Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data
•Summary of recent work identifying sub-groups of energy consumption in buildings.•Clusterwise (or latent class) regression gives superior prediction accuracy.•K-means gives more stable clusters when the correct number of clusters is chosen.•A tradeoff between prediction accuracy and cluster stabili...
Saved in:
Published in | Applied energy Vol. 160; no. C; pp. 153 - 163 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United Kingdom
Elsevier Ltd
15.12.2015
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0306-2619 1872-9118 |
DOI | 10.1016/j.apenergy.2015.08.126 |
Cover
Abstract | •Summary of recent work identifying sub-groups of energy consumption in buildings.•Clusterwise (or latent class) regression gives superior prediction accuracy.•K-means gives more stable clusters when the correct number of clusters is chosen.•A tradeoff between prediction accuracy and cluster stability seems to exist.
Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking.
This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression, also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes. |
---|---|
AbstractList | Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking. This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression, also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes. •Summary of recent work identifying sub-groups of energy consumption in buildings.•Clusterwise (or latent class) regression gives superior prediction accuracy.•K-means gives more stable clusters when the correct number of clusters is chosen.•A tradeoff between prediction accuracy and cluster stability seems to exist. Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive accuracy of subsequent energy models. Second, stable clusters that are reproducible with respect to non-essential changes can be used to group, target, and interpret observed subjects. However, it is well known that clustering methods are highly sensitive to the choice of algorithms and variables. This can lead to misleading assessments of predictive accuracy and mis-interpretation of clusters in policymaking. This paper therefore introduces two methods to the modeling of energy consumption in buildings: clusterwise regression, also known as latent class regression, which integrates clustering and regression simultaneously; and cluster validation methods to measure stability. Using a large dataset of multifamily buildings in New York City, clusterwise regression is compared to common two-stage algorithms that use K-means and model-based clustering with linear regression. Predictive accuracy is evaluated using 20-fold cross validation, and the stability of the perturbed clusters is measured using the Jaccard coefficient. These results show that there seems to be an inherent tradeoff between prediction accuracy and cluster stability. This paper concludes by discussing which clustering methods may be appropriate for different analytical purposes. |
Author | Hsu, David |
Author_xml | – sequence: 1 givenname: David surname: Hsu fullname: Hsu, David email: ydh@mit.edu organization: Department of Urban Studies & Planning, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA |
BackLink | https://www.osti.gov/biblio/1250054$$D View this record in Osti.gov |
BookMark | eNqFUU1v1DAUtFArsW35C8jixCXps7P2JhIH0Kq0SJW4wNly7JetV4kdbAep_x6HwKWXnnx4M-P5uCIXPngk5D2DmgGTt-daz-gxnp5rDkzU0NaMyzdkx9oDrzrG2guygwZkxSXr3pKrlM4AwBmHHYnHMM06uhQ8DQN1PuMp6oyWmnFJGaPzJzphfgo20SFEqo1ZVgDV3tKUdT8inSNaZ7LbNPrFjXalbaaoCT4t0_z3bHXWN-Ry0GPCd__ea_Lz692P40P1-P3-2_HLY2X2HHJl-6FltuVa7MXhIBCwGGZWy143xnQ4NEy0XQeNlKxHCaYF6AXwQXBpesmba_Jh0w0pO5WMy2ieihmPJivGBYDYF9DHDTTH8GvBlNXkksFx1B7DkhQvTTWlzlYU6KcNamJIKeKgiqReY-Wo3agYqHUPdVb_91DrHgra8pssdPmCPkc36fj8OvHzRsRS1m-Hcc2C3pTO4xrFBveaxB_QFK1o |
CitedBy_id | crossref_primary_10_1002_esp_4984 crossref_primary_10_1080_10298436_2018_1521970 crossref_primary_10_1016_j_scs_2020_102431 crossref_primary_10_1016_j_apenergy_2016_05_074 crossref_primary_10_1016_j_apenergy_2017_07_009 crossref_primary_10_1016_j_buildenv_2018_05_035 crossref_primary_10_1016_j_enbuild_2023_113637 crossref_primary_10_1016_j_apenergy_2019_03_078 crossref_primary_10_1016_j_energy_2018_09_144 crossref_primary_10_3390_pr7100731 crossref_primary_10_1016_j_jclepro_2022_131602 crossref_primary_10_1007_s40430_021_03005_5 crossref_primary_10_1016_j_buildenv_2022_108958 crossref_primary_10_1016_j_future_2018_02_022 crossref_primary_10_1016_j_egyr_2022_06_117 crossref_primary_10_1016_j_scs_2020_102385 crossref_primary_10_1016_j_enbuild_2021_110754 crossref_primary_10_1016_j_eneco_2017_05_014 crossref_primary_10_1109_ACCESS_2021_3075175 crossref_primary_10_1016_j_apenergy_2020_114920 crossref_primary_10_1016_j_eswa_2022_117040 crossref_primary_10_1155_2021_7873310 crossref_primary_10_1108_JEDT_12_2015_0082 crossref_primary_10_3390_en15155534 crossref_primary_10_1016_j_apenergy_2019_01_076 crossref_primary_10_1016_j_apenergy_2018_03_079 crossref_primary_10_1016_j_jobe_2021_103027 