Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine

Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k- ? turbulence model and the Zwart-Gerber-B...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrodynamics. Series B Vol. 27; no. 4; pp. 513 - 521
Main Author 左志钢 刘树红 刘德民 覃大清 吴玉林
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.08.2015
Springer Singapore
Subjects
Online AccessGet full text
ISSN1001-6058
1878-0342
DOI10.1016/S1001-6058(15)60511-X

Cover

Abstract Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k- ? turbulence model and the Zwart-Gerber-Belamri(ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner's parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine.
AbstractList Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k – ɛ turbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner's parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine.
Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k-εturbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner’s parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine.
Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k- ? turbulence model and the Zwart-Gerber-Belamri(ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner's parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine.
Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k -ε turbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner’s parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine.
Author 左志钢 刘树红 刘德民 覃大清 吴玉林
AuthorAffiliation Department of Thermal Engineering, State Key Laboratory of Hydro Science and Engineering, TsinghuaUniversity, Beijing 100084, China Research and Test Center, Dongfang Electric Machinery Co. Ltd, Deyang 618000, China State Key Laboratory of Hydro-power Equipment, Haerbin 150001, China
Author_xml – sequence: 1
  fullname: 左志钢 刘树红 刘德民 覃大清 吴玉林
BookMark eNqFkVFrFDEQx4NUsK39CELwyYKrk81md48-FClWhaIPVuhbyCaTa469pCbZ6vrpzd21Fny5pxky85uZ_z9H5MAHj4S8YvCOAWvff2cArGpB9G-YOC2RsermGTlkfddXwJv6oOSPLS_IUUorAN4uoDkk-HVaY3RajVR5Nc4JEw2W3kVMaYpI7TjpPKnsgk_UeTNpNHSYS5oxDqMySO9DzE7jpkwVXQeDI72MymuXaJ7i4Dy-JM-tGhOePMRj8uPy4_XF5-rq26cvFx-uKt3UkCslhOkHowFtU9cdq5VRjWFC84aXd8NZkVF3aLtu0XJQAnBYYI0LtFYJzvgxebub-0t5q_xSrsIUi6wkkxl_z6t59UdiDUxAAyBKu9i16xhSimjlXXRrFWfJQG6slVtr5cY3yYTcWitvCnf2H6dd3nqUo3LjXrrd0als80uMT1fuA893IBYL710Bk3boy4-4iDpLE9zeCa8fDr8NfvmzbP-nuG1bzvpGAP8LKLyzbw
CitedBy_id crossref_primary_10_1016_j_egyr_2020_09_004
crossref_primary_10_1016_j_oceaneng_2024_117943
crossref_primary_10_1063_5_0244004
crossref_primary_10_1134_S0021894423010078
crossref_primary_10_1016_j_renene_2022_01_042
crossref_primary_10_1016_j_oceaneng_2024_120018
crossref_primary_10_1088_1742_6596_2752_1_012007
crossref_primary_10_1016_j_renene_2020_05_034
crossref_primary_10_1063_5_0158224
crossref_primary_10_1177_0954406218802310
crossref_primary_10_1016_j_ijhydene_2017_03_180
crossref_primary_10_3390_en12091676
crossref_primary_10_1108_EC_10_2015_0302
crossref_primary_10_1007_s42241_020_0081_6
crossref_primary_10_1016_j_expthermflusci_2018_09_015
crossref_primary_10_3390_w13192671
crossref_primary_10_1016_j_renene_2020_04_015
crossref_primary_10_1049_rpg2_12096
crossref_primary_10_1016_j_rser_2017_05_058
crossref_primary_10_3390_w11122554
crossref_primary_10_1016_j_renene_2022_12_086
crossref_primary_10_3390_en15249280
crossref_primary_10_1115_1_4045860
crossref_primary_10_3390_en15051707
crossref_primary_10_3390_pr9111968
crossref_primary_10_1016_j_renene_2021_03_080
crossref_primary_10_1051_epjconf_201714302103
crossref_primary_10_1016_j_renene_2021_01_054
crossref_primary_10_1002_ese3_1898
crossref_primary_10_1016_S1001_6058_16_60638_8
crossref_primary_10_1177_16878132241236574
crossref_primary_10_3390_en16052108
crossref_primary_10_3390_jmse10010070
crossref_primary_10_1088_1755_1315_49_8_082020
crossref_primary_10_3390_pr12102249
crossref_primary_10_1016_j_apenergy_2023_122616
crossref_primary_10_1007_s40430_020_02401_7
Cites_doi 10.1115/1.1524584
10.1017/CBO9780511616938
10.1098/rspa.1917.0010
10.1142/S0217984905009821
10.1016/S0045-7930(99)00039-0
10.1002/fld.692
10.1115/1.1486223
10.1002/fld.530
10.1115/1.3002318
10.1006/jcph.2002.6992
10.1016/S1001-6058(11)60253-9
ContentType Journal Article
Copyright 2015 Publishing House for Journal of Hydrodynamics
China Ship Scientific Research Center 2015
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2015 Publishing House for Journal of Hydrodynamics
– notice: China Ship Scientific Research Center 2015
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S1001-6058(15)60511-X
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine
EISSN 1878-0342
EndPage 521
ExternalDocumentID sdlxyjyjz_e201504005
10_1016_S1001_6058_15_60511_X
S100160581560511X
666318450
GrantInformation_xml – fundername: National Science and Technology Ministry of China
  grantid: Grant No. 51476083; Grant No. 2011BAF03B01
– fundername: National Natural Science Foundation of China
– fundername: the National Natural Science Foun- dation of China; the National Science and Technology Ministry of China
  funderid: (Grant 51476083); (Grant 2011BAF03B01)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92H
92I
92L
92M
9D9
9DA
AABNK
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABXDB
ABXPI
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADEZE
ADHHG
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFTE
AEJRE
AEKER
AENEX
AEPYU
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IHE
IKXTQ
IWAJR
J-C
J1W
JJJVA
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O9-
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
RLLFE
ROL
RPZ
RSV
RT1
S..
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
T8Q
TCJ
TGT
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
W92
Z5O
Z7R
ZMTXR
~LB
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABJNI
ABWVN
ACDTI
ACPIV
ACRPL
ADMLS
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
SJYHP
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACLOT
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
EFKBS
~HD
4A8
93N
AFXIZ
AGCQF
AGRNS
PSX
SSH
ID FETCH-LOGICAL-c420t-a55d8bdc0ef422712ada4d15c3438bdd3110027ef779630a50eb9e2e9effa5313
IEDL.DBID .~1
ISSN 1001-6058
IngestDate Thu May 29 04:08:10 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Wed Oct 01 03:07:55 EDT 2025
Fri Feb 21 02:30:55 EST 2025
Fri Feb 23 02:34:37 EST 2024
Wed Feb 14 10:28:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords pressure fluctuations
Francis turbine
interblade vortices
Rayleigh instability
cavitation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-a55d8bdc0ef422712ada4d15c3438bdd3110027ef779630a50eb9e2e9effa5313
Notes 31-1563/T
interblade vortices; pressure fluctuations; Francis turbine; cavitation; Rayleigh instability
Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k- ? turbulence model and the Zwart-Gerber-Belamri(ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner's parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine.
ZUO Zhi-gang , LIU Shu-hong , LIU De-min , QIN Da-qing , Wu Yu-lin ( 1. Department of Thermal Engineering, State Key Laboratory of Hydro Science and Engineering, Tsinghua University, Beijing 100084, China 2. Research and Test Center, Dongfang Electric Machinery Co. Ltd, Deyang 618000, China 3. State Key Laboratory of Hydro-power Equipment, Haerbin 150001, China)
PageCount 9
ParticipantIDs wanfang_journals_sdlxyjyjz_e201504005
crossref_primary_10_1016_S1001_6058_15_60511_X
crossref_citationtrail_10_1016_S1001_6058_15_60511_X
springer_journals_10_1016_S1001_6058_15_60511_X
elsevier_sciencedirect_doi_10_1016_S1001_6058_15_60511_X
chongqing_primary_666318450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150800
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 8
  year: 2015
  text: 20150800
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of hydrodynamics. Series B
PublicationTitleAbbrev J Hydrodyn
PublicationTitleAlternate Journal of Hydrodynamics
PublicationTitle_FL Journal of Hydrodynamics
PublicationYear 2015
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References KUNZ, BOGER, CHYCZEWSKI (bib15) 1999
ZWART, GERBER, BELAMRI (bib19) 2004
CHEN, LI, LIU (bib6) 2007
SENOCAK, SHYY (bib13) 2002; 176
CHEN, PENG (bib5) 1999; 30
LIU, ZHAO, WANG (bib20) 2012; 24
COUTIER-DELGOSHA, REBOUD (bib21) 2003; 42
Hydraulic turbines, storage pumps and pump-turbines−Model acceptance tests[S]. International Standard IEC 60193, 1999.
SENOCAK, SHYY (bib18) 2004; 44
HANSEN, JOHNSON (bib25) 2005
SHI, XU, GONG (bib2) 2008
ZHANG, ZHU, ZHANG (bib7) 2009
COUTIER-DELGOSHA, REBOUD, ALBANO (bib23) 2000
HUANG, LIU, FAN (bib1) 2010
COUTIER-DELGOSHA, FORTES-PATELLA, REBOUD (bib22) 2003; 125
KUNZ, BOGER, STINEBRING (bib16) 2000; 29
MERKLE, FENG, BUELOW (bib14) 1998
ZHANG, CAI, WU (bib11) 2005; 19
SINGHAL, ATHAVALE, LI (bib17) 2002; 124
RAYLEIGH (bib26) 1917; 93
PENG, CHEN, JIANG (bib4) 1999; 30
WU, CHEN, WU (bib12) 2009; 131
STEIN, SICK, DOERFLER (bib8) 2006
DRAZIN, REID (bib27) 2004
GRINDOZ (bib3) 1991
AVELLAN (bib9) 2004
KUROSAWA, LIM, ENOMOTO (bib10) 2010
GrindozBLois de similitudes dans les essays de cavitation des turbines Francis[D]1991Lausanne, SwitzerlandEPFL
KunzR FBogerD AChyczewskiT SMulti-phase CFD analysis of natural and ventilated cavitation about submerged bodies[C]1999
Coutier-DelgoshaOReboudJAlbanoGNumerical simulation of the unsteady cavitation behavior of an inducer blade cascade[C]2000
KurosawaSLimS MEnomotoYVirtual model test for a Francis turbine[C]2010
HuangY-fLiuG-nFanS-yingResearch on prototype hydro-turbine operation2010Beijing, ChinaChina Electric Power Press
ChenJ-xLiG-wLiuS-zhuThe occurrence and the influence of the interblade vortex on the hydraulic turbine instability[J]Large Electric Machine and Hydraulic Turbine200734246
AvellanFIntroduction to cavitation in hydraulic machinery[C]2004
Hydraulic turbines, storage pumps and pump-turbines-Model acceptance tests[S]. International Standard IEC 60193, 1999.
SenocakIShyyWA pressure-based method for turbulent cavitating flow computations[J]Journal of Computational Physics2002176236338310.1006/jcph.2002.6992
Coutier-DelgoshaOReboudJNumerical simulation of unsteady cavitation flows[J]International Journal for Numerical Methods in Fluids20034255275481143.76497
ShiQ-hXuW-wGongLiNoise reduction in a low head Francis turbine caused by runner inter-blade vortices[J]Dongfang Electrical Machine200814246
PengZ-nChenRJiangX-yunExperimental investigation of flow pattern observation and water pressure pulsation performed on the Three Gorges model turbine[J]Water Resources and Hy-dropower Engineering19993011814
SteinPSickMDoerflerPNumerical simulation of the cavitating draft tube vortex in a Francis turbine[C]2006
ZwartPGerberABelamriTA two-phase flow model for predicting cavitation dynamics[C]2004
DrazinP GReidW HHydrodynamic stability20042Cambridge, UKCambridge university Press10.1017/CBO9780511616938
ZhangP-yZhuB-sZhangL-fuNumerical investigation on pressure fluctuations induced by interblade vortices in a runner of Francis turbi-ne[J]Large Electric Machine and Hydraulic Turbine200963539
SenocakIShyyWInterfacial dynamics-based modeling of turbulent cavitating flows, model development and steady-state computations[J]International Journal for Numerical Methods in Fluids200444997599510.1002/fld.692
MerkleCFengJBuelowPComputational modeling of the dynamics of sheet cavitation[C]1998307311
Coutier-DelgoshaOFortes-PatellaRReboudJEvaluation of the turbulence model influence on the numerical simulations of unsteady cavi-tation[J]Journal of Fluids Engineering20031251384510.1115/1.1524584
KunzRBogerDStinebringDA Preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]Computers and Fluids200029884987510.1016/S0045-7930(99)00039-0
ZhangRCaiQWuJThe physical origin of severe low-frequency pressure fluctuations in giant Francis turbines[J]Modern Physics Letters B20051928–291527153010.1142/S0217984905009821
RayleighLOn the dynamics of revolving fluids[J]Proceedings of the Royal Society of London, Series A19179364814815410.1098/rspa.1917.0010
ChenRPengZ-nianAn experimental study on water pressure fluctuation at Francis turbine runner blade outlet[J]Water Resources and Hydropower Engineering199930113032
SinghalA KAthavaleM MLiHMathematical basis and validation of the full cavitation model[J]Journal of Fluids Engineering2002124361762410.1115/1.1486223
WuJChenSWuYCharacteristics and control of the draft-tube flow in part-load Francis turbine[J]Journal of Fluids Engineering2009131202110110.1115/1.3002318
HansenC DJohnsonC RVisualization Handbook2005Burlington, CanadaButterworth-Heinemann295309
LiuYZhaoP-fWangQURANS computation of cavitating flows around skewed propellers[J]Journal of Hydrodynamics201224333934610.1016/S1001-6058(11)60253-9
Z-n Peng (2704513_CR4) 1999; 30
R Chen (2704513_CR5) 1999; 30
P-y Zhang (2704513_CR7) 2009; 6
O Coutier-Delgosha (2704513_CR22) 2003; 125
F Avellan (2704513_CR9) 2004
P Zwart (2704513_CR19) 2004
S Kurosawa (2704513_CR10) 2010
C Merkle (2704513_CR14) 1998
P G Drazin (2704513_CR27) 2004
O Coutier-Delgosha (2704513_CR21) 2003; 42
Y Liu (2704513_CR20) 2012; 24
P Stein (2704513_CR8) 2006
I Senocak (2704513_CR13) 2002; 176
Q-h Shi (2704513_CR2) 2008; 1
R Kunz (2704513_CR16) 2000; 29
I Senocak (2704513_CR18) 2004; 44
B Grindoz (2704513_CR3) 1991
J Wu (2704513_CR12) 2009; 131
C D Hansen (2704513_CR25) 2005
Y-f Huang (2704513_CR1) 2010
R F Kunz (2704513_CR15) 1999
O Coutier-Delgosha (2704513_CR23) 2000
2704513_CR24
L Rayleigh (2704513_CR26) 1917; 93
J-x Chen (2704513_CR6) 2007; 3
A K Singhal (2704513_CR17) 2002; 124
R Zhang (2704513_CR11) 2005; 19
References_xml – volume: 131
  start-page: 021101
  year: 2009
  ident: bib12
  article-title: Characteristics and control of the draft-tube flow in part-load Francis turbine[J]
  publication-title: Journal of Fluids Engineering
– volume: 42
  start-page: 527
  year: 2003
  end-page: 548
  ident: bib21
  article-title: Numerical simulation of unsteady cavitation flows[J]
  publication-title: International Journal for Numerical Methods in Fluids
– year: 2004
  ident: bib19
  article-title: A twophase flow model for predicting cavitation dynamics[C]
  publication-title: Fifth International Conference on Multiphase Flow
– year: 2004
  ident: bib27
  publication-title: Hydrodynamic stability[M]
– year: 2006
  ident: bib8
  article-title: Numerical simulation of the cavitating draft tube vortex in a Francis turbine[C]
  publication-title: IAHR Section Hydraulic Machinery, Equipment, and Cavitation, 23rd Symposium
– year: 1991
  ident: bib3
  publication-title: Lois de similitudes dans les essays de cavitation des turbines Francis[D]
– year: 2000
  ident: bib23
  article-title: Numerical simulation of the unsteady cavitation behavior of an inducer blade cascade[C]
  publication-title: ASME Proceedings of ASME Fluids Engineering Division Summer Meeting
– volume: 124
  start-page: 617
  year: 2002
  end-page: 624
  ident: bib17
  article-title: Mathematical basis and validation of the full cavitation model[J]
  publication-title: Journal of Fluids Engineering
– start-page: 42
  year: 2008
  end-page: 46
  ident: bib2
  article-title: Noise reduction in a low head Francis turbine caused by runner inter-blade vortices[J]
  publication-title: Dongfang Electrical Machine
– start-page: 35
  year: 2009
  end-page: 39
  ident: bib7
  article-title: Numerical investigation on pressure fluctuations induced by interblade vortices in a runner of Francis turbine[J]
  publication-title: Large Electric Machine and Hydraulic Turbine
– volume: 24
  start-page: 339
  year: 2012
  end-page: 346
  ident: bib20
  article-title: URANS computation of cavitating flows around skewed propellers[J]
  publication-title: Journal of Hydrodynamics
– volume: 93
  start-page: 148
  year: 1917
  end-page: 154
  ident: bib26
  article-title: On the dynamics of revolving fluids[J]
  publication-title: Proceedings of the Royal Society of London, Series A
– reference: Hydraulic turbines, storage pumps and pump-turbines−Model acceptance tests[S]. International Standard IEC 60193, 1999.
– year: 2010
  ident: bib1
  publication-title: Research on prototype hydro-turbine operation[M]
– volume: 19
  start-page: 1527
  year: 2005
  end-page: 1530
  ident: bib11
  article-title: The physical origin of severe low-frequency pressure fluctuations in giant Francis turbines[J]
  publication-title: Modern Physics Letters B
– volume: 125
  start-page: 38
  year: 2003
  end-page: 45
  ident: bib22
  article-title: Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation[J]
  publication-title: Journal of Fluids Engineering
– volume: 176
  start-page: 363
  year: 2002
  end-page: 383
  ident: bib13
  article-title: A pressure-based method for turbulent cavitating flow computations[J]
  publication-title: Journal of Computational Physics
– start-page: 42
  year: 2007
  end-page: 46
  ident: bib6
  article-title: The occurrence and the influence of the interblade vortex on the hydraulic turbine instability[J]
  publication-title: Large Electric Machine and Hydraulic Turbine
– volume: 30
  start-page: 30
  year: 1999
  end-page: 32
  ident: bib5
  article-title: An experimental study on water pressure fluctuation at Francis turbine runner blade outlet[J]
  publication-title: Water Resources and Hydropower Engineering
– year: 2004
  ident: bib9
  article-title: Introduction to cavitation in hydraulic machinery[C]
  publication-title: 6th International Conference on Hydraulic Machinery and Hydrodynamics
– year: 1999
  ident: bib15
  article-title: Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies[C]
  publication-title: ASME Fluid Engineering Division Summer Meeting, FEDSM99-7364
– volume: 29
  start-page: 849
  year: 2000
  end-page: 875
  ident: bib16
  article-title: A Preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]
  publication-title: Computers and Fluids
– start-page: 295
  year: 2005
  end-page: 309
  ident: bib25
  publication-title: Visualization Handbook[M]
– start-page: 307
  year: 1998
  end-page: 311
  ident: bib14
  article-title: Computational modeling of the dynamics of sheet cavitation[C]
  publication-title: Proceeding of Third International Symposium on Cavitation
– volume: 30
  start-page: 8
  year: 1999
  end-page: 14
  ident: bib4
  article-title: Experimental investigation of flow pattern observation and water pressure pulsation performed on the Three Gorges model turbine[J]
  publication-title: Water Resources and Hydropower Engineering
– year: 2010
  ident: bib10
  article-title: Virtual model test for a Francis turbine[C]
  publication-title: 25th IAHR Symposium on Hydraulic Machinery and Systems
– volume: 44
  start-page: 975
  year: 2004
  end-page: 995
  ident: bib18
  article-title: Interfacial dynamics-based modeling of turbulent cavitating flows, model development and steady-state computations[J]
  publication-title: International Journal for Numerical Methods in Fluids
– reference: ZhangRCaiQWuJThe physical origin of severe low-frequency pressure fluctuations in giant Francis turbines[J]Modern Physics Letters B20051928–291527153010.1142/S0217984905009821
– reference: MerkleCFengJBuelowPComputational modeling of the dynamics of sheet cavitation[C]1998307311
– reference: SteinPSickMDoerflerPNumerical simulation of the cavitating draft tube vortex in a Francis turbine[C]2006
– reference: Coutier-DelgoshaOReboudJAlbanoGNumerical simulation of the unsteady cavitation behavior of an inducer blade cascade[C]2000
– reference: DrazinP GReidW HHydrodynamic stability20042Cambridge, UKCambridge university Press10.1017/CBO9780511616938
– reference: GrindozBLois de similitudes dans les essays de cavitation des turbines Francis[D]1991Lausanne, SwitzerlandEPFL
– reference: KurosawaSLimS MEnomotoYVirtual model test for a Francis turbine[C]2010
– reference: ShiQ-hXuW-wGongLiNoise reduction in a low head Francis turbine caused by runner inter-blade vortices[J]Dongfang Electrical Machine200814246
– reference: ChenJ-xLiG-wLiuS-zhuThe occurrence and the influence of the interblade vortex on the hydraulic turbine instability[J]Large Electric Machine and Hydraulic Turbine200734246
– reference: Coutier-DelgoshaOReboudJNumerical simulation of unsteady cavitation flows[J]International Journal for Numerical Methods in Fluids20034255275481143.76497
– reference: ChenRPengZ-nianAn experimental study on water pressure fluctuation at Francis turbine runner blade outlet[J]Water Resources and Hydropower Engineering199930113032
– reference: PengZ-nChenRJiangX-yunExperimental investigation of flow pattern observation and water pressure pulsation performed on the Three Gorges model turbine[J]Water Resources and Hy-dropower Engineering19993011814
– reference: WuJChenSWuYCharacteristics and control of the draft-tube flow in part-load Francis turbine[J]Journal of Fluids Engineering2009131202110110.1115/1.3002318
– reference: HansenC DJohnsonC RVisualization Handbook2005Burlington, CanadaButterworth-Heinemann295309
– reference: ZwartPGerberABelamriTA two-phase flow model for predicting cavitation dynamics[C]2004
– reference: SenocakIShyyWA pressure-based method for turbulent cavitating flow computations[J]Journal of Computational Physics2002176236338310.1006/jcph.2002.6992
– reference: KunzR FBogerD AChyczewskiT SMulti-phase CFD analysis of natural and ventilated cavitation about submerged bodies[C]1999
– reference: SinghalA KAthavaleM MLiHMathematical basis and validation of the full cavitation model[J]Journal of Fluids Engineering2002124361762410.1115/1.1486223
– reference: ZhangP-yZhuB-sZhangL-fuNumerical investigation on pressure fluctuations induced by interblade vortices in a runner of Francis turbi-ne[J]Large Electric Machine and Hydraulic Turbine200963539
– reference: SenocakIShyyWInterfacial dynamics-based modeling of turbulent cavitating flows, model development and steady-state computations[J]International Journal for Numerical Methods in Fluids200444997599510.1002/fld.692
– reference: Coutier-DelgoshaOFortes-PatellaRReboudJEvaluation of the turbulence model influence on the numerical simulations of unsteady cavi-tation[J]Journal of Fluids Engineering20031251384510.1115/1.1524584
– reference: KunzRBogerDStinebringDA Preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]Computers and Fluids200029884987510.1016/S0045-7930(99)00039-0
– reference: LiuYZhaoP-fWangQURANS computation of cavitating flows around skewed propellers[J]Journal of Hydrodynamics201224333934610.1016/S1001-6058(11)60253-9
– reference: HuangY-fLiuG-nFanS-yingResearch on prototype hydro-turbine operation2010Beijing, ChinaChina Electric Power Press
– reference: RayleighLOn the dynamics of revolving fluids[J]Proceedings of the Royal Society of London, Series A19179364814815410.1098/rspa.1917.0010
– reference: AvellanFIntroduction to cavitation in hydraulic machinery[C]2004
– reference: Hydraulic turbines, storage pumps and pump-turbines-Model acceptance tests[S]. International Standard IEC 60193, 1999.
– volume-title: Numerical simulation of the cavitating draft tube vortex in a Francis turbine[C]
  year: 2006
  ident: 2704513_CR8
– ident: 2704513_CR24
– volume: 125
  start-page: 38
  issue: 1
  year: 2003
  ident: 2704513_CR22
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.1524584
– volume-title: Research on prototype hydro-turbine operation
  year: 2010
  ident: 2704513_CR1
– volume-title: Lois de similitudes dans les essays de cavitation des turbines Francis[D]
  year: 1991
  ident: 2704513_CR3
– volume-title: Hydrodynamic stability
  year: 2004
  ident: 2704513_CR27
  doi: 10.1017/CBO9780511616938
– volume: 3
  start-page: 42
  year: 2007
  ident: 2704513_CR6
  publication-title: Large Electric Machine and Hydraulic Turbine
– volume: 93
  start-page: 148
  issue: 648
  year: 1917
  ident: 2704513_CR26
  publication-title: Proceedings of the Royal Society of London, Series A
  doi: 10.1098/rspa.1917.0010
– volume: 19
  start-page: 1527
  issue: 28–29
  year: 2005
  ident: 2704513_CR11
  publication-title: Modern Physics Letters B
  doi: 10.1142/S0217984905009821
– volume: 1
  start-page: 42
  year: 2008
  ident: 2704513_CR2
  publication-title: Dongfang Electrical Machine
– volume-title: Numerical simulation of the unsteady cavitation behavior of an inducer blade cascade[C]
  year: 2000
  ident: 2704513_CR23
– start-page: 295
  volume-title: Visualization Handbook
  year: 2005
  ident: 2704513_CR25
– volume: 30
  start-page: 8
  issue: 11
  year: 1999
  ident: 2704513_CR4
  publication-title: Water Resources and Hy-dropower Engineering
– volume: 6
  start-page: 35
  year: 2009
  ident: 2704513_CR7
  publication-title: Large Electric Machine and Hydraulic Turbine
– volume-title: Introduction to cavitation in hydraulic machinery[C]
  year: 2004
  ident: 2704513_CR9
– volume-title: Virtual model test for a Francis turbine[C]
  year: 2010
  ident: 2704513_CR10
– volume: 29
  start-page: 849
  issue: 8
  year: 2000
  ident: 2704513_CR16
  publication-title: Computers and Fluids
  doi: 10.1016/S0045-7930(99)00039-0
– start-page: 307
  volume-title: Computational modeling of the dynamics of sheet cavitation[C]
  year: 1998
  ident: 2704513_CR14
– volume: 30
  start-page: 30
  issue: 11
  year: 1999
  ident: 2704513_CR5
  publication-title: Water Resources and Hydropower Engineering
– volume-title: A two-phase flow model for predicting cavitation dynamics[C]
  year: 2004
  ident: 2704513_CR19
– volume: 44
  start-page: 975
  issue: 9
  year: 2004
  ident: 2704513_CR18
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.692
– volume: 124
  start-page: 617
  issue: 3
  year: 2002
  ident: 2704513_CR17
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.1486223
– volume: 42
  start-page: 527
  issue: 5
  year: 2003
  ident: 2704513_CR21
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.530
– volume: 131
  start-page: 021101
  issue: 2
  year: 2009
  ident: 2704513_CR12
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.3002318
– volume: 176
  start-page: 363
  issue: 2
  year: 2002
  ident: 2704513_CR13
  publication-title: Journal of Computational Physics
  doi: 10.1006/jcph.2002.6992
– volume: 24
  start-page: 339
  issue: 3
  year: 2012
  ident: 2704513_CR20
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(11)60253-9
– volume-title: Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies[C]
  year: 1999
  ident: 2704513_CR15
SSID ssj0036904
ssib060475366
Score 2.2216606
Snippet Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the...
SourceID wanfang
crossref
springer
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 513
SubjectTerms cavitation
Engineering
Engineering Fluid Dynamics
Francis turbine
Hydrology/Water Resources
interblade vortices
Numerical and Computational Physics
pressure fluctuations
Rayleigh instability
Simulation
压力波动
叶道涡
数值分析
数值模拟
涡轮机
湍流模型
稳定运行
轮叶
Title Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine
URI http://lib.cqvip.com/qk/86648X/201504/666318450.html
https://dx.doi.org/10.1016/S1001-6058(15)60511-X
https://link.springer.com/article/10.1016/S1001-6058(15)60511-X
https://d.wanfangdata.com.cn/periodical/sdlxyjyjz-e201504005
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1878-0342
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: ADMLS
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-0342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-0342
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: ACRLP
  dateStart: 20060401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1878-0342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: .~1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-0342
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: AIKHN
  dateStart: 20060401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-0342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: AKRWK
  dateStart: 20060401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-0342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: AFBBN
  dateStart: 20060201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1JrGBQ6IT1E2Jh9AgkPWxLHr5DhNTIWKHoCJ3Cw7tkenKB1ri1YO_Hbec5xsHFAlTpGcvCfrffrF74OQ1xYCWWd5mZRWmoRbWSZFbUySmpoV2nLNJNY7f5pPpuf8YyWqPXLa18JgWmW0_Z1ND9Y6rowjNcdXi8X4SxZmJAtsdwKSlVVYwc4nmNZ3_HtI88gh-gs3y5g6hF_fVvF0GMLi20y8C0iSCnssfF-2Fz_Ac_zLVw13pqHSp_W6vbjjlM4ekYfxNElPug0_JnuufUIe3Okx-JS4-aa7lGmoDg1I3IouPQ35r5trR32zwRqSIH4UAnRgtaVmSxeB4o22jv5cIn6Hr6mmYXYOjQM5KHgsiK3dM3J-9v7r6TSJsxWSmrN0nWghbGFsnTrPGZMZ01Zzm4k65zms2xxbyTHpvJSgoqkWqTOlY6503mvQ2_w52W-XrXtBaGqFricaDg7AW5dJXZtCgiXw2AnHF8WIHAwUVVddDw0FURNYEy7SEeE9jVUd25LjdIxGDflnyCaFbFKZUIFNqhqR4wGsx7kDoOgZqP4SMAW-YxfouGe4ihq-2gXxJsrFLcDKNjfby-3lL-UY_mYC4yle_v-mDsh9RNPlIh6S_fX1xr2C89HaHAUFOCL3Tj7MpnN8zj5_m_0BrQoK0Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCa69LD1UOyJZd1Dhw3YDl5sWarsY1GsSNc2l7WAb4JkSV0Kw2mbZGj260fJctodhgC7yiAhiORH0eID4KPBQNYaVialETphRpRJUWudpLqmhTJMUeHrnc8m--ML9r3i1RYc9rUwPq0yYn-H6QGt48oonuboejod_cjCjGTu252gZmXVI9hmHDF5ANsHxyfjSQ_IOQaA4XHZZw95gvtCno5JWPyc8S-BT1L5Ngs_Z-3lDTqPf7mr9bNpKPZpnWovH_ilo6ewGy-U5KDb8zPYsu1z2HnQZvAF2Mmye5dpiAo9SOyczBwJKbDLW0tcs_RlJEEDCcboKG1D9IpMw6E3yljya-b5W_-ZKBLG55A4k4Og08Lw2r6Ei6Nv54fjJI5XSGpG00WiODeFNnVqHaNUZFQZxUzG65zluG5y302OCuuEQCtNFU-tLi21pXVOoenmr2DQzlr7GkhquKr3Fd4dULw2E6rWhUAwcL4ZjiuKIeytT1Red200JAZOCCiMp0Ng_RnLOnYm9wMyGrlOQfNikl5MMuMyiElWQ_i6Jut5biAoegHKv3RMovvYRDrqBS6jkc83UXyKenFPMDfN3epqdfVbWur_NCF-8jf_v6kP8Hh8fnYqT48nJ3vwxLPsUhPfwmBxu7Tv8Lq00O-jOfwBaK0L2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analyses+of+pressure+fluctuations+induced+by+interblade+vortices+in+a+model+Francis+turbine&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=Zuo%2C+Zhi-gang&rft.au=Liu%2C+Shu-hong&rft.au=Liu%2C+De-min&rft.au=Qin%2C+Da-qing&rft.date=2015-08-01&rft.issn=1001-6058&rft.eissn=1878-0342&rft.volume=27&rft.issue=4&rft.spage=513&rft.epage=521&rft_id=info:doi/10.1016%2FS1001-6058%2815%2960511-X&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1001_6058_15_60511_X
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsdlxyjyjz-e%2Fsdlxyjyjz-e.jpg