Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil

In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrodynamics. Series B Vol. 29; no. 4; pp. 610 - 620
Main Author 龙云 龙新平 季斌 槐文信 钱忠东
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.08.2017
Springer Singapore
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China
Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China,%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China
HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China
Subjects
Online AccessGet full text
ISSN1001-6058
1878-0342
DOI10.1016/S1001-6058(16)60774-6

Cover

Abstract In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model(DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety(FS1), the Factor of Safety(FS) and the Grid Convergence Index(GCI). The distribution of the area without achieving the validation at the U v level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution.
AbstractList In this paper, we investigate the verification and validation (V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model (DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety (FS1), the Factor of Safety (FS) and the Grid Convergence Index (GCI). The distribution of the area without achieving the validation at thevU level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution.
In this paper, we investigate the verification and validation (V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model (DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety (FS1), the Factor of Safety (FS) and the Grid Convergence Index (GCI). The distribution of the area without achieving the validation at the Vv level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution.
In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model(DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety(FS1), the Factor of Safety(FS) and the Grid Convergence Index(GCI). The distribution of the area without achieving the validation at the U v level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution.
In this paper, we investigate the verification and validation (V&V) procedures for the Urans simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model (DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety (FS1), the Factor of Safety (FS) and the Grid Convergence Index (GCI). The distribution of the area without achieving the validation at the U v level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution.
Author Ji, Bin
Huai, Wen-xin
Long, Xin-ping
Qian, Zhong-dong
Long, Yun
AuthorAffiliation State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,Wuhan 430072 China Hubei Key Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering,Wuhan University, Wuhan 430072, China Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China
AuthorAffiliation_xml – name: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China;HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China,%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China;HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China
Author_xml – sequence: 1
  fullname: 龙云 龙新平 季斌 槐文信 钱忠东
BookMark eNqFkF1rFDEUhoNUsB_-BGHwSqGjJ8lMksELKcVWoViw1tuQycdulmmiyczW9dc3u1MVerNXyTl5n_ecvEfoIMRgEXqF4R0GzN7fYABcM2jFG8zeMuC8qdkzdIgFFzXQhhyU-1_JC3SU8wqAsg6aQ-R-2OSd12r0MVQqmGqtBm_mMrrq9tvZ15sq-7tp2PXytjkubTVOqZ8GG8ZKq7Ufy2NYVG6I95VKcSo-W9FyY1J00Q8n6LlTQ7YvH89jdHvx6fv55_rq-vLL-dlVrRsCY921lFNwfYedcZYKq3uiWd9rrjmhraaW960xSoDtBNFGGA60E6K1HdEKE3qMTmffexWcCgu5ilMKZaLMZvi9WW1Wf6QlgDk0AF2Rf5jlOsWck3VS774Sw5iUHyQGuU1Y7hKW2_hkqXYJS1bo9gn9M_k7lTZ7OTZzuejDwqb_W-4DP86gLRGufQGz9jZoa3yyepQm-r0Orx9XXsaw-FWm_9uZleQb0ghBHwCqm7N7
CitedBy_id crossref_primary_10_1063_5_0222510
crossref_primary_10_1007_s42241_024_0051_5
crossref_primary_10_1063_5_0220691
crossref_primary_10_1016_S1001_6058_16_60808_9
crossref_primary_10_1007_s42241_022_0053_0
crossref_primary_10_1177_0954406220969724
crossref_primary_10_1088_1742_6596_2707_1_012143
crossref_primary_10_1007_s42241_019_0050_0
crossref_primary_10_1007_s11804_019_00100_x
crossref_primary_10_1007_s42241_022_0047_y
crossref_primary_10_1007_s42241_018_0127_1
crossref_primary_10_1016_j_applthermaleng_2018_02_019
crossref_primary_10_1063_5_0242911
crossref_primary_10_1007_s42241_022_0065_9
crossref_primary_10_1142_S0217984920500207
crossref_primary_10_1007_s42241_022_0082_8
crossref_primary_10_1007_s42241_022_0062_z
crossref_primary_10_1016_j_oceaneng_2021_109263
crossref_primary_10_1016_j_renene_2018_09_108
crossref_primary_10_1016_j_scitotenv_2022_154856
crossref_primary_10_1016_j_applthermaleng_2018_09_080
crossref_primary_10_1016_j_jcp_2019_109068
crossref_primary_10_1063_5_0177292
crossref_primary_10_1108_EC_01_2017_0020
crossref_primary_10_1177_0954406217753458
crossref_primary_10_1016_j_renene_2018_06_032
crossref_primary_10_1016_j_apor_2021_102723
crossref_primary_10_1016_j_ijmultiphaseflow_2017_12_002
crossref_primary_10_3390_en12214162
crossref_primary_10_1155_2021_6616718
crossref_primary_10_1016_j_ijmultiphaseflow_2019_03_026
crossref_primary_10_1007_s42241_019_0095_0
crossref_primary_10_1016_j_oceaneng_2021_108821
crossref_primary_10_1063_5_0070847
crossref_primary_10_1016_S1001_6058_16_60812_0
crossref_primary_10_1007_s42241_018_0170_y
crossref_primary_10_1177_0954406218813590
crossref_primary_10_1007_s42241_018_0013_x
crossref_primary_10_1007_s42241_022_0071_y
crossref_primary_10_1016_j_apm_2021_03_018
crossref_primary_10_1063_5_0099848
crossref_primary_10_1016_j_oceaneng_2019_106236
crossref_primary_10_1007_s42241_019_0034_0
crossref_primary_10_1007_s42241_023_0090_3
crossref_primary_10_1063_5_0178692
crossref_primary_10_1016_S1001_6058_16_60807_7
crossref_primary_10_1016_j_apor_2024_104400
crossref_primary_10_3390_en14227635
crossref_primary_10_1007_s40430_021_03143_w
crossref_primary_10_3390_jmse12081277
crossref_primary_10_1142_S0217984918500033
crossref_primary_10_1016_j_apor_2021_102814
crossref_primary_10_1016_j_renene_2020_05_034
crossref_primary_10_1177_0954406218809127
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119835
crossref_primary_10_1016_j_apor_2020_102491
crossref_primary_10_1007_s12206_018_0416_1
crossref_primary_10_1016_j_ultsonch_2019_01_011
crossref_primary_10_1063_5_0073266
crossref_primary_10_1007_s42241_022_0045_0
crossref_primary_10_1016_j_oceaneng_2019_106310
crossref_primary_10_1063_5_0123381
crossref_primary_10_1007_s42241_018_0023_8
crossref_primary_10_1007_s42241_020_0005_5
crossref_primary_10_1080_17445302_2022_2110411
crossref_primary_10_1016_j_oceaneng_2022_112442
crossref_primary_10_1016_j_oceaneng_2023_116547
crossref_primary_10_3390_w10111509
crossref_primary_10_1016_j_euromechflu_2019_02_011
crossref_primary_10_1007_s11804_024_00480_9
crossref_primary_10_1016_j_oceaneng_2022_111313
crossref_primary_10_1016_j_oceaneng_2021_110288
crossref_primary_10_1080_10618562_2018_1508655
crossref_primary_10_1115_1_4045209
crossref_primary_10_1016_j_cej_2021_130234
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104820
crossref_primary_10_1177_0954406218809115
crossref_primary_10_1007_s11356_019_07465_0
crossref_primary_10_1016_j_apor_2021_102864
crossref_primary_10_1007_s12206_019_1135_y
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103605
crossref_primary_10_1080_00221686_2020_1780488
crossref_primary_10_1142_S0217984919502282
crossref_primary_10_1016_j_oceaneng_2018_03_011
crossref_primary_10_1007_s42241_022_0055_y
crossref_primary_10_1007_s42241_023_0011_5
crossref_primary_10_1007_s10409_021_01097_9
crossref_primary_10_1007_s42241_022_0033_4
crossref_primary_10_1016_j_renene_2018_02_114
crossref_primary_10_1142_S0217984920501845
crossref_primary_10_1007_s40997_018_0273_7
crossref_primary_10_1007_s42241_022_0079_3
crossref_primary_10_1063_5_0131906
Cites_doi 10.1007/s12206-015-0727-4
10.1007/s00348-014-1849-7
10.1016/j.oceaneng.2014.05.005
10.1017/CBO9780511760396
10.1016/j.oceaneng.2015.12.010
10.1016/S1001-6058(15)60469-3
10.1115/1.2822206
10.1115/1.4005029
10.1063/1.870344
10.1016/j.ijmultiphaseflow.2015.10.006
10.1007/s10494-005-8581-6
10.1146/annurev.fl.13.010181.001421
10.1115/1.4005030
10.1016/j.ijmultiphaseflow.2014.10.008
10.1115/1.4001771
10.1115/1.1524584
10.1115/1.4023650
10.1115/1.4027353
10.1115/1.1412235
10.1002/fld.1090
10.1016/j.ijmultiphaseflow.2015.02.007
10.2514/1.20800
10.5957/JOSR.60.2.160010
10.1016/j.apm.2012.09.002
10.1016/S1001-6058(16)60638-8
10.1016/S1001-6058(16)60674-1
10.1016/S1001-6058(16)60715-1
10.1016/j.ijmultiphaseflow.2016.05.013
10.1016/S1001-6058(11)60390-X
10.1016/j.ijmultiphaseflow.2013.12.004
10.1115/1.4006416
10.1016/S0376-0421(01)00014-8
10.1080/14685240600726710
10.1016/j.ijheatfluidflow.2013.08.013
10.1115/1.4026583
10.1016/S1001-6058(14)60004-4
ContentType Journal Article
Copyright 2017 Publishing House for Journal of Hydrodynamics
China Ship Scientific Research Center 2017
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2017 Publishing House for Journal of Hydrodynamics
– notice: China Ship Scientific Research Center 2017
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1016/S1001-6058(16)60774-6
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil
EISSN 1878-0342
EndPage 620
ExternalDocumentID sdlxyjyjz_e201704009
10_1016_S1001_6058_16_60774_6
S1001605816607746
673042488
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Project Nos. 51576143, 11472197
– fundername: the National Natural Science Foun- dation of China
  funderid: (Project . 51576143, 11472197)
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
5XL
7-5
71M
8P~
92H
92I
92L
92M
9D9
9DA
AABNK
AACTN
AAEDT
AAEDW
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABXDB
ABXPI
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADEZE
ADHHG
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFTE
AEJRE
AEKER
AENEX
AEPYU
AESKC
AESTI
AEVTX
AFKWA
AFNRJ
AFQWF
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IHE
IKXTQ
IWAJR
J-C
J1W
JJJVA
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O9-
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
RLLFE
ROL
RPZ
RSV
RT1
S..
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
T8Q
TCJ
TGT
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
W92
Z5O
Z7R
ZMTXR
~LB
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABJNI
ABWVN
ACDTI
ACPIV
ACRPL
ADMLS
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
SJYHP
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACLOT
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
EFKBS
~HD
4A8
93N
AFXIZ
AGCQF
AGRNS
PSX
SSH
ID FETCH-LOGICAL-c420t-953730fb91fdfe38ecb2c6bbc7c7235c3e7b5dda80e982cd8d7039885e92ca123
IEDL.DBID .~1
ISSN 1001-6058
IngestDate Thu May 29 04:08:10 EDT 2025
Wed Oct 01 03:07:56 EDT 2025
Thu Apr 24 22:54:25 EDT 2025
Fri Feb 21 02:30:55 EST 2025
Fri Feb 23 02:34:37 EST 2024
Wed Feb 14 09:57:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Cavitating flow
uncertainty
verification and validation (V&V)
cavitation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-953730fb91fdfe38ecb2c6bbc7c7235c3e7b5dda80e982cd8d7039885e92ca123
Notes In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model(DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety(FS1), the Factor of Safety(FS) and the Grid Convergence Index(GCI). The distribution of the area without achieving the validation at the U v level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution.
31-1563/T
Cavitating flow cavitation verification and validation(V&V) uncertainty
Yun Long1,2,3, Xin-ping Long 1,2, Bin Ji1,2,3, Wen-xin Huai 1, Zhong-dong Qian 1( 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China; 2. Hubei Key Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China; 3. Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China)
PageCount 11
ParticipantIDs wanfang_journals_sdlxyjyjz_e201704009
crossref_citationtrail_10_1016_S1001_6058_16_60774_6
crossref_primary_10_1016_S1001_6058_16_60774_6
springer_journals_10_1016_S1001_6058_16_60774_6
elsevier_sciencedirect_doi_10_1016_S1001_6058_16_60774_6
chongqing_primary_673042488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of hydrodynamics. Series B
PublicationTitleAbbrev J Hydrodyn
PublicationTitleAlternate Journal of Hydrodynamics
PublicationTitle_FL Journal of Hydrodynamics
PublicationYear 2017
Publisher Elsevier Ltd
Springer Singapore
State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China
Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China,%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China
HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
– name: HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
– name: HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China
– name: Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China,%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China
– name: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China
References Huang, Young, Wang (bib16) 2013; 135
Wang, Wu, Huang (bib9) 2016; 85
Dreyer, Decaix, Münch-Alligné (bib10) 2014; 55
Ji, Long, Long (bib18) 2017; 29
Luo, Ji, Tsujimoto (bib1) 2016; 28
Ji, Luo, Peng (bib6) 2013; 25
Xing, Stern (bib28) 2010; 132
Chen, Wang, Hu (bib37) 2015; 72
Stern, Wilson, Shao (bib39) 2010; 50
Roohi, Zahiri, Passandideh-Fard (bib19) 2013; 37
Pendar, Roohi (bib13) 2016; 112
Huang, Wang, Zhao (bib34) 2014; 26
Roache (bib21) 1998
Pham, Larrarte, Fruman (bib5) 1999; 121
Stern, Wilson, Coleman (bib26) 2001; 123
Klein (bib31) 2005; 75
Coutier-Delgosha, Fortes-Patella, Reboud (bib35) 2003; 125
Ji, Luo, Arndt (bib36) 2014; 87
Logan, Nitta (bib23) 2006; 3
Xing (bib33) 2015; 27
Ji, Luo, Arndt (bib11) 2015; 68
Xing, Stern (bib30) 2011; 133
Arndt (bib8) 1981; 13
Decaix, Goncalvès (bib14) 2013; 44
Kravtsova, Markovich, Pervunin (bib4) 2014; 60
Roache (bib24) 2011; 133
Wilson, Shao, Stern (bib27) 2004; 126
Peng, Ji, Cao (bib12) 2016; 79
Zwart P. J., Gerber A. G., Belamri T. A two-phase flow model for predicting cavitation dynamics[C].
Las Vegas, USA, 2017.
Eça, Hoekstra (bib41) 2008; 18
Freitag, Klein (bib32) 2006; 7
De Luca, Mancini, Miranda (bib40) 2016; 60
Park, Rhee (bib3) 2015; 29
Luo, Ji, Peng (bib20) 2012; 134
Stern, Yang, Wang (bib29) 2013; 60
Gopalan, Katz (bib2) 2000; 12
Dutta R., Xing T. Quantitative solution verification of large eddy simulation of channel flow [C].
Wang, Senocak, Shyy (bib7) 2001; 37
Phillips, Roy (bib25) 2014; 136
Yokohama, Japan. 2004.
Yu, Huang, Du (bib17) 2014; 136
Cheng, Long, Ji (bib15) 2016; 28
Oberkampf, Roy (bib22) 2010
Chen, Wang, Hu (CR37) 2015; 72
Phillips, Roy (CR25) 2014; 136
Klein (CR31) 2005; 75
Huang, Wang, Zhao (CR34) 2014; 26
Stern, Yang, Wang (CR29) 2013; 601–4
Xing (CR33) 2015; 27
Stern, Wilson, Coleman (CR26) 2001; 123
Freitag, Klein (CR32) 2006; 7
Yu, Huang, Du (CR17) 2014; 136
Gopalan, Katz (CR2) 2000; 12
Ji, Long, Long (CR18) 2017; 29
Xing, Stern (CR28) 2010; 132
Kravtsova, Markovich, Pervunin (CR4) 2014; 60
Decaix, Goncalvès (CR14) 2013; 44
Ji, Luo, Arndt (CR36) 2014; 87
Zwart, Gerber, Belamri (CR38) 2004
Stern, Wilson, Shao (CR39) 2010; 50
De Luca, Mancini, Miranda (CR40) 2016; 60
Pham, Larrarte, Fruman (CR5) 1999; 121
Huang, Young, Wang (CR16) 2013; 135
Pendar, Roohi (CR13) 2016; 112
Wang, Senocak, Shyy (CR7) 2001; 37
Dreyer, Decaix, Münch-Alligné (CR10) 2014; 55
Cheng, Long, Ji (CR15) 2016; 28
Luo, Ji, Tsujimoto (CR1) 2016; 28
Ji, Luo, Arndt (CR11) 2015; 68
Arndt (CR8) 1981; 13
Roohi, Zahiri, Passandideh-Fard (CR19) 2013; 37
Park, Rhee (CR3) 2015; 29
Luo, Ji, Peng (CR20) 2012; 134
(CR27) 2004; 126
Ji, Luo, Peng (CR6) 2013; 25
Coutier-Delgosha, Fortes-Patella, Reboud (CR35) 2003; 125
Logan, Nitta (CR23) 2006; 3
Roache (CR21) 1998
Dutta, Xing (CR42) 2017
Oberkampf, Roy (CR22) 2010
Wang, Wu, Huang (CR9) 2016; 85
Roache (CR24) 2011; 133
Xing, Stern (CR30) 2011; 133
Eça, Hoekstra (CR41) 2008; 18
Peng, Ji, Cao (CR12) 2016; 79
T Xing (2905610_CR28) 2010; 132
X X Peng (2905610_CR12) 2016; 79
W L Oberkampf (2905610_CR22) 2010
M Freitag (2905610_CR32) 2006; 7
S Park (2905610_CR3) 2015; 29
O Coutier-Delgosha (2905610_CR35) 2003; 125
X X Yu (2905610_CR17) 2014; 136
T Xing (2905610_CR33) 2015; 27
E Roohi (2905610_CR19) 2013; 37
(2905610_CR27) 2004; 126
R W Logan (2905610_CR23) 2006; 3
T Xing (2905610_CR30) 2011; 133
P J Roache (2905610_CR21) 1998
A Y Kravtsova (2905610_CR4) 2014; 60
B Ji (2905610_CR11) 2015; 68
J Decaix (2905610_CR14) 2013; 44
T M Pham (2905610_CR5) 1999; 121
H Y Cheng (2905610_CR15) 2016; 28
B Huang (2905610_CR16) 2013; 135
F Stern (2905610_CR29) 2013; 601–4
X W Luo (2905610_CR20) 2012; 134
P J Zwart (2905610_CR38) 2004
F Luca De (2905610_CR40) 2016; 60
F Stern (2905610_CR39) 2010; 50
S Gopalan (2905610_CR2) 2000; 12
T S Phillips (2905610_CR25) 2014; 136
M R Pendar (2905610_CR13) 2016; 112
Y W Wang (2905610_CR9) 2016; 85
G Chen (2905610_CR37) 2015; 72
G Wang (2905610_CR7) 2001; 37
B Huang (2905610_CR34) 2014; 26
L Eça (2905610_CR41) 2008; 18
B Ji (2905610_CR18) 2017; 29
M Klein (2905610_CR31) 2005; 75
B Ji (2905610_CR36) 2014; 87
R Dutta (2905610_CR42) 2017
X W Luo (2905610_CR1) 2016; 28
R E A Arndt (2905610_CR8) 1981; 13
F Stern (2905610_CR26) 2001; 123
B Ji (2905610_CR6) 2013; 25
P J Roache (2905610_CR24) 2011; 133
M Dreyer (2905610_CR10) 2014; 55
References_xml – year: 2010
  ident: bib22
  publication-title: Verification and validation in scientific computing [M]
– volume: 79
  start-page: 10
  year: 2016
  end-page: 22
  ident: bib12
  article-title: Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils [J]
  publication-title: International Journal of Multiphase Flow
– volume: 25
  start-page: 510
  year: 2013
  end-page: 519
  ident: bib6
  article-title: Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil [J]
  publication-title: Journal of Hydrodynamics
– volume: 126
  start-page: 704
  year: 2004
  end-page: 706
  ident: bib27
  article-title: Discussion: criticisms of the “correction factor” verification method 1[J]
  publication-title: Journal of Fluids Engineering
– volume: 72
  start-page: 133
  year: 2015
  end-page: 140
  ident: bib37
  article-title: Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent–divergent channel [J]
  publication-title: International Journal of Multiphase Flow
– volume: 44
  start-page: 576
  year: 2013
  end-page: 595
  ident: bib14
  article-title: Investigation of three-dimensional effects on a cavitating Venturi flow [J]
  publication-title: International Journal of Heat and Fluid Flow
– year: 1998
  ident: bib21
  publication-title: Verification and validation in computational science and engineering [M]
– volume: 37
  start-page: 551
  year: 2001
  end-page: 581
  ident: bib7
  article-title: Dynamics of attached turbulent cavitating flows [J]
  publication-title: Progress in Aerospace Sciences
– volume: 68
  start-page: 121
  year: 2015
  end-page: 134
  ident: bib11
  article-title: Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J]
  publication-title: International Journal of Multiphase Flow
– volume: 112
  start-page: 287
  year: 2016
  end-page: 306
  ident: bib13
  article-title: Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models [J]
  publication-title: Ocean Engineering
– volume: 29
  start-page: 3287
  year: 2015
  end-page: 3296
  ident: bib3
  article-title: Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics [J]
  publication-title: Journal of Mechanical Science and Technology
– volume: 135
  start-page: 071301
  year: 2013
  ident: bib16
  article-title: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation [J]
  publication-title: Journal of Fluids Engineering
– volume: 60
  start-page: 101
  year: 2016
  end-page: 118
  ident: bib40
  article-title: An Extended verification and validation study of CFD simulations for planing hulls [J]
  publication-title: Journal of Ship Research
– volume: 28
  start-page: 335
  year: 2016
  end-page: 358
  ident: bib1
  article-title: A review of cavitation in hydraulic machinery [J]
  publication-title: Journal of Hydrodynamics
– volume: 3
  start-page: 354
  year: 2006
  end-page: 373
  ident: bib23
  article-title: Comparing 10 methods for solution verification, and linking to model validation [J]
  publication-title: Journal of Aerospace Computing, Information, and Communication
– volume: 50
  start-page: 1335
  year: 2010
  end-page: 1355
  ident: bib39
  article-title: Quantitative V&V of CFD simulations and certification of CFD codes [J]
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 37
  start-page: 6469
  year: 2013
  end-page: 6488
  ident: bib19
  article-title: Numerical simulation of cavitation around a two-dimensional hydro-foil using VOF method and LES turbulence model [J]
  publication-title: Applied Mathematical Modelling
– volume: 125
  start-page: 38
  year: 2003
  end-page: 45
  ident: bib35
  article-title: Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation [J]
  publication-title: Journal of Fluids Engineering
– volume: 132
  start-page: 061403
  year: 2010
  ident: bib28
  article-title: Factors of safety for Richardson extrapolation [J]
  publication-title: Journal of Fluids Engineering
– volume: 121
  start-page: 289
  year: 1999
  end-page: 296
  ident: bib5
  article-title: Investigation of un steady sheet cavitation and cloud cavitation mechanisms [J]
  publication-title: Journal of Fluids Engineering
– volume: 136
  start-page: 051303
  year: 2014
  ident: bib17
  article-title: Study of characteristics of cloud cavity around axisymmetric projectile by large eddy simulation [J]
  publication-title: Journal of Fluids Engineering
– reference: . Las Vegas, USA, 2017.
– volume: 123
  start-page: 792
  year: 2001
  ident: bib26
  article-title: Comprehensive approach to verification and validation of CFD Simulations–Part I: Methodology and procedures [J]
  publication-title: Journal of Fluids Engineering
– volume: 12
  start-page: 895
  year: 2000
  end-page: 911
  ident: bib2
  article-title: Flow structure and modeling issues in the closure region of attached cavitation [J]
  publication-title: Physics of Fluids
– volume: 136
  start-page: 121401
  year: 2014
  ident: bib25
  article-title: Richardson extrapolation-based discretization uncertainty estimation for computational fluid dynamics [J]
  publication-title: Journal of Fluids Engineering
– volume: 18
  start-page: 120
  year: 2008
  end-page: 126
  ident: bib41
  article-title: Code verification of unsteady flow solvers with method of manufactured solutions [J]
  publication-title: International Journal of Offshore and Polar Engineering
– volume: 29
  start-page: 27
  year: 2017
  end-page: 39
  ident: bib18
  article-title: Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions [J]
  publication-title: Journal of Hydrodynamics
– volume: 26
  start-page: 26
  year: 2014
  end-page: 36
  ident: bib34
  article-title: Numerical simulation un-steady cloud cavitating flow with a filter-based density correction model [J]
  publication-title: Journal of Hydrodynamics
– reference: . Yokohama, Japan. 2004.
– volume: 27
  start-page: 163
  year: 2015
  end-page: 175
  ident: bib33
  article-title: A general framework for verification and validation of large eddy simulations [J]
  publication-title: Journal of Hydrodynamics
– volume: 87
  start-page: 64
  year: 2014
  end-page: 77
  ident: bib36
  article-title: Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction [J]
  publication-title: Ocean Engineering
– reference: Zwart P. J., Gerber A. G., Belamri T. A two-phase flow model for predicting cavitation dynamics[C].
– volume: 133
  start-page: 115501
  year: 2011
  ident: bib24
  article-title: Discussion: “Factors of Safety for Richardson Extrapolation” (Xing, T., and Stern, F., 2010, ASME J. Fluids Eng., 132, p. 061403) [J]
  publication-title: Journal of Fluids Engineering
– volume: 60
  start-page: 3
  year: 2013
  end-page: 105
  ident: bib29
  article-title: Computational ship hydrodynamics: nowadays and way forward [J]
  publication-title: International Shipbuilding Progress
– volume: 55
  start-page: 1
  year: 2014
  end-page: 13
  ident: bib10
  article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV [J]
  publication-title: Experiments in Fluids
– volume: 13
  start-page: 273
  year: 1981
  end-page: 326
  ident: bib8
  article-title: Cavitation in fluid machinery and hydraulic structures [J]
  publication-title: Annual Review of Fluid Mechanics
– reference: Dutta R., Xing T. Quantitative solution verification of large eddy simulation of channel flow [C].
– volume: 85
  start-page: 48
  year: 2016
  end-page: 56
  ident: bib9
  article-title: Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile [J]
  publication-title: International Journal of Multiphase Flow
– volume: 75
  start-page: 131
  year: 2005
  end-page: 147
  ident: bib31
  article-title: An attempt to assess the quality of large eddy simulations in the context of implicit filtering [J]
  publication-title: Flow, Turbulence and Combustion
– volume: 133
  start-page: 115502
  year: 2011
  ident: bib30
  article-title: Closure to “discussion of ‘factors of safety for Richardson Extrapolation’” (2011, ASME J. Fluids Eng., 133, p. 115501) [J]
  publication-title: Journal of Fluids Engineering
– volume: 60
  start-page: 119
  year: 2014
  end-page: 134
  ident: bib4
  article-title: High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil [J]
  publication-title: International Journal of Multiphase Flow
– volume: 134
  start-page: 379
  year: 2012
  end-page: 389
  ident: bib20
  article-title: Numerical simulation of cavity shedding from a three-dimensional twisted hydro-foil and induced pressure fluctuation by large-eddy simulation [J]
  publication-title: Journal of Fluids Engineering
– volume: 7
  start-page: 1
  year: 2006
  end-page: 11
  ident: bib32
  article-title: An improved method to assess the quality of large eddy simulations in the context of implicit filtering [J]
  publication-title: Journal of Turbulence
– volume: 28
  start-page: 709
  year: 2016
  end-page: 712
  ident: bib15
  article-title: Numerical investigation of unsteady cavitating turbulent flows around twisted hydrofoil from the Lagrangian viewpoint [J]
  publication-title: Journal of Hydrodynamics
– volume: 29
  start-page: 3287
  issue: 8
  year: 2015
  end-page: 3296
  ident: CR3
  article-title: Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics [J]
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-015-0727-4
– volume: 55
  start-page: 1
  issue: 11
  year: 2014
  end-page: 13
  ident: CR10
  article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV [J]
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-014-1849-7
– volume: 87
  start-page: 64
  year: 2014
  end-page: 77
  ident: CR36
  article-title: Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction [J]
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2014.05.005
– year: 2010
  ident: CR22
  publication-title: Verification and validation in scientific computing [M]
  doi: 10.1017/CBO9780511760396
– volume: 112
  start-page: 287
  year: 2016
  end-page: 306
  ident: CR13
  article-title: Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models [J]
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2015.12.010
– volume: 27
  start-page: 163
  issue: 2
  year: 2015
  end-page: 175
  ident: CR33
  article-title: A general framework for verification and validation of large eddy simulations [J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(15)60469-3
– year: 2017
  ident: CR42
  article-title: Quantitative solution verification of large eddy simulation of channel flow [C]
  publication-title: Proceedings of the 2nd Thermal and Fluid Engineering Conference and 4th International Workshop on Heat Transfer
– volume: 121
  start-page: 289
  issue: 2
  year: 1999
  end-page: 296
  ident: CR5
  article-title: Investigation of unsteady sheet cavitation and cloud cavitation mechanisms [J]
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.2822206
– volume: 133
  start-page: 115501
  issue: 11
  year: 2011
  ident: CR24
  article-title: Discussion: “Factors of Safety for Richardson Extrapolation” (Xing, T., and Stern, F., 2010, Asme J. Fluids Eng., 132, p. 061403) [J]
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4005029
– volume: 12
  start-page: 895
  issue: 4
  year: 2000
  end-page: 911
  ident: CR2
  article-title: Flow structure and modeling issues in the closure region of attached cavitation [J]
  publication-title: Physics of Fluids
  doi: 10.1063/1.870344
– volume: 126
  issue: 4
  year: 2004
  ident: CR27
  publication-title: Journal of Fluids Engineering
– volume: 18
  start-page: 120
  issue: 2
  year: 2008
  end-page: 126
  ident: CR41
  article-title: Code verification of unsteady flow solvers with method of manufactured solutions [J]
  publication-title: International Journal of Offshore and Polar Engineering
– volume: 79
  start-page: 10
  issue: 2
  year: 2016
  end-page: 22
  ident: CR12
  article-title: Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils [J]
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2015.10.006
– volume: 75
  start-page: 131
  issue: 1–4
  year: 2005
  end-page: 147
  ident: CR31
  article-title: An attempt to assess the quality of large eddy simulations in the context of implicit filtering [J]
  publication-title: Flow, Turbulence and Combustion
  doi: 10.1007/s10494-005-8581-6
– volume: 13
  start-page: 273
  issue: 1
  year: 1981
  end-page: 326
  ident: CR8
  article-title: Cavitation in fluid machinery and hydraulic structures [J]
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fl.13.010181.001421
– volume: 133
  start-page: 115502
  issue: 11
  year: 2011
  ident: CR30
  article-title: Closure to “discussion of ‘factors of safety for Richardson Extrapolation’” (2011, Asme J. Fluids Eng., 133, p. 115501) [J]
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4005030
– volume: 68
  start-page: 121
  issue: 1
  year: 2015
  end-page: 134
  ident: CR11
  article-title: Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J]
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2014.10.008
– year: 1998
  ident: CR21
  publication-title: Verification and validation in computational science and engineering [M]
– volume: 132
  start-page: 061403
  issue: 6
  year: 2010
  ident: CR28
  article-title: Factors of safety for Richardson extrapolation [J]
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4001771
– volume: 125
  start-page: 38
  issue: 1
  year: 2003
  end-page: 45
  ident: CR35
  article-title: Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation [J]
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.1524584
– volume: 135
  start-page: 071301
  issue: 7
  year: 2013
  ident: CR16
  article-title: Combined experi-mental and computational investigation of unsteady structure of sheet/cloud cavitation [J]
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4023650
– volume: 136
  start-page: 121401
  issue: 12
  year: 2014
  ident: CR25
  article-title: Richardson extrapolation-based discretization uncertainty estimation for computational fluid dynamics [J]
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4027353
– volume: 123
  start-page: 792
  issue: 4
  year: 2001
  ident: CR26
  article-title: Comprehensive approach to verification and validation of Cfd Simulations–Part I: Methodology and procedures [J]
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.1412235
– volume: 50
  start-page: 1335
  issue: 11
  year: 2010
  end-page: 1355
  ident: CR39
  article-title: Quantitative V&V of CFD simulations and certification of Cfd codes [J]
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.1090
– volume: 72
  start-page: 133
  issue: 5
  year: 2015
  end-page: 140
  ident: CR37
  article-title: Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent–divergent channel [J]
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2015.02.007
– volume: 3
  start-page: 354
  issue: 7
  year: 2006
  end-page: 373
  ident: CR23
  article-title: Comparing 10 methods for solu-tion verification, and linking to model validation [J]
  publication-title: Journal of Aerospace Computing, Information, and Communication
  doi: 10.2514/1.20800
– volume: 60
  start-page: 101
  issue: 2
  year: 2016
  end-page: 118
  ident: CR40
  article-title: An Extended verification and validation study of CFD simulations for planing hulls [J]
  publication-title: Journal of Ship Research
  doi: 10.5957/JOSR.60.2.160010
– volume: 37
  start-page: 6469
  issue: 9
  year: 2013
  end-page: 6488
  ident: CR19
  article-title: Numerical simulation of cavitation around a two-dimensional hydrofoil using Vof method and Les turbulence model [J]
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2012.09.002
– year: 2004
  ident: CR38
  article-title: A two-phase flow model for predicting cavitation dynamics[C]
  publication-title: Fifth International Conference on Multiphase Flow
– volume: 601–4
  start-page: 3
  year: 2013
  end-page: 105
  ident: CR29
  article-title: Computational ship hydrodynamics: nowadays and way forward [J]
  publication-title: International Shipbuilding Progress
– volume: 28
  start-page: 335
  issue: 3
  year: 2016
  end-page: 358
  ident: CR1
  article-title: A review of cavitation in hydraulic machinery [J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(16)60638-8
– volume: 28
  start-page: 709
  issue: 4
  year: 2016
  end-page: 712
  ident: CR15
  article-title: Numerical investigation of unsteady cavitating turbulent flows around twisted hydrofoil from the Lagrangian viewpoint [J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(16)60674-1
– volume: 29
  start-page: 27
  issue: 1
  year: 2017
  end-page: 39
  ident: CR18
  article-title: Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions [J]
  publication-title: Journal of Hydrodyna-mics
  doi: 10.1016/S1001-6058(16)60715-1
– volume: 85
  start-page: 48
  issue: 8
  year: 2016
  end-page: 56
  ident: CR9
  article-title: Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile [J]
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2016.05.013
– volume: 25
  start-page: 510
  issue: 4
  year: 2013
  end-page: 519
  ident: CR6
  article-title: Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil [J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(11)60390-X
– volume: 60
  start-page: 119
  issue: 3
  year: 2014
  end-page: 134
  ident: CR4
  article-title: High-speed visualization and Piv measurements of cavitating flows around a semi-circular leading-edge flat plate and Naca0015 hydrofoil [J]
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2013.12.004
– volume: 134
  start-page: 379
  issue: 4
  year: 2012
  end-page: 389
  ident: CR20
  article-title: Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation [J]
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4006416
– volume: 37
  start-page: 551
  issue: 6
  year: 2001
  end-page: 581
  ident: CR7
  article-title: Dynamics of attached turbulent cavitating flows [J]
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/S0376-0421(01)00014-8
– volume: 7
  start-page: 1
  year: 2006
  end-page: 11
  ident: CR32
  article-title: An improved method to assess the quality of large eddy simulations in the context of implicit filtering [J]
  publication-title: Journal of Turbulence
  doi: 10.1080/14685240600726710
– volume: 44
  start-page: 576
  issue: 4
  year: 2013
  end-page: 595
  ident: CR14
  article-title: Investigation of three-dimensional effects on a cavitating Venturi flow [J]
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2013.08.013
– volume: 136
  start-page: 051303
  issue: 5
  year: 2014
  ident: CR17
  article-title: Study of charac-teristics of cloud cavity around axisymmetric projectile by large eddy simulation [J]
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4026583
– volume: 26
  start-page: 26
  issue: 1
  year: 2014
  end-page: 36
  ident: CR34
  article-title: Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model [J]
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(14)60004-4
– volume: 79
  start-page: 10
  issue: 2
  year: 2016
  ident: 2905610_CR12
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2015.10.006
– volume: 112
  start-page: 287
  year: 2016
  ident: 2905610_CR13
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2015.12.010
– volume: 134
  start-page: 379
  issue: 4
  year: 2012
  ident: 2905610_CR20
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4006416
– volume-title: Verification and validation in scientific computing [M]
  year: 2010
  ident: 2905610_CR22
  doi: 10.1017/CBO9780511760396
– volume: 85
  start-page: 48
  issue: 8
  year: 2016
  ident: 2905610_CR9
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2016.05.013
– volume-title: Proceedings of the 2nd Thermal and Fluid Engineering Conference and 4th International Workshop on Heat Transfer
  year: 2017
  ident: 2905610_CR42
– volume: 68
  start-page: 121
  issue: 1
  year: 2015
  ident: 2905610_CR11
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2014.10.008
– volume: 55
  start-page: 1
  issue: 11
  year: 2014
  ident: 2905610_CR10
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-014-1849-7
– volume: 13
  start-page: 273
  issue: 1
  year: 1981
  ident: 2905610_CR8
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fl.13.010181.001421
– volume: 133
  start-page: 115501
  issue: 11
  year: 2011
  ident: 2905610_CR24
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4005029
– volume: 60
  start-page: 101
  issue: 2
  year: 2016
  ident: 2905610_CR40
  publication-title: Journal of Ship Research
  doi: 10.5957/JOSR.60.2.160010
– volume: 121
  start-page: 289
  issue: 2
  year: 1999
  ident: 2905610_CR5
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.2822206
– volume: 37
  start-page: 6469
  issue: 9
  year: 2013
  ident: 2905610_CR19
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2012.09.002
– volume: 126
  issue: 4
  year: 2004
  ident: 2905610_CR27
  publication-title: Journal of Fluids Engineering
– volume: 7
  start-page: 1
  year: 2006
  ident: 2905610_CR32
  publication-title: Journal of Turbulence
  doi: 10.1080/14685240600726710
– volume: 72
  start-page: 133
  issue: 5
  year: 2015
  ident: 2905610_CR37
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2015.02.007
– volume-title: Verification and validation in computational science and engineering [M]
  year: 1998
  ident: 2905610_CR21
– volume: 133
  start-page: 115502
  issue: 11
  year: 2011
  ident: 2905610_CR30
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4005030
– volume: 3
  start-page: 354
  issue: 7
  year: 2006
  ident: 2905610_CR23
  publication-title: Journal of Aerospace Computing, Information, and Communication
  doi: 10.2514/1.20800
– volume: 136
  start-page: 121401
  issue: 12
  year: 2014
  ident: 2905610_CR25
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4027353
– volume: 75
  start-page: 131
  issue: 1–4
  year: 2005
  ident: 2905610_CR31
  publication-title: Flow, Turbulence and Combustion
  doi: 10.1007/s10494-005-8581-6
– volume: 28
  start-page: 335
  issue: 3
  year: 2016
  ident: 2905610_CR1
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(16)60638-8
– volume: 28
  start-page: 709
  issue: 4
  year: 2016
  ident: 2905610_CR15
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(16)60674-1
– volume: 44
  start-page: 576
  issue: 4
  year: 2013
  ident: 2905610_CR14
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2013.08.013
– volume: 132
  start-page: 061403
  issue: 6
  year: 2010
  ident: 2905610_CR28
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4001771
– volume: 29
  start-page: 3287
  issue: 8
  year: 2015
  ident: 2905610_CR3
  publication-title: Journal of Mechanical Science and Technology
  doi: 10.1007/s12206-015-0727-4
– volume: 12
  start-page: 895
  issue: 4
  year: 2000
  ident: 2905610_CR2
  publication-title: Physics of Fluids
  doi: 10.1063/1.870344
– volume: 27
  start-page: 163
  issue: 2
  year: 2015
  ident: 2905610_CR33
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(15)60469-3
– volume: 135
  start-page: 071301
  issue: 7
  year: 2013
  ident: 2905610_CR16
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4023650
– volume: 125
  start-page: 38
  issue: 1
  year: 2003
  ident: 2905610_CR35
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.1524584
– volume: 123
  start-page: 792
  issue: 4
  year: 2001
  ident: 2905610_CR26
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.1412235
– volume: 136
  start-page: 051303
  issue: 5
  year: 2014
  ident: 2905610_CR17
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4026583
– volume: 25
  start-page: 510
  issue: 4
  year: 2013
  ident: 2905610_CR6
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(11)60390-X
– volume-title: Fifth International Conference on Multiphase Flow
  year: 2004
  ident: 2905610_CR38
– volume: 26
  start-page: 26
  issue: 1
  year: 2014
  ident: 2905610_CR34
  publication-title: Journal of Hydrodynamics
  doi: 10.1016/S1001-6058(14)60004-4
– volume: 601–4
  start-page: 3
  year: 2013
  ident: 2905610_CR29
  publication-title: International Shipbuilding Progress
– volume: 60
  start-page: 119
  issue: 3
  year: 2014
  ident: 2905610_CR4
  publication-title: International Journal of Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2013.12.004
– volume: 37
  start-page: 551
  issue: 6
  year: 2001
  ident: 2905610_CR7
  publication-title: Progress in Aerospace Sciences
  doi: 10.1016/S0376-0421(01)00014-8
– volume: 87
  start-page: 64
  year: 2014
  ident: 2905610_CR36
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2014.05.005
– volume: 29
  start-page: 27
  issue: 1
  year: 2017
  ident: 2905610_CR18
  publication-title: Journal of Hydrodyna-mics
  doi: 10.1016/S1001-6058(16)60715-1
– volume: 18
  start-page: 120
  issue: 2
  year: 2008
  ident: 2905610_CR41
  publication-title: International Journal of Offshore and Polar Engineering
– volume: 50
  start-page: 1335
  issue: 11
  year: 2010
  ident: 2905610_CR39
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.1090
SSID ssj0036904
ssib060475366
Score 2.446783
Snippet In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y...
In this paper, we investigate the verification and validation (V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y...
In this paper, we investigate the verification and validation (V&V) procedures for the Urans simulations of the turbulent cavitating flow around a Clark-Y...
SourceID wanfang
crossref
springer
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 610
SubjectTerms Cavitating flow
cavitation
Engineering
Engineering Fluid Dynamics
Hydrology/Water Resources
Numerical and Computational Physics
Simulation
uncertainty
verification and validation (V&V)
不确定性
估计方法
模拟验证
水翼
流动模拟
湍流流场
空化模型
空泡流
Title Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil
URI http://lib.cqvip.com/qk/86648X/201704/673042488.html
https://dx.doi.org/10.1016/S1001-6058(16)60774-6
https://link.springer.com/article/10.1016/S1001-6058(16)60774-6
https://d.wanfangdata.com.cn/periodical/sdlxyjyjz-e201704009
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1878-0342
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: ADMLS
  dateStart: 20060201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-0342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-0342
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: ACRLP
  dateStart: 20060401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-0342
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: AIKHN
  dateStart: 20060401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1878-0342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: .~1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-0342
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: AKRWK
  dateStart: 20060401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-0342
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036904
  issn: 1001-6058
  databaseCode: AFBBN
  dateStart: 20060201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Lb9Mw2JrGBQ6Ipygbkw8gwSFrHk7jHKuJqVDRw0ZhN8vPLlNJxtoNyoHfzvc5TjYOqBKnJJY_y_L3dL4XIa9lXCimWRlpzeKIMVdG0mRlhLRlcpWAksNs5E-z0WTOPp7lZzvkqMuFwbDKIPtbme6ldRgZhtMcXlbV8DTxPZJzdHzFYMRg2W3GCuxicPi7D_PI4PbnPcsYOoSzb7N42hX84Ntk9M4vEvkaC-dNvfgOmuNfuqr3mfpMn9rJenFHKR0_Ig-DNUnH7YYfkx1bPyEP7tQYfErcF3hx4c8clbWhQFtV20mJNo7OT8azU7qqvoU-XiscBKuQgi5S16iTqJY3vpJ3vaBu2fyg8gp7MflJ5xsDgrypls_I_Pj956NJFJorRJql8RrdtsDcTpWJM85m3GqV6pFSutBFmuU6s4XKjZE8tiVPteEGZEPJeW7LVEvQd8_Jbt3U9gWhudPS363iUjFjE0A2XFSAn60EY5GZAdnrj1RctkU0MJ4Mva6cDwjrDlnoUJcc22MsRR-AhngSiCcBXx5PYjQghz1Yt-YWAN5hUPxFYQKUxzbQYYdxEVh8tQ3iTSCMW4CVWf7cXGwufgmbYtUikJ7ly__f1B65j8u0wYj7ZHd9dW1fgYG0VgeeAw7IvfGH6WSGz-nJ1-kfwn0JtQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1LT9RAeIJ4UA8EX2FFdA6a6KFsH9N25kiIZFXYg7CG22SeS8naIrug64HfzjfTacGD2cRbO5nvSzPfc_q9EHon4lISRVikFIkjQiyLhM5Y5HhL5zIBI-eqkY_GxWhCvpzmp2tov6uFcWmVQfe3Ot1r67AyDKc5vKiq4XHiZyTnLvAVgxNTPEAPSZ6W7ga2e9PneWRw_fOhZZc75LbflfG0KPzih6T46LFEvsnCWVNPf4Lp-Jex6oOmvtSntqKe3rNKB5toI7iTeK_94qdozdTP0JN7TQafI_sdHmz4NYdFrTEwV9WOUsKNxZNve-NjPK9-hEFec7cIbiEGYySvnFHCSlz7Vt71FNtZ8wuLSzeMyW86W2rQ5E01e4EmB59O9kdRmK4QKZLGCxe3Bem2kiVWW5NRo2SqCilVqco0y1VmSplrLWhsGE2VphqUA6M0NyxVAgzeS7ReN7XZQji3SvjLVcwk0SYBasNNBQTaCPAWiR6g7f5I-UXbRcMllLmwK6UDRLpD5io0JnfzMWa8z0BzdOKOThzePJ14MUC7PViHcwUA7SjI_2IxDtZjFeiwozgPMj5fBfE-MMYdwFzPfi_Pl-d_uEld2yJQn-zV_3_UW_RodHJ0yA8_j79uo8cOZZuZ-BqtLy6vzA54Swv5xkvDLYV6Cac
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Verification+and+validation+of+URANS+simulations+of+the+turbulent+cavitating+flow+around+the+hydrofoil&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=Long%2C+Yun&rft.au=Long%2C+Xin-ping&rft.au=Ji%2C+Bin&rft.au=Huai%2C+Wen-xin&rft.date=2017-08-01&rft.pub=Elsevier+Ltd&rft.issn=1001-6058&rft.volume=29&rft.issue=4&rft.spage=610&rft.epage=620&rft_id=info:doi/10.1016%2FS1001-6058%2816%2960774-6&rft.externalDocID=S1001605816607746
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsdlxyjyjz-e%2Fsdlxyjyjz-e.jpg