crossref_primary_10_1016_j_jobe_2025_112295 crossref_primary_10_1590_s1678_3921_pab2020_v55_01521 crossref_primary_10_1016_j_solener_2020_01_034 crossref_primary_10_1016_j_enbuild_2019_04_026 crossref_primary_10_1002_wene_374 crossref_primary_10_1016_j_apenergy_2020_116114 crossref_primary_10_1016_j_scs_2022_103981 crossref_primary_10_1016_j_energy_2018_10_175 crossref_primary_10_1016_j_esr_2024_101322 crossref_primary_10_1016_j_enbuild_2020_109999 crossref_primary_10_1016_j_energy_2017_05_148 crossref_primary_10_1016_j_dibe_2024_100320 crossref_primary_10_1016_j_neucom_2016_08_004 crossref_primary_10_1016_j_heliyon_2024_e26038 crossref_primary_10_1007_s12273_020_0626_1 crossref_primary_10_1016_j_apenergy_2019_113500 crossref_primary_10_1016_j_scs_2018_05_050 crossref_primary_10_1016_j_apenergy_2018_10_053 crossref_primary_10_1016_j_apenergy_2019_04_085 crossref_primary_10_1016_j_apenergy_2020_115399 crossref_primary_10_3390_su152115489 crossref_primary_10_1016_j_aei_2019_100990 crossref_primary_10_1016_j_scs_2020_102321 crossref_primary_10_1016_j_asoc_2022_109616 crossref_primary_10_1016_j_egyr_2019_10_009 crossref_primary_10_1016_j_apenergy_2017_01_095 crossref_primary_10_1016_j_enbuild_2023_113604 crossref_primary_10_1016_j_scs_2022_104260 crossref_primary_10_1016_j_eneco_2021_105590 crossref_primary_10_1016_j_eswa_2019_07_034 crossref_primary_10_1016_j_apenergy_2016_12_111 crossref_primary_10_1016_j_cities_2024_105392 crossref_primary_10_1016_j_jclepro_2019_05_085 crossref_primary_10_3390_en10101525 crossref_primary_10_3390_en11010242 crossref_primary_10_2139_ssrn_3982129 crossref_primary_10_3390_en17030689 crossref_primary_10_1016_j_enbuild_2016_07_018 crossref_primary_10_1016_j_enpol_2022_112886 crossref_primary_10_3989_sefarad_020_003 crossref_primary_10_1016_j_apenergy_2018_09_050 crossref_primary_10_1051_e3sconf_202339601101 crossref_primary_10_3390_buildings14082491 crossref_primary_10_1016_j_eswa_2024_123934 crossref_primary_10_1016_j_seta_2024_103976 crossref_primary_10_1016_j_seta_2021_101277 crossref_primary_10_1109_JSYST_2018_2890524 crossref_primary_10_1016_j_energy_2015_11_037 crossref_primary_10_1080_24751448_2018_1497369 crossref_primary_10_1016_j_applthermaleng_2017_09_007 crossref_primary_10_1016_j_geomorph_2018_10_022 crossref_primary_10_1016_j_jobe_2021_102706 crossref_primary_10_1177_2399808319841909 crossref_primary_10_1016_j_energy_2020_118530 crossref_primary_10_1016_j_applthermaleng_2022_119408 crossref_primary_10_1016_j_jobe_2022_104445 crossref_primary_10_1016_j_egypro_2016_06_066 crossref_primary_10_1016_j_jobe_2023_107716 crossref_primary_10_1016_j_ceramint_2017_03_088 crossref_primary_10_1007_s44196_024_00618_1 crossref_primary_10_1016_j_apenergy_2020_116223 crossref_primary_10_1016_j_enbuild_2019_01_002 crossref_primary_10_1016_j_enconman_2018_03_015 crossref_primary_10_1111_jiec_13097 crossref_primary_10_1145_3550074 crossref_primary_10_1016_j_enbuild_2018_04_037 crossref_primary_10_1016_j_scs_2020_102101 crossref_primary_10_1016_j_eswa_2021_116293 crossref_primary_10_1016_j_enbuild_2023_113823 crossref_primary_10_1016_j_enbuild_2017_11_007 crossref_primary_10_1016_j_enbuild_2017_11_008 crossref_primary_10_1016_j_rser_2024_114478 crossref_primary_10_1002_adts_201900145 crossref_primary_10_2478_crebss_2018_0013 crossref_primary_10_1016_j_rser_2020_110287 crossref_primary_10_3390_make6020045 crossref_primary_10_1007_s12273_024_1152_3 crossref_primary_10_1016_j_apenergy_2019_114246 crossref_primary_10_3390_en16052485 crossref_primary_10_1016_j_renene_2018_06_069 crossref_primary_10_1016_j_egyai_2020_100009 crossref_primary_10_1016_j_buildenv_2020_107114 crossref_primary_10_1080_13467581_2023_2244730 crossref_primary_10_1016_j_apenergy_2015_12_088 crossref_primary_10_1016_j_apenergy_2017_03_051 crossref_primary_10_3390_buildings13112721 crossref_primary_10_1016_j_egypro_2018_11_283 crossref_primary_10_1016_j_apenergy_2018_10_116 crossref_primary_10_2166_wst_2020_220 crossref_primary_10_3390_en14196130 crossref_primary_10_1016_j_enbuild_2022_111844 crossref_primary_10_1080_01944363_2019_1647446 crossref_primary_10_3390_en12071201 crossref_primary_10_1016_j_enbuild_2021_111307 crossref_primary_10_1007_s40997_023_00748_5 crossref_primary_10_1016_j_enbuild_2024_114353 crossref_primary_10_1016_j_apenergy_2015_12_015 |
Cites_doi | 10.1016/j.energy.2015.02.008 10.1016/j.apenergy.2008.05.016 10.1016/j.apenergy.2007.10.012 10.1016/j.enbuild.2013.10.004 10.1016/j.enbuild.2011.02.002 10.1016/j.patrec.2009.09.011 10.1016/j.apenergy.2011.04.047 10.1016/j.enbuild.2004.04.004 10.1016/j.rser.2008.09.033 10.1007/BF02265317 10.21236/ADA456562 10.18637/jss.v033.i01 10.1016/j.apenergy.2014.08.111 10.1080/00273170701836653 10.18637/jss.v011.i08 10.18637/jss.v028.i04 10.1111/j.2517-6161.1977.tb01600.x 10.1016/j.enbuild.2011.10.026 10.1016/j.jmva.2007.07.002 10.1111/1467-9868.00293 10.1016/j.enbuild.2006.04.018 10.1016/j.enbuild.2012.06.006 10.1198/016214502760047131 10.18637/jss.v014.i12 10.2307/2532201 10.1016/j.enbuild.2012.03.033 10.1016/j.apenergy.2012.06.002 10.1007/BF02249940 10.1016/j.enbuild.2010.04.006 10.1016/j.enbuild.2007.03.007 10.1016/j.apenergy.2014.12.039 10.1016/j.enbuild.2011.07.024 10.1016/j.enpol.2007.10.009 10.1016/j.buildenv.2011.08.016 10.1016/j.apenergy.2009.12.007 10.1007/BF01897167 10.1016/j.apenergy.2007.09.004 10.1007/s11336-007-9019-y 10.1080/09613210903162126 10.1016/j.apenergy.2011.09.023 10.1016/j.enbuild.2011.06.024 10.1016/j.csda.2006.11.025 10.1016/j.enbuild.2008.07.012 10.1016/j.enbuild.2011.06.036 10.1016/j.apenergy.2010.05.015 |
ContentType | Journal Article |
Copyright | 2015 The Author |
Copyright_xml | – notice: 2015 The Author |
CorporateAuthor | Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) |
CorporateAuthor_xml | – name: Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 OTOTI |
DOI | 10.1016/j.apenergy.2015.08.126 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1872-9118 |
EndPage | 163 |
ExternalDocumentID | 1250054 10_1016_j_apenergy_2015_08_126 S0306261915010624 |
GeographicLocations | New York |
GeographicLocations_xml | – name: New York |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ ZY4 7S9 EFKBS L.6 AALMO AAPBV ABPIF ABPTK OTOTI |
ID | FETCH-LOGICAL-c420t-dbf81d82a545775e0e1201da6ba3cc9ef31589903661be60c800b502f526cb623 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri May 19 01:01:38 EDT 2023 Fri Sep 05 03:14:01 EDT 2025 Tue Jul 01 03:05:30 EDT 2025 Thu Apr 24 22:53:11 EDT 2025 Fri Feb 23 02:32:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Prediction accuracy Cluster-wise regression Energy consumption Cluster stability Latent class regression Buildings |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-dbf81d82a545775e0e1201da6ba3cc9ef31589903661be60c800b502f526cb623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Energy Efficiency and Renewable Energy (EERE) EE0004261 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0306261915010624 |
PQID | 2000312685 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1250054 proquest_miscellaneous_2000312685 crossref_citationtrail_10_1016_j_apenergy_2015_08_126 crossref_primary_10_1016_j_apenergy_2015_08_126 elsevier_sciencedirect_doi_10_1016_j_apenergy_2015_08_126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-15 |
PublicationDateYYYYMMDD | 2015-12-15 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | Applied energy |
PublicationYear | 2015 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Yu, Fung, Haghighat, Yoshino, Morofsky (b0100) 2011; 43 Hastie, Tibshirani, Friedman (b0230) 2009 Li, Wang, Gu, Li, Wu (b0035) 2015 Späth (b0180) 1992 Hsu (b0235) 2015; 83 Leisch F. FlexMix: a general framework for finite mixture models and latent class regression in R; 2003. Baker, Rylatt (b0020) 2008; 85 Yu, Haghighat, Fung, Yoshino (b0080) 2010; 42 Späth (b0170) 1979; 22 Swan, Ugursal (b0060) 2009; 13 Seem (b0110) 2005; 37 Theodoridou, Papadopoulos, Hegger (b0050) 2011; 43 Yu, Chan (b0140) 2012; 44 Gaitani, Lehmann, Santamouris, Mihalakakou, Patargias (b0145) 2010; 87 Kabalci (b0030) 2011; 88 . Brusco, Cradit, Steinley, Fox (b0220) 2008; 43 {City of New York}, New York City local law 84 benchmarking report. Tech. rep., City of New York Office of Long-Term Planning and Sustainability; September 2013. Grün, Leisch (b0200) 2008; 28 Räsänen, Voukantsis, Niska, Karatzas, Kolehmainen (b0130) 2010; 87 {R Development Core Team}. R: a language and environment for statistical computing; 2013. Tooke, Coops, Webster (b0085) 2014; 68 Olofsson, Andersson, Sjögren (b0070) 2009; 41 Dempster, Laird, Rubin (b0190) 1977; 39 Baringo, Conejo (b0025) 2013; 101 Späth (b0175) 1982; 29 Hennig (b0215) 2008; 99 Santamouris, Mihalakakou, Patargias, Gaitani, Sfakianaki, Papaglastra (b0090) 2007; 39 DeSarbo, Cron (b0185) 1988; 5 Kiluk (b0120) 2012; 91 Hornik K. A CLUE for CLUster ensembles. J Statist Softw 14. Lam, Wan, Cheung (b0125) 2009; 86 von Luxburg, Williamson, Guyon (b0155) 2012; 27 Salat (b0055) 2009; 37 Banfield, Raftery (b0205) 1993 Guerra Santin (b0065) 2011; 43 Pérez-Lombard, Ortiz, Pout (b0005) 2008; 40 Friedman, Hastie, Tibshirani (b0255) 2010; 33 Urge-Vorsatz, Novikova (b0010) 2008; 36 Hennig (b0160) 2007; 52 Fraley C, Raftery A, Murphy TB, Scrucca L. MCLUST Version 4 for R: normal mixture modeling and model-based clustering. Technical Report 597, Department of Statistics, University of Washington; June 2012. Steinley, Brusco (b0150) 2008; 73 Rhodes, Cole, Upshaw, Edgar, Webber (b0045) 2014; 135 Petcharat, Chungpaibulpatana, Rakkwamsuk (b0105) 2012; 52 Harrell (b0225) 2001 Jain (b0015) 2010; 31 Famuyibo, Duffy, Strachan (b0135) 2012; 50 Fraley, Raftery (b0165) 2002; 97 Booth, Choudhary, Spiegelhalter (b0095) 2012; 48 McLoughlin, Duffy, Conlon (b0040) 2015; 141 Räsänen, Ruuskanen, Kolehmainen (b0075) 2008; 85 Tibshirani, Walther, Hastie (b0210) 2001; 63 Domínguez-Muñoz, Cejudo-López, Carrillo-Andrés, Gallardo-Salazar (b0115) 2011; 43 Guerra Santin (10.1016/j.apenergy.2015.08.126_b0065) 2011; 43 Hennig (10.1016/j.apenergy.2015.08.126_b0160) 2007; 52 Räsänen (10.1016/j.apenergy.2015.08.126_b0075) 2008; 85 Swan (10.1016/j.apenergy.2015.08.126_b0060) 2009; 13 Hastie (10.1016/j.apenergy.2015.08.126_b0230) 2009 von Luxburg (10.1016/j.apenergy.2015.08.126_b0155) 2012; 27 10.1016/j.apenergy.2015.08.126_b0240 10.1016/j.apenergy.2015.08.126_b0245 Yu (10.1016/j.apenergy.2015.08.126_b0080) 2010; 42 Tibshirani (10.1016/j.apenergy.2015.08.126_b0210) 2001; 63 Hennig (10.1016/j.apenergy.2015.08.126_b0215) 2008; 99 Kabalci (10.1016/j.apenergy.2015.08.126_b0030) 2011; 88 Yu (10.1016/j.apenergy.2015.08.126_b0100) 2011; 43 Späth (10.1016/j.apenergy.2015.08.126_b0175) 1982; 29 Lam (10.1016/j.apenergy.2015.08.126_b0125) 2009; 86 Harrell (10.1016/j.apenergy.2015.08.126_b0225) 2001 Steinley (10.1016/j.apenergy.2015.08.126_b0150) 2008; 73 Seem (10.1016/j.apenergy.2015.08.126_b0110) 2005; 37 Gaitani (10.1016/j.apenergy.2015.08.126_b0145) 2010; 87 Petcharat (10.1016/j.apenergy.2015.08.126_b0105) 2012; 52 Famuyibo (10.1016/j.apenergy.2015.08.126_b0135) 2012; 50 Booth (10.1016/j.apenergy.2015.08.126_b0095) 2012; 48 Brusco (10.1016/j.apenergy.2015.08.126_b0220) 2008; 43 10.1016/j.apenergy.2015.08.126_b0195 Späth (10.1016/j.apenergy.2015.08.126_b0180) 1992 Banfield (10.1016/j.apenergy.2015.08.126_b0205) 1993 Domínguez-Muñoz (10.1016/j.apenergy.2015.08.126_b0115) 2011; 43 Späth (10.1016/j.apenergy.2015.08.126_b0170) 1979; 22 Friedman (10.1016/j.apenergy.2015.08.126_b0255) 2010; 33 10.1016/j.apenergy.2015.08.126_b0260 Räsänen (10.1016/j.apenergy.2015.08.126_b0130) 2010; 87 Grün (10.1016/j.apenergy.2015.08.126_b0200) 2008; 28 Santamouris (10.1016/j.apenergy.2015.08.126_b0090) 2007; 39 Hsu (10.1016/j.apenergy.2015.08.126_b0235) 2015; 83 Urge-Vorsatz (10.1016/j.apenergy.2015.08.126_b0010) 2008; 36 Li (10.1016/j.apenergy.2015.08.126_b0035) 2015 Baker (10.1016/j.apenergy.2015.08.126_b0020) 2008; 85 Theodoridou (10.1016/j.apenergy.2015.08.126_b0050) 2011; 43 McLoughlin (10.1016/j.apenergy.2015.08.126_b0040) 2015; 141 Olofsson (10.1016/j.apenergy.2015.08.126_b0070) 2009; 41 Kiluk (10.1016/j.apenergy.2015.08.126_b0120) 2012; 91 Rhodes (10.1016/j.apenergy.2015.08.126_b0045) 2014; 135 Jain (10.1016/j.apenergy.2015.08.126_b0015) 2010; 31 Dempster (10.1016/j.apenergy.2015.08.126_b0190) 1977; 39 Baringo (10.1016/j.apenergy.2015.08.126_b0025) 2013; 101 Fraley (10.1016/j.apenergy.2015.08.126_b0165) 2002; 97 Pérez-Lombard (10.1016/j.apenergy.2015.08.126_b0005) 2008; 40 10.1016/j.apenergy.2015.08.126_b0250 DeSarbo (10.1016/j.apenergy.2015.08.126_b0185) 1988; 5 Salat (10.1016/j.apenergy.2015.08.126_b0055) 2009; 37 Tooke (10.1016/j.apenergy.2015.08.126_b0085) 2014; 68 Yu (10.1016/j.apenergy.2015.08.126_b0140) 2012; 44 |
References_xml | – volume: 85 start-page: 475 year: 2008 end-page: 482 ident: b0020 article-title: Improving the prediction of UK domestic energy-demand using annual consumption-data publication-title: Appl Energy – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: b0190 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Statist Soc Ser B (Methodological) – volume: 85 start-page: 830 year: 2008 end-page: 840 ident: b0075 article-title: Reducing energy consumption by using self-organizing maps to create more personalized electricity use information publication-title: Appl Energy – volume: 42 start-page: 1637 year: 2010 end-page: 1646 ident: b0080 article-title: A decision tree method for building energy demand modeling publication-title: Energy Build – volume: 63 start-page: 411 year: 2001 end-page: 423 ident: b0210 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J R Statist Soc: Ser B (Stat Meth) – volume: 43 start-page: 2662 year: 2011 end-page: 2672 ident: b0065 article-title: Behavioural Patterns and User Profiles related to energy consumption for heating publication-title: Energy Build – volume: 68 start-page: 603 year: 2014 end-page: 610 ident: b0085 article-title: Predicting building ages from LiDAR data with random forests for building energy modeling publication-title: Energy Build – volume: 33 start-page: 1 year: 2010 end-page: 22 ident: b0255 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Statist Softw – volume: 52 start-page: 145 year: 2012 end-page: 152 ident: b0105 article-title: Assessment of potential energy saving using cluster analysis: a case study of lighting systems in buildings publication-title: Energy Build – reference: Hornik K. A CLUE for CLUster ensembles. J Statist Softw 14. – volume: 29 start-page: 175 year: 1982 end-page: 181 ident: b0175 article-title: A fast algorithm for clusterwise linear regression publication-title: Computing – reference: {R Development Core Team}. R: a language and environment for statistical computing; 2013. < – volume: 40 start-page: 394 year: 2008 end-page: 398 ident: b0005 article-title: A review on buildings energy consumption information publication-title: Energy Build – volume: 99 start-page: 1154 year: 2008 end-page: 1176 ident: b0215 article-title: Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods publication-title: J Multivar Anal – volume: 43 start-page: 1409 year: 2011 end-page: 1417 ident: b0100 article-title: A systematic procedure to study the influence of occupant behavior on building energy consumption publication-title: Energy Build – volume: 44 start-page: 104 year: 2012 end-page: 113 ident: b0140 article-title: Using cluster and multivariate analyses to appraise the operating performance of a chiller system serving an institutional building publication-title: Energy Build – volume: 5 start-page: 249 year: 1988 end-page: 282 ident: b0185 article-title: A maximum likelihood methodology for clusterwise linear regression publication-title: J Classif – volume: 13 start-page: 1819 year: 2009 end-page: 1835 ident: b0060 article-title: Modeling of end-use energy consumption in the residential sector: a review of modeling techniques publication-title: Renew Sustain Energy Rev – year: 2009 ident: b0230 article-title: The elements of statistical learning: data mining, inference, and prediction – volume: 87 start-page: 2079 year: 2010 end-page: 2086 ident: b0145 article-title: Using principal component and cluster analysis in the heating evaluation of the school building sector publication-title: Appl Energy – volume: 87 start-page: 3538 year: 2010 end-page: 3545 ident: b0130 article-title: Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data publication-title: Appl Energy – year: 2001 ident: b0225 article-title: Regression modeling strategies – volume: 37 start-page: 598 year: 2009 end-page: 609 ident: b0055 article-title: Energy loads, CO publication-title: Build Res Inf – volume: 28 start-page: 1 year: 2008 end-page: 35 ident: b0200 article-title: others, FlexMix version 2: finite mixtures with concomitant variables and varying and constant parameters publication-title: J Stat Softw – reference: Leisch F. FlexMix: a general framework for finite mixture models and latent class regression in R; 2003. < – volume: 50 start-page: 150 year: 2012 end-page: 157 ident: b0135 article-title: Developing archetypes for domestic dwellings – an Irish case study publication-title: Energy Build – volume: 22 start-page: 367 year: 1979 end-page: 373 ident: b0170 article-title: Algorithm 39 clusterwise linear regression publication-title: Computing – volume: 43 start-page: 3036 year: 2011 end-page: 3043 ident: b0115 article-title: Selection of typical demand days for CHP optimization publication-title: Energy Build – volume: 48 start-page: 35 year: 2012 end-page: 47 ident: b0095 article-title: Handling uncertainty in housing stock models publication-title: Build Environ – volume: 86 start-page: 933 year: 2009 end-page: 940 ident: b0125 article-title: An analysis of climatic influences on chiller plant electricity consumption publication-title: Appl Energy – volume: 37 start-page: 127 year: 2005 end-page: 139 ident: b0110 article-title: Pattern recognition algorithm for determining days of the week with similar energy consumption profiles publication-title: Energy Build – volume: 43 start-page: 29 year: 2008 end-page: 49 ident: b0220 article-title: Cautionary remarks on the use of clusterwise regression publication-title: Multivar Behav Res – volume: 36 start-page: 642 year: 2008 end-page: 661 ident: b0010 article-title: Potentials and costs of carbon dioxide mitigation in the world’s buildings publication-title: Energy Policy – year: 1992 ident: b0180 article-title: Mathematical algorithms for linear regression – volume: 135 start-page: 461 year: 2014 end-page: 471 ident: b0045 article-title: Clustering analysis of residential electricity demand profiles publication-title: Appl Energy – volume: 43 start-page: 2779 year: 2011 end-page: 2787 ident: b0050 article-title: A typological classification of the Greek residential building stock publication-title: Energy Build – volume: 39 start-page: 45 year: 2007 end-page: 51 ident: b0090 article-title: Using intelligent clustering techniques to classify the energy performance of school buildings publication-title: Energy Build – volume: 52 start-page: 258 year: 2007 end-page: 271 ident: b0160 article-title: Cluster-wise assessment of cluster stability publication-title: Comput Statist Data Anal – volume: 83 start-page: 144 year: 2015 end-page: 155 ident: b0235 article-title: Identifying key variables and interactions in statistical models of building energy consumption using regularization publication-title: Energy – volume: 141 start-page: 190 year: 2015 end-page: 199 ident: b0040 article-title: A clustering approach to domestic electricity load profile characterisation using smart metering data publication-title: Appl Energy – volume: 101 start-page: 475 year: 2013 end-page: 482 ident: b0025 article-title: Correlated wind-power production and electric load scenarios for investment decisions publication-title: Appl Energy – volume: 27 start-page: 65 year: 2012 end-page: 80 ident: b0155 article-title: Clustering: science or art? publication-title: J Mach Learn Res – volume: 88 start-page: 4078 year: 2011 end-page: 4086 ident: b0030 article-title: Development of a feasibility prediction tool for solar power plant installation analyses