Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids
Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily transported carrier of hydrogen energy that can be generated from "stranded" renewable-energy resources. However, the traditional Haber-B...
Saved in:
Published in | Energy & environmental science Vol. 1; no. 12; pp. 2516 - 252 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
01.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1754-5692 1754-5706 |
DOI | 10.1039/c7ee02716h |
Cover
Abstract | Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily transported carrier of hydrogen energy that can be generated from "stranded" renewable-energy resources. However, the traditional Haber-Bosch process for the production of ammonia from atmospheric nitrogen and fossil fuels is a high temperature and pressure process that is energy intensive, currently producing more than 1.6% of global CO
2
emissions. An ambient temperature, electrochemical synthesis of ammonia is an attractive alternative approach, but has, to date, not been achieved at high efficiency. We report in this work the use of ionic liquids that have high N
2
solubility as electrolytes to achieve high conversion efficiency of 60% for N
2
electro-reduction to ammonia on a nanostructured iron catalyst under ambient conditions.
High faradaic efficiency reduction of N
2
to NH
3
is achieved in ionic liquid media under ambient conditions. |
---|---|
AbstractList | Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily transported carrier of hydrogen energy that can be generated from “stranded” renewable-energy resources. However, the traditional Haber–Bosch process for the production of ammonia from atmospheric nitrogen and fossil fuels is a high temperature and pressure process that is energy intensive, currently producing more than 1.6% of global CO
2
emissions. An ambient temperature, electrochemical synthesis of ammonia is an attractive alternative approach, but has, to date, not been achieved at high efficiency. We report in this work the use of ionic liquids that have high N
2
solubility as electrolytes to achieve high conversion efficiency of 60% for N
2
electro-reduction to ammonia on a nanostructured iron catalyst under ambient conditions. Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily transported carrier of hydrogen energy that can be generated from "stranded" renewable-energy resources. However, the traditional Haber-Bosch process for the production of ammonia from atmospheric nitrogen and fossil fuels is a high temperature and pressure process that is energy intensive, currently producing more than 1.6% of global CO 2 emissions. An ambient temperature, electrochemical synthesis of ammonia is an attractive alternative approach, but has, to date, not been achieved at high efficiency. We report in this work the use of ionic liquids that have high N 2 solubility as electrolytes to achieve high conversion efficiency of 60% for N 2 electro-reduction to ammonia on a nanostructured iron catalyst under ambient conditions. High faradaic efficiency reduction of N 2 to NH 3 is achieved in ionic liquid media under ambient conditions. Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily transported carrier of hydrogen energy that can be generated from “stranded” renewable-energy resources. However, the traditional Haber–Bosch process for the production of ammonia from atmospheric nitrogen and fossil fuels is a high temperature and pressure process that is energy intensive, currently producing more than 1.6% of global CO2 emissions. An ambient temperature, electrochemical synthesis of ammonia is an attractive alternative approach, but has, to date, not been achieved at high efficiency. We report in this work the use of ionic liquids that have high N2 solubility as electrolytes to achieve high conversion efficiency of 60% for N2 electro-reduction to ammonia on a nanostructured iron catalyst under ambient conditions. |
Author | Azofra, Luis Miguel McDonnell-Worth, Ciaran Kar, Mega Zhang, Xinyi Sun, Chenghua MacFarlane, Douglas R Ali, Muataz Zhou, Fengling Simonov, Alexandr N |
AuthorAffiliation | Monash University ARC Centre of Excellence for Electromaterials Science and School of Chemistry Clayton |
AuthorAffiliation_xml | – sequence: 0 name: ARC Centre of Excellence for Electromaterials Science and School of Chemistry – sequence: 0 name: Monash University – sequence: 0 name: Clayton |
Author_xml | – sequence: 1 givenname: Fengling surname: Zhou fullname: Zhou, Fengling – sequence: 2 givenname: Luis Miguel surname: Azofra fullname: Azofra, Luis Miguel – sequence: 3 givenname: Muataz surname: Ali fullname: Ali, Muataz – sequence: 4 givenname: Mega surname: Kar fullname: Kar, Mega – sequence: 5 givenname: Alexandr N surname: Simonov fullname: Simonov, Alexandr N – sequence: 6 givenname: Ciaran surname: McDonnell-Worth fullname: McDonnell-Worth, Ciaran – sequence: 7 givenname: Chenghua surname: Sun fullname: Sun, Chenghua – sequence: 8 givenname: Xinyi surname: Zhang fullname: Zhang, Xinyi – sequence: 9 givenname: Douglas R surname: MacFarlane fullname: MacFarlane, Douglas R |
BookMark | eNptUUtLxDAQDqLg7urFuxDwJlSTPpLmKEt1hQUvei5pOnGztEk3SQ_77-26PkA8zQzfY5hv5ujUOgsIXVFyR0km7hUHICmnbHOCZpQXeVJwwk6_eybSczQPYUsISwkXM1RXHajoXRL2Nm4gmICdxrLvnTUSa-96bM2Ev4PFMk5AY8BGHKEfwMs4esDStnjwEMJhMBabSapwZ3ajacMFOtOyC3D5VRfo7bF6Xa6S9cvT8_Jhnag8JTFRBSvbltJSiJZnhZBS6kaC4kzkuWqKQitChWRFI4VWRdYQxfNSNQ0TUOpSZwt0c_QdvNuNEGK9daO308o6JZSULC9pNrFujyzlXQgedD1400u_rympDwHWS15VnwGuJjL5Q1YmyjidF7003f-S66PEB_Vj_fuT7AM6mYCf |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_2c00018 crossref_primary_10_1016_j_apsusc_2023_156790 crossref_primary_10_1039_D1GC00914A crossref_primary_10_1021_acs_jafc_3c00454 crossref_primary_10_1002_anie_201906521 crossref_primary_10_1021_jacs_9b13349 crossref_primary_10_1016_j_coelec_2021_100790 crossref_primary_10_1021_acssuschemeng_8b05763 crossref_primary_10_1016_j_coelec_2024_101487 crossref_primary_10_1016_j_cclet_2024_110276 crossref_primary_10_1039_C8TA08219G crossref_primary_10_1002_adma_202007650 crossref_primary_10_1016_j_apmt_2024_102253 crossref_primary_10_1021_acscatal_9b00358 crossref_primary_10_1016_j_nanoen_2020_105391 crossref_primary_10_1016_j_ijhydene_2022_09_061 crossref_primary_10_1016_j_jiec_2025_02_029 crossref_primary_10_1016_j_scib_2022_09_001 crossref_primary_10_1016_j_gee_2022_10_001 crossref_primary_10_1016_j_cclet_2019_10_041 crossref_primary_10_1002_cssc_202300465 crossref_primary_10_1002_adfm_202111161 crossref_primary_10_1002_ange_202415208 crossref_primary_10_1021_acs_inorgchem_0c02176 crossref_primary_10_1002_advs_201902390 crossref_primary_10_1002_aenm_202003294 crossref_primary_10_1002_aenm_202304106 crossref_primary_10_1016_j_jpowsour_2024_235618 crossref_primary_10_1016_j_electacta_2019_134691 crossref_primary_10_1007_s11705_024_2463_8 crossref_primary_10_1016_j_joule_2021_05_005 crossref_primary_10_1021_acsenergylett_9b02286 crossref_primary_10_1016_j_ijhydene_2024_12_496 crossref_primary_10_1021_acsmaterialslett_3c01144 crossref_primary_10_1002_smtd_201800337 crossref_primary_10_1016_j_ijhydene_2019_01_144 crossref_primary_10_1016_j_cej_2024_154920 crossref_primary_10_1021_acs_nanolett_0c05080 crossref_primary_10_1016_j_jcis_2019_05_045 crossref_primary_10_1021_jacsau_1c00538 crossref_primary_10_1002_aenm_202202403 crossref_primary_10_1016_j_energy_2023_128223 crossref_primary_10_1021_jacs_4c06784 crossref_primary_10_1039_C9MH01668F crossref_primary_10_1016_j_coelec_2021_100766 crossref_primary_10_1016_j_jclepro_2021_129017 crossref_primary_10_1007_s12274_021_3592_8 crossref_primary_10_1021_acs_jpcc_4c02331 crossref_primary_10_1002_ange_202005930 crossref_primary_10_1002_adma_201800191 crossref_primary_10_1016_j_jpowsour_2022_231832 crossref_primary_10_1039_C9CC04378K crossref_primary_10_1002_anie_201909831 crossref_primary_10_1021_acscatal_3c00201 crossref_primary_10_1038_s41929_019_0252_4 crossref_primary_10_1039_C9CC05684J crossref_primary_10_1093_nsr_nwz019 crossref_primary_10_1021_acs_inorgchem_3c00637 crossref_primary_10_1002_anie_201906449 crossref_primary_10_1039_C9NR02782C crossref_primary_10_1016_j_molliq_2023_122066 crossref_primary_10_1039_C8CC06000B crossref_primary_10_1039_D2MA00279E crossref_primary_10_1039_C9TA04650J crossref_primary_10_1016_j_ces_2024_120967 crossref_primary_10_1039_C9TA09264A crossref_primary_10_1016_j_chempr_2020_11_002 crossref_primary_10_1021_acsomega_1c06400 crossref_primary_10_34133_2019_1401209 crossref_primary_10_1021_acs_est_8b02743 crossref_primary_10_1016_j_jechem_2020_11_006 crossref_primary_10_1016_j_desal_2024_118392 crossref_primary_10_1016_j_enconman_2020_113729 crossref_primary_10_1016_j_ccr_2023_215196 crossref_primary_10_1021_acs_energyfuels_4c05425 crossref_primary_10_1016_j_apcatb_2021_119952 crossref_primary_10_1038_s41929_019_0241_7 crossref_primary_10_1063_5_0069736 crossref_primary_10_1016_j_enchem_2020_100040 crossref_primary_10_1039_D1CP05140G crossref_primary_10_1002_smtd_201800388 crossref_primary_10_1039_D0EE01102A crossref_primary_10_1002_cctc_202400966 crossref_primary_10_1039_D3NR03310D crossref_primary_10_1039_C7CP08626A crossref_primary_10_1016_j_apsusc_2021_151109 crossref_primary_10_1039_D3TA05136F crossref_primary_10_1007_s41918_020_00069_0 crossref_primary_10_1002_smll_202204116 crossref_primary_10_1021_acscatal_2c04491 crossref_primary_10_1002_smtd_201800386 crossref_primary_10_1149_1945_7111_abc1a8 crossref_primary_10_1002_smsc_202100070 crossref_primary_10_1002_anie_202215938 crossref_primary_10_1021_acssuschemeng_8b01261 crossref_primary_10_1002_celc_202001370 crossref_primary_10_1016_j_joule_2018_04_014 crossref_primary_10_1002_advs_201801182 crossref_primary_10_1002_anie_202415208 crossref_primary_10_1002_cctc_201901519 crossref_primary_10_1021_acsenergylett_0c00455 crossref_primary_10_1016_j_isci_2020_101803 crossref_primary_10_1021_jacs_9b13996 crossref_primary_10_1088_1361_6463_ac2f12 crossref_primary_10_1126_sciadv_aar3208 crossref_primary_10_1016_j_apcatb_2021_120592 crossref_primary_10_1039_C9MH01094G crossref_primary_10_1016_j_apcatb_2024_124935 crossref_primary_10_1039_D0QI00749H crossref_primary_10_1021_acs_langmuir_1c02358 crossref_primary_10_1021_acsaem_2c01346 crossref_primary_10_1016_j_xcrp_2021_100374 crossref_primary_10_1007_s12039_023_02162_5 crossref_primary_10_1016_j_susmat_2023_e00609 crossref_primary_10_1021_acscatal_8b03802 crossref_primary_10_1016_j_cej_2023_145420 crossref_primary_10_1002_slct_201900868 crossref_primary_10_1016_j_joule_2019_05_001 crossref_primary_10_1021_acsenergylett_1c01568 crossref_primary_10_1039_D1TA02424H crossref_primary_10_1039_D1QM01620B crossref_primary_10_1021_jacs_1c00783 crossref_primary_10_1039_D0EE02263B crossref_primary_10_1016_j_comptc_2022_113732 crossref_primary_10_1149_1945_7111_ab7097 crossref_primary_10_1021_acs_est_0c04383 crossref_primary_10_1039_D4CY01008F crossref_primary_10_1016_j_jechem_2019_01_027 crossref_primary_10_1021_acssuschemeng_0c03970 crossref_primary_10_1039_D0TA09496J crossref_primary_10_1021_acscatal_9b00994 crossref_primary_10_1039_D0EE03596C crossref_primary_10_1016_j_enchem_2023_100099 crossref_primary_10_1021_acs_jpcc_8b11509 crossref_primary_10_1021_acs_jpcc_9b01107 crossref_primary_10_1016_j_jechem_2019_01_020 crossref_primary_10_1002_ange_202215938 crossref_primary_10_1016_j_seppur_2023_125204 crossref_primary_10_1016_j_electacta_2019_05_070 crossref_primary_10_1002_ange_202302124 crossref_primary_10_1002_ange_202011596 crossref_primary_10_1021_acs_chemrev_3c00723 crossref_primary_10_2139_ssrn_4067022 crossref_primary_10_1016_j_mseb_2024_117884 crossref_primary_10_1021_accountsmr_4c00103 crossref_primary_10_1007_s12200_018_0807_z crossref_primary_10_1002_ange_202115409 crossref_primary_10_1149_1945_7111_abbdd6 crossref_primary_10_1016_j_ijhydene_2022_12_173 crossref_primary_10_1002_celc_201900320 crossref_primary_10_1039_D4GC01566E crossref_primary_10_1016_j_apcatb_2022_121277 crossref_primary_10_1021_acsami_4c05818 crossref_primary_10_1016_j_nanoen_2019_02_019 crossref_primary_10_1002_tcr_202200139 crossref_primary_10_1016_j_seppur_2020_117066 crossref_primary_10_1021_acscatal_3c04398 crossref_primary_10_3390_catal12091015 crossref_primary_10_1021_acsenergylett_0c00496 crossref_primary_10_1039_C9TA05505C crossref_primary_10_1002_adfm_202212483 crossref_primary_10_1126_science_abg2371 crossref_primary_10_2139_ssrn_4117601 crossref_primary_10_1039_C9TA03654G crossref_primary_10_1039_D1MA00814E crossref_primary_10_1039_C9TA08806G crossref_primary_10_1039_C9NR08788E crossref_primary_10_1021_acs_energyfuels_4c00802 crossref_primary_10_1016_j_materresbull_2021_111523 crossref_primary_10_1038_s41929_020_0455_8 crossref_primary_10_1002_chem_201805523 crossref_primary_10_1016_j_ijhydene_2020_08_208 crossref_primary_10_1039_D0NR00072H crossref_primary_10_1016_j_jcis_2021_08_050 crossref_primary_10_1016_j_seppur_2024_130942 crossref_primary_10_1002_smll_202403253 crossref_primary_10_1016_j_chempr_2019_02_021 crossref_primary_10_1002_celc_201901967 crossref_primary_10_1002_smll_202409925 crossref_primary_10_1021_acsnano_2c07260 crossref_primary_10_1039_C8CP04474K crossref_primary_10_1039_D2CP01107G crossref_primary_10_1016_j_apcata_2024_119562 crossref_primary_10_1016_j_cej_2024_150027 crossref_primary_10_1039_D0NH00242A crossref_primary_10_1039_C9TA06076F crossref_primary_10_1002_adma_202401032 crossref_primary_10_1002_aesr_202000062 crossref_primary_10_1002_celc_201901970 crossref_primary_10_1021_acsaem_0c00330 crossref_primary_10_1039_C9DT04827H crossref_primary_10_1039_D4EY00197D crossref_primary_10_1016_j_isci_2021_103105 crossref_primary_10_1021_acssuschemeng_8b05332 crossref_primary_10_1039_D1TA02720D crossref_primary_10_1002_adfm_202008983 crossref_primary_10_1002_adfm_202201262 crossref_primary_10_1016_j_joule_2020_04_004 crossref_primary_10_1016_j_apcatb_2020_118919 crossref_primary_10_1021_acsami_0c06744 crossref_primary_10_1021_acs_jpclett_8b03409 crossref_primary_10_1039_D0EE02246B crossref_primary_10_1016_j_jenvman_2023_118348 crossref_primary_10_1007_s10853_022_07311_8 crossref_primary_10_1016_j_jcis_2024_05_189 crossref_primary_10_1021_jacs_3c11676 crossref_primary_10_1038_s41929_024_01115_6 crossref_primary_10_1002_tcr_202400234 crossref_primary_10_1021_acsenergylett_0c02349 crossref_primary_10_1016_j_xcrp_2021_100557 crossref_primary_10_1039_C9TA01410A crossref_primary_10_1016_j_jmst_2020_09_048 crossref_primary_10_1007_s12274_019_2323_x crossref_primary_10_1016_j_ijhydene_2021_01_203 crossref_primary_10_3390_nano15010065 crossref_primary_10_1016_j_xcrp_2022_100961 crossref_primary_10_1002_smll_202312210 crossref_primary_10_1002_celc_202300293 crossref_primary_10_1039_D2NJ06362J crossref_primary_10_1016_j_enchem_2019_100011 crossref_primary_10_1016_j_xcrp_2021_100425 crossref_primary_10_1038_s41557_022_01088_8 crossref_primary_10_1021_acsaem_2c01745 crossref_primary_10_1016_j_mattod_2020_09_006 crossref_primary_10_1021_acs_energyfuels_1c01923 crossref_primary_10_1039_D2EE00358A crossref_primary_10_1002_aenm_202302382 crossref_primary_10_1039_C9CC06385D crossref_primary_10_1016_S1872_2067_22_64148_2 crossref_primary_10_1002_sus2_13 crossref_primary_10_1002_anie_202213009 crossref_primary_10_1002_er_6674 crossref_primary_10_1016_j_ijhydene_2021_01_214 crossref_primary_10_1016_j_apcatb_2022_121465 crossref_primary_10_1039_D0CP03246H crossref_primary_10_1039_D2SE00830K crossref_primary_10_1186_s40580_019_0182_5 crossref_primary_10_1021_acscatal_9b03180 crossref_primary_10_1002_asia_202000969 crossref_primary_10_1016_j_jece_2023_110556 crossref_primary_10_1039_D1CS00120E crossref_primary_10_1039_C9CS00280D crossref_primary_10_1016_j_jechem_2021_01_039 crossref_primary_10_3390_eng5030097 crossref_primary_10_2139_ssrn_4086835 crossref_primary_10_1039_D0MH01947J crossref_primary_10_1039_D1MA00680K crossref_primary_10_1002_ange_202213009 crossref_primary_10_1039_D0CC05921H crossref_primary_10_1016_j_mtphys_2020_100310 crossref_primary_10_1021_acs_jpclett_4c01978 crossref_primary_10_1002_wcms_1418 crossref_primary_10_1016_j_cej_2019_04_052 crossref_primary_10_1039_C8TA11201K crossref_primary_10_1016_j_jenvman_2020_111211 crossref_primary_10_1021_acsenergylett_9b02812 crossref_primary_10_1002_asia_201901714 crossref_primary_10_1002_chem_201806377 crossref_primary_10_1149_1945_7111_abc35b crossref_primary_10_2139_ssrn_4103273 crossref_primary_10_1016_S1872_2067_24_60123_3 crossref_primary_10_1039_C8CP01215F crossref_primary_10_1038_s41467_023_35785_w crossref_primary_10_1021_jacs_8b02335 crossref_primary_10_1002_anie_201811728 crossref_primary_10_1016_j_jcis_2024_05_145 crossref_primary_10_1021_acsenergylett_4c02868 crossref_primary_10_1016_j_cclet_2021_03_038 crossref_primary_10_1016_j_materresbull_2020_110853 crossref_primary_10_1002_cey2_491 crossref_primary_10_1039_D2CP05163J crossref_primary_10_1039_D3CY01009K crossref_primary_10_1002_smll_202305616 crossref_primary_10_1016_j_jechem_2021_01_018 crossref_primary_10_1002_anie_201806386 crossref_primary_10_1016_j_coelec_2023_101301 crossref_primary_10_1016_j_inoche_2020_108169 crossref_primary_10_1007_s12598_022_02215_7 crossref_primary_10_1016_j_ijhydene_2023_05_206 crossref_primary_10_1039_D2CP05959B crossref_primary_10_1016_j_molliq_2024_124909 crossref_primary_10_1002_anie_202009435 crossref_primary_10_1016_j_cej_2024_148923 crossref_primary_10_1038_s41929_021_00599_w crossref_primary_10_1007_s10008_022_05228_5 crossref_primary_10_1002_aenm_202000797 crossref_primary_10_1080_21663831_2023_2209156 crossref_primary_10_1039_C9TA06470B crossref_primary_10_1002_anie_202115409 crossref_primary_10_1002_eem2_12192 crossref_primary_10_1016_j_apcatb_2020_118984 crossref_primary_10_1126_sciadv_aat5778 crossref_primary_10_1039_D1CC02612G crossref_primary_10_1002_adma_201904804 crossref_primary_10_1360_TB_2024_0858 crossref_primary_10_1016_j_apcatb_2020_119606 crossref_primary_10_1039_D3TA03675H crossref_primary_10_1016_j_jechem_2019_10_016 crossref_primary_10_1039_C9TA13700A crossref_primary_10_1002_adma_201904870 crossref_primary_10_1016_j_cogsc_2020_100373 crossref_primary_10_1021_acsnano_2c09168 crossref_primary_10_1039_C8RE00111A crossref_primary_10_1002_adfm_201906579 crossref_primary_10_1039_D0NR00412J crossref_primary_10_1021_acs_est_3c10751 crossref_primary_10_1021_acscatal_8b02120 crossref_primary_10_1039_C9CC03413G crossref_primary_10_1039_C8CC07869F crossref_primary_10_1002_adma_202101126 crossref_primary_10_1016_j_apcatb_2022_121651 crossref_primary_10_1016_j_cej_2023_143163 crossref_primary_10_1021_acscentsci_0c00552 crossref_primary_10_1021_acsnano_2c00596 crossref_primary_10_1038_s41467_018_05758_5 crossref_primary_10_1016_j_joule_2019_02_003 crossref_primary_10_1021_acscatal_9b00959 crossref_primary_10_1039_C9TA05155D crossref_primary_10_1126_science_aar6611 crossref_primary_10_1021_acscatal_3c04255 crossref_primary_10_1016_j_apmt_2021_101184 crossref_primary_10_1016_j_cclet_2023_108550 crossref_primary_10_1016_j_renene_2024_122234 crossref_primary_10_1002_asia_201900793 crossref_primary_10_1002_ejic_201900667 crossref_primary_10_1016_j_fuel_2023_130307 crossref_primary_10_1016_j_cej_2022_140106 crossref_primary_10_1016_j_cej_2024_154217 crossref_primary_10_1002_celc_202000514 crossref_primary_10_1039_D0EE03808C crossref_primary_10_1002_ange_202009435 crossref_primary_10_3390_catal11121529 crossref_primary_10_1039_D3CP04572B crossref_primary_10_1016_j_ces_2022_117735 crossref_primary_10_1016_j_ensm_2022_10_007 crossref_primary_10_1016_j_compchemeng_2022_107948 crossref_primary_10_1002_cctc_202300669 crossref_primary_10_1016_j_chempr_2018_12_003 crossref_primary_10_1039_C9GC01338E crossref_primary_10_1039_D1TA08877G crossref_primary_10_1021_acs_iecr_9b00833 crossref_primary_10_1016_j_memsci_2020_118483 crossref_primary_10_1016_j_mtener_2025_101839 crossref_primary_10_1002_smll_202200436 crossref_primary_10_1021_acs_jpclett_0c01582 crossref_primary_10_1021_acsenergylett_2c01197 crossref_primary_10_1016_j_apcatb_2019_118568 crossref_primary_10_1021_acsenergylett_9b00860 crossref_primary_10_1021_acs_jpcc_7b10522 crossref_primary_10_1016_j_jallcom_2023_170476 crossref_primary_10_1002_ange_201906449 crossref_primary_10_1039_D1GC01614H crossref_primary_10_1021_acscatal_0c03985 crossref_primary_10_1021_acs_iecr_3c02283 crossref_primary_10_1002_ange_202305447 crossref_primary_10_1021_acscatal_2c02629 crossref_primary_10_1128_aem_02073_22 crossref_primary_10_54227_mlab_20220011 crossref_primary_10_1021_acs_jpclett_0c01450 crossref_primary_10_1016_j_ccr_2022_214468 crossref_primary_10_1016_j_coelec_2018_10_004 crossref_primary_10_1021_acs_analchem_9b04999 crossref_primary_10_1016_j_cej_2022_139494 crossref_primary_10_1021_acsenergylett_8b02138 crossref_primary_10_1002_ange_201909831 crossref_primary_10_1021_acsenergylett_1c01893 crossref_primary_10_1021_acsenergylett_8b02257 crossref_primary_10_1038_s41929_018_0092_7 crossref_primary_10_1038_s41467_021_24539_1 crossref_primary_10_1002_advs_202002630 crossref_primary_10_1038_s43586_021_00053_y crossref_primary_10_1016_j_jclepro_2020_121838 crossref_primary_10_1021_acssuschemeng_8b06163 crossref_primary_10_1002_anie_202305447 crossref_primary_10_1002_eem2_12100 crossref_primary_10_1021_acsmaterialsau_1c00006 crossref_primary_10_1002_ange_201806386 crossref_primary_10_1021_acscatal_9b02245 crossref_primary_10_1149_1945_7111_ac3ff2 crossref_primary_10_3390_membranes9090112 crossref_primary_10_1021_acsenergylett_9b01573 crossref_primary_10_1021_acs_jpcc_0c03899 crossref_primary_10_1002_adfm_202210759 crossref_primary_10_1002_adma_202211894 crossref_primary_10_1038_s41929_020_00527_4 crossref_primary_10_3390_membranes14030071 crossref_primary_10_1039_D0NJ04365F crossref_primary_10_1039_D1GC02873A crossref_primary_10_1002_slct_201903206 crossref_primary_10_1039_D0TA08678A crossref_primary_10_1002_aenm_201902020 crossref_primary_10_1002_anie_202005930 crossref_primary_10_3390_catal10030353 crossref_primary_10_1016_j_joule_2019_09_015 crossref_primary_10_1002_celc_202100251 crossref_primary_10_1007_s11467_021_1067_8 crossref_primary_10_1002_cssc_202001433 crossref_primary_10_1002_cctc_201802017 crossref_primary_10_1016_j_nanoen_2020_104469 crossref_primary_10_1016_j_mtener_2021_100681 crossref_primary_10_1016_j_ijhydene_2020_07_147 crossref_primary_10_1016_j_nanoen_2022_108027 crossref_primary_10_1002_slct_202203344 crossref_primary_10_1016_j_jcis_2018_09_036 crossref_primary_10_1016_j_jre_2021_06_014 crossref_primary_10_1039_D3QI00568B crossref_primary_10_1021_acssuschemeng_4c09790 crossref_primary_10_1021_acs_jctc_1c00268 crossref_primary_10_1016_j_seppur_2020_116660 crossref_primary_10_1016_j_joule_2019_09_007 crossref_primary_10_1021_acs_iecr_4c00384 crossref_primary_10_1039_D3TA04848A crossref_primary_10_1016_j_ces_2023_119482 crossref_primary_10_1007_s12209_020_00243_x crossref_primary_10_1039_C9EE02873K crossref_primary_10_1016_j_chempr_2021_01_009 crossref_primary_10_1002_admi_202102242 crossref_primary_10_1016_j_mtphys_2022_100619 crossref_primary_10_1021_acscatal_0c01081 crossref_primary_10_1039_D0TA06672A crossref_primary_10_1002_cctc_202001775 crossref_primary_10_1002_ange_201811728 crossref_primary_10_1002_adma_202005721 crossref_primary_10_1021_acscatal_3c02410 crossref_primary_10_1021_acs_chemrev_9b00659 crossref_primary_10_1002_ange_201906521 crossref_primary_10_1002_anie_202011596 crossref_primary_10_1021_acs_jpclett_8b02188 crossref_primary_10_1016_j_apcatb_2020_119794 crossref_primary_10_1016_j_apcatb_2020_118589 crossref_primary_10_1039_C9CS00159J crossref_primary_10_1039_D0EE03756G crossref_primary_10_1149_1945_7111_ad6a97 crossref_primary_10_1002_sus2_7 crossref_primary_10_1039_D1TA00581B crossref_primary_10_1002_adma_202209307 crossref_primary_10_1039_D1EE01731D crossref_primary_10_1016_j_apsusc_2020_147851 crossref_primary_10_1080_10643389_2023_2285692 crossref_primary_10_1002_aenm_201800369 crossref_primary_10_1002_cey2_307 crossref_primary_10_1039_D3TA01548C crossref_primary_10_1039_C9TA09920D crossref_primary_10_1016_j_nanoen_2018_04_039 crossref_primary_10_1016_j_seppur_2020_117337 crossref_primary_10_1039_D1CY01442K crossref_primary_10_1016_j_chempr_2018_10_010 crossref_primary_10_1021_acscatal_9b03015 crossref_primary_10_1002_cctc_202301253 crossref_primary_10_1016_j_cej_2023_147483 crossref_primary_10_1021_acs_estlett_7b00534 crossref_primary_10_1002_anie_202302124 crossref_primary_10_1039_D2CY02181A crossref_primary_10_1146_annurev_chembioeng_092319_080240 crossref_primary_10_1021_acs_jpcc_1c02477 crossref_primary_10_1021_acs_jpcc_2c03776 crossref_primary_10_1016_j_jece_2023_110122 crossref_primary_10_1039_D3GC03297C crossref_primary_10_1039_D2EE00953F crossref_primary_10_1002_smll_201902535 crossref_primary_10_1016_j_isci_2023_106407 crossref_primary_10_1016_j_mcat_2021_111935 crossref_primary_10_1016_j_cclet_2022_07_002 crossref_primary_10_1038_s41586_019_1260_x crossref_primary_10_1246_bcsj_20190115 crossref_primary_10_1016_j_jpowsour_2023_233939 crossref_primary_10_1021_acs_jpca_9b01107 crossref_primary_10_1039_D1NR08445C crossref_primary_10_1002_aenm_201803935 crossref_primary_10_1016_j_jechem_2021_09_004 crossref_primary_10_1016_j_cclet_2020_04_013 crossref_primary_10_1021_acsami_0c22338 crossref_primary_10_1016_j_electacta_2025_145842 crossref_primary_10_1021_acsami_9b14770 crossref_primary_10_1039_C9CY01351B crossref_primary_10_1016_j_ica_2021_120700 crossref_primary_10_1016_S1872_2067_24_60144_0 crossref_primary_10_1039_D1TA01058A crossref_primary_10_1021_acs_energyfuels_5c00117 crossref_primary_10_1039_D3CP05763A crossref_primary_10_1038_s41598_021_85955_3 crossref_primary_10_1002_adma_202313023 crossref_primary_10_1002_aenm_202400076 crossref_primary_10_1021_acsenergylett_8b00487 crossref_primary_10_1016_j_jelechem_2023_117174 crossref_primary_10_1016_j_rser_2022_112845 crossref_primary_10_1021_acs_jpcc_9b05436 crossref_primary_10_1016_j_pecs_2020_100860 crossref_primary_10_1016_j_cej_2022_138316 crossref_primary_10_1021_acssuschemeng_9b00314 crossref_primary_10_1039_D3DT04384C crossref_primary_10_1002_ece2_10 crossref_primary_10_1016_j_cej_2023_141911 crossref_primary_10_1002_celc_201902124 crossref_primary_10_1002_celc_202400033 crossref_primary_10_1016_j_coelec_2021_100723 crossref_primary_10_1002_cssc_202000487 crossref_primary_10_1002_smll_201904723 crossref_primary_10_1021_acs_jpcc_8b07752 crossref_primary_10_1039_D2QM00453D crossref_primary_10_1021_acs_energyfuels_2c01478 crossref_primary_10_3390_catal9090729 crossref_primary_10_1002_cssc_201901623 crossref_primary_10_1039_D0NR02884C crossref_primary_10_1093_nsr_nwaa136 crossref_primary_10_1016_j_trechm_2021_11_007 |
Cites_doi | 10.1002/cssc.201500322 10.1021/jp002236v 10.1007/s12678-014-0242-x 10.1039/C4CP04308A 10.1039/C6RA08247E 10.1007/s10008-011-1376-x 10.1016/j.jpowsour.2015.03.002 10.1149/2.0231607jes 10.1038/natrevmats.2015.5 10.1021/acscatal.5b01918 10.1002/anie.201508338 10.1039/C4CS00085D 10.1039/b004885m 10.1038/nmat3696 10.1021/jacs.5b03105 10.1039/C1CP22271F 10.1039/C3EE42099J 10.1038/ncomms11335 10.1002/anie.201511189 10.1016/j.apcatb.2014.01.037 10.1007/s10853-016-0573-5 10.1126/science.1209786 10.1002/adma.201703828 10.1016/j.ssi.2004.01.025 10.1002/anie.201609533 10.1016/j.ijhydene.2013.09.054 10.1016/j.cattod.2016.06.014 10.1039/C6EE01800A 10.1038/srep01145 10.1039/C5CP07363D 10.1021/ar7001649 10.1126/science.1254234 10.1039/C4CP04838E 10.1038/nature12435 10.1021/ja512491v 10.1016/j.jelechem.2009.10.010 10.1016/j.jct.2012.11.010 10.1016/j.jphotobiol.2014.12.019 10.1149/2.F04152if 10.1002/adma.201604799 10.1039/C4CP05501B 10.1016/1010-6030(94)03994-6 10.1016/j.ssi.2015.12.022 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2017 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2017 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/c7ee02716h |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 252 |
ExternalDocumentID | 10_1039_C7EE02716H c7ee02716h |
GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ 53G AAYXX ABIQK ACRPL ADNMO AFRZK AGQPQ AHGXI AKMSF ALSGL ANLMG ASPBG AVWKF CAG CITATION COF FEDTE HVGLF J3G J3H L-8 R56 ROL 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c420t-c568dd11899d7359aaafbaec76944cb55fc019a65ba9fc53b0c748cbb69e8f8f3 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 11:57:46 EDT 2025 Tue Jul 01 01:45:39 EDT 2025 Thu Apr 24 23:04:16 EDT 2025 Tue Dec 17 20:59:21 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-c568dd11899d7359aaafbaec76944cb55fc019a65ba9fc53b0c748cbb69e8f8f3 |
Notes | 10.1039/c7ee02716h Electronic supplementary information (ESI) available: Materials and methods, Fig. S1-S7. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4357-4453 0000-0003-4974-1670 0000-0001-5963-9659 0000-0001-6825-9519 0000-0003-4927-6254 0000-0001-7654-669X 0000-0003-4695-3731 0000-0003-3063-6539 0000-0002-6359-3806 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2017/ee/c7ee02716h |
PQID | 2010864813 |
PQPubID | 2047494 |
PageCount | 5 |
ParticipantIDs | rsc_primary_c7ee02716h proquest_journals_2010864813 crossref_primary_10_1039_C7EE02716H crossref_citationtrail_10_1039_C7EE02716H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170101 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 20170101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2017 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Boucher (C7EE02716H-(cit46)/*[position()=1]) 1995; 88 Manh-Thuong (C7EE02716H-(cit36)/*[position()=1]) 2015; 17 Fenwick (C7EE02716H-(cit3)/*[position()=1]) 2015; 152 Renner (C7EE02716H-(cit15)/*[position()=1]) 2015; 24 Skulason (C7EE02716H-(cit34)/*[position()=1]) 2012; 14 Kyriakou (C7EE02716H-(cit14)/*[position()=1]) 2017; 286 Vasileiou (C7EE02716H-(cit12)/*[position()=1]) 2016; 288 Banerjee (C7EE02716H-(cit31)/*[position()=1]) 2015; 137 Amar (C7EE02716H-(cit21)/*[position()=1]) 2015; 6 Kordali (C7EE02716H-(cit10)/*[position()=1]) 2000 MacFarlane (C7EE02716H-(cit41)/*[position()=1]) 2016; 1 Yiokari (C7EE02716H-(cit16)/*[position()=1]) 2000; 104 Bao (C7EE02716H-(cit27)/*[position()=1]) 2017; 29 Kosaka (C7EE02716H-(cit11)/*[position()=1]) 2017; 52 Ham (C7EE02716H-(cit2)/*[position()=1]) 2014; 43 Kim (C7EE02716H-(cit23)/*[position()=1]) 2016; 163 Garagounis (C7EE02716H-(cit13)/*[position()=1]) 2014; 2 Kugler (C7EE02716H-(cit25)/*[position()=1]) 2015; 17 Giddey (C7EE02716H-(cit8)/*[position()=1]) 2013; 38 Rosen (C7EE02716H-(cit43)/*[position()=1]) 2011; 334 Stevanovic (C7EE02716H-(cit45)/*[position()=1]) 2013; 59 Oshikiri (C7EE02716H-(cit5)/*[position()=1]) 2016; 55 van der Ham (C7EE02716H-(cit7)/*[position()=1]) 2014; 43 Zhu (C7EE02716H-(cit29)/*[position()=1]) 2013; 12 Xie (C7EE02716H-(cit17)/*[position()=1]) 2004; 168 Lan (C7EE02716H-(cit22)/*[position()=1]) 2013; 3 Zhao (C7EE02716H-(cit30)/*[position()=1]) 2017; 29 U. S. Depart of Energy (C7EE02716H-(cit1)/*[position()=1]) 2016 Cao (C7EE02716H-(cit6)/*[position()=1]) 2016; 6 Licht (C7EE02716H-(cit28)/*[position()=1]) 2014; 345 Ali (C7EE02716H-(cit4)/*[position()=1]) 2016; 7 Yun (C7EE02716H-(cit19)/*[position()=1]) 2015; 284 Li (C7EE02716H-(cit32)/*[position()=1]) 2015; 137 Zhang (C7EE02716H-(cit44)/*[position()=1]) 2016; 55 Amar (C7EE02716H-(cit9)/*[position()=1]) 2011; 15 Su (C7EE02716H-(cit18)/*[position()=1]) 2003; 61 Lan (C7EE02716H-(cit20)/*[position()=1]) 2014; 152 Abghoui (C7EE02716H-(cit33)/*[position()=1]) 2015; 17 Azofra (C7EE02716H-(cit39)/*[position()=1]) 2016; 9 Köleli (C7EE02716H-(cit24)/*[position()=1]) 2010; 638 Anderson (C7EE02716H-(cit47)/*[position()=1]) 2007; 40 Montoya (C7EE02716H-(cit37)/*[position()=1]) 2015; 8 MacFarlane (C7EE02716H-(cit42)/*[position()=1]) 2014; 7 Chen (C7EE02716H-(cit26)/*[position()=1]) 2017; 56 Back (C7EE02716H-(cit35)/*[position()=1]) 2016; 18 Abghoui (C7EE02716H-(cit38)/*[position()=1]) 2016; 6 Anderson (C7EE02716H-(cit40)/*[position()=1]) 2013; 501 |
References_xml | – issn: 2016 publication-title: Sustainable Ammonia Synthesis - Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production doi: U. S. Depart of Energy – volume: 8 start-page: 2180 year: 2015 ident: C7EE02716H-(cit37)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201500322 – volume: 104 start-page: 10600 year: 2000 ident: C7EE02716H-(cit16)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp002236v – volume: 6 start-page: 286 year: 2015 ident: C7EE02716H-(cit21)/*[position()=1] publication-title: Electrocatalysis doi: 10.1007/s12678-014-0242-x – volume: 17 start-page: 14317 year: 2015 ident: C7EE02716H-(cit36)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04308A – volume: 6 start-page: 49862 year: 2016 ident: C7EE02716H-(cit6)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA08247E – volume: 15 start-page: 1845 year: 2011 ident: C7EE02716H-(cit9)/*[position()=1] publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-011-1376-x – volume: 284 start-page: 245 year: 2015 ident: C7EE02716H-(cit19)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.002 – volume: 163 start-page: F610 year: 2016 ident: C7EE02716H-(cit23)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0231607jes – volume: 1 start-page: 15 year: 2016 ident: C7EE02716H-(cit41)/*[position()=1] publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2015.5 – volume: 6 start-page: 635 year: 2016 ident: C7EE02716H-(cit38)/*[position()=1] publication-title: ACS Catal. doi: 10.1021/acscatal.5b01918 – volume: 55 start-page: 2257 year: 2016 ident: C7EE02716H-(cit44)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201508338 – volume: 43 start-page: 5183 year: 2014 ident: C7EE02716H-(cit7)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00085D – start-page: 1673 year: 2000 ident: C7EE02716H-(cit10)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b004885m – volume: 12 start-page: 836 year: 2013 ident: C7EE02716H-(cit29)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat3696 – volume: 137 start-page: 6393 year: 2015 ident: C7EE02716H-(cit32)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b03105 – volume: 14 start-page: 1235 year: 2012 ident: C7EE02716H-(cit34)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22271F – volume: 7 start-page: 232 year: 2014 ident: C7EE02716H-(cit42)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C3EE42099J – volume: 7 start-page: 11335 year: 2016 ident: C7EE02716H-(cit4)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms11335 – volume: 55 start-page: 3942 year: 2016 ident: C7EE02716H-(cit5)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201511189 – volume: 152 start-page: 212 year: 2014 ident: C7EE02716H-(cit20)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2014.01.037 – volume: 52 start-page: 2825 year: 2017 ident: C7EE02716H-(cit11)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-0573-5 – volume: 334 start-page: 643 year: 2011 ident: C7EE02716H-(cit43)/*[position()=1] publication-title: Science doi: 10.1126/science.1209786 – volume: 29 start-page: 1703828 year: 2017 ident: C7EE02716H-(cit30)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201703828 – volume: 168 start-page: 117 year: 2004 ident: C7EE02716H-(cit17)/*[position()=1] publication-title: Solid State Ionics doi: 10.1016/j.ssi.2004.01.025 – volume: 56 start-page: 2699 year: 2017 ident: C7EE02716H-(cit26)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201609533 – volume-title: Sustainable Ammonia Synthesis – Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production year: 2016 ident: C7EE02716H-(cit1)/*[position()=1] – volume: 38 start-page: 14576 year: 2013 ident: C7EE02716H-(cit8)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.054 – volume: 286 start-page: 2 year: 2017 ident: C7EE02716H-(cit14)/*[position()=1] publication-title: Catal. Today doi: 10.1016/j.cattod.2016.06.014 – volume: 43 start-page: 5183 year: 2014 ident: C7EE02716H-(cit2)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00085D – volume: 61 start-page: 505 year: 2003 ident: C7EE02716H-(cit18)/*[position()=1] publication-title: Acta Chim. Sin. (Engl. Ed.) – volume: 9 start-page: 2545 year: 2016 ident: C7EE02716H-(cit39)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01800A – volume: 3 start-page: 1145 year: 2013 ident: C7EE02716H-(cit22)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep01145 – volume: 18 start-page: 9161 year: 2016 ident: C7EE02716H-(cit35)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07363D – volume: 40 start-page: 1208 year: 2007 ident: C7EE02716H-(cit47)/*[position()=1] publication-title: Accounts Chem. Res. doi: 10.1021/ar7001649 – volume: 345 start-page: 637 year: 2014 ident: C7EE02716H-(cit28)/*[position()=1] publication-title: Science doi: 10.1126/science.1254234 – volume: 17 start-page: 4909 year: 2015 ident: C7EE02716H-(cit33)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04838E – volume: 501 start-page: 84 year: 2013 ident: C7EE02716H-(cit40)/*[position()=1] publication-title: Nature doi: 10.1038/nature12435 – volume: 2 year: 2014 ident: C7EE02716H-(cit13)/*[position()=1] publication-title: Energy Res. – volume: 137 start-page: 2030 year: 2015 ident: C7EE02716H-(cit31)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja512491v – volume: 638 start-page: 119 year: 2010 ident: C7EE02716H-(cit24)/*[position()=1] publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2009.10.010 – volume: 59 start-page: 65 year: 2013 ident: C7EE02716H-(cit45)/*[position()=1] publication-title: J. Chem. Thermodyn. doi: 10.1016/j.jct.2012.11.010 – volume: 152 start-page: 47 year: 2015 ident: C7EE02716H-(cit3)/*[position()=1] publication-title: J. Photochem. Photobiol., B doi: 10.1016/j.jphotobiol.2014.12.019 – volume: 24 start-page: 51 year: 2015 ident: C7EE02716H-(cit15)/*[position()=1] publication-title: Electrochem. Soc. Interface doi: 10.1149/2.F04152if – volume: 29 start-page: 1604799 year: 2017 ident: C7EE02716H-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201604799 – volume: 17 start-page: 3768 year: 2015 ident: C7EE02716H-(cit25)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05501B – volume: 88 start-page: 53 year: 1995 ident: C7EE02716H-(cit46)/*[position()=1] publication-title: J. Photochem. Photobiol., A doi: 10.1016/1010-6030(94)03994-6 – volume: 288 start-page: 357 year: 2016 ident: C7EE02716H-(cit12)/*[position()=1] publication-title: Solid State Ionics doi: 10.1016/j.ssi.2015.12.022 |
SSID | ssj0062079 |
Score | 2.667346 |
Snippet | Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2516 |
SubjectTerms | Ambient temperature Ammonia Carbon dioxide Carbon dioxide emissions Chemical synthesis Electrochemistry Energy resources Energy sources Fertilizers Fossil fuels Haber Bosch process High temperature Hydrogen-based energy Ionic liquids Ions Nitrogen Pressure Renewable energy Temperature effects |
Title | Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids |
URI | https://www.proquest.com/docview/2010864813 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gIHxKtioSBLcEFVSh5-JMdVFbSgLqetVHGJbMduI5UN7CYH9tczjp1H1SIBlyhy4iTyfPaMHX_fIPSeas4M5XFgQpUGJAvDIBNGBqlmJYsMODll-c6rr2x5Qb5c0svxD37HLmnkqdrfyyv5H6tCGdjVsmT_wbLDQ6EAzsG-cAQLw_GvbJy7HDbB7tcG4jgvLSLs-yvhiCPQYbc11LecRfFdWvLjiVWj8lLKvUzAzq4T2qWPqkuIc1P9bCvHAB5W7R1H0AJlwo3rGZUjPL5d120XEGvLD_Zu0QJqX5supdHJeQvfuaquWj1s7lg4jvaqFY3YDy7Abf1e6SsxXZqI-GRpwo2mnJKAMpfs7lRPynjIbg3BU6TF0_GURmzim2Ondntn2A8Tq5qquNYwy47Y9ejchi2H48UDdBhzCLRm6HCRrz-f946bxWEnzTh8da9mm2Qfx9q345dxUnKw7TPGdJHJ-gl67KcUeOHw8RQ90Jtn6NFEaPI5Ku4gBdcGe6RgixTcIwWLBnuk4AlSMCAF90jB1QZ3SMEeKS_Qxad8fbYMfGqNQJE4bAJFWVqWMLnMspInNBMCOqjQirOMECUpNQpif8GoFJlRNJGh4iRVUrJMpyY1yRGabeqNfolwouM04ooIZXUV0ljqkmhKSxjtDbyDz9GHvsEK5XXnbfqTm6Lb_5BkxRnP865xl3P0brj3h1Nbufeu477dC98bd4Xd1ZEykkbJHB2BLYb6o-le_enCa_RwhO8xmjXbVr-BWLORbz1GfgMYkIP5 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electro-synthesis+of+ammonia+from+nitrogen+at+ambient+temperature+and+pressure+in+ionic+liquids&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhou%2C+Fengling&rft.au=Azofra%2C+Luis+Miguel&rft.au=Ali%2C+Muataz&rft.au=Kar%2C+Mega&rft.date=2017-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=1&rft.issue=12&rft.spage=2516&rft.epage=252&rft_id=info:doi/10.1039%2Fc7ee02716h&rft.externalDocID=c7ee02716h |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |