Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids

Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily transported carrier of hydrogen energy that can be generated from "stranded" renewable-energy resources. However, the traditional Haber-B...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 1; no. 12; pp. 2516 - 252
Main Authors Zhou, Fengling, Azofra, Luis Miguel, Ali, Muataz, Kar, Mega, Simonov, Alexandr N, McDonnell-Worth, Ciaran, Sun, Chenghua, Zhang, Xinyi, MacFarlane, Douglas R
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2017
Subjects
Online AccessGet full text
ISSN1754-5692
1754-5706
DOI10.1039/c7ee02716h

Cover

Abstract Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily transported carrier of hydrogen energy that can be generated from "stranded" renewable-energy resources. However, the traditional Haber-Bosch process for the production of ammonia from atmospheric nitrogen and fossil fuels is a high temperature and pressure process that is energy intensive, currently producing more than 1.6% of global CO 2 emissions. An ambient temperature, electrochemical synthesis of ammonia is an attractive alternative approach, but has, to date, not been achieved at high efficiency. We report in this work the use of ionic liquids that have high N 2 solubility as electrolytes to achieve high conversion efficiency of 60% for N 2 electro-reduction to ammonia on a nanostructured iron catalyst under ambient conditions. High faradaic efficiency reduction of N 2 to NH 3 is achieved in ionic liquid media under ambient conditions.
AbstractList Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily transported carrier of hydrogen energy that can be generated from “stranded” renewable-energy resources. However, the traditional Haber–Bosch process for the production of ammonia from atmospheric nitrogen and fossil fuels is a high temperature and pressure process that is energy intensive, currently producing more than 1.6% of global CO 2 emissions. An ambient temperature, electrochemical synthesis of ammonia is an attractive alternative approach, but has, to date, not been achieved at high efficiency. We report in this work the use of ionic liquids that have high N 2 solubility as electrolytes to achieve high conversion efficiency of 60% for N 2 electro-reduction to ammonia on a nanostructured iron catalyst under ambient conditions.
Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily transported carrier of hydrogen energy that can be generated from "stranded" renewable-energy resources. However, the traditional Haber-Bosch process for the production of ammonia from atmospheric nitrogen and fossil fuels is a high temperature and pressure process that is energy intensive, currently producing more than 1.6% of global CO 2 emissions. An ambient temperature, electrochemical synthesis of ammonia is an attractive alternative approach, but has, to date, not been achieved at high efficiency. We report in this work the use of ionic liquids that have high N 2 solubility as electrolytes to achieve high conversion efficiency of 60% for N 2 electro-reduction to ammonia on a nanostructured iron catalyst under ambient conditions. High faradaic efficiency reduction of N 2 to NH 3 is achieved in ionic liquid media under ambient conditions.
Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily transported carrier of hydrogen energy that can be generated from “stranded” renewable-energy resources. However, the traditional Haber–Bosch process for the production of ammonia from atmospheric nitrogen and fossil fuels is a high temperature and pressure process that is energy intensive, currently producing more than 1.6% of global CO2 emissions. An ambient temperature, electrochemical synthesis of ammonia is an attractive alternative approach, but has, to date, not been achieved at high efficiency. We report in this work the use of ionic liquids that have high N2 solubility as electrolytes to achieve high conversion efficiency of 60% for N2 electro-reduction to ammonia on a nanostructured iron catalyst under ambient conditions.
Author Azofra, Luis Miguel
McDonnell-Worth, Ciaran
Kar, Mega
Zhang, Xinyi
Sun, Chenghua
MacFarlane, Douglas R
Ali, Muataz
Zhou, Fengling
Simonov, Alexandr N
AuthorAffiliation Monash University
ARC Centre of Excellence for Electromaterials Science and School of Chemistry
Clayton
AuthorAffiliation_xml – sequence: 0
  name: ARC Centre of Excellence for Electromaterials Science and School of Chemistry
– sequence: 0
  name: Monash University
– sequence: 0
  name: Clayton
Author_xml – sequence: 1
  givenname: Fengling
  surname: Zhou
  fullname: Zhou, Fengling
– sequence: 2
  givenname: Luis Miguel
  surname: Azofra
  fullname: Azofra, Luis Miguel
– sequence: 3
  givenname: Muataz
  surname: Ali
  fullname: Ali, Muataz
– sequence: 4
  givenname: Mega
  surname: Kar
  fullname: Kar, Mega
– sequence: 5
  givenname: Alexandr N
  surname: Simonov
  fullname: Simonov, Alexandr N
– sequence: 6
  givenname: Ciaran
  surname: McDonnell-Worth
  fullname: McDonnell-Worth, Ciaran
– sequence: 7
  givenname: Chenghua
  surname: Sun
  fullname: Sun, Chenghua
– sequence: 8
  givenname: Xinyi
  surname: Zhang
  fullname: Zhang, Xinyi
– sequence: 9
  givenname: Douglas R
  surname: MacFarlane
  fullname: MacFarlane, Douglas R
BookMark eNptUUtLxDAQDqLg7urFuxDwJlSTPpLmKEt1hQUvei5pOnGztEk3SQ_77-26PkA8zQzfY5hv5ujUOgsIXVFyR0km7hUHICmnbHOCZpQXeVJwwk6_eybSczQPYUsISwkXM1RXHajoXRL2Nm4gmICdxrLvnTUSa-96bM2Ev4PFMk5AY8BGHKEfwMs4esDStnjwEMJhMBabSapwZ3ajacMFOtOyC3D5VRfo7bF6Xa6S9cvT8_Jhnag8JTFRBSvbltJSiJZnhZBS6kaC4kzkuWqKQitChWRFI4VWRdYQxfNSNQ0TUOpSZwt0c_QdvNuNEGK9daO308o6JZSULC9pNrFujyzlXQgedD1400u_rympDwHWS15VnwGuJjL5Q1YmyjidF7003f-S66PEB_Vj_fuT7AM6mYCf
CitedBy_id crossref_primary_10_1021_acssuschemeng_2c00018
crossref_primary_10_1016_j_apsusc_2023_156790
crossref_primary_10_1039_D1GC00914A
crossref_primary_10_1021_acs_jafc_3c00454
crossref_primary_10_1002_anie_201906521
crossref_primary_10_1021_jacs_9b13349
crossref_primary_10_1016_j_coelec_2021_100790
crossref_primary_10_1021_acssuschemeng_8b05763
crossref_primary_10_1016_j_coelec_2024_101487
crossref_primary_10_1016_j_cclet_2024_110276
crossref_primary_10_1039_C8TA08219G
crossref_primary_10_1002_adma_202007650
crossref_primary_10_1016_j_apmt_2024_102253
crossref_primary_10_1021_acscatal_9b00358
crossref_primary_10_1016_j_nanoen_2020_105391
crossref_primary_10_1016_j_ijhydene_2022_09_061
crossref_primary_10_1016_j_jiec_2025_02_029
crossref_primary_10_1016_j_scib_2022_09_001
crossref_primary_10_1016_j_gee_2022_10_001
crossref_primary_10_1016_j_cclet_2019_10_041
crossref_primary_10_1002_cssc_202300465
crossref_primary_10_1002_adfm_202111161
crossref_primary_10_1002_ange_202415208
crossref_primary_10_1021_acs_inorgchem_0c02176
crossref_primary_10_1002_advs_201902390
crossref_primary_10_1002_aenm_202003294
crossref_primary_10_1002_aenm_202304106
crossref_primary_10_1016_j_jpowsour_2024_235618
crossref_primary_10_1016_j_electacta_2019_134691
crossref_primary_10_1007_s11705_024_2463_8
crossref_primary_10_1016_j_joule_2021_05_005
crossref_primary_10_1021_acsenergylett_9b02286
crossref_primary_10_1016_j_ijhydene_2024_12_496
crossref_primary_10_1021_acsmaterialslett_3c01144
crossref_primary_10_1002_smtd_201800337
crossref_primary_10_1016_j_ijhydene_2019_01_144
crossref_primary_10_1016_j_cej_2024_154920
crossref_primary_10_1021_acs_nanolett_0c05080
crossref_primary_10_1016_j_jcis_2019_05_045
crossref_primary_10_1021_jacsau_1c00538
crossref_primary_10_1002_aenm_202202403
crossref_primary_10_1016_j_energy_2023_128223
crossref_primary_10_1021_jacs_4c06784
crossref_primary_10_1039_C9MH01668F
crossref_primary_10_1016_j_coelec_2021_100766
crossref_primary_10_1016_j_jclepro_2021_129017
crossref_primary_10_1007_s12274_021_3592_8
crossref_primary_10_1021_acs_jpcc_4c02331
crossref_primary_10_1002_ange_202005930
crossref_primary_10_1002_adma_201800191
crossref_primary_10_1016_j_jpowsour_2022_231832
crossref_primary_10_1039_C9CC04378K
crossref_primary_10_1002_anie_201909831
crossref_primary_10_1021_acscatal_3c00201
crossref_primary_10_1038_s41929_019_0252_4
crossref_primary_10_1039_C9CC05684J
crossref_primary_10_1093_nsr_nwz019
crossref_primary_10_1021_acs_inorgchem_3c00637
crossref_primary_10_1002_anie_201906449
crossref_primary_10_1039_C9NR02782C
crossref_primary_10_1016_j_molliq_2023_122066
crossref_primary_10_1039_C8CC06000B
crossref_primary_10_1039_D2MA00279E
crossref_primary_10_1039_C9TA04650J
crossref_primary_10_1016_j_ces_2024_120967
crossref_primary_10_1039_C9TA09264A
crossref_primary_10_1016_j_chempr_2020_11_002
crossref_primary_10_1021_acsomega_1c06400
crossref_primary_10_34133_2019_1401209
crossref_primary_10_1021_acs_est_8b02743
crossref_primary_10_1016_j_jechem_2020_11_006
crossref_primary_10_1016_j_desal_2024_118392
crossref_primary_10_1016_j_enconman_2020_113729
crossref_primary_10_1016_j_ccr_2023_215196
crossref_primary_10_1021_acs_energyfuels_4c05425
crossref_primary_10_1016_j_apcatb_2021_119952
crossref_primary_10_1038_s41929_019_0241_7
crossref_primary_10_1063_5_0069736
crossref_primary_10_1016_j_enchem_2020_100040
crossref_primary_10_1039_D1CP05140G
crossref_primary_10_1002_smtd_201800388
crossref_primary_10_1039_D0EE01102A
crossref_primary_10_1002_cctc_202400966
crossref_primary_10_1039_D3NR03310D
crossref_primary_10_1039_C7CP08626A
crossref_primary_10_1016_j_apsusc_2021_151109
crossref_primary_10_1039_D3TA05136F
crossref_primary_10_1007_s41918_020_00069_0
crossref_primary_10_1002_smll_202204116
crossref_primary_10_1021_acscatal_2c04491
crossref_primary_10_1002_smtd_201800386
crossref_primary_10_1149_1945_7111_abc1a8
crossref_primary_10_1002_smsc_202100070
crossref_primary_10_1002_anie_202215938
crossref_primary_10_1021_acssuschemeng_8b01261
crossref_primary_10_1002_celc_202001370
crossref_primary_10_1016_j_joule_2018_04_014
crossref_primary_10_1002_advs_201801182
crossref_primary_10_1002_anie_202415208
crossref_primary_10_1002_cctc_201901519
crossref_primary_10_1021_acsenergylett_0c00455
crossref_primary_10_1016_j_isci_2020_101803
crossref_primary_10_1021_jacs_9b13996
crossref_primary_10_1088_1361_6463_ac2f12
crossref_primary_10_1126_sciadv_aar3208
crossref_primary_10_1016_j_apcatb_2021_120592
crossref_primary_10_1039_C9MH01094G
crossref_primary_10_1016_j_apcatb_2024_124935
crossref_primary_10_1039_D0QI00749H
crossref_primary_10_1021_acs_langmuir_1c02358
crossref_primary_10_1021_acsaem_2c01346
crossref_primary_10_1016_j_xcrp_2021_100374
crossref_primary_10_1007_s12039_023_02162_5
crossref_primary_10_1016_j_susmat_2023_e00609
crossref_primary_10_1021_acscatal_8b03802
crossref_primary_10_1016_j_cej_2023_145420
crossref_primary_10_1002_slct_201900868
crossref_primary_10_1016_j_joule_2019_05_001
crossref_primary_10_1021_acsenergylett_1c01568
crossref_primary_10_1039_D1TA02424H
crossref_primary_10_1039_D1QM01620B
crossref_primary_10_1021_jacs_1c00783
crossref_primary_10_1039_D0EE02263B
crossref_primary_10_1016_j_comptc_2022_113732
crossref_primary_10_1149_1945_7111_ab7097
crossref_primary_10_1021_acs_est_0c04383
crossref_primary_10_1039_D4CY01008F
crossref_primary_10_1016_j_jechem_2019_01_027
crossref_primary_10_1021_acssuschemeng_0c03970
crossref_primary_10_1039_D0TA09496J
crossref_primary_10_1021_acscatal_9b00994
crossref_primary_10_1039_D0EE03596C
crossref_primary_10_1016_j_enchem_2023_100099
crossref_primary_10_1021_acs_jpcc_8b11509
crossref_primary_10_1021_acs_jpcc_9b01107
crossref_primary_10_1016_j_jechem_2019_01_020
crossref_primary_10_1002_ange_202215938
crossref_primary_10_1016_j_seppur_2023_125204
crossref_primary_10_1016_j_electacta_2019_05_070
crossref_primary_10_1002_ange_202302124
crossref_primary_10_1002_ange_202011596
crossref_primary_10_1021_acs_chemrev_3c00723
crossref_primary_10_2139_ssrn_4067022
crossref_primary_10_1016_j_mseb_2024_117884
crossref_primary_10_1021_accountsmr_4c00103
crossref_primary_10_1007_s12200_018_0807_z
crossref_primary_10_1002_ange_202115409
crossref_primary_10_1149_1945_7111_abbdd6
crossref_primary_10_1016_j_ijhydene_2022_12_173
crossref_primary_10_1002_celc_201900320
crossref_primary_10_1039_D4GC01566E
crossref_primary_10_1016_j_apcatb_2022_121277
crossref_primary_10_1021_acsami_4c05818
crossref_primary_10_1016_j_nanoen_2019_02_019
crossref_primary_10_1002_tcr_202200139
crossref_primary_10_1016_j_seppur_2020_117066
crossref_primary_10_1021_acscatal_3c04398
crossref_primary_10_3390_catal12091015
crossref_primary_10_1021_acsenergylett_0c00496
crossref_primary_10_1039_C9TA05505C
crossref_primary_10_1002_adfm_202212483
crossref_primary_10_1126_science_abg2371
crossref_primary_10_2139_ssrn_4117601
crossref_primary_10_1039_C9TA03654G
crossref_primary_10_1039_D1MA00814E
crossref_primary_10_1039_C9TA08806G
crossref_primary_10_1039_C9NR08788E
crossref_primary_10_1021_acs_energyfuels_4c00802
crossref_primary_10_1016_j_materresbull_2021_111523
crossref_primary_10_1038_s41929_020_0455_8
crossref_primary_10_1002_chem_201805523
crossref_primary_10_1016_j_ijhydene_2020_08_208
crossref_primary_10_1039_D0NR00072H
crossref_primary_10_1016_j_jcis_2021_08_050
crossref_primary_10_1016_j_seppur_2024_130942
crossref_primary_10_1002_smll_202403253
crossref_primary_10_1016_j_chempr_2019_02_021
crossref_primary_10_1002_celc_201901967
crossref_primary_10_1002_smll_202409925
crossref_primary_10_1021_acsnano_2c07260
crossref_primary_10_1039_C8CP04474K
crossref_primary_10_1039_D2CP01107G
crossref_primary_10_1016_j_apcata_2024_119562
crossref_primary_10_1016_j_cej_2024_150027
crossref_primary_10_1039_D0NH00242A
crossref_primary_10_1039_C9TA06076F
crossref_primary_10_1002_adma_202401032
crossref_primary_10_1002_aesr_202000062
crossref_primary_10_1002_celc_201901970
crossref_primary_10_1021_acsaem_0c00330
crossref_primary_10_1039_C9DT04827H
crossref_primary_10_1039_D4EY00197D
crossref_primary_10_1016_j_isci_2021_103105
crossref_primary_10_1021_acssuschemeng_8b05332
crossref_primary_10_1039_D1TA02720D
crossref_primary_10_1002_adfm_202008983
crossref_primary_10_1002_adfm_202201262
crossref_primary_10_1016_j_joule_2020_04_004
crossref_primary_10_1016_j_apcatb_2020_118919
crossref_primary_10_1021_acsami_0c06744
crossref_primary_10_1021_acs_jpclett_8b03409
crossref_primary_10_1039_D0EE02246B
crossref_primary_10_1016_j_jenvman_2023_118348
crossref_primary_10_1007_s10853_022_07311_8
crossref_primary_10_1016_j_jcis_2024_05_189
crossref_primary_10_1021_jacs_3c11676
crossref_primary_10_1038_s41929_024_01115_6
crossref_primary_10_1002_tcr_202400234
crossref_primary_10_1021_acsenergylett_0c02349
crossref_primary_10_1016_j_xcrp_2021_100557
crossref_primary_10_1039_C9TA01410A
crossref_primary_10_1016_j_jmst_2020_09_048
crossref_primary_10_1007_s12274_019_2323_x
crossref_primary_10_1016_j_ijhydene_2021_01_203
crossref_primary_10_3390_nano15010065
crossref_primary_10_1016_j_xcrp_2022_100961
crossref_primary_10_1002_smll_202312210
crossref_primary_10_1002_celc_202300293
crossref_primary_10_1039_D2NJ06362J
crossref_primary_10_1016_j_enchem_2019_100011
crossref_primary_10_1016_j_xcrp_2021_100425
crossref_primary_10_1038_s41557_022_01088_8
crossref_primary_10_1021_acsaem_2c01745
crossref_primary_10_1016_j_mattod_2020_09_006
crossref_primary_10_1021_acs_energyfuels_1c01923
crossref_primary_10_1039_D2EE00358A
crossref_primary_10_1002_aenm_202302382
crossref_primary_10_1039_C9CC06385D
crossref_primary_10_1016_S1872_2067_22_64148_2
crossref_primary_10_1002_sus2_13
crossref_primary_10_1002_anie_202213009
crossref_primary_10_1002_er_6674
crossref_primary_10_1016_j_ijhydene_2021_01_214
crossref_primary_10_1016_j_apcatb_2022_121465
crossref_primary_10_1039_D0CP03246H
crossref_primary_10_1039_D2SE00830K
crossref_primary_10_1186_s40580_019_0182_5
crossref_primary_10_1021_acscatal_9b03180
crossref_primary_10_1002_asia_202000969
crossref_primary_10_1016_j_jece_2023_110556
crossref_primary_10_1039_D1CS00120E
crossref_primary_10_1039_C9CS00280D
crossref_primary_10_1016_j_jechem_2021_01_039
crossref_primary_10_3390_eng5030097
crossref_primary_10_2139_ssrn_4086835
crossref_primary_10_1039_D0MH01947J
crossref_primary_10_1039_D1MA00680K
crossref_primary_10_1002_ange_202213009
crossref_primary_10_1039_D0CC05921H
crossref_primary_10_1016_j_mtphys_2020_100310
crossref_primary_10_1021_acs_jpclett_4c01978
crossref_primary_10_1002_wcms_1418
crossref_primary_10_1016_j_cej_2019_04_052
crossref_primary_10_1039_C8TA11201K
crossref_primary_10_1016_j_jenvman_2020_111211
crossref_primary_10_1021_acsenergylett_9b02812
crossref_primary_10_1002_asia_201901714
crossref_primary_10_1002_chem_201806377
crossref_primary_10_1149_1945_7111_abc35b
crossref_primary_10_2139_ssrn_4103273
crossref_primary_10_1016_S1872_2067_24_60123_3
crossref_primary_10_1039_C8CP01215F
crossref_primary_10_1038_s41467_023_35785_w
crossref_primary_10_1021_jacs_8b02335
crossref_primary_10_1002_anie_201811728
crossref_primary_10_1016_j_jcis_2024_05_145
crossref_primary_10_1021_acsenergylett_4c02868
crossref_primary_10_1016_j_cclet_2021_03_038
crossref_primary_10_1016_j_materresbull_2020_110853
crossref_primary_10_1002_cey2_491
crossref_primary_10_1039_D2CP05163J
crossref_primary_10_1039_D3CY01009K
crossref_primary_10_1002_smll_202305616
crossref_primary_10_1016_j_jechem_2021_01_018
crossref_primary_10_1002_anie_201806386
crossref_primary_10_1016_j_coelec_2023_101301
crossref_primary_10_1016_j_inoche_2020_108169
crossref_primary_10_1007_s12598_022_02215_7
crossref_primary_10_1016_j_ijhydene_2023_05_206
crossref_primary_10_1039_D2CP05959B
crossref_primary_10_1016_j_molliq_2024_124909
crossref_primary_10_1002_anie_202009435
crossref_primary_10_1016_j_cej_2024_148923
crossref_primary_10_1038_s41929_021_00599_w
crossref_primary_10_1007_s10008_022_05228_5
crossref_primary_10_1002_aenm_202000797
crossref_primary_10_1080_21663831_2023_2209156
crossref_primary_10_1039_C9TA06470B
crossref_primary_10_1002_anie_202115409
crossref_primary_10_1002_eem2_12192
crossref_primary_10_1016_j_apcatb_2020_118984
crossref_primary_10_1126_sciadv_aat5778
crossref_primary_10_1039_D1CC02612G
crossref_primary_10_1002_adma_201904804
crossref_primary_10_1360_TB_2024_0858
crossref_primary_10_1016_j_apcatb_2020_119606
crossref_primary_10_1039_D3TA03675H
crossref_primary_10_1016_j_jechem_2019_10_016
crossref_primary_10_1039_C9TA13700A
crossref_primary_10_1002_adma_201904870
crossref_primary_10_1016_j_cogsc_2020_100373
crossref_primary_10_1021_acsnano_2c09168
crossref_primary_10_1039_C8RE00111A
crossref_primary_10_1002_adfm_201906579
crossref_primary_10_1039_D0NR00412J
crossref_primary_10_1021_acs_est_3c10751
crossref_primary_10_1021_acscatal_8b02120
crossref_primary_10_1039_C9CC03413G
crossref_primary_10_1039_C8CC07869F
crossref_primary_10_1002_adma_202101126
crossref_primary_10_1016_j_apcatb_2022_121651
crossref_primary_10_1016_j_cej_2023_143163
crossref_primary_10_1021_acscentsci_0c00552
crossref_primary_10_1021_acsnano_2c00596
crossref_primary_10_1038_s41467_018_05758_5
crossref_primary_10_1016_j_joule_2019_02_003
crossref_primary_10_1021_acscatal_9b00959
crossref_primary_10_1039_C9TA05155D
crossref_primary_10_1126_science_aar6611
crossref_primary_10_1021_acscatal_3c04255
crossref_primary_10_1016_j_apmt_2021_101184
crossref_primary_10_1016_j_cclet_2023_108550
crossref_primary_10_1016_j_renene_2024_122234
crossref_primary_10_1002_asia_201900793
crossref_primary_10_1002_ejic_201900667
crossref_primary_10_1016_j_fuel_2023_130307
crossref_primary_10_1016_j_cej_2022_140106
crossref_primary_10_1016_j_cej_2024_154217
crossref_primary_10_1002_celc_202000514
crossref_primary_10_1039_D0EE03808C
crossref_primary_10_1002_ange_202009435
crossref_primary_10_3390_catal11121529
crossref_primary_10_1039_D3CP04572B
crossref_primary_10_1016_j_ces_2022_117735
crossref_primary_10_1016_j_ensm_2022_10_007
crossref_primary_10_1016_j_compchemeng_2022_107948
crossref_primary_10_1002_cctc_202300669
crossref_primary_10_1016_j_chempr_2018_12_003
crossref_primary_10_1039_C9GC01338E
crossref_primary_10_1039_D1TA08877G
crossref_primary_10_1021_acs_iecr_9b00833
crossref_primary_10_1016_j_memsci_2020_118483
crossref_primary_10_1016_j_mtener_2025_101839
crossref_primary_10_1002_smll_202200436
crossref_primary_10_1021_acs_jpclett_0c01582
crossref_primary_10_1021_acsenergylett_2c01197
crossref_primary_10_1016_j_apcatb_2019_118568
crossref_primary_10_1021_acsenergylett_9b00860
crossref_primary_10_1021_acs_jpcc_7b10522
crossref_primary_10_1016_j_jallcom_2023_170476
crossref_primary_10_1002_ange_201906449
crossref_primary_10_1039_D1GC01614H
crossref_primary_10_1021_acscatal_0c03985
crossref_primary_10_1021_acs_iecr_3c02283
crossref_primary_10_1002_ange_202305447
crossref_primary_10_1021_acscatal_2c02629
crossref_primary_10_1128_aem_02073_22
crossref_primary_10_54227_mlab_20220011
crossref_primary_10_1021_acs_jpclett_0c01450
crossref_primary_10_1016_j_ccr_2022_214468
crossref_primary_10_1016_j_coelec_2018_10_004
crossref_primary_10_1021_acs_analchem_9b04999
crossref_primary_10_1016_j_cej_2022_139494
crossref_primary_10_1021_acsenergylett_8b02138
crossref_primary_10_1002_ange_201909831
crossref_primary_10_1021_acsenergylett_1c01893
crossref_primary_10_1021_acsenergylett_8b02257
crossref_primary_10_1038_s41929_018_0092_7
crossref_primary_10_1038_s41467_021_24539_1
crossref_primary_10_1002_advs_202002630
crossref_primary_10_1038_s43586_021_00053_y
crossref_primary_10_1016_j_jclepro_2020_121838
crossref_primary_10_1021_acssuschemeng_8b06163
crossref_primary_10_1002_anie_202305447
crossref_primary_10_1002_eem2_12100
crossref_primary_10_1021_acsmaterialsau_1c00006
crossref_primary_10_1002_ange_201806386
crossref_primary_10_1021_acscatal_9b02245
crossref_primary_10_1149_1945_7111_ac3ff2
crossref_primary_10_3390_membranes9090112
crossref_primary_10_1021_acsenergylett_9b01573
crossref_primary_10_1021_acs_jpcc_0c03899
crossref_primary_10_1002_adfm_202210759
crossref_primary_10_1002_adma_202211894
crossref_primary_10_1038_s41929_020_00527_4
crossref_primary_10_3390_membranes14030071
crossref_primary_10_1039_D0NJ04365F
crossref_primary_10_1039_D1GC02873A
crossref_primary_10_1002_slct_201903206
crossref_primary_10_1039_D0TA08678A
crossref_primary_10_1002_aenm_201902020
crossref_primary_10_1002_anie_202005930
crossref_primary_10_3390_catal10030353
crossref_primary_10_1016_j_joule_2019_09_015
crossref_primary_10_1002_celc_202100251
crossref_primary_10_1007_s11467_021_1067_8
crossref_primary_10_1002_cssc_202001433
crossref_primary_10_1002_cctc_201802017
crossref_primary_10_1016_j_nanoen_2020_104469
crossref_primary_10_1016_j_mtener_2021_100681
crossref_primary_10_1016_j_ijhydene_2020_07_147
crossref_primary_10_1016_j_nanoen_2022_108027
crossref_primary_10_1002_slct_202203344
crossref_primary_10_1016_j_jcis_2018_09_036
crossref_primary_10_1016_j_jre_2021_06_014
crossref_primary_10_1039_D3QI00568B
crossref_primary_10_1021_acssuschemeng_4c09790
crossref_primary_10_1021_acs_jctc_1c00268
crossref_primary_10_1016_j_seppur_2020_116660
crossref_primary_10_1016_j_joule_2019_09_007
crossref_primary_10_1021_acs_iecr_4c00384
crossref_primary_10_1039_D3TA04848A
crossref_primary_10_1016_j_ces_2023_119482
crossref_primary_10_1007_s12209_020_00243_x
crossref_primary_10_1039_C9EE02873K
crossref_primary_10_1016_j_chempr_2021_01_009
crossref_primary_10_1002_admi_202102242
crossref_primary_10_1016_j_mtphys_2022_100619
crossref_primary_10_1021_acscatal_0c01081
crossref_primary_10_1039_D0TA06672A
crossref_primary_10_1002_cctc_202001775
crossref_primary_10_1002_ange_201811728
crossref_primary_10_1002_adma_202005721
crossref_primary_10_1021_acscatal_3c02410
crossref_primary_10_1021_acs_chemrev_9b00659
crossref_primary_10_1002_ange_201906521
crossref_primary_10_1002_anie_202011596
crossref_primary_10_1021_acs_jpclett_8b02188
crossref_primary_10_1016_j_apcatb_2020_119794
crossref_primary_10_1016_j_apcatb_2020_118589
crossref_primary_10_1039_C9CS00159J
crossref_primary_10_1039_D0EE03756G
crossref_primary_10_1149_1945_7111_ad6a97
crossref_primary_10_1002_sus2_7
crossref_primary_10_1039_D1TA00581B
crossref_primary_10_1002_adma_202209307
crossref_primary_10_1039_D1EE01731D
crossref_primary_10_1016_j_apsusc_2020_147851
crossref_primary_10_1080_10643389_2023_2285692
crossref_primary_10_1002_aenm_201800369
crossref_primary_10_1002_cey2_307
crossref_primary_10_1039_D3TA01548C
crossref_primary_10_1039_C9TA09920D
crossref_primary_10_1016_j_nanoen_2018_04_039
crossref_primary_10_1016_j_seppur_2020_117337
crossref_primary_10_1039_D1CY01442K
crossref_primary_10_1016_j_chempr_2018_10_010
crossref_primary_10_1021_acscatal_9b03015
crossref_primary_10_1002_cctc_202301253
crossref_primary_10_1016_j_cej_2023_147483
crossref_primary_10_1021_acs_estlett_7b00534
crossref_primary_10_1002_anie_202302124
crossref_primary_10_1039_D2CY02181A
crossref_primary_10_1146_annurev_chembioeng_092319_080240
crossref_primary_10_1021_acs_jpcc_1c02477
crossref_primary_10_1021_acs_jpcc_2c03776
crossref_primary_10_1016_j_jece_2023_110122
crossref_primary_10_1039_D3GC03297C
crossref_primary_10_1039_D2EE00953F
crossref_primary_10_1002_smll_201902535
crossref_primary_10_1016_j_isci_2023_106407
crossref_primary_10_1016_j_mcat_2021_111935
crossref_primary_10_1016_j_cclet_2022_07_002
crossref_primary_10_1038_s41586_019_1260_x
crossref_primary_10_1246_bcsj_20190115
crossref_primary_10_1016_j_jpowsour_2023_233939
crossref_primary_10_1021_acs_jpca_9b01107
crossref_primary_10_1039_D1NR08445C
crossref_primary_10_1002_aenm_201803935
crossref_primary_10_1016_j_jechem_2021_09_004
crossref_primary_10_1016_j_cclet_2020_04_013
crossref_primary_10_1021_acsami_0c22338
crossref_primary_10_1016_j_electacta_2025_145842
crossref_primary_10_1021_acsami_9b14770
crossref_primary_10_1039_C9CY01351B
crossref_primary_10_1016_j_ica_2021_120700
crossref_primary_10_1016_S1872_2067_24_60144_0
crossref_primary_10_1039_D1TA01058A
crossref_primary_10_1021_acs_energyfuels_5c00117
crossref_primary_10_1039_D3CP05763A
crossref_primary_10_1038_s41598_021_85955_3
crossref_primary_10_1002_adma_202313023
crossref_primary_10_1002_aenm_202400076
crossref_primary_10_1021_acsenergylett_8b00487
crossref_primary_10_1016_j_jelechem_2023_117174
crossref_primary_10_1016_j_rser_2022_112845
crossref_primary_10_1021_acs_jpcc_9b05436
crossref_primary_10_1016_j_pecs_2020_100860
crossref_primary_10_1016_j_cej_2022_138316
crossref_primary_10_1021_acssuschemeng_9b00314
crossref_primary_10_1039_D3DT04384C
crossref_primary_10_1002_ece2_10
crossref_primary_10_1016_j_cej_2023_141911
crossref_primary_10_1002_celc_201902124
crossref_primary_10_1002_celc_202400033
crossref_primary_10_1016_j_coelec_2021_100723
crossref_primary_10_1002_cssc_202000487
crossref_primary_10_1002_smll_201904723
crossref_primary_10_1021_acs_jpcc_8b07752
crossref_primary_10_1039_D2QM00453D
crossref_primary_10_1021_acs_energyfuels_2c01478
crossref_primary_10_3390_catal9090729
crossref_primary_10_1002_cssc_201901623
crossref_primary_10_1039_D0NR02884C
crossref_primary_10_1093_nsr_nwaa136
crossref_primary_10_1016_j_trechm_2021_11_007
Cites_doi 10.1002/cssc.201500322
10.1021/jp002236v
10.1007/s12678-014-0242-x
10.1039/C4CP04308A
10.1039/C6RA08247E
10.1007/s10008-011-1376-x
10.1016/j.jpowsour.2015.03.002
10.1149/2.0231607jes
10.1038/natrevmats.2015.5
10.1021/acscatal.5b01918
10.1002/anie.201508338
10.1039/C4CS00085D
10.1039/b004885m
10.1038/nmat3696
10.1021/jacs.5b03105
10.1039/C1CP22271F
10.1039/C3EE42099J
10.1038/ncomms11335
10.1002/anie.201511189
10.1016/j.apcatb.2014.01.037
10.1007/s10853-016-0573-5
10.1126/science.1209786
10.1002/adma.201703828
10.1016/j.ssi.2004.01.025
10.1002/anie.201609533
10.1016/j.ijhydene.2013.09.054
10.1016/j.cattod.2016.06.014
10.1039/C6EE01800A
10.1038/srep01145
10.1039/C5CP07363D
10.1021/ar7001649
10.1126/science.1254234
10.1039/C4CP04838E
10.1038/nature12435
10.1021/ja512491v
10.1016/j.jelechem.2009.10.010
10.1016/j.jct.2012.11.010
10.1016/j.jphotobiol.2014.12.019
10.1149/2.F04152if
10.1002/adma.201604799
10.1039/C4CP05501B
10.1016/1010-6030(94)03994-6
10.1016/j.ssi.2015.12.022
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2017
Copyright_xml – notice: Copyright Royal Society of Chemistry 2017
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/c7ee02716h
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 252
ExternalDocumentID 10_1039_C7EE02716H
c7ee02716h
GroupedDBID -JG
0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
UCJ
53G
AAYXX
ABIQK
ACRPL
ADNMO
AFRZK
AGQPQ
AHGXI
AKMSF
ALSGL
ANLMG
ASPBG
AVWKF
CAG
CITATION
COF
FEDTE
HVGLF
J3G
J3H
L-8
R56
ROL
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c420t-c568dd11899d7359aaafbaec76944cb55fc019a65ba9fc53b0c748cbb69e8f8f3
ISSN 1754-5692
IngestDate Mon Jun 30 11:57:46 EDT 2025
Tue Jul 01 01:45:39 EDT 2025
Thu Apr 24 23:04:16 EDT 2025
Tue Dec 17 20:59:21 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-c568dd11899d7359aaafbaec76944cb55fc019a65ba9fc53b0c748cbb69e8f8f3
Notes 10.1039/c7ee02716h
Electronic supplementary information (ESI) available: Materials and methods, Fig. S1-S7. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4357-4453
0000-0003-4974-1670
0000-0001-5963-9659
0000-0001-6825-9519
0000-0003-4927-6254
0000-0001-7654-669X
0000-0003-4695-3731
0000-0003-3063-6539
0000-0002-6359-3806
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2017/ee/c7ee02716h
PQID 2010864813
PQPubID 2047494
PageCount 5
ParticipantIDs rsc_primary_c7ee02716h
proquest_journals_2010864813
crossref_primary_10_1039_C7EE02716H
crossref_citationtrail_10_1039_C7EE02716H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 20170101
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2017
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Boucher (C7EE02716H-(cit46)/*[position()=1]) 1995; 88
Manh-Thuong (C7EE02716H-(cit36)/*[position()=1]) 2015; 17
Fenwick (C7EE02716H-(cit3)/*[position()=1]) 2015; 152
Renner (C7EE02716H-(cit15)/*[position()=1]) 2015; 24
Skulason (C7EE02716H-(cit34)/*[position()=1]) 2012; 14
Kyriakou (C7EE02716H-(cit14)/*[position()=1]) 2017; 286
Vasileiou (C7EE02716H-(cit12)/*[position()=1]) 2016; 288
Banerjee (C7EE02716H-(cit31)/*[position()=1]) 2015; 137
Amar (C7EE02716H-(cit21)/*[position()=1]) 2015; 6
Kordali (C7EE02716H-(cit10)/*[position()=1]) 2000
MacFarlane (C7EE02716H-(cit41)/*[position()=1]) 2016; 1
Yiokari (C7EE02716H-(cit16)/*[position()=1]) 2000; 104
Bao (C7EE02716H-(cit27)/*[position()=1]) 2017; 29
Kosaka (C7EE02716H-(cit11)/*[position()=1]) 2017; 52
Ham (C7EE02716H-(cit2)/*[position()=1]) 2014; 43
Kim (C7EE02716H-(cit23)/*[position()=1]) 2016; 163
Garagounis (C7EE02716H-(cit13)/*[position()=1]) 2014; 2
Kugler (C7EE02716H-(cit25)/*[position()=1]) 2015; 17
Giddey (C7EE02716H-(cit8)/*[position()=1]) 2013; 38
Rosen (C7EE02716H-(cit43)/*[position()=1]) 2011; 334
Stevanovic (C7EE02716H-(cit45)/*[position()=1]) 2013; 59
Oshikiri (C7EE02716H-(cit5)/*[position()=1]) 2016; 55
van der Ham (C7EE02716H-(cit7)/*[position()=1]) 2014; 43
Zhu (C7EE02716H-(cit29)/*[position()=1]) 2013; 12
Xie (C7EE02716H-(cit17)/*[position()=1]) 2004; 168
Lan (C7EE02716H-(cit22)/*[position()=1]) 2013; 3
Zhao (C7EE02716H-(cit30)/*[position()=1]) 2017; 29
U. S. Depart of Energy (C7EE02716H-(cit1)/*[position()=1]) 2016
Cao (C7EE02716H-(cit6)/*[position()=1]) 2016; 6
Licht (C7EE02716H-(cit28)/*[position()=1]) 2014; 345
Ali (C7EE02716H-(cit4)/*[position()=1]) 2016; 7
Yun (C7EE02716H-(cit19)/*[position()=1]) 2015; 284
Li (C7EE02716H-(cit32)/*[position()=1]) 2015; 137
Zhang (C7EE02716H-(cit44)/*[position()=1]) 2016; 55
Amar (C7EE02716H-(cit9)/*[position()=1]) 2011; 15
Su (C7EE02716H-(cit18)/*[position()=1]) 2003; 61
Lan (C7EE02716H-(cit20)/*[position()=1]) 2014; 152
Abghoui (C7EE02716H-(cit33)/*[position()=1]) 2015; 17
Azofra (C7EE02716H-(cit39)/*[position()=1]) 2016; 9
Köleli (C7EE02716H-(cit24)/*[position()=1]) 2010; 638
Anderson (C7EE02716H-(cit47)/*[position()=1]) 2007; 40
Montoya (C7EE02716H-(cit37)/*[position()=1]) 2015; 8
MacFarlane (C7EE02716H-(cit42)/*[position()=1]) 2014; 7
Chen (C7EE02716H-(cit26)/*[position()=1]) 2017; 56
Back (C7EE02716H-(cit35)/*[position()=1]) 2016; 18
Abghoui (C7EE02716H-(cit38)/*[position()=1]) 2016; 6
Anderson (C7EE02716H-(cit40)/*[position()=1]) 2013; 501
References_xml – issn: 2016
  publication-title: Sustainable Ammonia Synthesis - Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production
  doi: U. S. Depart of Energy
– volume: 8
  start-page: 2180
  year: 2015
  ident: C7EE02716H-(cit37)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500322
– volume: 104
  start-page: 10600
  year: 2000
  ident: C7EE02716H-(cit16)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp002236v
– volume: 6
  start-page: 286
  year: 2015
  ident: C7EE02716H-(cit21)/*[position()=1]
  publication-title: Electrocatalysis
  doi: 10.1007/s12678-014-0242-x
– volume: 17
  start-page: 14317
  year: 2015
  ident: C7EE02716H-(cit36)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04308A
– volume: 6
  start-page: 49862
  year: 2016
  ident: C7EE02716H-(cit6)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA08247E
– volume: 15
  start-page: 1845
  year: 2011
  ident: C7EE02716H-(cit9)/*[position()=1]
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-011-1376-x
– volume: 284
  start-page: 245
  year: 2015
  ident: C7EE02716H-(cit19)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.002
– volume: 163
  start-page: F610
  year: 2016
  ident: C7EE02716H-(cit23)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0231607jes
– volume: 1
  start-page: 15
  year: 2016
  ident: C7EE02716H-(cit41)/*[position()=1]
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2015.5
– volume: 6
  start-page: 635
  year: 2016
  ident: C7EE02716H-(cit38)/*[position()=1]
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01918
– volume: 55
  start-page: 2257
  year: 2016
  ident: C7EE02716H-(cit44)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201508338
– volume: 43
  start-page: 5183
  year: 2014
  ident: C7EE02716H-(cit7)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00085D
– start-page: 1673
  year: 2000
  ident: C7EE02716H-(cit10)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b004885m
– volume: 12
  start-page: 836
  year: 2013
  ident: C7EE02716H-(cit29)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3696
– volume: 137
  start-page: 6393
  year: 2015
  ident: C7EE02716H-(cit32)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b03105
– volume: 14
  start-page: 1235
  year: 2012
  ident: C7EE02716H-(cit34)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22271F
– volume: 7
  start-page: 232
  year: 2014
  ident: C7EE02716H-(cit42)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C3EE42099J
– volume: 7
  start-page: 11335
  year: 2016
  ident: C7EE02716H-(cit4)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11335
– volume: 55
  start-page: 3942
  year: 2016
  ident: C7EE02716H-(cit5)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201511189
– volume: 152
  start-page: 212
  year: 2014
  ident: C7EE02716H-(cit20)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2014.01.037
– volume: 52
  start-page: 2825
  year: 2017
  ident: C7EE02716H-(cit11)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-0573-5
– volume: 334
  start-page: 643
  year: 2011
  ident: C7EE02716H-(cit43)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1209786
– volume: 29
  start-page: 1703828
  year: 2017
  ident: C7EE02716H-(cit30)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703828
– volume: 168
  start-page: 117
  year: 2004
  ident: C7EE02716H-(cit17)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2004.01.025
– volume: 56
  start-page: 2699
  year: 2017
  ident: C7EE02716H-(cit26)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201609533
– volume-title: Sustainable Ammonia Synthesis – Exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production
  year: 2016
  ident: C7EE02716H-(cit1)/*[position()=1]
– volume: 38
  start-page: 14576
  year: 2013
  ident: C7EE02716H-(cit8)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.054
– volume: 286
  start-page: 2
  year: 2017
  ident: C7EE02716H-(cit14)/*[position()=1]
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.06.014
– volume: 43
  start-page: 5183
  year: 2014
  ident: C7EE02716H-(cit2)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00085D
– volume: 61
  start-page: 505
  year: 2003
  ident: C7EE02716H-(cit18)/*[position()=1]
  publication-title: Acta Chim. Sin. (Engl. Ed.)
– volume: 9
  start-page: 2545
  year: 2016
  ident: C7EE02716H-(cit39)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01800A
– volume: 3
  start-page: 1145
  year: 2013
  ident: C7EE02716H-(cit22)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep01145
– volume: 18
  start-page: 9161
  year: 2016
  ident: C7EE02716H-(cit35)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07363D
– volume: 40
  start-page: 1208
  year: 2007
  ident: C7EE02716H-(cit47)/*[position()=1]
  publication-title: Accounts Chem. Res.
  doi: 10.1021/ar7001649
– volume: 345
  start-page: 637
  year: 2014
  ident: C7EE02716H-(cit28)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1254234
– volume: 17
  start-page: 4909
  year: 2015
  ident: C7EE02716H-(cit33)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04838E
– volume: 501
  start-page: 84
  year: 2013
  ident: C7EE02716H-(cit40)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature12435
– volume: 2
  year: 2014
  ident: C7EE02716H-(cit13)/*[position()=1]
  publication-title: Energy Res.
– volume: 137
  start-page: 2030
  year: 2015
  ident: C7EE02716H-(cit31)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja512491v
– volume: 638
  start-page: 119
  year: 2010
  ident: C7EE02716H-(cit24)/*[position()=1]
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2009.10.010
– volume: 59
  start-page: 65
  year: 2013
  ident: C7EE02716H-(cit45)/*[position()=1]
  publication-title: J. Chem. Thermodyn.
  doi: 10.1016/j.jct.2012.11.010
– volume: 152
  start-page: 47
  year: 2015
  ident: C7EE02716H-(cit3)/*[position()=1]
  publication-title: J. Photochem. Photobiol., B
  doi: 10.1016/j.jphotobiol.2014.12.019
– volume: 24
  start-page: 51
  year: 2015
  ident: C7EE02716H-(cit15)/*[position()=1]
  publication-title: Electrochem. Soc. Interface
  doi: 10.1149/2.F04152if
– volume: 29
  start-page: 1604799
  year: 2017
  ident: C7EE02716H-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604799
– volume: 17
  start-page: 3768
  year: 2015
  ident: C7EE02716H-(cit25)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05501B
– volume: 88
  start-page: 53
  year: 1995
  ident: C7EE02716H-(cit46)/*[position()=1]
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/1010-6030(94)03994-6
– volume: 288
  start-page: 357
  year: 2016
  ident: C7EE02716H-(cit12)/*[position()=1]
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2015.12.022
SSID ssj0062079
Score 2.667346
Snippet Ammonia as the source of most fertilizers has become one of the most important chemicals globally. It also is being increasingly considered as an easily...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2516
SubjectTerms Ambient temperature
Ammonia
Carbon dioxide
Carbon dioxide emissions
Chemical synthesis
Electrochemistry
Energy resources
Energy sources
Fertilizers
Fossil fuels
Haber Bosch process
High temperature
Hydrogen-based energy
Ionic liquids
Ions
Nitrogen
Pressure
Renewable energy
Temperature effects
Title Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids
URI https://www.proquest.com/docview/2010864813
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gIHxKtioSBLcEFVSh5-JMdVFbSgLqetVHGJbMduI5UN7CYH9tczjp1H1SIBlyhy4iTyfPaMHX_fIPSeas4M5XFgQpUGJAvDIBNGBqlmJYsMODll-c6rr2x5Qb5c0svxD37HLmnkqdrfyyv5H6tCGdjVsmT_wbLDQ6EAzsG-cAQLw_GvbJy7HDbB7tcG4jgvLSLs-yvhiCPQYbc11LecRfFdWvLjiVWj8lLKvUzAzq4T2qWPqkuIc1P9bCvHAB5W7R1H0AJlwo3rGZUjPL5d120XEGvLD_Zu0QJqX5supdHJeQvfuaquWj1s7lg4jvaqFY3YDy7Abf1e6SsxXZqI-GRpwo2mnJKAMpfs7lRPynjIbg3BU6TF0_GURmzim2Ondntn2A8Tq5qquNYwy47Y9ejchi2H48UDdBhzCLRm6HCRrz-f946bxWEnzTh8da9mm2Qfx9q345dxUnKw7TPGdJHJ-gl67KcUeOHw8RQ90Jtn6NFEaPI5Ku4gBdcGe6RgixTcIwWLBnuk4AlSMCAF90jB1QZ3SMEeKS_Qxad8fbYMfGqNQJE4bAJFWVqWMLnMspInNBMCOqjQirOMECUpNQpif8GoFJlRNJGh4iRVUrJMpyY1yRGabeqNfolwouM04ooIZXUV0ljqkmhKSxjtDbyDz9GHvsEK5XXnbfqTm6Lb_5BkxRnP865xl3P0brj3h1Nbufeu477dC98bd4Xd1ZEykkbJHB2BLYb6o-le_enCa_RwhO8xmjXbVr-BWLORbz1GfgMYkIP5
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electro-synthesis+of+ammonia+from+nitrogen+at+ambient+temperature+and+pressure+in+ionic+liquids&rft.jtitle=Energy+%26+environmental+science&rft.au=Zhou%2C+Fengling&rft.au=Azofra%2C+Luis+Miguel&rft.au=Ali%2C+Muataz&rft.au=Kar%2C+Mega&rft.date=2017-01-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=1&rft.issue=12&rft.spage=2516&rft.epage=252&rft_id=info:doi/10.1039%2Fc7ee02716h&rft.externalDocID=c7ee02716h
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon