12_2015_0082
crossref_primary_10_3390_en15155534
crossref_primary_10_1016_j_apenergy_2019_01_076
crossref_primary_10_1016_j_apenergy_2018_03_079
crossref_primary_10_1016_j_jobe_2021_103027
crossref_primary_10_1016_j_jobe_2025_112295
crossref_primary_10_1590_s1678_3921_pab2020_v55_01521
crossref_primary_10_1016_j_solener_2020_01_034
crossref_primary_10_1016_j_enbuild_2019_04_026
crossref_primary_10_1002_wene_374
crossref_primary_10_1016_j_apenergy_2020_116114
crossref_primary_10_1016_j_scs_2022_103981
crossref_primary_10_1016_j_energy_2018_10_175
crossref_primary_10_1016_j_esr_2024_101322
crossref_primary_10_1016_j_enbuild_2020_109999
crossref_primary_10_1016_j_energy_2017_05_148
crossref_primary_10_1016_j_dibe_2024_100320
crossref_primary_10_1016_j_neucom_2016_08_004
crossref_primary_10_1016_j_heliyon_2024_e26038
crossref_primary_10_1007_s12273_020_0626_1
crossref_primary_10_1016_j_apenergy_2019_113500
crossref_primary_10_1016_j_scs_2018_05_050
crossref_primary_10_1016_j_apenergy_2018_10_053
crossref_primary_10_1016_j_apenergy_2019_04_085
crossref_primary_10_1016_j_apenergy_2020_115399
crossref_primary_10_3390_su152115489
crossref_primary_10_1016_j_aei_2019_100990
crossref_primary_10_1016_j_scs_2020_102321
crossref_primary_10_1016_j_asoc_2022_109616
crossref_primary_10_1016_j_egyr_2019_10_009
crossref_primary_10_1016_j_apenergy_2017_01_095
crossref_primary_10_1016_j_enbuild_2023_113604
crossref_primary_10_1016_j_scs_2022_104260
crossref_primary_10_1016_j_eneco_2021_105590
crossref_primary_10_1016_j_eswa_2019_07_034
crossref_primary_10_1016_j_apenergy_2016_12_111
crossref_primary_10_1016_j_cities_2024_105392
crossref_primary_10_1016_j_jclepro_2019_05_085
crossref_primary_10_3390_en10101525
crossref_primary_10_3390_en11010242
crossref_primary_10_2139_ssrn_3982129
crossref_primary_10_3390_en17030689
crossref_primary_10_1016_j_enbuild_2016_07_018
crossref_primary_10_1016_j_enpol_2022_112886
crossref_primary_10_3989_sefarad_020_003
crossref_primary_10_1016_j_apenergy_2018_09_050
crossref_primary_10_1051_e3sconf_202339601101
crossref_primary_10_3390_buildings14082491
crossref_primary_10_1016_j_eswa_2024_123934
crossref_primary_10_1016_j_seta_2024_103976
crossref_primary_10_1016_j_seta_2021_101277
crossref_primary_10_1109_JSYST_2018_2890524
crossref_primary_10_1016_j_energy_2015_11_037
crossref_primary_10_1080_24751448_2018_1497369
crossref_primary_10_1016_j_applthermaleng_2017_09_007
crossref_primary_10_1016_j_geomorph_2018_10_022
crossref_primary_10_1016_j_jobe_2021_102706
crossref_primary_10_1177_2399808319841909
crossref_primary_10_1016_j_energy_2020_118530
crossref_primary_10_1016_j_applthermaleng_2022_119408
crossref_primary_10_1016_j_jobe_2022_104445
crossref_primary_10_1016_j_egypro_2016_06_066
crossref_primary_10_1016_j_jobe_2023_107716
crossref_primary_10_1016_j_ceramint_2017_03_088
crossref_primary_10_1007_s44196_024_00618_1
crossref_primary_10_1016_j_apenergy_2020_116223
crossref_primary_10_1016_j_enbuild_2019_01_002
crossref_primary_10_1016_j_enconman_2018_03_015
crossref_primary_10_1111_jiec_13097
crossref_primary_10_1145_3550074
crossref_primary_10_1016_j_enbuild_2018_04_037
crossref_primary_10_1016_j_scs_2020_102101
crossref_primary_10_1016_j_eswa_2021_116293
crossref_primary_10_1016_j_enbuild_2023_113823
crossref_primary_10_1016_j_enbuild_2017_11_007
crossref_primary_10_1016_j_enbuild_2017_11_008
crossref_primary_10_1016_j_rser_2024_114478
crossref_primary_10_1002_adts_201900145
crossref_primary_10_2478_crebss_2018_0013
crossref_primary_10_1016_j_rser_2020_110287
crossref_primary_10_3390_make6020045
crossref_primary_10_1007_s12273_024_1152_3
crossref_primary_10_1016_j_apenergy_2019_114246
crossref_primary_10_3390_en16052485
crossref_primary_10_1016_j_renene_2018_06_069
crossref_primary_10_1016_j_egyai_2020_100009
crossref_primary_10_1016_j_buildenv_2020_107114
crossref_primary_10_1080_13467581_2023_2244730
crossref_primary_10_1016_j_apenergy_2015_12_088
crossref_primary_10_1016_j_apenergy_2017_03_051
crossref_primary_10_3390_buildings13112721
crossref_primary_10_1016_j_egypro_2018_11_283
crossref_primary_10_1016_j_apenergy_2018_10_116
crossref_primary_10_2166_wst_2020_220
crossref_primary_10_3390_en14196130
crossref_primary_10_1016_j_enbuild_2022_111844
crossref_primary_10_1080_01944363_2019_1647446
crossref_primary_10_3390_en12071201
crossref_primary_10_1016_j_enbuild_2021_111307
crossref_primary_10_1007_s40997_023_00748_5
crossref_primary_10_1016_j_enbuild_2024_114353
crossref_primary_10_1016_j_apenergy_2015_12_015
Cites_doi 10.1016/j.energy.2015.02.008
10.1016/j.apenergy.2008.05.016
10.1016/j.apenergy.2007.10.012
10.1016/j.enbuild.2013.10.004
10.1016/j.enbuild.2011.02.002
10.1016/j.patrec.2009.09.011
10.1016/j.apenergy.2011.04.047
10.1016/j.enbuild.2004.04.004
10.1016/j.rser.2008.09.033
10.1007/BF02265317
10.21236/ADA456562
10.18637/jss.v033.i01
10.1016/j.apenergy.2014.08.111
10.1080/00273170701836653
10.18637/jss.v011.i08
10.18637/jss.v028.i04
10.1111/j.2517-6161.1977.tb01600.x
10.1016/j.enbuild.2011.10.026
10.1016/j.jmva.2007.07.002
10.1111/1467-9868.00293
10.1016/j.enbuild.2006.04.018
10.1016/j.enbuild.2012.06.006
10.1198/016214502760047131
10.18637/jss.v014.i12
10.2307/2532201
10.1016/j.enbuild.2012.03.033
10.1016/j.apenergy.2012.06.002
10.1007/BF02249940
10.1016/j.enbuild.2010.04.006
10.1016/j.enbuild.2007.03.007
10.1016/j.apenergy.2014.12.039
10.1016/j.enbuild.2011.07.024
10.1016/j.enpol.2007.10.009
10.1016/j.buildenv.2011.08.016
10.1016/j.apenergy.2009.12.007
10.1007/BF01897167
10.1016/j.apenergy.2007.09.004
10.1007/s11336-007-9019-y
10.1080/09613210903162126
10.1016/j.apenergy.2011.09.023
10.1016/j.enbuild.2011.06.024
10.1016/j.csda.2006.11.025
10.1016/j.enbuild.2008.07.012
10.1016/j.enbuild.2011.06.036
10.1016/j.apenergy.2010.05.015
ContentType Journal Article
Copyright 2015 The Author
Copyright_xml – notice: 2015 The Author
CorporateAuthor Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
CorporateAuthor_xml – name: Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1016/j.apenergy.2015.08.126
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 163
ExternalDocumentID 1250054
10_1016_j_apenergy_2015_08_126
S0306261915010624
GeographicLocations New York
GeographicLocations_xml – name: New York
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
ZY4
7S9
EFKBS
L.6
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
ID FETCH-LOGICAL-c420t-dbf81d82a545775e0e1201da6ba3cc9ef31589903661be60c800b502f526cb623
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri May 19 01:01:38 EDT 2023
Fri Sep 05 03:14:01 EDT 2025
Tue Jul 01 03:05:30 EDT 2025
Thu Apr 24 22:53:11 EDT 2025
Fri Feb 23 02:32:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Prediction accuracy
Cluster-wise regression
Energy consumption
Cluster stability
Latent class regression
Buildings
Language English
License http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-dbf81d82a545775e0e1201da6ba3cc9ef31589903661be60c800b502f526cb623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
EE0004261
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0306261915010624
PQID 2000312685
PQPubID 24069
PageCount 11
ParticipantIDs osti_scitechconnect_1250054
proquest_miscellaneous_2000312685
crossref_citationtrail_10_1016_j_apenergy_2015_08_126
crossref_primary_10_1016_j_apenergy_2015_08_126
elsevier_sciencedirect_doi_10_1016_j_apenergy_2015_08_126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-15
PublicationDateYYYYMMDD 2015-12-15
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-15
  day: 15
PublicationDecade 2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Applied energy
PublicationYear 2015
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Yu, Fung, Haghighat, Yoshino, Morofsky (b0100) 2011; 43
Hastie, Tibshirani, Friedman (b0230) 2009
Li, Wang, Gu, Li, Wu (b0035) 2015
Späth (b0180) 1992
Hsu (b0235) 2015; 83
Leisch F. FlexMix: a general framework for finite mixture models and latent class regression in R; 2003.
Baker, Rylatt (b0020) 2008; 85
Yu, Haghighat, Fung, Yoshino (b0080) 2010; 42
Späth (b0170) 1979; 22
Swan, Ugursal (b0060) 2009; 13
Seem (b0110) 2005; 37
Theodoridou, Papadopoulos, Hegger (b0050) 2011; 43
Yu, Chan (b0140) 2012; 44
Gaitani, Lehmann, Santamouris, Mihalakakou, Patargias (b0145) 2010; 87
Kabalci (b0030) 2011; 88
.
Brusco, Cradit, Steinley, Fox (b0220) 2008; 43
{City of New York}, New York City local law 84 benchmarking report. Tech. rep., City of New York Office of Long-Term Planning and Sustainability; September 2013.
Grün, Leisch (b0200) 2008; 28
Räsänen, Voukantsis, Niska, Karatzas, Kolehmainen (b0130) 2010; 87
{R Development Core Team}. R: a language and environment for statistical computing; 2013.
Tooke, Coops, Webster (b0085) 2014; 68
Olofsson, Andersson, Sjögren (b0070) 2009; 41
Dempster, Laird, Rubin (b0190) 1977; 39
Baringo, Conejo (b0025) 2013; 101
Späth (b0175) 1982; 29
Hennig (b0215) 2008; 99
Santamouris, Mihalakakou, Patargias, Gaitani, Sfakianaki, Papaglastra (b0090) 2007; 39
DeSarbo, Cron (b0185) 1988; 5
Kiluk (b0120) 2012; 91
Hornik K. A CLUE for CLUster ensembles. J Statist Softw 14.
Lam, Wan, Cheung (b0125) 2009; 86
von Luxburg, Williamson, Guyon (b0155) 2012; 27
Salat (b0055) 2009; 37
Banfield, Raftery (b0205) 1993
Guerra Santin (b0065) 2011; 43
Pérez-Lombard, Ortiz, Pout (b0005) 2008; 40
Friedman, Hastie, Tibshirani (b0255) 2010; 33
Urge-Vorsatz, Novikova (b0010) 2008; 36
Hennig (b0160) 2007; 52
Fraley C, Raftery A, Murphy TB, Scrucca L. MCLUST Version 4 for R: normal mixture modeling and model-based clustering. Technical Report 597, Department of Statistics, University of Washington; June 2012.
Steinley, Brusco (b0150) 2008; 73
Rhodes, Cole, Upshaw, Edgar, Webber (b0045) 2014; 135
Petcharat, Chungpaibulpatana, Rakkwamsuk (b0105) 2012; 52
Harrell (b0225) 2001
Jain (b0015) 2010; 31
Famuyibo, Duffy, Strachan (b0135) 2012; 50
Fraley, Raftery (b0165) 2002; 97
Booth, Choudhary, Spiegelhalter (b0095) 2012; 48
McLoughlin, Duffy, Conlon (b0040) 2015; 141
Räsänen, Ruuskanen, Kolehmainen (b0075) 2008; 85
Tibshirani, Walther, Hastie (b0210) 2001; 63
Domínguez-Muñoz, Cejudo-López, Carrillo-Andrés, Gallardo-Salazar (b0115) 2011; 43
Guerra Santin (10.1016/j.apenergy.2015.08.126_b0065) 2011; 43
Hennig (10.1016/j.apenergy.2015.08.126_b0160) 2007; 52
Räsänen (10.1016/j.apenergy.2015.08.126_b0075) 2008; 85
Swan (10.1016/j.apenergy.2015.08.126_b0060) 2009; 13
Hastie (10.1016/j.apenergy.2015.08.126_b0230) 2009
von Luxburg (10.1016/j.apenergy.2015.08.126_b0155) 2012; 27
10.1016/j.apenergy.2015.08.126_b0240
10.1016/j.apenergy.2015.08.126_b0245
Yu (10.1016/j.apenergy.2015.08.126_b0080) 2010; 42
Tibshirani (10.1016/j.apenergy.2015.08.126_b0210) 2001; 63
Hennig (10.1016/j.apenergy.2015.08.126_b0215) 2008; 99
Kabalci (10.1016/j.apenergy.2015.08.126_b0030) 2011; 88
Yu (10.1016/j.apenergy.2015.08.126_b0100) 2011; 43
Späth (10.1016/j.apenergy.2015.08.126_b0175) 1982; 29
Lam (10.1016/j.apenergy.2015.08.126_b0125) 2009; 86
Harrell (10.1016/j.apenergy.2015.08.126_b0225) 2001
Steinley (10.1016/j.apenergy.2015.08.126_b0150) 2008; 73
Seem (10.1016/j.apenergy.2015.08.126_b0110) 2005; 37
Gaitani (10.1016/j.apenergy.2015.08.126_b0145) 2010; 87
Petcharat (10.1016/j.apenergy.2015.08.126_b0105) 2012; 52
Famuyibo (10.1016/j.apenergy.2015.08.126_b0135) 2012; 50
Booth (10.1016/j.apenergy.2015.08.126_b0095) 2012; 48
Brusco (10.1016/j.apenergy.2015.08.126_b0220) 2008; 43
10.1016/j.apenergy.2015.08.126_b0195
Späth (10.1016/j.apenergy.2015.08.126_b0180) 1992
Banfield (10.1016/j.apenergy.2015.08.126_b0205) 1993
Domínguez-Muñoz (10.1016/j.apenergy.2015.08.126_b0115) 2011; 43
Späth (10.1016/j.apenergy.2015.08.126_b0170) 1979; 22
Friedman (10.1016/j.apenergy.2015.08.126_b0255) 2010; 33
10.1016/j.apenergy.2015.08.126_b0260
Räsänen (10.1016/j.apenergy.2015.08.126_b0130) 2010; 87
Grün (10.1016/j.apenergy.2015.08.126_b0200) 2008; 28
Santamouris (10.1016/j.apenergy.2015.08.126_b0090) 2007; 39
Hsu (10.1016/j.apenergy.2015.08.126_b0235) 2015; 83
Urge-Vorsatz (10.1016/j.apenergy.2015.08.126_b0010) 2008; 36
Li (10.1016/j.apenergy.2015.08.126_b0035) 2015
Baker (10.1016/j.apenergy.2015.08.126_b0020) 2008; 85
Theodoridou (10.1016/j.apenergy.2015.08.126_b0050) 2011; 43
McLoughlin (10.1016/j.apenergy.2015.08.126_b0040) 2015; 141
Olofsson (10.1016/j.apenergy.2015.08.126_b0070) 2009; 41
Kiluk (10.1016/j.apenergy.2015.08.126_b0120) 2012; 91
Rhodes (10.1016/j.apenergy.2015.08.126_b0045) 2014; 135
Jain (10.1016/j.apenergy.2015.08.126_b0015) 2010; 31
Dempster (10.1016/j.apenergy.2015.08.126_b0190) 1977; 39
Baringo (10.1016/j.apenergy.2015.08.126_b0025) 2013; 101
Fraley (10.1016/j.apenergy.2015.08.126_b0165) 2002; 97
Pérez-Lombard (10.1016/j.apenergy.2015.08.126_b0005) 2008; 40
10.1016/j.apenergy.2015.08.126_b0250
DeSarbo (10.1016/j.apenergy.2015.08.126_b0185) 1988; 5
Salat (10.1016/j.apenergy.2015.08.126_b0055) 2009; 37
Tooke (10.1016/j.apenergy.2015.08.126_b0085) 2014; 68
Yu (10.1016/j.apenergy.2015.08.126_b0140) 2012; 44
References_xml – volume: 85
  start-page: 475
  year: 2008
  end-page: 482
  ident: b0020
  article-title: Improving the prediction of UK domestic energy-demand using annual consumption-data
  publication-title: Appl Energy
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: b0190
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Statist Soc Ser B (Methodological)
– volume: 85
  start-page: 830
  year: 2008
  end-page: 840
  ident: b0075
  article-title: Reducing energy consumption by using self-organizing maps to create more personalized electricity use information
  publication-title: Appl Energy
– volume: 42
  start-page: 1637
  year: 2010
  end-page: 1646
  ident: b0080
  article-title: A decision tree method for building energy demand modeling
  publication-title: Energy Build
– volume: 63
  start-page: 411
  year: 2001
  end-page: 423
  ident: b0210
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J R Statist Soc: Ser B (Stat Meth)
– volume: 43
  start-page: 2662
  year: 2011
  end-page: 2672
  ident: b0065
  article-title: Behavioural Patterns and User Profiles related to energy consumption for heating
  publication-title: Energy Build
– volume: 68
  start-page: 603
  year: 2014
  end-page: 610
  ident: b0085
  article-title: Predicting building ages from LiDAR data with random forests for building energy modeling
  publication-title: Energy Build
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: b0255
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Statist Softw
– volume: 52
  start-page: 145
  year: 2012
  end-page: 152
  ident: b0105
  article-title: Assessment of potential energy saving using cluster analysis: a case study of lighting systems in buildings
  publication-title: Energy Build
– reference: Hornik K. A CLUE for CLUster ensembles. J Statist Softw 14.
– volume: 29
  start-page: 175
  year: 1982
  end-page: 181
  ident: b0175
  article-title: A fast algorithm for clusterwise linear regression
  publication-title: Computing
– reference: {R Development Core Team}. R: a language and environment for statistical computing; 2013. <
– volume: 40
  start-page: 394
  year: 2008
  end-page: 398
  ident: b0005
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build
– volume: 99
  start-page: 1154
  year: 2008
  end-page: 1176
  ident: b0215
  article-title: Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods
  publication-title: J Multivar Anal
– volume: 43
  start-page: 1409
  year: 2011
  end-page: 1417
  ident: b0100
  article-title: A systematic procedure to study the influence of occupant behavior on building energy consumption
  publication-title: Energy Build
– volume: 44
  start-page: 104
  year: 2012
  end-page: 113
  ident: b0140
  article-title: Using cluster and multivariate analyses to appraise the operating performance of a chiller system serving an institutional building
  publication-title: Energy Build
– volume: 5
  start-page: 249
  year: 1988
  end-page: 282
  ident: b0185
  article-title: A maximum likelihood methodology for clusterwise linear regression
  publication-title: J Classif
– volume: 13
  start-page: 1819
  year: 2009
  end-page: 1835
  ident: b0060
  article-title: Modeling of end-use energy consumption in the residential sector: a review of modeling techniques
  publication-title: Renew Sustain Energy Rev
– year: 2009
  ident: b0230
  article-title: The elements of statistical learning: data mining, inference, and prediction
– volume: 87
  start-page: 2079
  year: 2010
  end-page: 2086
  ident: b0145
  article-title: Using principal component and cluster analysis in the heating evaluation of the school building sector
  publication-title: Appl Energy
– volume: 87
  start-page: 3538
  year: 2010
  end-page: 3545
  ident: b0130
  article-title: Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data
  publication-title: Appl Energy
– year: 2001
  ident: b0225
  article-title: Regression modeling strategies
– volume: 37
  start-page: 598
  year: 2009
  end-page: 609
  ident: b0055
  article-title: Energy loads, CO
  publication-title: Build Res Inf
– volume: 28
  start-page: 1
  year: 2008
  end-page: 35
  ident: b0200
  article-title: others, FlexMix version 2: finite mixtures with concomitant variables and varying and constant parameters
  publication-title: J Stat Softw
– reference: Leisch F. FlexMix: a general framework for finite mixture models and latent class regression in R; 2003. <
– volume: 50
  start-page: 150
  year: 2012
  end-page: 157
  ident: b0135
  article-title: Developing archetypes for domestic dwellings – an Irish case study
  publication-title: Energy Build
– volume: 22
  start-page: 367
  year: 1979
  end-page: 373
  ident: b0170
  article-title: Algorithm 39 clusterwise linear regression
  publication-title: Computing
– volume: 43
  start-page: 3036
  year: 2011
  end-page: 3043
  ident: b0115
  article-title: Selection of typical demand days for CHP optimization
  publication-title: Energy Build
– volume: 48
  start-page: 35
  year: 2012
  end-page: 47
  ident: b0095
  article-title: Handling uncertainty in housing stock models
  publication-title: Build Environ
– volume: 86
  start-page: 933
  year: 2009
  end-page: 940
  ident: b0125
  article-title: An analysis of climatic influences on chiller plant electricity consumption
  publication-title: Appl Energy
– volume: 37
  start-page: 127
  year: 2005
  end-page: 139
  ident: b0110
  article-title: Pattern recognition algorithm for determining days of the week with similar energy consumption profiles
  publication-title: Energy Build
– volume: 43
  start-page: 29
  year: 2008
  end-page: 49
  ident: b0220
  article-title: Cautionary remarks on the use of clusterwise regression
  publication-title: Multivar Behav Res
– volume: 36
  start-page: 642
  year: 2008
  end-page: 661
  ident: b0010
  article-title: Potentials and costs of carbon dioxide mitigation in the world’s buildings
  publication-title: Energy Policy
– year: 1992
  ident: b0180
  article-title: Mathematical algorithms for linear regression
– volume: 135
  start-page: 461
  year: 2014
  end-page: 471
  ident: b0045
  article-title: Clustering analysis of residential electricity demand profiles
  publication-title: Appl Energy
– volume: 43
  start-page: 2779
  year: 2011
  end-page: 2787
  ident: b0050
  article-title: A typological classification of the Greek residential building stock
  publication-title: Energy Build
– volume: 39
  start-page: 45
  year: 2007
  end-page: 51
  ident: b0090
  article-title: Using intelligent clustering techniques to classify the energy performance of school buildings
  publication-title: Energy Build
– volume: 52
  start-page: 258
  year: 2007
  end-page: 271
  ident: b0160
  article-title: Cluster-wise assessment of cluster stability
  publication-title: Comput Statist Data Anal
– volume: 83
  start-page: 144
  year: 2015
  end-page: 155
  ident: b0235
  article-title: Identifying key variables and interactions in statistical models of building energy consumption using regularization
  publication-title: Energy
– volume: 141
  start-page: 190
  year: 2015
  end-page: 199
  ident: b0040
  article-title: A clustering approach to domestic electricity load profile characterisation using smart metering data
  publication-title: Appl Energy
– volume: 101
  start-page: 475
  year: 2013
  end-page: 482
  ident: b0025
  article-title: Correlated wind-power production and electric load scenarios for investment decisions
  publication-title: Appl Energy
– volume: 27
  start-page: 65
  year: 2012
  end-page: 80
  ident: b0155
  article-title: Clustering: science or art?
  publication-title: J Mach Learn Res
– volume: 88
  start-page: 4078
  year: 2011
  end-page: 4086
  ident: b0030
  article-title: Development of a feasibility prediction tool for solar power plant installation analyses
  publication-title: Appl Energy
– volume: 73
  start-page: 125
  year: 2008
  end-page: 144
  ident: b0150
  article-title: Selection of variables in cluster analysis: an empirical comparison of eight procedures
  publication-title: Psychometrika
– reference: Fraley C, Raftery A, Murphy TB, Scrucca L. MCLUST Version 4 for R: normal mixture modeling and model-based clustering. Technical Report 597, Department of Statistics, University of Washington; June 2012. <
– reference: >.
– reference: {City of New York}, New York City local law 84 benchmarking report. Tech. rep., City of New York Office of Long-Term Planning and Sustainability; September 2013. <
– volume: 97
  start-page: 611
  year: 2002
  end-page: 631
  ident: b0165
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: J Am Statist Assoc
– year: 2015
  ident: b0035
  article-title: A novel time-of-use tariff design based on Gaussian Mixture Model
  publication-title: Appl Energy
– volume: 41
  start-page: 71
  year: 2009
  end-page: 80
  ident: b0070
  article-title: Building energy parameter investigations based on multivariate analysis
  publication-title: Energy Build
– volume: 91
  start-page: 146
  year: 2012
  end-page: 155
  ident: b0120
  article-title: Algorithmic acquisition of diagnostic patterns in district heating billing system
  publication-title: Appl Energy
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: b0015
  article-title: Data clustering: 50 years beyond
  publication-title: Pattern Recogn Lett
– start-page: 803
  year: 1993
  end-page: 821
  ident: b0205
  article-title: Model-based Gaussian and non-Gaussian clustering
  publication-title: Biometrics
– volume: 83
  start-page: 144
  year: 2015
  ident: 10.1016/j.apenergy.2015.08.126_b0235
  article-title: Identifying key variables and interactions in statistical models of building energy consumption using regularization
  publication-title: Energy
  doi: 10.1016/j.energy.2015.02.008
– volume: 86
  start-page: 933
  year: 2009
  ident: 10.1016/j.apenergy.2015.08.126_b0125
  article-title: An analysis of climatic influences on chiller plant electricity consumption
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.05.016
– volume: 85
  start-page: 830
  year: 2008
  ident: 10.1016/j.apenergy.2015.08.126_b0075
  article-title: Reducing energy consumption by using self-organizing maps to create more personalized electricity use information
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2007.10.012
– volume: 68
  start-page: 603
  issue: Part A
  year: 2014
  ident: 10.1016/j.apenergy.2015.08.126_b0085
  article-title: Predicting building ages from LiDAR data with random forests for building energy modeling
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2013.10.004
– volume: 43
  start-page: 1409
  year: 2011
  ident: 10.1016/j.apenergy.2015.08.126_b0100
  article-title: A systematic procedure to study the influence of occupant behavior on building energy consumption
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.02.002
– volume: 31
  start-page: 651
  year: 2010
  ident: 10.1016/j.apenergy.2015.08.126_b0015
  article-title: Data clustering: 50 years beyond K-means
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2009.09.011
– year: 1992
  ident: 10.1016/j.apenergy.2015.08.126_b0180
– volume: 88
  start-page: 4078
  year: 2011
  ident: 10.1016/j.apenergy.2015.08.126_b0030
  article-title: Development of a feasibility prediction tool for solar power plant installation analyses
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.04.047
– volume: 37
  start-page: 127
  year: 2005
  ident: 10.1016/j.apenergy.2015.08.126_b0110
  article-title: Pattern recognition algorithm for determining days of the week with similar energy consumption profiles
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2004.04.004
– volume: 13
  start-page: 1819
  year: 2009
  ident: 10.1016/j.apenergy.2015.08.126_b0060
  article-title: Modeling of end-use energy consumption in the residential sector: a review of modeling techniques
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2008.09.033
– volume: 22
  start-page: 367
  year: 1979
  ident: 10.1016/j.apenergy.2015.08.126_b0170
  article-title: Algorithm 39 clusterwise linear regression
  publication-title: Computing
  doi: 10.1007/BF02265317
– ident: 10.1016/j.apenergy.2015.08.126_b0240
  doi: 10.21236/ADA456562
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.apenergy.2015.08.126_b0255
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J Statist Softw
  doi: 10.18637/jss.v033.i01
– volume: 135
  start-page: 461
  year: 2014
  ident: 10.1016/j.apenergy.2015.08.126_b0045
  article-title: Clustering analysis of residential electricity demand profiles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.111
– volume: 43
  start-page: 29
  year: 2008
  ident: 10.1016/j.apenergy.2015.08.126_b0220
  article-title: Cautionary remarks on the use of clusterwise regression
  publication-title: Multivar Behav Res
  doi: 10.1080/00273170701836653
– ident: 10.1016/j.apenergy.2015.08.126_b0195
  doi: 10.18637/jss.v011.i08
– volume: 28
  start-page: 1
  year: 2008
  ident: 10.1016/j.apenergy.2015.08.126_b0200
  article-title: others, FlexMix version 2: finite mixtures with concomitant variables and varying and constant parameters
  publication-title: J Stat Softw
  doi: 10.18637/jss.v028.i04
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.apenergy.2015.08.126_b0190
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Statist Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 44
  start-page: 104
  year: 2012
  ident: 10.1016/j.apenergy.2015.08.126_b0140
  article-title: Using cluster and multivariate analyses to appraise the operating performance of a chiller system serving an institutional building
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.10.026
– volume: 99
  start-page: 1154
  year: 2008
  ident: 10.1016/j.apenergy.2015.08.126_b0215
  article-title: Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods
  publication-title: J Multivar Anal
  doi: 10.1016/j.jmva.2007.07.002
– year: 2009
  ident: 10.1016/j.apenergy.2015.08.126_b0230
– volume: 63
  start-page: 411
  year: 2001
  ident: 10.1016/j.apenergy.2015.08.126_b0210
  article-title: Estimating the number of clusters in a data set via the gap statistic
  publication-title: J R Statist Soc: Ser B (Stat Meth)
  doi: 10.1111/1467-9868.00293
– volume: 39
  start-page: 45
  year: 2007
  ident: 10.1016/j.apenergy.2015.08.126_b0090
  article-title: Using intelligent clustering techniques to classify the energy performance of school buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2006.04.018
– volume: 52
  start-page: 145
  year: 2012
  ident: 10.1016/j.apenergy.2015.08.126_b0105
  article-title: Assessment of potential energy saving using cluster analysis: a case study of lighting systems in buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.06.006
– volume: 97
  start-page: 611
  year: 2002
  ident: 10.1016/j.apenergy.2015.08.126_b0165
  article-title: Model-based clustering, discriminant analysis, and density estimation
  publication-title: J Am Statist Assoc
  doi: 10.1198/016214502760047131
– ident: 10.1016/j.apenergy.2015.08.126_b0245
  doi: 10.18637/jss.v014.i12
– start-page: 803
  year: 1993
  ident: 10.1016/j.apenergy.2015.08.126_b0205
  article-title: Model-based Gaussian and non-Gaussian clustering
  publication-title: Biometrics
  doi: 10.2307/2532201
– volume: 50
  start-page: 150
  year: 2012
  ident: 10.1016/j.apenergy.2015.08.126_b0135
  article-title: Developing archetypes for domestic dwellings – an Irish case study
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.03.033
– year: 2015
  ident: 10.1016/j.apenergy.2015.08.126_b0035
  article-title: A novel time-of-use tariff design based on Gaussian Mixture Model
  publication-title: Appl Energy
– ident: 10.1016/j.apenergy.2015.08.126_b0260
– ident: 10.1016/j.apenergy.2015.08.126_b0250
– volume: 101
  start-page: 475
  year: 2013
  ident: 10.1016/j.apenergy.2015.08.126_b0025
  article-title: Correlated wind-power production and electric load scenarios for investment decisions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.06.002
– volume: 29
  start-page: 175
  year: 1982
  ident: 10.1016/j.apenergy.2015.08.126_b0175
  article-title: A fast algorithm for clusterwise linear regression
  publication-title: Computing
  doi: 10.1007/BF02249940
– volume: 27
  start-page: 65
  year: 2012
  ident: 10.1016/j.apenergy.2015.08.126_b0155
  article-title: Clustering: science or art?
  publication-title: J Mach Learn Res
– volume: 42
  start-page: 1637
  year: 2010
  ident: 10.1016/j.apenergy.2015.08.126_b0080
  article-title: A decision tree method for building energy demand modeling
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2010.04.006
– volume: 40
  start-page: 394
  year: 2008
  ident: 10.1016/j.apenergy.2015.08.126_b0005
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2007.03.007
– volume: 141
  start-page: 190
  year: 2015
  ident: 10.1016/j.apenergy.2015.08.126_b0040
  article-title: A clustering approach to domestic electricity load profile characterisation using smart metering data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.12.039
– volume: 43
  start-page: 3036
  year: 2011
  ident: 10.1016/j.apenergy.2015.08.126_b0115
  article-title: Selection of typical demand days for CHP optimization
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.07.024
– volume: 36
  start-page: 642
  year: 2008
  ident: 10.1016/j.apenergy.2015.08.126_b0010
  article-title: Potentials and costs of carbon dioxide mitigation in the world’s buildings
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2007.10.009
– volume: 48
  start-page: 35
  year: 2012
  ident: 10.1016/j.apenergy.2015.08.126_b0095
  article-title: Handling uncertainty in housing stock models
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2011.08.016
– volume: 87
  start-page: 2079
  year: 2010
  ident: 10.1016/j.apenergy.2015.08.126_b0145
  article-title: Using principal component and cluster analysis in the heating evaluation of the school building sector
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.12.007
– volume: 5
  start-page: 249
  year: 1988
  ident: 10.1016/j.apenergy.2015.08.126_b0185
  article-title: A maximum likelihood methodology for clusterwise linear regression
  publication-title: J Classif
  doi: 10.1007/BF01897167
– volume: 85
  start-page: 475
  year: 2008
  ident: 10.1016/j.apenergy.2015.08.126_b0020
  article-title: Improving the prediction of UK domestic energy-demand using annual consumption-data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2007.09.004
– volume: 73
  start-page: 125
  year: 2008
  ident: 10.1016/j.apenergy.2015.08.126_b0150
  article-title: Selection of variables in cluster analysis: an empirical comparison of eight procedures
  publication-title: Psychometrika
  doi: 10.1007/s11336-007-9019-y
– volume: 37
  start-page: 598
  year: 2009
  ident: 10.1016/j.apenergy.2015.08.126_b0055
  article-title: Energy loads, CO2 emissions and building stocks: morphologies, typologies, energy systems and behaviour
  publication-title: Build Res Inf
  doi: 10.1080/09613210903162126
– volume: 91
  start-page: 146
  year: 2012
  ident: 10.1016/j.apenergy.2015.08.126_b0120
  article-title: Algorithmic acquisition of diagnostic patterns in district heating billing system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.09.023
– volume: 43
  start-page: 2662
  year: 2011
  ident: 10.1016/j.apenergy.2015.08.126_b0065
  article-title: Behavioural Patterns and User Profiles related to energy consumption for heating
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.06.024
– volume: 52
  start-page: 258
  year: 2007
  ident: 10.1016/j.apenergy.2015.08.126_b0160
  article-title: Cluster-wise assessment of cluster stability
  publication-title: Comput Statist Data Anal
  doi: 10.1016/j.csda.2006.11.025
– year: 2001
  ident: 10.1016/j.apenergy.2015.08.126_b0225
– volume: 41
  start-page: 71
  year: 2009
  ident: 10.1016/j.apenergy.2015.08.126_b0070
  article-title: Building energy parameter investigations based on multivariate analysis
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2008.07.012
– volume: 43
  start-page: 2779
  year: 2011
  ident: 10.1016/j.apenergy.2015.08.126_b0050
  article-title: A typological classification of the Greek residential building stock
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.06.036
– volume: 87
  start-page: 3538
  year: 2010
  ident: 10.1016/j.apenergy.2015.08.126_b0130
  article-title: Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.05.015
SSID ssj0002120
Score 2.5233545
Snippet •Summary of recent work identifying sub-groups of energy consumption in buildings.•Clusterwise (or latent class) regression gives superior prediction...
Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 153
SubjectTerms algorithms
Buildings
Cluster stability
Cluster-wise regression
data collection
energy
ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION
Energy consumption
Latent class regression
MATHEMATICS AND COMPUTING
New York
prediction
Prediction accuracy
regression analysis
Title Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data
URI https://dx.doi.org/10.1016/j.apenergy.2015.08.126
https://www.proquest.com/docview/2000312685
https://www.osti.gov/biblio/1250054
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hssCAoFBRCpWRWEPzchKPqAIVECyAxGbZjiO1qtKqj5Xfzl3iFBBIHciWyJeHP_v8Wbn7DuCKR1brQIVebFXixaFfeDpHQDKNRyLyTFS1Dp-ek9Fb_PDO33dg2OTCUFil8_21T6-8tbsycL05mI_Hgxdiu8T_kdLgviYkTdA4TmmsX398hXmETpoRG3vU-luW8ORazW2VYUchXpykPAMSWfh7gWrNcM798tjVMnR3CAeOP7Kb-hWPYMeWbdj_pirYhs7tV_IaNnWzd3kMi-Gm6CCbFWyjFJEzM12TYAKas7qk9JIhmWXKmDU1YKrMGdJIPbVsvqBfOwQn3UO7qtqs_kJmqozOyg0xCj49gbe729fhyHM1FzyDQK28XBfIYLNQIbNKU259i_0X5CrRKjJG2CIKOG7RcN1LAm0T3yDh1NwPCx4mRiOX6kCrnJX2FFiR-SkiHUV5IeJIp4Kk6YQSgSXVo0h0gTcdLY0TJKe6GFPZRJ5NZAOQJICkn0kEqAuDjd28luTYaiEaHOWPwSVx3dhq2yPgyY5UdQ2FH6Eh8kJiu124bMaDxHlJP1tUaWfrJZX3RH8ZJhk_-8fTe7BHZxQ_E_BzaK0Wa3uBLGil-9Uw78Puzf3j6PkTTlYJZw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHxFZRymIkrqHZnMZHVIHK0l4AiZtlO45EVaVVlyvfzkziFBBIHMgx8WTxs8fPyswbgEseWa0DFXqxVYkXh37u6QwBSTUeichSUdY6HAyT_kt8_8pf16BX58JQWKXz_ZVPL721O9NxvdmZvr11nojtEv9HSoP7mjBeh42YyhzgoL56_4zzCJ02I7b2qPmXNOHRlZraMsWOYrw4aXkGpLLw-wrVmOCk--Gyy3Xodhd2HIFk19U77sGaLfZh-4us4D40bz6z17Cpm77zA5j1VlUH2SRnK6mIjJnxkhQT0JxVNaXnDNksU8YsqQFTRcaQR-qxZdMZ_dshPOke2pXVZtUXMlOmdJZ-iFH06SG83N489_qeK7rgGURq4WU6RwqbhgqpVbfLrW-x_4JMJVpFxgibRwHHPRoufEmgbeIbZJya-2HOw8RoJFNNaBSTwh4By1O_i1BHUZaLONJdQdp0QonAkuxRJFrA646WximSU2GMsaxDz0ayBkgSQNJPJQLUgs7KblppcvxpIWoc5bfRJXHh-NO2TcCTHcnqGoo_QkMkhkR3W3BRjweJE5P-tqjCTpZzqu-JDjNMUn78j6efw2b_efAoH--GD23YoisUTBPwE2gsZkt7ipRooc_KIf8BM48K8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+integrated+clustering+methods+for+accurate+and+stable+prediction+of+building+energy+consumption+data&rft.jtitle=Applied+energy&rft.au=Hsu%2C+David&rft.date=2015-12-15&rft.issn=0306-2619&rft.volume=160+p.153-163&rft.spage=153&rft.epage=163&rft_id=info:doi/10.1016%2Fj.apenergy.2015.08.126&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon