Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine
Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k- ? turbulence model and the Zwart-Gerber-B...
Saved in:
Published in | Journal of hydrodynamics. Series B Vol. 27; no. 4; pp. 513 - 521 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier Ltd
01.08.2015
Springer Singapore |
Subjects | |
Online Access | Get full text |
ISSN | 1001-6058 1878-0342 |
DOI | 10.1016/S1001-6058(15)60511-X |
Cover
Abstract | Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k- ? turbulence model and the Zwart-Gerber-Belamri(ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner's parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine. |
---|---|
AbstractList | Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k – ɛ turbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner's parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine. Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k-εturbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner’s parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine. Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k- ? turbulence model and the Zwart-Gerber-Belamri(ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner's parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine. Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k -ε turbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner’s parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine. |
Author | 左志钢 刘树红 刘德民 覃大清 吴玉林 |
AuthorAffiliation | Department of Thermal Engineering, State Key Laboratory of Hydro Science and Engineering, TsinghuaUniversity, Beijing 100084, China Research and Test Center, Dongfang Electric Machinery Co. Ltd, Deyang 618000, China State Key Laboratory of Hydro-power Equipment, Haerbin 150001, China |
Author_xml | – sequence: 1 fullname: 左志钢 刘树红 刘德民 覃大清 吴玉林 |
BookMark | eNqFkVFrFDEQx4NUsK39CELwyYKrk81md48-FClWhaIPVuhbyCaTa469pCbZ6vrpzd21Fny5pxky85uZ_z9H5MAHj4S8YvCOAWvff2cArGpB9G-YOC2RsermGTlkfddXwJv6oOSPLS_IUUorAN4uoDkk-HVaY3RajVR5Nc4JEw2W3kVMaYpI7TjpPKnsgk_UeTNpNHSYS5oxDqMySO9DzE7jpkwVXQeDI72MymuXaJ7i4Dy-JM-tGhOePMRj8uPy4_XF5-rq26cvFx-uKt3UkCslhOkHowFtU9cdq5VRjWFC84aXd8NZkVF3aLtu0XJQAnBYYI0LtFYJzvgxebub-0t5q_xSrsIUi6wkkxl_z6t59UdiDUxAAyBKu9i16xhSimjlXXRrFWfJQG6slVtr5cY3yYTcWitvCnf2H6dd3nqUo3LjXrrd0als80uMT1fuA893IBYL710Bk3boy4-4iDpLE9zeCa8fDr8NfvmzbP-nuG1bzvpGAP8LKLyzbw |
CitedBy_id | crossref_primary_10_1016_j_egyr_2020_09_004 crossref_primary_10_1016_j_oceaneng_2024_117943 crossref_primary_10_1063_5_0244004 crossref_primary_10_1134_S0021894423010078 crossref_primary_10_1016_j_renene_2022_01_042 crossref_primary_10_1016_j_oceaneng_2024_120018 crossref_primary_10_1088_1742_6596_2752_1_012007 crossref_primary_10_1016_j_renene_2020_05_034 crossref_primary_10_1063_5_0158224 crossref_primary_10_1177_0954406218802310 crossref_primary_10_1016_j_ijhydene_2017_03_180 crossref_primary_10_3390_en12091676 crossref_primary_10_1108_EC_10_2015_0302 crossref_primary_10_1007_s42241_020_0081_6 crossref_primary_10_1016_j_expthermflusci_2018_09_015 crossref_primary_10_3390_w13192671 crossref_primary_10_1016_j_renene_2020_04_015 crossref_primary_10_1049_rpg2_12096 crossref_primary_10_1016_j_rser_2017_05_058 crossref_primary_10_3390_w11122554 crossref_primary_10_1016_j_renene_2022_12_086 crossref_primary_10_3390_en15249280 crossref_primary_10_1115_1_4045860 crossref_primary_10_3390_en15051707 crossref_primary_10_3390_pr9111968 crossref_primary_10_1016_j_renene_2021_03_080 crossref_primary_10_1051_epjconf_201714302103 crossref_primary_10_1016_j_renene_2021_01_054 crossref_primary_10_1002_ese3_1898 crossref_primary_10_1016_S1001_6058_16_60638_8 crossref_primary_10_1177_16878132241236574 crossref_primary_10_3390_en16052108 crossref_primary_10_3390_jmse10010070 crossref_primary_10_1088_1755_1315_49_8_082020 crossref_primary_10_3390_pr12102249 crossref_primary_10_1016_j_apenergy_2023_122616 crossref_primary_10_1007_s40430_020_02401_7 |
Cites_doi | 10.1115/1.1524584 10.1017/CBO9780511616938 10.1098/rspa.1917.0010 10.1142/S0217984905009821 10.1016/S0045-7930(99)00039-0 10.1002/fld.692 10.1115/1.1486223 10.1002/fld.530 10.1115/1.3002318 10.1006/jcph.2002.6992 10.1016/S1001-6058(11)60253-9 |
ContentType | Journal Article |
Copyright | 2015 Publishing House for Journal of Hydrodynamics China Ship Scientific Research Center 2015 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2015 Publishing House for Journal of Hydrodynamics – notice: China Ship Scientific Research Center 2015 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1016/S1001-6058(15)60511-X |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine |
EISSN | 1878-0342 |
EndPage | 521 |
ExternalDocumentID | sdlxyjyjz_e201504005 10_1016_S1001_6058_15_60511_X S100160581560511X 666318450 |
GrantInformation_xml | – fundername: National Science and Technology Ministry of China grantid: Grant No. 51476083; Grant No. 2011BAF03B01 – fundername: National Natural Science Foundation of China – fundername: the National Natural Science Foun- dation of China; the National Science and Technology Ministry of China funderid: (Grant 51476083); (Grant 2011BAF03B01) |
GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 5XL 7-5 71M 8P~ 92H 92I 92L 92M 9D9 9DA AABNK AACTN AAEDT AAEDW AAFGU AAHNG AAIAL AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABDZT ABECU ABFGW ABFTV ABJOX ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABXDB ABXPI ABYKQ ACAOD ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACMLO ACNNM ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADEZE ADHHG ADKNI ADMDM ADMUD ADOXG ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFTE AEJRE AEKER AENEX AEPYU AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AHJVU AIAKS AIEXJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF AXJTR AXYYD BGNMA BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CS3 CW9 DPUIP DU5 EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FEDTE FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HVGLF HZ~ IHE IKXTQ IWAJR J-C J1W JJJVA JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O9- OAUVE OZT P-8 P-9 PC. PT4 Q-- Q-0 Q38 R-A REI RIG RLLFE ROL RPZ RSV RT1 S.. SDC SDF SDG SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SST SSZ STPWE T5K T8Q TCJ TGT TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW W92 Z5O Z7R ZMTXR ~LB ~WA AGQEE FIGPU AACDK AAJBT AASML AAXDM AAXKI ABAKF ABJNI ABWVN ACDTI ACPIV ACRPL ADMLS ADNMO AEFQL AEIPS AEMSY AFBBN AGRTI AIGIU AKRWK ANKPU SJYHP AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ABRTQ ACLOT ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION EFKBS ~HD 4A8 93N AFXIZ AGCQF AGRNS PSX SSH |
ID | FETCH-LOGICAL-c420t-a55d8bdc0ef422712ada4d15c3438bdd3110027ef779630a50eb9e2e9effa5313 |
IEDL.DBID | .~1 |
ISSN | 1001-6058 |
IngestDate | Thu May 29 04:08:10 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Wed Oct 01 03:07:55 EDT 2025 Fri Feb 21 02:30:55 EST 2025 Fri Feb 23 02:34:37 EST 2024 Wed Feb 14 10:28:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | pressure fluctuations Francis turbine interblade vortices Rayleigh instability cavitation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-a55d8bdc0ef422712ada4d15c3438bdd3110027ef779630a50eb9e2e9effa5313 |
Notes | 31-1563/T interblade vortices; pressure fluctuations; Francis turbine; cavitation; Rayleigh instability Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k- ? turbulence model and the Zwart-Gerber-Belamri(ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner's parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine. ZUO Zhi-gang , LIU Shu-hong , LIU De-min , QIN Da-qing , Wu Yu-lin ( 1. Department of Thermal Engineering, State Key Laboratory of Hydro Science and Engineering, Tsinghua University, Beijing 100084, China 2. Research and Test Center, Dongfang Electric Machinery Co. Ltd, Deyang 618000, China 3. State Key Laboratory of Hydro-power Equipment, Haerbin 150001, China) |
PageCount | 9 |
ParticipantIDs | wanfang_journals_sdlxyjyjz_e201504005 crossref_primary_10_1016_S1001_6058_15_60511_X crossref_citationtrail_10_1016_S1001_6058_15_60511_X springer_journals_10_1016_S1001_6058_15_60511_X elsevier_sciencedirect_doi_10_1016_S1001_6058_15_60511_X chongqing_primary_666318450 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150800 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 8 year: 2015 text: 20150800 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of hydrodynamics. Series B |
PublicationTitleAbbrev | J Hydrodyn |
PublicationTitleAlternate | Journal of Hydrodynamics |
PublicationTitle_FL | Journal of Hydrodynamics |
PublicationYear | 2015 |
Publisher | Elsevier Ltd Springer Singapore |
Publisher_xml | – name: Elsevier Ltd – name: Springer Singapore |
References | KUNZ, BOGER, CHYCZEWSKI (bib15) 1999 ZWART, GERBER, BELAMRI (bib19) 2004 CHEN, LI, LIU (bib6) 2007 SENOCAK, SHYY (bib13) 2002; 176 CHEN, PENG (bib5) 1999; 30 LIU, ZHAO, WANG (bib20) 2012; 24 COUTIER-DELGOSHA, REBOUD (bib21) 2003; 42 Hydraulic turbines, storage pumps and pump-turbines−Model acceptance tests[S]. International Standard IEC 60193, 1999. SENOCAK, SHYY (bib18) 2004; 44 HANSEN, JOHNSON (bib25) 2005 SHI, XU, GONG (bib2) 2008 ZHANG, ZHU, ZHANG (bib7) 2009 COUTIER-DELGOSHA, REBOUD, ALBANO (bib23) 2000 HUANG, LIU, FAN (bib1) 2010 COUTIER-DELGOSHA, FORTES-PATELLA, REBOUD (bib22) 2003; 125 KUNZ, BOGER, STINEBRING (bib16) 2000; 29 MERKLE, FENG, BUELOW (bib14) 1998 ZHANG, CAI, WU (bib11) 2005; 19 SINGHAL, ATHAVALE, LI (bib17) 2002; 124 RAYLEIGH (bib26) 1917; 93 PENG, CHEN, JIANG (bib4) 1999; 30 WU, CHEN, WU (bib12) 2009; 131 STEIN, SICK, DOERFLER (bib8) 2006 DRAZIN, REID (bib27) 2004 GRINDOZ (bib3) 1991 AVELLAN (bib9) 2004 KUROSAWA, LIM, ENOMOTO (bib10) 2010 GrindozBLois de similitudes dans les essays de cavitation des turbines Francis[D]1991Lausanne, SwitzerlandEPFL KunzR FBogerD AChyczewskiT SMulti-phase CFD analysis of natural and ventilated cavitation about submerged bodies[C]1999 Coutier-DelgoshaOReboudJAlbanoGNumerical simulation of the unsteady cavitation behavior of an inducer blade cascade[C]2000 KurosawaSLimS MEnomotoYVirtual model test for a Francis turbine[C]2010 HuangY-fLiuG-nFanS-yingResearch on prototype hydro-turbine operation2010Beijing, ChinaChina Electric Power Press ChenJ-xLiG-wLiuS-zhuThe occurrence and the influence of the interblade vortex on the hydraulic turbine instability[J]Large Electric Machine and Hydraulic Turbine200734246 AvellanFIntroduction to cavitation in hydraulic machinery[C]2004 Hydraulic turbines, storage pumps and pump-turbines-Model acceptance tests[S]. International Standard IEC 60193, 1999. SenocakIShyyWA pressure-based method for turbulent cavitating flow computations[J]Journal of Computational Physics2002176236338310.1006/jcph.2002.6992 Coutier-DelgoshaOReboudJNumerical simulation of unsteady cavitation flows[J]International Journal for Numerical Methods in Fluids20034255275481143.76497 ShiQ-hXuW-wGongLiNoise reduction in a low head Francis turbine caused by runner inter-blade vortices[J]Dongfang Electrical Machine200814246 PengZ-nChenRJiangX-yunExperimental investigation of flow pattern observation and water pressure pulsation performed on the Three Gorges model turbine[J]Water Resources and Hy-dropower Engineering19993011814 SteinPSickMDoerflerPNumerical simulation of the cavitating draft tube vortex in a Francis turbine[C]2006 ZwartPGerberABelamriTA two-phase flow model for predicting cavitation dynamics[C]2004 DrazinP GReidW HHydrodynamic stability20042Cambridge, UKCambridge university Press10.1017/CBO9780511616938 ZhangP-yZhuB-sZhangL-fuNumerical investigation on pressure fluctuations induced by interblade vortices in a runner of Francis turbi-ne[J]Large Electric Machine and Hydraulic Turbine200963539 SenocakIShyyWInterfacial dynamics-based modeling of turbulent cavitating flows, model development and steady-state computations[J]International Journal for Numerical Methods in Fluids200444997599510.1002/fld.692 MerkleCFengJBuelowPComputational modeling of the dynamics of sheet cavitation[C]1998307311 Coutier-DelgoshaOFortes-PatellaRReboudJEvaluation of the turbulence model influence on the numerical simulations of unsteady cavi-tation[J]Journal of Fluids Engineering20031251384510.1115/1.1524584 KunzRBogerDStinebringDA Preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]Computers and Fluids200029884987510.1016/S0045-7930(99)00039-0 ZhangRCaiQWuJThe physical origin of severe low-frequency pressure fluctuations in giant Francis turbines[J]Modern Physics Letters B20051928–291527153010.1142/S0217984905009821 RayleighLOn the dynamics of revolving fluids[J]Proceedings of the Royal Society of London, Series A19179364814815410.1098/rspa.1917.0010 ChenRPengZ-nianAn experimental study on water pressure fluctuation at Francis turbine runner blade outlet[J]Water Resources and Hydropower Engineering199930113032 SinghalA KAthavaleM MLiHMathematical basis and validation of the full cavitation model[J]Journal of Fluids Engineering2002124361762410.1115/1.1486223 WuJChenSWuYCharacteristics and control of the draft-tube flow in part-load Francis turbine[J]Journal of Fluids Engineering2009131202110110.1115/1.3002318 HansenC DJohnsonC RVisualization Handbook2005Burlington, CanadaButterworth-Heinemann295309 LiuYZhaoP-fWangQURANS computation of cavitating flows around skewed propellers[J]Journal of Hydrodynamics201224333934610.1016/S1001-6058(11)60253-9 Z-n Peng (2704513_CR4) 1999; 30 R Chen (2704513_CR5) 1999; 30 P-y Zhang (2704513_CR7) 2009; 6 O Coutier-Delgosha (2704513_CR22) 2003; 125 F Avellan (2704513_CR9) 2004 P Zwart (2704513_CR19) 2004 S Kurosawa (2704513_CR10) 2010 C Merkle (2704513_CR14) 1998 P G Drazin (2704513_CR27) 2004 O Coutier-Delgosha (2704513_CR21) 2003; 42 Y Liu (2704513_CR20) 2012; 24 P Stein (2704513_CR8) 2006 I Senocak (2704513_CR13) 2002; 176 Q-h Shi (2704513_CR2) 2008; 1 R Kunz (2704513_CR16) 2000; 29 I Senocak (2704513_CR18) 2004; 44 B Grindoz (2704513_CR3) 1991 J Wu (2704513_CR12) 2009; 131 C D Hansen (2704513_CR25) 2005 Y-f Huang (2704513_CR1) 2010 R F Kunz (2704513_CR15) 1999 O Coutier-Delgosha (2704513_CR23) 2000 2704513_CR24 L Rayleigh (2704513_CR26) 1917; 93 J-x Chen (2704513_CR6) 2007; 3 A K Singhal (2704513_CR17) 2002; 124 R Zhang (2704513_CR11) 2005; 19 |
References_xml | – volume: 131 start-page: 021101 year: 2009 ident: bib12 article-title: Characteristics and control of the draft-tube flow in part-load Francis turbine[J] publication-title: Journal of Fluids Engineering – volume: 42 start-page: 527 year: 2003 end-page: 548 ident: bib21 article-title: Numerical simulation of unsteady cavitation flows[J] publication-title: International Journal for Numerical Methods in Fluids – year: 2004 ident: bib19 article-title: A twophase flow model for predicting cavitation dynamics[C] publication-title: Fifth International Conference on Multiphase Flow – year: 2004 ident: bib27 publication-title: Hydrodynamic stability[M] – year: 2006 ident: bib8 article-title: Numerical simulation of the cavitating draft tube vortex in a Francis turbine[C] publication-title: IAHR Section Hydraulic Machinery, Equipment, and Cavitation, 23rd Symposium – year: 1991 ident: bib3 publication-title: Lois de similitudes dans les essays de cavitation des turbines Francis[D] – year: 2000 ident: bib23 article-title: Numerical simulation of the unsteady cavitation behavior of an inducer blade cascade[C] publication-title: ASME Proceedings of ASME Fluids Engineering Division Summer Meeting – volume: 124 start-page: 617 year: 2002 end-page: 624 ident: bib17 article-title: Mathematical basis and validation of the full cavitation model[J] publication-title: Journal of Fluids Engineering – start-page: 42 year: 2008 end-page: 46 ident: bib2 article-title: Noise reduction in a low head Francis turbine caused by runner inter-blade vortices[J] publication-title: Dongfang Electrical Machine – start-page: 35 year: 2009 end-page: 39 ident: bib7 article-title: Numerical investigation on pressure fluctuations induced by interblade vortices in a runner of Francis turbine[J] publication-title: Large Electric Machine and Hydraulic Turbine – volume: 24 start-page: 339 year: 2012 end-page: 346 ident: bib20 article-title: URANS computation of cavitating flows around skewed propellers[J] publication-title: Journal of Hydrodynamics – volume: 93 start-page: 148 year: 1917 end-page: 154 ident: bib26 article-title: On the dynamics of revolving fluids[J] publication-title: Proceedings of the Royal Society of London, Series A – reference: Hydraulic turbines, storage pumps and pump-turbines−Model acceptance tests[S]. International Standard IEC 60193, 1999. – year: 2010 ident: bib1 publication-title: Research on prototype hydro-turbine operation[M] – volume: 19 start-page: 1527 year: 2005 end-page: 1530 ident: bib11 article-title: The physical origin of severe low-frequency pressure fluctuations in giant Francis turbines[J] publication-title: Modern Physics Letters B – volume: 125 start-page: 38 year: 2003 end-page: 45 ident: bib22 article-title: Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation[J] publication-title: Journal of Fluids Engineering – volume: 176 start-page: 363 year: 2002 end-page: 383 ident: bib13 article-title: A pressure-based method for turbulent cavitating flow computations[J] publication-title: Journal of Computational Physics – start-page: 42 year: 2007 end-page: 46 ident: bib6 article-title: The occurrence and the influence of the interblade vortex on the hydraulic turbine instability[J] publication-title: Large Electric Machine and Hydraulic Turbine – volume: 30 start-page: 30 year: 1999 end-page: 32 ident: bib5 article-title: An experimental study on water pressure fluctuation at Francis turbine runner blade outlet[J] publication-title: Water Resources and Hydropower Engineering – year: 2004 ident: bib9 article-title: Introduction to cavitation in hydraulic machinery[C] publication-title: 6th International Conference on Hydraulic Machinery and Hydrodynamics – year: 1999 ident: bib15 article-title: Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies[C] publication-title: ASME Fluid Engineering Division Summer Meeting, FEDSM99-7364 – volume: 29 start-page: 849 year: 2000 end-page: 875 ident: bib16 article-title: A Preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J] publication-title: Computers and Fluids – start-page: 295 year: 2005 end-page: 309 ident: bib25 publication-title: Visualization Handbook[M] – start-page: 307 year: 1998 end-page: 311 ident: bib14 article-title: Computational modeling of the dynamics of sheet cavitation[C] publication-title: Proceeding of Third International Symposium on Cavitation – volume: 30 start-page: 8 year: 1999 end-page: 14 ident: bib4 article-title: Experimental investigation of flow pattern observation and water pressure pulsation performed on the Three Gorges model turbine[J] publication-title: Water Resources and Hydropower Engineering – year: 2010 ident: bib10 article-title: Virtual model test for a Francis turbine[C] publication-title: 25th IAHR Symposium on Hydraulic Machinery and Systems – volume: 44 start-page: 975 year: 2004 end-page: 995 ident: bib18 article-title: Interfacial dynamics-based modeling of turbulent cavitating flows, model development and steady-state computations[J] publication-title: International Journal for Numerical Methods in Fluids – reference: ZhangRCaiQWuJThe physical origin of severe low-frequency pressure fluctuations in giant Francis turbines[J]Modern Physics Letters B20051928–291527153010.1142/S0217984905009821 – reference: MerkleCFengJBuelowPComputational modeling of the dynamics of sheet cavitation[C]1998307311 – reference: SteinPSickMDoerflerPNumerical simulation of the cavitating draft tube vortex in a Francis turbine[C]2006 – reference: Coutier-DelgoshaOReboudJAlbanoGNumerical simulation of the unsteady cavitation behavior of an inducer blade cascade[C]2000 – reference: DrazinP GReidW HHydrodynamic stability20042Cambridge, UKCambridge university Press10.1017/CBO9780511616938 – reference: GrindozBLois de similitudes dans les essays de cavitation des turbines Francis[D]1991Lausanne, SwitzerlandEPFL – reference: KurosawaSLimS MEnomotoYVirtual model test for a Francis turbine[C]2010 – reference: ShiQ-hXuW-wGongLiNoise reduction in a low head Francis turbine caused by runner inter-blade vortices[J]Dongfang Electrical Machine200814246 – reference: ChenJ-xLiG-wLiuS-zhuThe occurrence and the influence of the interblade vortex on the hydraulic turbine instability[J]Large Electric Machine and Hydraulic Turbine200734246 – reference: Coutier-DelgoshaOReboudJNumerical simulation of unsteady cavitation flows[J]International Journal for Numerical Methods in Fluids20034255275481143.76497 – reference: ChenRPengZ-nianAn experimental study on water pressure fluctuation at Francis turbine runner blade outlet[J]Water Resources and Hydropower Engineering199930113032 – reference: PengZ-nChenRJiangX-yunExperimental investigation of flow pattern observation and water pressure pulsation performed on the Three Gorges model turbine[J]Water Resources and Hy-dropower Engineering19993011814 – reference: WuJChenSWuYCharacteristics and control of the draft-tube flow in part-load Francis turbine[J]Journal of Fluids Engineering2009131202110110.1115/1.3002318 – reference: HansenC DJohnsonC RVisualization Handbook2005Burlington, CanadaButterworth-Heinemann295309 – reference: ZwartPGerberABelamriTA two-phase flow model for predicting cavitation dynamics[C]2004 – reference: SenocakIShyyWA pressure-based method for turbulent cavitating flow computations[J]Journal of Computational Physics2002176236338310.1006/jcph.2002.6992 – reference: KunzR FBogerD AChyczewskiT SMulti-phase CFD analysis of natural and ventilated cavitation about submerged bodies[C]1999 – reference: SinghalA KAthavaleM MLiHMathematical basis and validation of the full cavitation model[J]Journal of Fluids Engineering2002124361762410.1115/1.1486223 – reference: ZhangP-yZhuB-sZhangL-fuNumerical investigation on pressure fluctuations induced by interblade vortices in a runner of Francis turbi-ne[J]Large Electric Machine and Hydraulic Turbine200963539 – reference: SenocakIShyyWInterfacial dynamics-based modeling of turbulent cavitating flows, model development and steady-state computations[J]International Journal for Numerical Methods in Fluids200444997599510.1002/fld.692 – reference: Coutier-DelgoshaOFortes-PatellaRReboudJEvaluation of the turbulence model influence on the numerical simulations of unsteady cavi-tation[J]Journal of Fluids Engineering20031251384510.1115/1.1524584 – reference: KunzRBogerDStinebringDA Preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]Computers and Fluids200029884987510.1016/S0045-7930(99)00039-0 – reference: LiuYZhaoP-fWangQURANS computation of cavitating flows around skewed propellers[J]Journal of Hydrodynamics201224333934610.1016/S1001-6058(11)60253-9 – reference: HuangY-fLiuG-nFanS-yingResearch on prototype hydro-turbine operation2010Beijing, ChinaChina Electric Power Press – reference: RayleighLOn the dynamics of revolving fluids[J]Proceedings of the Royal Society of London, Series A19179364814815410.1098/rspa.1917.0010 – reference: AvellanFIntroduction to cavitation in hydraulic machinery[C]2004 – reference: Hydraulic turbines, storage pumps and pump-turbines-Model acceptance tests[S]. International Standard IEC 60193, 1999. – volume-title: Numerical simulation of the cavitating draft tube vortex in a Francis turbine[C] year: 2006 ident: 2704513_CR8 – ident: 2704513_CR24 – volume: 125 start-page: 38 issue: 1 year: 2003 ident: 2704513_CR22 publication-title: Journal of Fluids Engineering doi: 10.1115/1.1524584 – volume-title: Research on prototype hydro-turbine operation year: 2010 ident: 2704513_CR1 – volume-title: Lois de similitudes dans les essays de cavitation des turbines Francis[D] year: 1991 ident: 2704513_CR3 – volume-title: Hydrodynamic stability year: 2004 ident: 2704513_CR27 doi: 10.1017/CBO9780511616938 – volume: 3 start-page: 42 year: 2007 ident: 2704513_CR6 publication-title: Large Electric Machine and Hydraulic Turbine – volume: 93 start-page: 148 issue: 648 year: 1917 ident: 2704513_CR26 publication-title: Proceedings of the Royal Society of London, Series A doi: 10.1098/rspa.1917.0010 – volume: 19 start-page: 1527 issue: 28–29 year: 2005 ident: 2704513_CR11 publication-title: Modern Physics Letters B doi: 10.1142/S0217984905009821 – volume: 1 start-page: 42 year: 2008 ident: 2704513_CR2 publication-title: Dongfang Electrical Machine – volume-title: Numerical simulation of the unsteady cavitation behavior of an inducer blade cascade[C] year: 2000 ident: 2704513_CR23 – start-page: 295 volume-title: Visualization Handbook year: 2005 ident: 2704513_CR25 – volume: 30 start-page: 8 issue: 11 year: 1999 ident: 2704513_CR4 publication-title: Water Resources and Hy-dropower Engineering – volume: 6 start-page: 35 year: 2009 ident: 2704513_CR7 publication-title: Large Electric Machine and Hydraulic Turbine – volume-title: Introduction to cavitation in hydraulic machinery[C] year: 2004 ident: 2704513_CR9 – volume-title: Virtual model test for a Francis turbine[C] year: 2010 ident: 2704513_CR10 – volume: 29 start-page: 849 issue: 8 year: 2000 ident: 2704513_CR16 publication-title: Computers and Fluids doi: 10.1016/S0045-7930(99)00039-0 – start-page: 307 volume-title: Computational modeling of the dynamics of sheet cavitation[C] year: 1998 ident: 2704513_CR14 – volume: 30 start-page: 30 issue: 11 year: 1999 ident: 2704513_CR5 publication-title: Water Resources and Hydropower Engineering – volume-title: A two-phase flow model for predicting cavitation dynamics[C] year: 2004 ident: 2704513_CR19 – volume: 44 start-page: 975 issue: 9 year: 2004 ident: 2704513_CR18 publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.692 – volume: 124 start-page: 617 issue: 3 year: 2002 ident: 2704513_CR17 publication-title: Journal of Fluids Engineering doi: 10.1115/1.1486223 – volume: 42 start-page: 527 issue: 5 year: 2003 ident: 2704513_CR21 publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.530 – volume: 131 start-page: 021101 issue: 2 year: 2009 ident: 2704513_CR12 publication-title: Journal of Fluids Engineering doi: 10.1115/1.3002318 – volume: 176 start-page: 363 issue: 2 year: 2002 ident: 2704513_CR13 publication-title: Journal of Computational Physics doi: 10.1006/jcph.2002.6992 – volume: 24 start-page: 339 issue: 3 year: 2012 ident: 2704513_CR20 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(11)60253-9 – volume-title: Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies[C] year: 1999 ident: 2704513_CR15 |
SSID | ssj0036904 ssib060475366 |
Score | 2.2216606 |
Snippet | Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the... |
SourceID | wanfang crossref springer elsevier chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 513 |
SubjectTerms | cavitation Engineering Engineering Fluid Dynamics Francis turbine Hydrology/Water Resources interblade vortices Numerical and Computational Physics pressure fluctuations Rayleigh instability Simulation 压力波动 叶道涡 数值分析 数值模拟 涡轮机 湍流模型 稳定运行 轮叶 |
Title | Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine |
URI | http://lib.cqvip.com/qk/86648X/201504/666318450.html https://dx.doi.org/10.1016/S1001-6058(15)60511-X https://link.springer.com/article/10.1016/S1001-6058(15)60511-X https://d.wanfangdata.com.cn/periodical/sdlxyjyjz-e201504005 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1878-0342 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: ADMLS dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-0342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1878-0342 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: ACRLP dateStart: 20060401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1878-0342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: .~1 dateStart: 0 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1878-0342 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: AIKHN dateStart: 20060401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-0342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: AKRWK dateStart: 20060401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1878-0342 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: AFBBN dateStart: 20060201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1JrGBQ6IT1E2Jh9AgkPWxLHr5DhNTIWKHoCJ3Cw7tkenKB1ri1YO_Hbec5xsHFAlTpGcvCfrffrF74OQ1xYCWWd5mZRWmoRbWSZFbUySmpoV2nLNJNY7f5pPpuf8YyWqPXLa18JgWmW0_Z1ND9Y6rowjNcdXi8X4SxZmJAtsdwKSlVVYwc4nmNZ3_HtI88gh-gs3y5g6hF_fVvF0GMLi20y8C0iSCnssfF-2Fz_Ac_zLVw13pqHSp_W6vbjjlM4ekYfxNElPug0_JnuufUIe3Okx-JS4-aa7lGmoDg1I3IouPQ35r5trR32zwRqSIH4UAnRgtaVmSxeB4o22jv5cIn6Hr6mmYXYOjQM5KHgsiK3dM3J-9v7r6TSJsxWSmrN0nWghbGFsnTrPGZMZ01Zzm4k65zms2xxbyTHpvJSgoqkWqTOlY6503mvQ2_w52W-XrXtBaGqFricaDg7AW5dJXZtCgiXw2AnHF8WIHAwUVVddDw0FURNYEy7SEeE9jVUd25LjdIxGDflnyCaFbFKZUIFNqhqR4wGsx7kDoOgZqP4SMAW-YxfouGe4ihq-2gXxJsrFLcDKNjfby-3lL-UY_mYC4yle_v-mDsh9RNPlIh6S_fX1xr2C89HaHAUFOCL3Tj7MpnN8zj5_m_0BrQoK0Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LD1UOyJZd1Dhw3YDl5sWarsY1GsSNc2l7WAb4JkSV0Kw2mbZGj260fJctodhgC7yiAhiORH0eID4KPBQNYaVialETphRpRJUWudpLqmhTJMUeHrnc8m--ML9r3i1RYc9rUwPq0yYn-H6QGt48oonuboejod_cjCjGTu252gZmXVI9hmHDF5ANsHxyfjSQ_IOQaA4XHZZw95gvtCno5JWPyc8S-BT1L5Ngs_Z-3lDTqPf7mr9bNpKPZpnWovH_ilo6ewGy-U5KDb8zPYsu1z2HnQZvAF2Mmye5dpiAo9SOyczBwJKbDLW0tcs_RlJEEDCcboKG1D9IpMw6E3yljya-b5W_-ZKBLG55A4k4Og08Lw2r6Ei6Nv54fjJI5XSGpG00WiODeFNnVqHaNUZFQZxUzG65zluG5y302OCuuEQCtNFU-tLi21pXVOoenmr2DQzlr7GkhquKr3Fd4dULw2E6rWhUAwcL4ZjiuKIeytT1Red200JAZOCCiMp0Ng_RnLOnYm9wMyGrlOQfNikl5MMuMyiElWQ_i6Jut5biAoegHKv3RMovvYRDrqBS6jkc83UXyKenFPMDfN3epqdfVbWur_NCF-8jf_v6kP8Hh8fnYqT48nJ3vwxLPsUhPfwmBxu7Tv8Lq00O-jOfwBaK0L2Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analyses+of+pressure+fluctuations+induced+by+interblade+vortices+in+a+model+Francis+turbine&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=Zuo%2C+Zhi-gang&rft.au=Liu%2C+Shu-hong&rft.au=Liu%2C+De-min&rft.au=Qin%2C+Da-qing&rft.date=2015-08-01&rft.issn=1001-6058&rft.eissn=1878-0342&rft.volume=27&rft.issue=4&rft.spage=513&rft.epage=521&rft_id=info:doi/10.1016%2FS1001-6058%2815%2960511-X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1001_6058_15_60511_X |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsdlxyjyjz-e%2Fsdlxyjyjz-e.jpg |