publication-title: Appl Energy – volume: 73 start-page: 125 year: 2008 end-page: 144 ident: b0150 article-title: Selection of variables in cluster analysis: an empirical comparison of eight procedures publication-title: Psychometrika – reference: Fraley C, Raftery A, Murphy TB, Scrucca L. MCLUST Version 4 for R: normal mixture modeling and model-based clustering. Technical Report 597, Department of Statistics, University of Washington; June 2012. < – reference: >. – reference: {City of New York}, New York City local law 84 benchmarking report. Tech. rep., City of New York Office of Long-Term Planning and Sustainability; September 2013. < – volume: 97 start-page: 611 year: 2002 end-page: 631 ident: b0165 article-title: Model-based clustering, discriminant analysis, and density estimation publication-title: J Am Statist Assoc – year: 2015 ident: b0035 article-title: A novel time-of-use tariff design based on Gaussian Mixture Model publication-title: Appl Energy – volume: 41 start-page: 71 year: 2009 end-page: 80 ident: b0070 article-title: Building energy parameter investigations based on multivariate analysis publication-title: Energy Build – volume: 91 start-page: 146 year: 2012 end-page: 155 ident: b0120 article-title: Algorithmic acquisition of diagnostic patterns in district heating billing system publication-title: Appl Energy – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: b0015 article-title: Data clustering: 50 years beyond publication-title: Pattern Recogn Lett – start-page: 803 year: 1993 end-page: 821 ident: b0205 article-title: Model-based Gaussian and non-Gaussian clustering publication-title: Biometrics – volume: 83 start-page: 144 year: 2015 ident: 10.1016/j.apenergy.2015.08.126_b0235 article-title: Identifying key variables and interactions in statistical models of building energy consumption using regularization publication-title: Energy doi: 10.1016/j.energy.2015.02.008 – volume: 86 start-page: 933 year: 2009 ident: 10.1016/j.apenergy.2015.08.126_b0125 article-title: An analysis of climatic influences on chiller plant electricity consumption publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.05.016 – volume: 85 start-page: 830 year: 2008 ident: 10.1016/j.apenergy.2015.08.126_b0075 article-title: Reducing energy consumption by using self-organizing maps to create more personalized electricity use information publication-title: Appl Energy doi: 10.1016/j.apenergy.2007.10.012 – volume: 68 start-page: 603 issue: Part A year: 2014 ident: 10.1016/j.apenergy.2015.08.126_b0085 article-title: Predicting building ages from LiDAR data with random forests for building energy modeling publication-title: Energy Build doi: 10.1016/j.enbuild.2013.10.004 – volume: 43 start-page: 1409 year: 2011 ident: 10.1016/j.apenergy.2015.08.126_b0100 article-title: A systematic procedure to study the influence of occupant behavior on building energy consumption publication-title: Energy Build doi: 10.1016/j.enbuild.2011.02.002 – volume: 31 start-page: 651 year: 2010 ident: 10.1016/j.apenergy.2015.08.126_b0015 article-title: Data clustering: 50 years beyond K-means publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2009.09.011 – year: 1992 ident: 10.1016/j.apenergy.2015.08.126_b0180 – volume: 88 start-page: 4078 year: 2011 ident: 10.1016/j.apenergy.2015.08.126_b0030 article-title: Development of a feasibility prediction tool for solar power plant installation analyses publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.04.047 – volume: 37 start-page: 127 year: 2005 ident: 10.1016/j.apenergy.2015.08.126_b0110 article-title: Pattern recognition algorithm for determining days of the week with similar energy consumption profiles publication-title: Energy Build doi: 10.1016/j.enbuild.2004.04.004 – volume: 13 start-page: 1819 year: 2009 ident: 10.1016/j.apenergy.2015.08.126_b0060 article-title: Modeling of end-use energy consumption in the residential sector: a review of modeling techniques publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2008.09.033 – volume: 22 start-page: 367 year: 1979 ident: 10.1016/j.apenergy.2015.08.126_b0170 article-title: Algorithm 39 clusterwise linear regression publication-title: Computing doi: 10.1007/BF02265317 – ident: 10.1016/j.apenergy.2015.08.126_b0240 doi: 10.21236/ADA456562 – volume: 33 start-page: 1 year: 2010 ident: 10.1016/j.apenergy.2015.08.126_b0255 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: J Statist Softw doi: 10.18637/jss.v033.i01 – volume: 135 start-page: 461 year: 2014 ident: 10.1016/j.apenergy.2015.08.126_b0045 article-title: Clustering analysis of residential electricity demand profiles publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.08.111 – volume: 43 start-page: 29 year: 2008 ident: 10.1016/j.apenergy.2015.08.126_b0220 article-title: Cautionary remarks on the use of clusterwise regression publication-title: Multivar Behav Res doi: 10.1080/00273170701836653 – ident: 10.1016/j.apenergy.2015.08.126_b0195 doi: 10.18637/jss.v011.i08 – volume: 28 start-page: 1 year: 2008 ident: 10.1016/j.apenergy.2015.08.126_b0200 article-title: others, FlexMix version 2: finite mixtures with concomitant variables and varying and constant parameters publication-title: J Stat Softw doi: 10.18637/jss.v028.i04 – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.apenergy.2015.08.126_b0190 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Statist Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 44 start-page: 104 year: 2012 ident: 10.1016/j.apenergy.2015.08.126_b0140 article-title: Using cluster and multivariate analyses to appraise the operating performance of a chiller system serving an institutional building publication-title: Energy Build doi: 10.1016/j.enbuild.2011.10.026 – volume: 99 start-page: 1154 year: 2008 ident: 10.1016/j.apenergy.2015.08.126_b0215 article-title: Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods publication-title: J Multivar Anal doi: 10.1016/j.jmva.2007.07.002 – year: 2009 ident: 10.1016/j.apenergy.2015.08.126_b0230 – volume: 63 start-page: 411 year: 2001 ident: 10.1016/j.apenergy.2015.08.126_b0210 article-title: Estimating the number of clusters in a data set via the gap statistic publication-title: J R Statist Soc: Ser B (Stat Meth) doi: 10.1111/1467-9868.00293 – volume: 39 start-page: 45 year: 2007 ident: 10.1016/j.apenergy.2015.08.126_b0090 article-title: Using intelligent clustering techniques to classify the energy performance of school buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2006.04.018 – volume: 52 start-page: 145 year: 2012 ident: 10.1016/j.apenergy.2015.08.126_b0105 article-title: Assessment of potential energy saving using cluster analysis: a case study of lighting systems in buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2012.06.006 – volume: 97 start-page: 611 year: 2002 ident: 10.1016/j.apenergy.2015.08.126_b0165 article-title: Model-based clustering, discriminant analysis, and density estimation publication-title: J Am Statist Assoc doi: 10.1198/016214502760047131 – ident: 10.1016/j.apenergy.2015.08.126_b0245 doi: 10.18637/jss.v014.i12 – start-page: 803 year: 1993 ident: 10.1016/j.apenergy.2015.08.126_b0205 article-title: Model-based Gaussian and non-Gaussian clustering publication-title: Biometrics doi: 10.2307/2532201 – volume: 50 start-page: 150 year: 2012 ident: 10.1016/j.apenergy.2015.08.126_b0135 article-title: Developing archetypes for domestic dwellings – an Irish case study publication-title: Energy Build doi: 10.1016/j.enbuild.2012.03.033 – year: 2015 ident: 10.1016/j.apenergy.2015.08.126_b0035 article-title: A novel time-of-use tariff design based on Gaussian Mixture Model publication-title: Appl Energy – ident: 10.1016/j.apenergy.2015.08.126_b0260 – ident: 10.1016/j.apenergy.2015.08.126_b0250 – volume: 101 start-page: 475 year: 2013 ident: 10.1016/j.apenergy.2015.08.126_b0025 article-title: Correlated wind-power production and electric load scenarios for investment decisions publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.06.002 – volume: 29 start-page: 175 year: 1982 ident: 10.1016/j.apenergy.2015.08.126_b0175 article-title: A fast algorithm for clusterwise linear regression publication-title: Computing doi: 10.1007/BF02249940 – volume: 27 start-page: 65 year: 2012 ident: 10.1016/j.apenergy.2015.08.126_b0155 article-title: Clustering: science or art? publication-title: J Mach Learn Res – volume: 42 start-page: 1637 year: 2010 ident: 10.1016/j.apenergy.2015.08.126_b0080 article-title: A decision tree method for building energy demand modeling publication-title: Energy Build doi: 10.1016/j.enbuild.2010.04.006 – volume: 40 start-page: 394 year: 2008 ident: 10.1016/j.apenergy.2015.08.126_b0005 article-title: A review on buildings energy consumption information publication-title: Energy Build doi: 10.1016/j.enbuild.2007.03.007 – volume: 141 start-page: 190 year: 2015 ident: 10.1016/j.apenergy.2015.08.126_b0040 article-title: A clustering approach to domestic electricity load profile characterisation using smart metering data publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.12.039 – volume: 43 start-page: 3036 year: 2011 ident: 10.1016/j.apenergy.2015.08.126_b0115 article-title: Selection of typical demand days for CHP optimization publication-title: Energy Build doi: 10.1016/j.enbuild.2011.07.024 – volume: 36 start-page: 642 year: 2008 ident: 10.1016/j.apenergy.2015.08.126_b0010 article-title: Potentials and costs of carbon dioxide mitigation in the world’s buildings publication-title: Energy Policy doi: 10.1016/j.enpol.2007.10.009 – volume: 48 start-page: 35 year: 2012 ident: 10.1016/j.apenergy.2015.08.126_b0095 article-title: Handling uncertainty in housing stock models publication-title: Build Environ doi: 10.1016/j.buildenv.2011.08.016 – volume: 87 start-page: 2079 year: 2010 ident: 10.1016/j.apenergy.2015.08.126_b0145 article-title: Using principal component and cluster analysis in the heating evaluation of the school building sector publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.12.007 – volume: 5 start-page: 249 year: 1988 ident: 10.1016/j.apenergy.2015.08.126_b0185 article-title: A maximum likelihood methodology for clusterwise linear regression publication-title: J Classif doi: 10.1007/BF01897167 – volume: 85 start-page: 475 year: 2008 ident: 10.1016/j.apenergy.2015.08.126_b0020 article-title: Improving the prediction of UK domestic energy-demand using annual consumption-data publication-title: Appl Energy doi: 10.1016/j.apenergy.2007.09.004 – volume: 73 start-page: 125 year: 2008 ident: 10.1016/j.apenergy.2015.08.126_b0150 article-title: Selection of variables in cluster analysis: an empirical comparison of eight procedures publication-title: Psychometrika doi: 10.1007/s11336-007-9019-y – volume: 37 start-page: 598 year: 2009 ident: 10.1016/j.apenergy.2015.08.126_b0055 article-title: Energy loads, CO2 emissions and building stocks: morphologies, typologies, energy systems and behaviour publication-title: Build Res Inf doi: 10.1080/09613210903162126 – volume: 91 start-page: 146 year: 2012 ident: 10.1016/j.apenergy.2015.08.126_b0120 article-title: Algorithmic acquisition of diagnostic patterns in district heating billing system publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.09.023 – volume: 43 start-page: 2662 year: 2011 ident: 10.1016/j.apenergy.2015.08.126_b0065 article-title: Behavioural Patterns and User Profiles related to energy consumption for heating publication-title: Energy Build doi: 10.1016/j.enbuild.2011.06.024 – volume: 52 start-page: 258 year: 2007 ident: 10.1016/j.apenergy.2015.08.126_b0160 article-title: Cluster-wise assessment of cluster stability publication-title: Comput Statist Data Anal doi: 10.1016/j.csda.2006.11.025 – year: 2001 ident: 10.1016/j.apenergy.2015.08.126_b0225 – volume: 41 start-page: 71 year: 2009 ident: 10.1016/j.apenergy.2015.08.126_b0070 article-title: Building energy parameter investigations based on multivariate analysis publication-title: Energy Build doi: 10.1016/j.enbuild.2008.07.012 – volume: 43 start-page: 2779 year: 2011 ident: 10.1016/j.apenergy.2015.08.126_b0050 article-title: A typological classification of the Greek residential building stock publication-title: Energy Build doi: 10.1016/j.enbuild.2011.06.036 – volume: 87 start-page: 3538 year: 2010 ident: 10.1016/j.apenergy.2015.08.126_b0130 article-title: Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.05.015 |
SSID | ssj0002120 |
Score | 2.5233545 |
Snippet | •Summary of recent work identifying sub-groups of energy consumption in buildings.•Clusterwise (or latent class) regression gives superior prediction... Clustering methods are often used to model energy consumption for two reasons. First, clustering is often used to process data and to improve the predictive... |
SourceID | osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 153 |
SubjectTerms | algorithms Buildings Cluster stability Cluster-wise regression data collection energy ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Energy consumption Latent class regression MATHEMATICS AND COMPUTING New York prediction Prediction accuracy regression analysis |
Title | Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data |
URI | https://dx.doi.org/10.1016/j.apenergy.2015.08.126 https://www.proquest.com/docview/2000312685 https://www.osti.gov/biblio/1250054 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6hssCAoFBRCpWRWEPzchKPqAIVECyAxGbZjiO1qtKqj5Xfzl3iFBBIHciWyJeHP_v8Wbn7DuCKR1brQIVebFXixaFfeDpHQDKNRyLyTFS1Dp-ek9Fb_PDO33dg2OTCUFil8_21T6-8tbsycL05mI_Hgxdiu8T_kdLgviYkTdA4TmmsX398hXmETpoRG3vU-luW8ORazW2VYUchXpykPAMSWfh7gWrNcM798tjVMnR3CAeOP7Kb-hWPYMeWbdj_pirYhs7tV_IaNnWzd3kMi-Gm6CCbFWyjFJEzM12TYAKas7qk9JIhmWXKmDU1YKrMGdJIPbVsvqBfOwQn3UO7qtqs_kJmqozOyg0xCj49gbe729fhyHM1FzyDQK28XBfIYLNQIbNKU259i_0X5CrRKjJG2CIKOG7RcN1LAm0T3yDh1NwPCx4mRiOX6kCrnJX2FFiR-SkiHUV5IeJIp4Kk6YQSgSXVo0h0gTcdLY0TJKe6GFPZRJ5NZAOQJICkn0kEqAuDjd28luTYaiEaHOWPwSVx3dhq2yPgyY5UdQ2FH6Eh8kJiu124bMaDxHlJP1tUaWfrJZX3RH8ZJhk_-8fTe7BHZxQ_E_BzaK0Wa3uBLGil-9Uw78Puzf3j6PkTTlYJZw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BOQAHxFZRymIkrqHZnMZHVIHK0l4AiZtlO45EVaVVlyvfzkziFBBIHMgx8WTxs8fPyswbgEseWa0DFXqxVYkXh37u6QwBSTUeichSUdY6HAyT_kt8_8pf16BX58JQWKXz_ZVPL721O9NxvdmZvr11nojtEv9HSoP7mjBeh42YyhzgoL56_4zzCJ02I7b2qPmXNOHRlZraMsWOYrw4aXkGpLLw-wrVmOCk--Gyy3Xodhd2HIFk19U77sGaLfZh-4us4D40bz6z17Cpm77zA5j1VlUH2SRnK6mIjJnxkhQT0JxVNaXnDNksU8YsqQFTRcaQR-qxZdMZ_dshPOke2pXVZtUXMlOmdJZ-iFH06SG83N489_qeK7rgGURq4WU6RwqbhgqpVbfLrW-x_4JMJVpFxgibRwHHPRoufEmgbeIbZJya-2HOw8RoJFNNaBSTwh4By1O_i1BHUZaLONJdQdp0QonAkuxRJFrA646WximSU2GMsaxDz0ayBkgSQNJPJQLUgs7KblppcvxpIWoc5bfRJXHh-NO2TcCTHcnqGoo_QkMkhkR3W3BRjweJE5P-tqjCTpZzqu-JDjNMUn78j6efw2b_efAoH--GD23YoisUTBPwE2gsZkt7ipRooc_KIf8BM48K8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+integrated+clustering+methods+for+accurate+and+stable+prediction+of+building+energy+consumption+data&rft.jtitle=Applied+energy&rft.au=Hsu%2C+David&rft.date=2015-12-15&rft.issn=0306-2619&rft.volume=160+p.153-163&rft.spage=153&rft.epage=163&rft_id=info:doi/10.1016%2Fj.apenergy.2015.08.126&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |