Comparative analysis of AI algorithms on real medical data for chronic pain detection

Chronic pain is a pervasive healthcare challenge with profound implications for patient well-being, clinical decision-making, and resource allocation. Traditional detection methods often rely on subjective assessments and manual documentation review, which can be time-consuming and unpredictable. In...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of medical informatics (Shannon, Ireland) Vol. 203; p. 106002
Main Authors Comito, Carmela, Forestiero, Agostino, Macrì, Davide, Metlichin, Elisabetta, Giusti, Gian Domenico, Ramacciati, Nicola
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.11.2025
Subjects
Online AccessGet full text
ISSN1386-5056
1872-8243
1872-8243
DOI10.1016/j.ijmedinf.2025.106002

Cover

Abstract Chronic pain is a pervasive healthcare challenge with profound implications for patient well-being, clinical decision-making, and resource allocation. Traditional detection methods often rely on subjective assessments and manual documentation review, which can be time-consuming and unpredictable. Integrating Artificial Intelligence (AI) into healthcare offers a promising approach to enhance chronic pain management through automated and standardized text analysis. This study examines the use of AI in detecting chronic pain from Italian clinical notes. We leverage machine learning (ML) and natural language processing (NLP) techniques to better understand how chronic pain is documented, thereby enabling efficient, data-driven solutions in nursing and medical practice. We trained XGBoost, Gradient Boosting (GBM), and BERT-based models (BioBit, bert-base-italian-xxl) on 1,008 annotated Italian clinical notes. Input texts were encoded using TF-IDF, Word2Vec, or FastText for tree-based models and tokenized for transformers. While models were trained on full notes, evaluation was performed on fragmented text to simulate realistic usage. Bayesian optimization and stratified cross-validation over 30 trials ensured robust hyperparameter tuning and performance estimates. Our AI-based approach achieved high overall accuracy. In particular, XGBoost with TF-IDF embeddings yielded the best performance, reaching an F1-score of 0.92 ± 0.01, with precision at 94%, sensitivity at 91%, and specificity at 93%. The chronic pain notes contained fewer total words (73.91 vs. 119.86, p = 0.0021) and unique words (57.27 vs. 92.78, p = 0.0006) than non-chronic pain notes, underscoring the significance of concise, keyword-rich clinical documentation. Our findings demonstrate the effectiveness of AI in identifying chronic pain cases from fragmentary clinical notes. By focusing on concise, keyword-oriented text, this work establishes a solid baseline for domain-specific NLP approaches in healthcare. The proposed method reduces the burden of manual review, facilitates real-time decision support, and may standardize chronic pain assessment processes. Furthermore, we plan to explore new embedding techniques specifically designed for short, context-limited clinical notes, where dynamic contextual models (e.g., BERT) often encounter challenges due to insufficient extended textual context. •Problem or Issue: Chronic pain detection often depends on subjective, labor-intensive chart reviews prone to variability.•What is Already Known: AI has been studied for pain detection, yet its use on real Italian clinical and nursing notes is limited.•What this Paper Adds: We show XGBoost plus TF-IDF reliably flags chronic-pain cases from brief, keyword-rich notes.•Who would benefit from the new: Findings enable scalable, data-driven pain assessment, aiding clinicians and nurses in workflow efficiency.
AbstractList Chronic pain is a pervasive healthcare challenge with profound implications for patient well-being, clinical decision-making, and resource allocation. Traditional detection methods often rely on subjective assessments and manual documentation review, which can be time-consuming and unpredictable. Integrating Artificial Intelligence (AI) into healthcare offers a promising approach to enhance chronic pain management through automated and standardized text analysis. This study examines the use of AI in detecting chronic pain from Italian clinical notes. We leverage machine learning (ML) and natural language processing (NLP) techniques to better understand how chronic pain is documented, thereby enabling efficient, data-driven solutions in nursing and medical practice. We trained XGBoost, Gradient Boosting (GBM), and BERT-based models (BioBit, bert-base-italian-xxl) on 1,008 annotated Italian clinical notes. Input texts were encoded using TF-IDF, Word2Vec, or FastText for tree-based models and tokenized for transformers. While models were trained on full notes, evaluation was performed on fragmented text to simulate realistic usage. Bayesian optimization and stratified cross-validation over 30 trials ensured robust hyperparameter tuning and performance estimates. Our AI-based approach achieved high overall accuracy. In particular, XGBoost with TF-IDF embeddings yielded the best performance, reaching an F1-score of 0.92 ± 0.01, with precision at 94%, sensitivity at 91%, and specificity at 93%. The chronic pain notes contained fewer total words (73.91 vs. 119.86, p = 0.0021) and unique words (57.27 vs. 92.78, p = 0.0006) than non-chronic pain notes, underscoring the significance of concise, keyword-rich clinical documentation. Our findings demonstrate the effectiveness of AI in identifying chronic pain cases from fragmentary clinical notes. By focusing on concise, keyword-oriented text, this work establishes a solid baseline for domain-specific NLP approaches in healthcare. The proposed method reduces the burden of manual review, facilitates real-time decision support, and may standardize chronic pain assessment processes. Furthermore, we plan to explore new embedding techniques specifically designed for short, context-limited clinical notes, where dynamic contextual models (e.g., BERT) often encounter challenges due to insufficient extended textual context. •Problem or Issue: Chronic pain detection often depends on subjective, labor-intensive chart reviews prone to variability.•What is Already Known: AI has been studied for pain detection, yet its use on real Italian clinical and nursing notes is limited.•What this Paper Adds: We show XGBoost plus TF-IDF reliably flags chronic-pain cases from brief, keyword-rich notes.•Who would benefit from the new: Findings enable scalable, data-driven pain assessment, aiding clinicians and nurses in workflow efficiency.
Chronic pain is a pervasive healthcare challenge with profound implications for patient well-being, clinical decision-making, and resource allocation. Traditional detection methods often rely on subjective assessments and manual documentation review, which can be time-consuming and unpredictable. Integrating Artificial Intelligence (AI) into healthcare offers a promising approach to enhance chronic pain management through automated and standardized text analysis. This study examines the use of AI in detecting chronic pain from Italian clinical notes. We leverage machine learning (ML) and natural language processing (NLP) techniques to better understand how chronic pain is documented, thereby enabling efficient, data-driven solutions in nursing and medical practice.BACKGROUND AND OBJECTIVEChronic pain is a pervasive healthcare challenge with profound implications for patient well-being, clinical decision-making, and resource allocation. Traditional detection methods often rely on subjective assessments and manual documentation review, which can be time-consuming and unpredictable. Integrating Artificial Intelligence (AI) into healthcare offers a promising approach to enhance chronic pain management through automated and standardized text analysis. This study examines the use of AI in detecting chronic pain from Italian clinical notes. We leverage machine learning (ML) and natural language processing (NLP) techniques to better understand how chronic pain is documented, thereby enabling efficient, data-driven solutions in nursing and medical practice.We trained XGBoost, Gradient Boosting (GBM), and BERT-based models (BioBit, bert-base-italian-xxl) on 1,008 annotated Italian clinical notes. Input texts were encoded using TF-IDF, Word2Vec, or FastText for tree-based models and tokenized for transformers. While models were trained on full notes, evaluation was performed on fragmented text to simulate realistic usage. Bayesian optimization and stratified cross-validation over 30 trials ensured robust hyperparameter tuning and performance estimates.METHODS & MATERIALSWe trained XGBoost, Gradient Boosting (GBM), and BERT-based models (BioBit, bert-base-italian-xxl) on 1,008 annotated Italian clinical notes. Input texts were encoded using TF-IDF, Word2Vec, or FastText for tree-based models and tokenized for transformers. While models were trained on full notes, evaluation was performed on fragmented text to simulate realistic usage. Bayesian optimization and stratified cross-validation over 30 trials ensured robust hyperparameter tuning and performance estimates.Our AI-based approach achieved high overall accuracy. In particular, XGBoost with TF-IDF embeddings yielded the best performance, reaching an F1-score of 0.92 ± 0.01, with precision at 94%, sensitivity at 91%, and specificity at 93%. The chronic pain notes contained fewer total words (73.91 vs. 119.86, p = 0.0021) and unique words (57.27 vs. 92.78, p = 0.0006) than non-chronic pain notes, underscoring the significance of concise, keyword-rich clinical documentation.RESULTSOur AI-based approach achieved high overall accuracy. In particular, XGBoost with TF-IDF embeddings yielded the best performance, reaching an F1-score of 0.92 ± 0.01, with precision at 94%, sensitivity at 91%, and specificity at 93%. The chronic pain notes contained fewer total words (73.91 vs. 119.86, p = 0.0021) and unique words (57.27 vs. 92.78, p = 0.0006) than non-chronic pain notes, underscoring the significance of concise, keyword-rich clinical documentation.Our findings demonstrate the effectiveness of AI in identifying chronic pain cases from fragmentary clinical notes. By focusing on concise, keyword-oriented text, this work establishes a solid baseline for domain-specific NLP approaches in healthcare. The proposed method reduces the burden of manual review, facilitates real-time decision support, and may standardize chronic pain assessment processes. Furthermore, we plan to explore new embedding techniques specifically designed for short, context-limited clinical notes, where dynamic contextual models (e.g., BERT) often encounter challenges due to insufficient extended textual context.CONCLUSIONSOur findings demonstrate the effectiveness of AI in identifying chronic pain cases from fragmentary clinical notes. By focusing on concise, keyword-oriented text, this work establishes a solid baseline for domain-specific NLP approaches in healthcare. The proposed method reduces the burden of manual review, facilitates real-time decision support, and may standardize chronic pain assessment processes. Furthermore, we plan to explore new embedding techniques specifically designed for short, context-limited clinical notes, where dynamic contextual models (e.g., BERT) often encounter challenges due to insufficient extended textual context.
Chronic pain is a pervasive healthcare challenge with profound implications for patient well-being, clinical decision-making, and resource allocation. Traditional detection methods often rely on subjective assessments and manual documentation review, which can be time-consuming and unpredictable. Integrating Artificial Intelligence (AI) into healthcare offers a promising approach to enhance chronic pain management through automated and standardized text analysis. This study examines the use of AI in detecting chronic pain from Italian clinical notes. We leverage machine learning (ML) and natural language processing (NLP) techniques to better understand how chronic pain is documented, thereby enabling efficient, data-driven solutions in nursing and medical practice. We trained XGBoost, Gradient Boosting (GBM), and BERT-based models (BioBit, bert-base-italian-xxl) on 1,008 annotated Italian clinical notes. Input texts were encoded using TF-IDF, Word2Vec, or FastText for tree-based models and tokenized for transformers. While models were trained on full notes, evaluation was performed on fragmented text to simulate realistic usage. Bayesian optimization and stratified cross-validation over 30 trials ensured robust hyperparameter tuning and performance estimates. Our AI-based approach achieved high overall accuracy. In particular, XGBoost with TF-IDF embeddings yielded the best performance, reaching an F1-score of 0.92 ± 0.01, with precision at 94%, sensitivity at 91%, and specificity at 93%. The chronic pain notes contained fewer total words (73.91 vs. 119.86, p = 0.0021) and unique words (57.27 vs. 92.78, p = 0.0006) than non-chronic pain notes, underscoring the significance of concise, keyword-rich clinical documentation. Our findings demonstrate the effectiveness of AI in identifying chronic pain cases from fragmentary clinical notes. By focusing on concise, keyword-oriented text, this work establishes a solid baseline for domain-specific NLP approaches in healthcare. The proposed method reduces the burden of manual review, facilitates real-time decision support, and may standardize chronic pain assessment processes. Furthermore, we plan to explore new embedding techniques specifically designed for short, context-limited clinical notes, where dynamic contextual models (e.g., BERT) often encounter challenges due to insufficient extended textual context.
ArticleNumber 106002
Author Macrì, Davide
Comito, Carmela
Giusti, Gian Domenico
Metlichin, Elisabetta
Forestiero, Agostino
Ramacciati, Nicola
Author_xml – sequence: 1
  givenname: Carmela
  orcidid: 0000-0001-9116-4323
  surname: Comito
  fullname: Comito, Carmela
  organization: Institute for High-Performance Computing and Networking, National Research Council, Italy
– sequence: 2
  givenname: Agostino
  surname: Forestiero
  fullname: Forestiero, Agostino
  organization: Institute for High-Performance Computing and Networking, National Research Council, Italy
– sequence: 3
  givenname: Davide
  orcidid: 0000-0003-3960-1578
  surname: Macrì
  fullname: Macrì, Davide
  email: davide.macri@icar.cnr.it
  organization: Institute for High-Performance Computing and Networking, National Research Council, Italy
– sequence: 4
  givenname: Elisabetta
  orcidid: 0009-0003-8252-2311
  surname: Metlichin
  fullname: Metlichin, Elisabetta
  organization: Residenza Protetta “C.R.A. Casa Benedetta”, Sigillo, Perugia, Italy
– sequence: 5
  givenname: Gian Domenico
  surname: Giusti
  fullname: Giusti, Gian Domenico
  organization: Perugia Hospital, Perugia, Italy
– sequence: 6
  givenname: Nicola
  orcidid: 0000-0002-1176-8133
  surname: Ramacciati
  fullname: Ramacciati, Nicola
  organization: Department of Pharmacy, Health Sciences and Nutritional Sciences, University of Calabria, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40505249$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_wFyov2WTqZ-xsENUIaKVKbOjacpwb6sGxg51pNf8ej9KyYENX1zo659yrz-foJKYICF1SsqGEtle7jd9NMPg4bhhhsootIewNOqNasUYzwU_qm-u2kUS2p-i8lB0hVBEp3qFTQarKRHeG7rdpmm22i38EbKMNh-ILTiO-vsU2_EzZLw9TFSLOYAM-rnR1DnaxeEwZu4econd4tj7iARZwi0_xPXo72lDgw_O8QPdfv_zY3jR337_dbq_vGicYWZoeeqeE5kLxrh1pJ5jtQWgiHFGyHXpZJTHQtleaKa05EV3fgZOCEgmOcn6B1Nq7j7M9PNkQzJz9ZPPBUGKOoMzOvIAyR1BmBVWTH9fknNPvPZTFTL44CMFGSPtiOKNaKMIlqdbLZ-u-r01_N7xArIZ2NbicSskwvv6Iz2sQKqNHD9kU5yG66swVpBmS_3_Fp38qXPDx-Ee_4PCagj8ZhrKO
Cites_doi 10.1016/j.bja.2019.03.023
10.1016/j.ijmedinf.2021.104510
10.3390/life14050557
10.1016/j.csl.2021.101261
10.1016/j.proeng.2014.03.129
10.1007/s11517-017-1772-1
10.1145/3386252
10.1038/s41551-018-0305-z
10.3390/app11073205
10.1109/ACCESS.2024.3367246
10.1162/coli_a_00472
10.1631/BF02842477
10.1016/S1474-4422(24)00076-0
10.1613/jair.953
10.1109/JPROC.2015.2494218
10.1186/s12874-022-01665-y
10.2147/JMDH.S459946
10.1016/j.procs.2023.01.056
10.1016/j.jbi.2018.09.008
10.1016/S0167-9473(01)00065-2
10.1016/j.jbi.2023.104431
10.1016/j.ipm.2009.03.002
10.1093/jamia/ocv069
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 The Author(s)
– notice: Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.ijmedinf.2025.106002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-8243
ExternalDocumentID 10.1016/j.ijmedinf.2025.106002
40505249
10_1016_j_ijmedinf_2025_106002
S1386505625002199
Genre Journal Article
Comparative Study
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABDPE
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACJTP
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXBA
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SEW
SNG
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
Z5R
~G-
~HD
6I.
AAFTH
AGCQF
AAYXX
CITATION
AFCTW
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c420t-bebc748347396f1942abe4804c0756db51944d16b7827883049b9ec54105ec133
IEDL.DBID .~1
ISSN 1386-5056
1872-8243
IngestDate Tue Aug 19 09:43:56 EDT 2025
Thu Oct 02 22:43:35 EDT 2025
Mon Aug 04 01:30:43 EDT 2025
Wed Oct 01 05:45:15 EDT 2025
Sat Aug 30 17:14:31 EDT 2025
Tue Oct 14 19:33:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Healthcare
Text analysis
Nursing care
Artificial intelligence
Medical documentation
Chronic pain
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-bebc748347396f1942abe4804c0756db51944d16b7827883049b9ec54105ec133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9116-4323
0000-0002-1176-8133
0009-0003-8252-2311
0000-0003-3960-1578
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1386505625002199
PMID 40505249
PQID 3218470350
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_ijmedinf_2025_106002
proquest_miscellaneous_3218470350
pubmed_primary_40505249
crossref_primary_10_1016_j_ijmedinf_2025_106002
elsevier_sciencedirect_doi_10_1016_j_ijmedinf_2025_106002
elsevier_clinicalkey_doi_10_1016_j_ijmedinf_2025_106002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle International journal of medical informatics (Shannon, Ireland)
PublicationTitleAlternate Int J Med Inform
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Novaes de Santana, Montoya, De Santana (br0470) 2020; 10
Putatunda, Rama (br0340) December 2019
Trstenjak, Mikac, Donko (br0360) 2014; 69
Guarasci, Silvestri, De Pietro, Fujita, Esposito (br0300) 2022; 71
Rollo, Bonisoli, Po (br0180) 2024; 12
Shahriari, Swersky, Wang, Adams, De Freitas (br0410) 2016; 104
Buonocore, Crema, Parimbelli, Redolfi, Bellazzi (br0240) 2023; 144
Hirani, Noruzi, Hassan, Hussaini, Aifuwa, Ely, Lewis, Gabr, Smiley, Tiwari, Etienne (br0010) 2024; 14
Nicholas, Vlaeyen, Rief, Barke, Aziz, Benoliel, Cohen, Evers, Giamberardino, Goebel, Korwisi, Perrot, Svensson, Wang, Treede (br0090) 2018; 160
Fodeh, Finch, Bouayad, Luther, Ling, Kerns, Brandt (br0110) 2018; 56
Lázaro, Yepez, Marín-Maicas, López-Masés, Gimeno, de Paúl, Moscardó (br0050) 2024; 14
Lu, Ehwerhemuepha, Rakovski (br0120) 2022; 22
Yu, Beam, Kohane (br0020) 2018; 2
Wang, Yao, Kwok, Ni (br0310) June 2020; 53
Magueresse, Carles, Heetderks (br0230) 2020
Chawla, Bowyer, Hall, Kegelmeyer (br0440) 2002; 16
Chi, Hewitt, Manning (br0280) 2020
Jayaraman, Murugappan, Trueman, Ananthakrishnan, Ghosh (br0450) 2023; 218
Henry B. Moss, David S. Leslie, Paul Rayson, Using j-k fold cross validation to reduce variance when tuning nlp models, 2018.
Akiba, Sano, Yanase, Ohta, Koyama (br0420) 2019
Devlin, Chang, Lee, Toutanova (br0130) 2018
Sokolova, Lapalme (br0460) 2009; 45
de Varda, Marelli (br0290) 2023; 49
Crema, Buonocore, Fostinelli, Parimbelli, Verde, Fundarø, Manera, Ramusino, Capelli, Costa, Binetti, Bellazzi, Redolfi (br0200) 2023
Chen, Guestrin (br0380) 2016
Maisto, Guarasci (br0350) 2016; 607
Cabitza, Campagner (br0500) 06 2021; 153
Jenssen, Bakkevoll, Ngo, Budrionis, Fagerlund, Tayefi, Bellika, Godtliebsen (br0100) 04 2021; 11
Mills, Nicolson, Smith (br0030) 2019; 123
Ferraro, O'Connell, Sommer, Goebel, Bultitude, Cashin, Moseley, Mcauley (br0040) 2024; 23
Alsentzer, Murphy, Boag, Weng, Jindi, Naumann, McDermott (br0140) June 2019
Yogatama, Kong, Smith (br0070) September 2015
Bischl, Binder, Lang, Pielok, Richter, Coors, Thomas, Ullmann, Becker, Boulesteix, Deng, Lindauer (br0060) 2023; 13
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (br0390) 2017; 30
González-Carvajal, Garrido-Merchán (br0150) 2020
Antel, Whitelaw, Gore, Ingelmo (br0490) 2024; 29
Ramacciati, Metlichin, Giusti (br0220) 09 2023
Guarasci, Silvestri, Esposito (br0270) 2024; vol. 193
Raja, Carr, Cohen, Finnerup, Flor, Gibson, Keefe, Mogil, Ringkamp, Sluka, Song, Stevens, Sullivan, Tutelman, Ushida, Vader (br0080) 2020; 05
Wang, Liu, Afzal, Rastegar-Mojarad, Wang, Shen, Kingsbury, Liu (br0190) 2018; 87
Yun-tao, Ling, Yong-cheng (br0170) 2005; 6
Friedman (br0370) 2002; 38
Bartelli (br0210) 2021
Snoek, Larochelle, Adams (br0400) 2012
Ruksakulpiwat, Thorngthip, Niyomyart, Benjasirisan, Phianhasin, Aldossary, Ahmed, Samai (br0480) 2024; 17
Marulli, Pota, Esposito, Maisto, Guarasci (br0250) 2018; vol. 13
Meechan-Maddon, Nivre (br0260) 2019
Turchin, Masharsky, Zitnik (br0160) 2023; 36
Kholghi, Sitbon, Zuccon, Nguyen (br0320) 2015; 23
Turchin (10.1016/j.ijmedinf.2025.106002_br0160) 2023; 36
Cabitza (10.1016/j.ijmedinf.2025.106002_br0500) 2021; 153
Bartelli (10.1016/j.ijmedinf.2025.106002_br0210) 2021
Snoek (10.1016/j.ijmedinf.2025.106002_br0400) 2012
Akiba (10.1016/j.ijmedinf.2025.106002_br0420) 2019
Devlin (10.1016/j.ijmedinf.2025.106002_br0130)
Chen (10.1016/j.ijmedinf.2025.106002_br0380) 2016
Raja (10.1016/j.ijmedinf.2025.106002_br0080) 2020; 05
Crema (10.1016/j.ijmedinf.2025.106002_br0200)
Lu (10.1016/j.ijmedinf.2025.106002_br0120) 2022; 22
Guarasci (10.1016/j.ijmedinf.2025.106002_br0300) 2022; 71
Rollo (10.1016/j.ijmedinf.2025.106002_br0180) 2024; 12
Hirani (10.1016/j.ijmedinf.2025.106002_br0010) 2024; 14
Buonocore (10.1016/j.ijmedinf.2025.106002_br0240) 2023; 144
Novaes de Santana (10.1016/j.ijmedinf.2025.106002_br0470) 2020; 10
Trstenjak (10.1016/j.ijmedinf.2025.106002_br0360) 2014; 69
Yun-tao (10.1016/j.ijmedinf.2025.106002_br0170) 2005; 6
Guarasci (10.1016/j.ijmedinf.2025.106002_br0270) 2024; vol. 193
Alsentzer (10.1016/j.ijmedinf.2025.106002_br0140) 2019
Meechan-Maddon (10.1016/j.ijmedinf.2025.106002_br0260) 2019
Mills (10.1016/j.ijmedinf.2025.106002_br0030) 2019; 123
10.1016/j.ijmedinf.2025.106002_br0430
Nicholas (10.1016/j.ijmedinf.2025.106002_br0090) 2018; 160
González-Carvajal (10.1016/j.ijmedinf.2025.106002_br0150)
Yogatama (10.1016/j.ijmedinf.2025.106002_br0070) 2015
Ferraro (10.1016/j.ijmedinf.2025.106002_br0040) 2024; 23
Maisto (10.1016/j.ijmedinf.2025.106002_br0350) 2016; 607
Wang (10.1016/j.ijmedinf.2025.106002_br0310) 2020; 53
Antel (10.1016/j.ijmedinf.2025.106002_br0490) 2024; 29
Wang (10.1016/j.ijmedinf.2025.106002_br0190) 2018; 87
Putatunda (10.1016/j.ijmedinf.2025.106002_br0340) 2019
Shahriari (10.1016/j.ijmedinf.2025.106002_br0410) 2016; 104
Lázaro (10.1016/j.ijmedinf.2025.106002_br0050) 2024; 14
Jayaraman (10.1016/j.ijmedinf.2025.106002_br0450) 2023; 218
Marulli (10.1016/j.ijmedinf.2025.106002_br0250) 2018; vol. 13
Bischl (10.1016/j.ijmedinf.2025.106002_br0060) 2023; 13
Sokolova (10.1016/j.ijmedinf.2025.106002_br0460) 2009; 45
Ruksakulpiwat (10.1016/j.ijmedinf.2025.106002_br0480) 2024; 17
Magueresse (10.1016/j.ijmedinf.2025.106002_br0230)
Friedman (10.1016/j.ijmedinf.2025.106002_br0370) 2002; 38
de Varda (10.1016/j.ijmedinf.2025.106002_br0290) 2023; 49
Chawla (10.1016/j.ijmedinf.2025.106002_br0440) 2002; 16
Yu (10.1016/j.ijmedinf.2025.106002_br0020) 2018; 2
Fodeh (10.1016/j.ijmedinf.2025.106002_br0110) 2018; 56
Vaswani (10.1016/j.ijmedinf.2025.106002_br0390) 2017; 30
Ramacciati (10.1016/j.ijmedinf.2025.106002_br0220) 2023
Kholghi (10.1016/j.ijmedinf.2025.106002_br0320) 2015; 23
Chi (10.1016/j.ijmedinf.2025.106002_br0280) 2020
Jenssen (10.1016/j.ijmedinf.2025.106002_br0100) 2021; 11
References_xml – volume: 69
  start-page: 1356
  year: 2014
  end-page: 1364
  ident: br0360
  article-title: Knn with tf-idf based framework for text categorization
  publication-title: Proc. Eng.
– volume: 14
  year: 2024
  ident: br0010
  article-title: Artificial intelligence and healthcare: a journey through history, present innovations, and future possibilities
  publication-title: Life
– year: 2018
  ident: br0130
  article-title: Pre-training of deep bidirectional transformers for language understanding
– volume: vol. 13
  start-page: 314
  year: 2018
  end-page: 324
  ident: br0250
  article-title: Tuning syntaxnet for pos tagging Italian sentences
  publication-title: Lecture Notes on Data Engineering and Communications Technologies
– reference: Henry B. Moss, David S. Leslie, Paul Rayson, Using j-k fold cross validation to reduce variance when tuning nlp models, 2018.
– volume: vol. 193
  start-page: 219
  year: 2024
  end-page: 228
  ident: br0270
  article-title: Probing cross-lingual transfer of xlm multi-language model
  publication-title: Lecture Notes on Data Engineering and Communications Technologies
– volume: 6
  start-page: 49
  year: 2005
  ident: br0170
  article-title: An improved tf-idf approach for text classification
  publication-title: J. Zhejiang Univ. Sci. A Appl. Phys. Eng.
– volume: 144
  year: 2023
  ident: br0240
  article-title: Localizing in-domain adaptation of transformer-based biomedical language models
  publication-title: J. Biomed. Inform.
– year: 2020
  ident: br0150
  article-title: Comparing BERT against traditional machine learning text classification
– volume: 22
  year: 2022
  ident: br0120
  article-title: A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance
  publication-title: BMC Med. Res. Methodol.
– volume: 49
  start-page: 261
  year: 2023
  end-page: 299
  ident: br0290
  article-title: Data-driven cross-lingual syntax: an agreement study with massively multilingual models
  publication-title: Comput. Linguist.
– year: 2020
  ident: br0230
  article-title: Low-resource languages: a review of past work and future challenges
– volume: 36
  year: 2023
  ident: br0160
  article-title: Comparison of bert implementations for natural language processing of narrative medical documents
  publication-title: Inform. Med. Unlocked
– volume: 16
  start-page: 321
  year: 2002
  ident: br0440
  article-title: Smote: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
– volume: 218
  start-page: 757
  year: 2023
  ident: br0450
  article-title: Imbalanced aspect categorization using bidirectional encoder representation from transformers
  publication-title: Proc. Comput. Sci.
– volume: 23
  start-page: 522
  year: 2024
  ident: br0040
  article-title: Complex regional pain syndrome: advances in epidemiology, pathophysiology, diagnosis, and treatment
  publication-title: Lancet Neurol.
– volume: 11
  start-page: 3205
  year: 04 2021
  ident: br0100
  article-title: Machine learning in chronic pain research: a scoping review
  publication-title: Appl. Sci.
– year: 2023
  ident: br0200
  article-title: Advancing Italian biomedical information extraction with transformers-based models: methodological insights and multicenter practical application
– start-page: 2100
  year: September 2015
  end-page: 2105
  ident: br0070
  article-title: Bayesian optimization of text representations
  publication-title: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
– volume: 2
  start-page: 10
  year: 2018
  ident: br0020
  article-title: Artificial intelligence in healthcare
  publication-title: Nat. Biomed. Eng.
– volume: 45
  start-page: 427
  year: 2009
  end-page: 437
  ident: br0460
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
– year: December 2019
  ident: br0340
  article-title: A modified Bayesian optimization based hyper-parameter tuning approach for extreme gradient boosting
  publication-title: 2019 Fifteenth International Conference on Information Processing (ICINPRO)
– volume: 71
  year: 2022
  ident: br0300
  article-title: Bert syntactic transfer: a computational experiment on Italian, French and English languages
  publication-title: Comput. Speech Lang.
– volume: 160
  start-page: 12
  year: 2018
  ident: br0090
  article-title: The iasp classification of chronic pain for icd-11: chronic primary pain
  publication-title: Pain
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: br0370
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
– volume: 29
  start-page: 11
  year: 2024
  ident: br0490
  article-title: Moving towards the use of artificial intelligence in pain management
  publication-title: Eur. J. Pain
– volume: 05
  year: 2020
  ident: br0080
  article-title: The revised international association for the study of pain definition of pain: concepts, challenges, and compromises
  publication-title: Pain
– volume: 30
  year: 2017
  ident: br0390
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2021
  ident: br0210
  article-title: Analisi di cartelle cliniche elettroniche con tecniche di natural language processing nel campo degli studi sul diabete
– start-page: 112
  year: 2019
  end-page: 120
  ident: br0260
  article-title: How to parse low-resource languages: cross-lingual parsing, target language annotation, or both?
  publication-title: Proceedings of the Fifth International Conference on Dependency Linguistics (Depling, SyntaxFest 2019)
– start-page: 2623
  year: 2019
  end-page: 2631
  ident: br0420
  article-title: Optuna: a next-generation hyperparameter optimization framework
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery Data Mining
– start-page: 2951
  year: 2012
  end-page: 2959
  ident: br0400
  article-title: Practical Bayesian optimization of machine learning algorithms
  publication-title: Advances in Neural Information Processing Systems
– volume: 14
  year: 2024
  ident: br0050
  article-title: Efficiency of natural language processing as a tool for analysing quality of life in patients with chronic diseases. A systematic review
  publication-title: Comput. Hum. Behav. Rep.
– volume: 12
  start-page: 25536
  year: 2024
  end-page: 25552
  ident: br0180
  article-title: A comparative analysis of word embeddings techniques for Italian news categorization
  publication-title: IEEE Access
– volume: 17
  start-page: 1603
  year: 2024
  ident: br0480
  article-title: A systematic review of the application of artificial intelligence in nursing care: where are we, and what's next?
  publication-title: J. Multidiscipl. Healthc.
– start-page: 785
  year: 2016
  end-page: 794
  ident: br0380
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 10
  start-page: 11
  year: 2020
  ident: br0470
  article-title: Chronic pain diagnosis using machine learning, questionnaires, and qst: a sensitivity experiment
  publication-title: Diagnostics
– volume: 23
  start-page: 289
  year: 2015
  end-page: 296
  ident: br0320
  article-title: Active learning: a step towards automating medical concept extraction
  publication-title: J. Am. Med. Inform. Assoc.
– start-page: 72
  year: June 2019
  end-page: 78
  ident: br0140
  article-title: Publicly available clinical BERT embeddings
  publication-title: Proceedings of the 2nd Clinical Natural Language Processing Workshop
– year: 2020
  ident: br0280
  article-title: Finding universal grammatical relations in multilingual bert
  publication-title: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
– volume: 87
  start-page: 12
  year: 2018
  end-page: 20
  ident: br0190
  article-title: A comparison of word embeddings for the biomedical natural language processing
  publication-title: J. Biomed. Inform.
– volume: 56
  start-page: 1285
  year: 2018
  end-page: 1292
  ident: br0110
  article-title: Classifying clinical notes with pain assessment using machine learning
  publication-title: Med. Biol. Eng. Comput.
– volume: 153
  year: 06 2021
  ident: br0500
  article-title: The need to separate the wheat from the chaff in medical informatics
  publication-title: Int. J. Med. Inform.
– volume: 607
  start-page: 172
  year: 2016
  end-page: 181
  ident: br0350
  article-title: Morpheme-based recognition and translation of medical terms
  publication-title: Commun. Comput. Inf. Sci.
– volume: 123
  start-page: e273
  year: 2019
  end-page: e283
  ident: br0030
  article-title: Chronic pain: a review of its epidemiology and associated factors in population-based studies
  publication-title: Br. J. Anaesth.
– volume: 13
  year: 2023
  ident: br0060
  article-title: Hyperparameter optimization: foundations, algorithms, best practices, and open challenges
  publication-title: WIREs Data Min. Knowl. Discov.
– volume: 53
  year: June 2020
  ident: br0310
  article-title: Generalizing from a few examples: a survey on few-shot learning
  publication-title: ACM Comput. Surv.
– start-page: 1
  year: 09 2023
  end-page: 11
  ident: br0220
  article-title: Exploring the terminological validity of ‘chronic pain’ nursing diagnosis: a retrospective descriptive study using nursing diaries
  publication-title: J. Clin. Nurs.
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  ident: br0410
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: Proc. IEEE
– volume: 123
  start-page: e273
  issue: 2
  year: 2019
  ident: 10.1016/j.ijmedinf.2025.106002_br0030
  article-title: Chronic pain: a review of its epidemiology and associated factors in population-based studies
  publication-title: Br. J. Anaesth.
  doi: 10.1016/j.bja.2019.03.023
– start-page: 1
  year: 2023
  ident: 10.1016/j.ijmedinf.2025.106002_br0220
  article-title: Exploring the terminological validity of ‘chronic pain’ nursing diagnosis: a retrospective descriptive study using nursing diaries
  publication-title: J. Clin. Nurs.
– volume: 153
  year: 2021
  ident: 10.1016/j.ijmedinf.2025.106002_br0500
  article-title: The need to separate the wheat from the chaff in medical informatics
  publication-title: Int. J. Med. Inform.
  doi: 10.1016/j.ijmedinf.2021.104510
– volume: 10
  start-page: 11
  year: 2020
  ident: 10.1016/j.ijmedinf.2025.106002_br0470
  article-title: Chronic pain diagnosis using machine learning, questionnaires, and qst: a sensitivity experiment
  publication-title: Diagnostics
– volume: 14
  issue: 5
  year: 2024
  ident: 10.1016/j.ijmedinf.2025.106002_br0010
  article-title: Artificial intelligence and healthcare: a journey through history, present innovations, and future possibilities
  publication-title: Life
  doi: 10.3390/life14050557
– volume: 71
  year: 2022
  ident: 10.1016/j.ijmedinf.2025.106002_br0300
  article-title: Bert syntactic transfer: a computational experiment on Italian, French and English languages
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2021.101261
– start-page: 2100
  year: 2015
  ident: 10.1016/j.ijmedinf.2025.106002_br0070
  article-title: Bayesian optimization of text representations
– volume: 69
  start-page: 1356
  year: 2014
  ident: 10.1016/j.ijmedinf.2025.106002_br0360
  article-title: Knn with tf-idf based framework for text categorization
  publication-title: Proc. Eng.
  doi: 10.1016/j.proeng.2014.03.129
– volume: 56
  start-page: 1285
  issue: 7
  year: 2018
  ident: 10.1016/j.ijmedinf.2025.106002_br0110
  article-title: Classifying clinical notes with pain assessment using machine learning
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-017-1772-1
– volume: 14
  year: 2024
  ident: 10.1016/j.ijmedinf.2025.106002_br0050
  article-title: Efficiency of natural language processing as a tool for analysing quality of life in patients with chronic diseases. A systematic review
  publication-title: Comput. Hum. Behav. Rep.
– year: 2021
  ident: 10.1016/j.ijmedinf.2025.106002_br0210
– start-page: 2623
  year: 2019
  ident: 10.1016/j.ijmedinf.2025.106002_br0420
  article-title: Optuna: a next-generation hyperparameter optimization framework
– volume: 53
  issue: 3
  year: 2020
  ident: 10.1016/j.ijmedinf.2025.106002_br0310
  article-title: Generalizing from a few examples: a survey on few-shot learning
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3386252
– volume: 2
  start-page: 10
  year: 2018
  ident: 10.1016/j.ijmedinf.2025.106002_br0020
  article-title: Artificial intelligence in healthcare
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0305-z
– volume: vol. 13
  start-page: 314
  year: 2018
  ident: 10.1016/j.ijmedinf.2025.106002_br0250
  article-title: Tuning syntaxnet for pos tagging Italian sentences
– start-page: 2951
  year: 2012
  ident: 10.1016/j.ijmedinf.2025.106002_br0400
  article-title: Practical Bayesian optimization of machine learning algorithms
– volume: 607
  start-page: 172
  year: 2016
  ident: 10.1016/j.ijmedinf.2025.106002_br0350
  article-title: Morpheme-based recognition and translation of medical terms
  publication-title: Commun. Comput. Inf. Sci.
– ident: 10.1016/j.ijmedinf.2025.106002_br0230
– volume: 160
  start-page: 12
  issue: 28–37
  year: 2018
  ident: 10.1016/j.ijmedinf.2025.106002_br0090
  article-title: The iasp classification of chronic pain for icd-11: chronic primary pain
  publication-title: Pain
– volume: 11
  start-page: 3205
  year: 2021
  ident: 10.1016/j.ijmedinf.2025.106002_br0100
  article-title: Machine learning in chronic pain research: a scoping review
  publication-title: Appl. Sci.
  doi: 10.3390/app11073205
– volume: 12
  start-page: 25536
  year: 2024
  ident: 10.1016/j.ijmedinf.2025.106002_br0180
  article-title: A comparative analysis of word embeddings techniques for Italian news categorization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3367246
– year: 2019
  ident: 10.1016/j.ijmedinf.2025.106002_br0340
  article-title: A modified Bayesian optimization based hyper-parameter tuning approach for extreme gradient boosting
– volume: 36
  year: 2023
  ident: 10.1016/j.ijmedinf.2025.106002_br0160
  article-title: Comparison of bert implementations for natural language processing of narrative medical documents
  publication-title: Inform. Med. Unlocked
– volume: vol. 193
  start-page: 219
  year: 2024
  ident: 10.1016/j.ijmedinf.2025.106002_br0270
  article-title: Probing cross-lingual transfer of xlm multi-language model
– volume: 05
  year: 2020
  ident: 10.1016/j.ijmedinf.2025.106002_br0080
  article-title: The revised international association for the study of pain definition of pain: concepts, challenges, and compromises
  publication-title: Pain
– volume: 49
  start-page: 261
  issue: 2
  year: 2023
  ident: 10.1016/j.ijmedinf.2025.106002_br0290
  article-title: Data-driven cross-lingual syntax: an agreement study with massively multilingual models
  publication-title: Comput. Linguist.
  doi: 10.1162/coli_a_00472
– start-page: 72
  year: 2019
  ident: 10.1016/j.ijmedinf.2025.106002_br0140
  article-title: Publicly available clinical BERT embeddings
– volume: 6
  start-page: 49
  year: 2005
  ident: 10.1016/j.ijmedinf.2025.106002_br0170
  article-title: An improved tf-idf approach for text classification
  publication-title: J. Zhejiang Univ. Sci. A Appl. Phys. Eng.
  doi: 10.1631/BF02842477
– volume: 23
  start-page: 522
  year: 2024
  ident: 10.1016/j.ijmedinf.2025.106002_br0040
  article-title: Complex regional pain syndrome: advances in epidemiology, pathophysiology, diagnosis, and treatment
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(24)00076-0
– ident: 10.1016/j.ijmedinf.2025.106002_br0150
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.ijmedinf.2025.106002_br0440
  article-title: Smote: synthetic minority over-sampling technique
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.953
– volume: 104
  start-page: 148
  issue: 1
  year: 2016
  ident: 10.1016/j.ijmedinf.2025.106002_br0410
  article-title: Taking the human out of the loop: a review of Bayesian optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 22
  year: 2022
  ident: 10.1016/j.ijmedinf.2025.106002_br0120
  article-title: A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-022-01665-y
– start-page: 785
  year: 2016
  ident: 10.1016/j.ijmedinf.2025.106002_br0380
  article-title: Xgboost: a scalable tree boosting system
– volume: 13
  issue: 2
  year: 2023
  ident: 10.1016/j.ijmedinf.2025.106002_br0060
  article-title: Hyperparameter optimization: foundations, algorithms, best practices, and open challenges
  publication-title: WIREs Data Min. Knowl. Discov.
– volume: 17
  start-page: 1603
  year: 2024
  ident: 10.1016/j.ijmedinf.2025.106002_br0480
  article-title: A systematic review of the application of artificial intelligence in nursing care: where are we, and what's next?
  publication-title: J. Multidiscipl. Healthc.
  doi: 10.2147/JMDH.S459946
– volume: 29
  start-page: 11
  year: 2024
  ident: 10.1016/j.ijmedinf.2025.106002_br0490
  article-title: Moving towards the use of artificial intelligence in pain management
  publication-title: Eur. J. Pain
– volume: 218
  start-page: 757
  year: 2023
  ident: 10.1016/j.ijmedinf.2025.106002_br0450
  article-title: Imbalanced aspect categorization using bidirectional encoder representation from transformers
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2023.01.056
– ident: 10.1016/j.ijmedinf.2025.106002_br0200
– ident: 10.1016/j.ijmedinf.2025.106002_br0430
– volume: 30
  year: 2017
  ident: 10.1016/j.ijmedinf.2025.106002_br0390
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 87
  start-page: 12
  year: 2018
  ident: 10.1016/j.ijmedinf.2025.106002_br0190
  article-title: A comparison of word embeddings for the biomedical natural language processing
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.09.008
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 10.1016/j.ijmedinf.2025.106002_br0370
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– start-page: 112
  year: 2019
  ident: 10.1016/j.ijmedinf.2025.106002_br0260
  article-title: How to parse low-resource languages: cross-lingual parsing, target language annotation, or both?
– volume: 144
  year: 2023
  ident: 10.1016/j.ijmedinf.2025.106002_br0240
  article-title: Localizing in-domain adaptation of transformer-based biomedical language models
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2023.104431
– ident: 10.1016/j.ijmedinf.2025.106002_br0130
– year: 2020
  ident: 10.1016/j.ijmedinf.2025.106002_br0280
  article-title: Finding universal grammatical relations in multilingual bert
– volume: 45
  start-page: 427
  issue: 4
  year: 2009
  ident: 10.1016/j.ijmedinf.2025.106002_br0460
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2009.03.002
– volume: 23
  start-page: 289
  issue: 2
  year: 2015
  ident: 10.1016/j.ijmedinf.2025.106002_br0320
  article-title: Active learning: a step towards automating medical concept extraction
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocv069
SSID ssj0017054
Score 2.4488933
Snippet Chronic pain is a pervasive healthcare challenge with profound implications for patient well-being, clinical decision-making, and resource allocation....
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 106002
SubjectTerms Algorithms
Artificial Intelligence
Bayes Theorem
Chronic pain
Chronic Pain - diagnosis
Electronic Health Records
Healthcare
Humans
Italy
Machine Learning
Medical documentation
Natural Language Processing
Nursing care
Text analysis
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQkHgceD_GS0Hi2rG1aboeJ8QESAMOTBqnKEkzGIxsgk4Ifj1O0463GLc2kqvGdprPtf0F4EAl3TqaWXk6DEKPJgHzJKIET2AooRNfMJ2d3tA6ZydtetYJO3mgaHthPuXvszqs3p3NMhtLt-mHOMgy7shpFiL2LsF0-_yycZ1FVXXm2e3cXtcjXOY-DT60BP_8oN92o-9ocx5mR2YoXp5Fv_9hB2ouwkXx7q7w5L4ySmVFvX6hdZx8ckuwkINR0nDeswxT2qzATCtPt69C--idG5yInL6EDLqkcUpE_2bw2EtvH3DAEISeffLgkj7EVp0SBMNEOeZdMhQ9QxKdZmVfZg3azeOroxMvP4fBU9Svpp7UUkX2p2MUxKxbi6kvpKb1KlWIN1giEQRSmtSYRLSBEbVN3MlYq9BWkGqFQfA6lMzA6E0gStWosFSkEVO0mnE700SJmqZdX2NsWYbDwh586Og2eFGHdscLbXGrLe60VYaoMBsvmknx88dR139KxmPJHG44GDGR7H7hIRzXo02yCKMHoyce2Jg5svnaMmw41xnPhGbHBtK4DNWxL004za3_i2zDnL1zjZM7UEofR3oXEVQq9_Jl8wYpjBLA
  priority: 102
  providerName: Unpaywall
Title Comparative analysis of AI algorithms on real medical data for chronic pain detection
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1386505625002199
https://dx.doi.org/10.1016/j.ijmedinf.2025.106002
https://www.ncbi.nlm.nih.gov/pubmed/40505249
https://www.proquest.com/docview/3218470350
https://doi.org/10.1016/j.ijmedinf.2025.106002
UnpaywallVersion publishedVersion
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017054
  issn: 1386-5056
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017054
  issn: 1386-5056
  databaseCode: ACRLP
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-8243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017054
  issn: 1386-5056
  databaseCode: .~1
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017054
  issn: 1386-5056
  databaseCode: AIKHN
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017054
  issn: 1386-5056
  databaseCode: AKRWK
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-NAEB9EwY8HOb-rd7KCr7FNutk0j6Uo9dQiakGfls1mqyl1WzRFfLm__WaySc9DQcGnJUsWNjObmd_sfAEc6nTQQjZrz4TN0ONpU3gJogRPoSlh0kAJU3RvuOiJbp__vg1v56BT5cJQWGUp-51ML6R1OVMvqVmfZFn92qd2laS_Q1JUMSXxcR5RF4OjP7MwD6oW4xrbtoRHb7_JEh4eZUPyYFsq5RmEOCmq65UPFNR7ALoCS1M7Ua8vajR6o5ROfsBqiSZZ2214DeaMXYfFi9JfvgH9zr_i3kyV9UfYeMDap0yN7sdPWf7wiBOWIXYcsUfntWEUNsoQzTLtSueyicosS01exG3ZTeifHN90ul7ZSMHTPGjkXmISHdGtYdSMxcCPeaASw1sNrhEwiDRBFMd56osE4QKaxOR5S2KjQwoBNRqt2C2Yt2NrdoBp7XNFtUQjoXmjKM7MU618wweBQeOwBvWKenLi6mXIKpBsKCt6S6K3dPSuQVQRWVbZoCi_JIr0T1fGs5X_nZkvrT2o-CnxhyIvibJmPH2WTTJ6I3K41mDbMXr2Jbzo-8fjGjRmnP_iZ-5-Y7N7sExPLgXyJ8znT1PzC7FQnuwXh30fFtqdq_NLGk_Puj0c-73L9t1f9cEJcw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9owED4xJrXdQ7V2W8u6H6601wAJjkMeERqCDXhpkfpmOY7pgsAgGlT1ZX_77uKEdVqlVdqrE0v2nXP-Lnf3HcAXnc67qGbtmbATejztCC9BlOApdCVMGihhiu4Nk6kYzvi3m_CmBv2qFobSKkvb72x6Ya3LkVYpzdYmy1pXPrWrpPs7pIsqjl_ASx4GEXlgzZ_7PA-ii3GdbbvCo9cflQkvmtmCQtiWuDyDEAdF9X_liRvqbwT6Cg53dqMe7tVy-ehWGryG4xJOsp5b8QnUjD2Fg0kZMH8Ds_5vdm-mSgIStp6z3oip5e16m-U_VjhgGYLHJVu5sA2jvFGGcJZpx53LNiqzLDV5kbhl38Js8PW6P_TKTgqe5kE79xKT6Ih-G0adWMz9mAcqMbzb5hoRg0gThHGcp75IEC-gT0yhtyQ2OqQcUKPRjX0Hdbu25hyY1j5XRCYaCc3bBTszT7XyDZ8HBr3DBrQq6cmNI8yQVSbZQlbyliRv6eTdgKgSsqzKQdGASbTp_5wZ72f-cWieNfey0qfEL4rCJMqa9e5OdsjrjSji2oAzp-j9TnjR-I_HDWjvNf_Mbb7_j8V-hsPh9WQsx6Pp9ws4oieuHvID1PPtznxEYJQnn4qD_wt4YQfD
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbQkHgceD_GS0Hi2rG1aboeJ8QESAMOTBqnKEkzGIxsgk4Ifj1O0463GLc2kqvGdprPtf0F4EAl3TqaWXk6DEKPJgHzJKIET2AooRNfMJ2d3tA6ZydtetYJO3mgaHthPuXvszqs3p3NMhtLt-mHOMgy7shpFiL2LsF0-_yycZ1FVXXm2e3cXtcjXOY-DT60BP_8oN92o-9ocx5mR2YoXp5Fv_9hB2ouwkXx7q7w5L4ySmVFvX6hdZx8ckuwkINR0nDeswxT2qzATCtPt69C--idG5yInL6EDLqkcUpE_2bw2EtvH3DAEISeffLgkj7EVp0SBMNEOeZdMhQ9QxKdZmVfZg3azeOroxMvP4fBU9Svpp7UUkX2p2MUxKxbi6kvpKb1KlWIN1giEQRSmtSYRLSBEbVN3MlYq9BWkGqFQfA6lMzA6E0gStWosFSkEVO0mnE700SJmqZdX2NsWYbDwh586Og2eFGHdscLbXGrLe60VYaoMBsvmknx88dR139KxmPJHG44GDGR7H7hIRzXo02yCKMHoyce2Jg5svnaMmw41xnPhGbHBtK4DNWxL004za3_i2zDnL1zjZM7UEofR3oXEVQq9_Jl8wYpjBLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+of+AI+algorithms+on+real+medical+data+for+chronic+pain+detection&rft.jtitle=International+journal+of+medical+informatics+%28Shannon%2C+Ireland%29&rft.au=Comito%2C+Carmela&rft.au=Forestiero%2C+Agostino&rft.au=Macr%C3%AC%2C+Davide&rft.au=Metlichin%2C+Elisabetta&rft.date=2025-11-01&rft.pub=Elsevier+B.V&rft.issn=1386-5056&rft.volume=203&rft_id=info:doi/10.1016%2Fj.ijmedinf.2025.106002&rft.externalDocID=S1386505625002199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-5056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-5056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-5056&client=summon