Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil
In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation...
Saved in:
Cover
| Abstract | In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model(DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety(FS1), the Factor of Safety(FS) and the Grid Convergence Index(GCI). The distribution of the area without achieving the validation at the U v level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution. |
|---|---|
| AbstractList | In this paper, we investigate the verification and validation (V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model (DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety (FS1), the Factor of Safety (FS) and the Grid Convergence Index (GCI). The distribution of the area without achieving the validation at thevU level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution. In this paper, we investigate the verification and validation (V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model (DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety (FS1), the Factor of Safety (FS) and the Grid Convergence Index (GCI). The distribution of the area without achieving the validation at the Vv level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution. In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model(DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety(FS1), the Factor of Safety(FS) and the Grid Convergence Index(GCI). The distribution of the area without achieving the validation at the U v level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution. In this paper, we investigate the verification and validation (V&V) procedures for the Urans simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model (DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety (FS1), the Factor of Safety (FS) and the Grid Convergence Index (GCI). The distribution of the area without achieving the validation at the U v level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution. |
| Author | Ji, Bin Huai, Wen-xin Long, Xin-ping Qian, Zhong-dong Long, Yun |
| AuthorAffiliation | State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,Wuhan 430072 China Hubei Key Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering,Wuhan University, Wuhan 430072, China Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China |
| AuthorAffiliation_xml | – name: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China;HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China;Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China,%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China;HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China |
| Author_xml | – sequence: 1 fullname: 龙云 龙新平 季斌 槐文信 钱忠东 |
| BookMark | eNqFkF1rFDEUhoNUsB_-BGHwSqGjJ8lMksELKcVWoViw1tuQycdulmmiyczW9dc3u1MVerNXyTl5n_ecvEfoIMRgEXqF4R0GzN7fYABcM2jFG8zeMuC8qdkzdIgFFzXQhhyU-1_JC3SU8wqAsg6aQ-R-2OSd12r0MVQqmGqtBm_mMrrq9tvZ15sq-7tp2PXytjkubTVOqZ8GG8ZKq7Ufy2NYVG6I95VKcSo-W9FyY1J00Q8n6LlTQ7YvH89jdHvx6fv55_rq-vLL-dlVrRsCY921lFNwfYedcZYKq3uiWd9rrjmhraaW960xSoDtBNFGGA60E6K1HdEKE3qMTmffexWcCgu5ilMKZaLMZvi9WW1Wf6QlgDk0AF2Rf5jlOsWck3VS774Sw5iUHyQGuU1Y7hKW2_hkqXYJS1bo9gn9M_k7lTZ7OTZzuejDwqb_W-4DP86gLRGufQGz9jZoa3yyepQm-r0Orx9XXsaw-FWm_9uZleQb0ghBHwCqm7N7 |
| CitedBy_id | crossref_primary_10_1063_5_0222510 crossref_primary_10_1007_s42241_024_0051_5 crossref_primary_10_1063_5_0220691 crossref_primary_10_1016_S1001_6058_16_60808_9 crossref_primary_10_1007_s42241_022_0053_0 crossref_primary_10_1177_0954406220969724 crossref_primary_10_1088_1742_6596_2707_1_012143 crossref_primary_10_1007_s42241_019_0050_0 crossref_primary_10_1007_s11804_019_00100_x crossref_primary_10_1007_s42241_022_0047_y crossref_primary_10_1007_s42241_018_0127_1 crossref_primary_10_1016_j_applthermaleng_2018_02_019 crossref_primary_10_1063_5_0242911 crossref_primary_10_1007_s42241_022_0065_9 crossref_primary_10_1142_S0217984920500207 crossref_primary_10_1007_s42241_022_0082_8 crossref_primary_10_1007_s42241_022_0062_z crossref_primary_10_1016_j_oceaneng_2021_109263 crossref_primary_10_1016_j_renene_2018_09_108 crossref_primary_10_1016_j_scitotenv_2022_154856 crossref_primary_10_1016_j_applthermaleng_2018_09_080 crossref_primary_10_1016_j_jcp_2019_109068 crossref_primary_10_1063_5_0177292 crossref_primary_10_1108_EC_01_2017_0020 crossref_primary_10_1177_0954406217753458 crossref_primary_10_1016_j_renene_2018_06_032 crossref_primary_10_1016_j_apor_2021_102723 crossref_primary_10_1016_j_ijmultiphaseflow_2017_12_002 crossref_primary_10_3390_en12214162 crossref_primary_10_1155_2021_6616718 crossref_primary_10_1016_j_ijmultiphaseflow_2019_03_026 crossref_primary_10_1007_s42241_019_0095_0 crossref_primary_10_1016_j_oceaneng_2021_108821 crossref_primary_10_1063_5_0070847 crossref_primary_10_1016_S1001_6058_16_60812_0 crossref_primary_10_1007_s42241_018_0170_y crossref_primary_10_1177_0954406218813590 crossref_primary_10_1007_s42241_018_0013_x crossref_primary_10_1007_s42241_022_0071_y crossref_primary_10_1016_j_apm_2021_03_018 crossref_primary_10_1063_5_0099848 crossref_primary_10_1016_j_oceaneng_2019_106236 crossref_primary_10_1007_s42241_019_0034_0 crossref_primary_10_1007_s42241_023_0090_3 crossref_primary_10_1063_5_0178692 crossref_primary_10_1016_S1001_6058_16_60807_7 crossref_primary_10_1016_j_apor_2024_104400 crossref_primary_10_3390_en14227635 crossref_primary_10_1007_s40430_021_03143_w crossref_primary_10_3390_jmse12081277 crossref_primary_10_1142_S0217984918500033 crossref_primary_10_1016_j_apor_2021_102814 crossref_primary_10_1016_j_renene_2020_05_034 crossref_primary_10_1177_0954406218809127 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119835 crossref_primary_10_1016_j_apor_2020_102491 crossref_primary_10_1007_s12206_018_0416_1 crossref_primary_10_1016_j_ultsonch_2019_01_011 crossref_primary_10_1063_5_0073266 crossref_primary_10_1007_s42241_022_0045_0 crossref_primary_10_1016_j_oceaneng_2019_106310 crossref_primary_10_1063_5_0123381 crossref_primary_10_1007_s42241_018_0023_8 crossref_primary_10_1007_s42241_020_0005_5 crossref_primary_10_1080_17445302_2022_2110411 crossref_primary_10_1016_j_oceaneng_2022_112442 crossref_primary_10_1016_j_oceaneng_2023_116547 crossref_primary_10_3390_w10111509 crossref_primary_10_1016_j_euromechflu_2019_02_011 crossref_primary_10_1007_s11804_024_00480_9 crossref_primary_10_1016_j_oceaneng_2022_111313 crossref_primary_10_1016_j_oceaneng_2021_110288 crossref_primary_10_1080_10618562_2018_1508655 crossref_primary_10_1115_1_4045209 crossref_primary_10_1016_j_cej_2021_130234 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104820 crossref_primary_10_1177_0954406218809115 crossref_primary_10_1007_s11356_019_07465_0 crossref_primary_10_1016_j_apor_2021_102864 crossref_primary_10_1007_s12206_019_1135_y crossref_primary_10_1016_j_ijmultiphaseflow_2021_103605 crossref_primary_10_1080_00221686_2020_1780488 crossref_primary_10_1142_S0217984919502282 crossref_primary_10_1016_j_oceaneng_2018_03_011 crossref_primary_10_1007_s42241_022_0055_y crossref_primary_10_1007_s42241_023_0011_5 crossref_primary_10_1007_s10409_021_01097_9 crossref_primary_10_1007_s42241_022_0033_4 crossref_primary_10_1016_j_renene_2018_02_114 crossref_primary_10_1142_S0217984920501845 crossref_primary_10_1007_s40997_018_0273_7 crossref_primary_10_1007_s42241_022_0079_3 crossref_primary_10_1063_5_0131906 |
| Cites_doi | 10.1007/s12206-015-0727-4 10.1007/s00348-014-1849-7 10.1016/j.oceaneng.2014.05.005 10.1017/CBO9780511760396 10.1016/j.oceaneng.2015.12.010 10.1016/S1001-6058(15)60469-3 10.1115/1.2822206 10.1115/1.4005029 10.1063/1.870344 10.1016/j.ijmultiphaseflow.2015.10.006 10.1007/s10494-005-8581-6 10.1146/annurev.fl.13.010181.001421 10.1115/1.4005030 10.1016/j.ijmultiphaseflow.2014.10.008 10.1115/1.4001771 10.1115/1.1524584 10.1115/1.4023650 10.1115/1.4027353 10.1115/1.1412235 10.1002/fld.1090 10.1016/j.ijmultiphaseflow.2015.02.007 10.2514/1.20800 10.5957/JOSR.60.2.160010 10.1016/j.apm.2012.09.002 10.1016/S1001-6058(16)60638-8 10.1016/S1001-6058(16)60674-1 10.1016/S1001-6058(16)60715-1 10.1016/j.ijmultiphaseflow.2016.05.013 10.1016/S1001-6058(11)60390-X 10.1016/j.ijmultiphaseflow.2013.12.004 10.1115/1.4006416 10.1016/S0376-0421(01)00014-8 10.1080/14685240600726710 10.1016/j.ijheatfluidflow.2013.08.013 10.1115/1.4026583 10.1016/S1001-6058(14)60004-4 |
| ContentType | Journal Article |
| Copyright | 2017 Publishing House for Journal of Hydrodynamics China Ship Scientific Research Center 2017 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: 2017 Publishing House for Journal of Hydrodynamics – notice: China Ship Scientific Research Center 2017 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1016/S1001-6058(16)60774-6 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil |
| EISSN | 1878-0342 |
| EndPage | 620 |
| ExternalDocumentID | sdlxyjyjz_e201704009 10_1016_S1001_6058_16_60774_6 S1001605816607746 673042488 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: Project Nos. 51576143, 11472197 – fundername: the National Natural Science Foun- dation of China funderid: (Project . 51576143, 11472197) |
| GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2C0 2RA 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 5XL 7-5 71M 8P~ 92H 92I 92L 92M 9D9 9DA AABNK AACTN AAEDT AAEDW AAFGU AAHNG AAIAL AAIKJ AAKOC AALRI AAOAW AAQFI AATNV AAUYE AAXUO AAYFA ABDZT ABECU ABFGW ABFTV ABJOX ABKAS ABKCH ABMAC ABMQK ABTEG ABTKH ABXDB ABXPI ABYKQ ACAOD ACBMV ACBRV ACBYP ACDAQ ACGFS ACHSB ACIGE ACIPQ ACMLO ACNNM ACOKC ACRLP ACTTH ACVWB ACWMK ACZOJ ADEZE ADHHG ADKNI ADMDM ADMUD ADOXG ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFTE AEJRE AEKER AENEX AEPYU AESKC AESTI AEVTX AFKWA AFNRJ AFQWF AFUIB AGDGC AGGBP AGHFR AGJBK AGMZJ AGUBO AGYEJ AHJVU AIAKS AIEXJ AIKHN AILAN AIMYW AITGF AITUG AJBFU AJDOV AJOXV AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF AXJTR AXYYD BGNMA BJAXD BKOJK BLXMC CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP CS3 CW9 DPUIP DU5 EBLON EBS EFJIC EFLBG EJD EO9 EP2 EP3 FA0 FDB FEDTE FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HVGLF HZ~ IHE IKXTQ IWAJR J-C J1W JJJVA JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O9- OAUVE OZT P-8 P-9 PC. PT4 Q-- Q-0 Q38 R-A REI RIG RLLFE ROL RPZ RSV RT1 S.. SDC SDF SDG SES SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SST SSZ STPWE T5K T8Q TCJ TGT TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW W92 Z5O Z7R ZMTXR ~LB ~WA AGQEE FIGPU AACDK AAJBT AASML AAXDM AAXKI ABAKF ABJNI ABWVN ACDTI ACPIV ACRPL ADMLS ADNMO AEFQL AEIPS AEMSY AFBBN AGRTI AIGIU AKRWK ANKPU SJYHP AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ABRTQ ACLOT ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION EFKBS ~HD 4A8 93N AFXIZ AGCQF AGRNS PSX SSH |
| ID | FETCH-LOGICAL-c420t-953730fb91fdfe38ecb2c6bbc7c7235c3e7b5dda80e982cd8d7039885e92ca123 |
| IEDL.DBID | .~1 |
| ISSN | 1001-6058 |
| IngestDate | Thu May 29 04:08:10 EDT 2025 Wed Oct 01 03:07:56 EDT 2025 Thu Apr 24 22:54:25 EDT 2025 Fri Feb 21 02:30:55 EST 2025 Fri Feb 23 02:34:37 EST 2024 Wed Feb 14 09:57:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Cavitating flow uncertainty verification and validation (V&V) cavitation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c420t-953730fb91fdfe38ecb2c6bbc7c7235c3e7b5dda80e982cd8d7039885e92ca123 |
| Notes | In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y hydrofoil. The main focus is on the feasibility of various Richardson extrapolation-based uncertainty estimators in the cavitating flow simulation. The unsteady cavitating flow is simulated by a density corrected model(DCM) coupled with the Zwart cavitation model. The estimated uncertainty is used to evaluate the applicability of various uncertainty estimation methods for the cavitating flow simulation. It is shown that the preferred uncertainty estimators include the modified Factor of Safety(FS1), the Factor of Safety(FS) and the Grid Convergence Index(GCI). The distribution of the area without achieving the validation at the U v level shows a strong relationship with the cavitation. Further analysis indicates that the predicted velocity distributions, the transient cavitation patterns and the effects of the vortex stretching are highly influenced by the mesh resolution. 31-1563/T Cavitating flow cavitation verification and validation(V&V) uncertainty Yun Long1,2,3, Xin-ping Long 1,2, Bin Ji1,2,3, Wen-xin Huai 1, Zhong-dong Qian 1( 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China; 2. Hubei Key Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China; 3. Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China) |
| PageCount | 11 |
| ParticipantIDs | wanfang_journals_sdlxyjyjz_e201704009 crossref_citationtrail_10_1016_S1001_6058_16_60774_6 crossref_primary_10_1016_S1001_6058_16_60774_6 springer_journals_10_1016_S1001_6058_16_60774_6 elsevier_sciencedirect_doi_10_1016_S1001_6058_16_60774_6 chongqing_primary_673042488 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Journal of hydrodynamics. Series B |
| PublicationTitleAbbrev | J Hydrodyn |
| PublicationTitleAlternate | Journal of Hydrodynamics |
| PublicationTitle_FL | Journal of Hydrodynamics |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Springer Singapore State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China,%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China |
| Publisher_xml | – name: Elsevier Ltd – name: Springer Singapore – name: HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China – name: HubeiKey Laboratory of Waterjet Theory and New Technology, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China – name: Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China,%State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China – name: State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 China |
| References | Huang, Young, Wang (bib16) 2013; 135 Wang, Wu, Huang (bib9) 2016; 85 Dreyer, Decaix, Münch-Alligné (bib10) 2014; 55 Ji, Long, Long (bib18) 2017; 29 Luo, Ji, Tsujimoto (bib1) 2016; 28 Ji, Luo, Peng (bib6) 2013; 25 Xing, Stern (bib28) 2010; 132 Chen, Wang, Hu (bib37) 2015; 72 Stern, Wilson, Shao (bib39) 2010; 50 Roohi, Zahiri, Passandideh-Fard (bib19) 2013; 37 Pendar, Roohi (bib13) 2016; 112 Huang, Wang, Zhao (bib34) 2014; 26 Roache (bib21) 1998 Pham, Larrarte, Fruman (bib5) 1999; 121 Stern, Wilson, Coleman (bib26) 2001; 123 Klein (bib31) 2005; 75 Coutier-Delgosha, Fortes-Patella, Reboud (bib35) 2003; 125 Ji, Luo, Arndt (bib36) 2014; 87 Logan, Nitta (bib23) 2006; 3 Xing (bib33) 2015; 27 Ji, Luo, Arndt (bib11) 2015; 68 Xing, Stern (bib30) 2011; 133 Arndt (bib8) 1981; 13 Decaix, Goncalvès (bib14) 2013; 44 Kravtsova, Markovich, Pervunin (bib4) 2014; 60 Roache (bib24) 2011; 133 Wilson, Shao, Stern (bib27) 2004; 126 Peng, Ji, Cao (bib12) 2016; 79 Zwart P. J., Gerber A. G., Belamri T. A two-phase flow model for predicting cavitation dynamics[C]. Las Vegas, USA, 2017. Eça, Hoekstra (bib41) 2008; 18 Freitag, Klein (bib32) 2006; 7 De Luca, Mancini, Miranda (bib40) 2016; 60 Park, Rhee (bib3) 2015; 29 Luo, Ji, Peng (bib20) 2012; 134 Stern, Yang, Wang (bib29) 2013; 60 Gopalan, Katz (bib2) 2000; 12 Dutta R., Xing T. Quantitative solution verification of large eddy simulation of channel flow [C]. Wang, Senocak, Shyy (bib7) 2001; 37 Phillips, Roy (bib25) 2014; 136 Yokohama, Japan. 2004. Yu, Huang, Du (bib17) 2014; 136 Cheng, Long, Ji (bib15) 2016; 28 Oberkampf, Roy (bib22) 2010 Chen, Wang, Hu (CR37) 2015; 72 Phillips, Roy (CR25) 2014; 136 Klein (CR31) 2005; 75 Huang, Wang, Zhao (CR34) 2014; 26 Stern, Yang, Wang (CR29) 2013; 601–4 Xing (CR33) 2015; 27 Stern, Wilson, Coleman (CR26) 2001; 123 Freitag, Klein (CR32) 2006; 7 Yu, Huang, Du (CR17) 2014; 136 Gopalan, Katz (CR2) 2000; 12 Ji, Long, Long (CR18) 2017; 29 Xing, Stern (CR28) 2010; 132 Kravtsova, Markovich, Pervunin (CR4) 2014; 60 Decaix, Goncalvès (CR14) 2013; 44 Ji, Luo, Arndt (CR36) 2014; 87 Zwart, Gerber, Belamri (CR38) 2004 Stern, Wilson, Shao (CR39) 2010; 50 De Luca, Mancini, Miranda (CR40) 2016; 60 Pham, Larrarte, Fruman (CR5) 1999; 121 Huang, Young, Wang (CR16) 2013; 135 Pendar, Roohi (CR13) 2016; 112 Wang, Senocak, Shyy (CR7) 2001; 37 Dreyer, Decaix, Münch-Alligné (CR10) 2014; 55 Cheng, Long, Ji (CR15) 2016; 28 Luo, Ji, Tsujimoto (CR1) 2016; 28 Ji, Luo, Arndt (CR11) 2015; 68 Arndt (CR8) 1981; 13 Roohi, Zahiri, Passandideh-Fard (CR19) 2013; 37 Park, Rhee (CR3) 2015; 29 Luo, Ji, Peng (CR20) 2012; 134 (CR27) 2004; 126 Ji, Luo, Peng (CR6) 2013; 25 Coutier-Delgosha, Fortes-Patella, Reboud (CR35) 2003; 125 Logan, Nitta (CR23) 2006; 3 Roache (CR21) 1998 Dutta, Xing (CR42) 2017 Oberkampf, Roy (CR22) 2010 Wang, Wu, Huang (CR9) 2016; 85 Roache (CR24) 2011; 133 Xing, Stern (CR30) 2011; 133 Eça, Hoekstra (CR41) 2008; 18 Peng, Ji, Cao (CR12) 2016; 79 T Xing (2905610_CR28) 2010; 132 X X Peng (2905610_CR12) 2016; 79 W L Oberkampf (2905610_CR22) 2010 M Freitag (2905610_CR32) 2006; 7 S Park (2905610_CR3) 2015; 29 O Coutier-Delgosha (2905610_CR35) 2003; 125 X X Yu (2905610_CR17) 2014; 136 T Xing (2905610_CR33) 2015; 27 E Roohi (2905610_CR19) 2013; 37 (2905610_CR27) 2004; 126 R W Logan (2905610_CR23) 2006; 3 T Xing (2905610_CR30) 2011; 133 P J Roache (2905610_CR21) 1998 A Y Kravtsova (2905610_CR4) 2014; 60 B Ji (2905610_CR11) 2015; 68 J Decaix (2905610_CR14) 2013; 44 T M Pham (2905610_CR5) 1999; 121 H Y Cheng (2905610_CR15) 2016; 28 B Huang (2905610_CR16) 2013; 135 F Stern (2905610_CR29) 2013; 601–4 X W Luo (2905610_CR20) 2012; 134 P J Zwart (2905610_CR38) 2004 F Luca De (2905610_CR40) 2016; 60 F Stern (2905610_CR39) 2010; 50 S Gopalan (2905610_CR2) 2000; 12 T S Phillips (2905610_CR25) 2014; 136 M R Pendar (2905610_CR13) 2016; 112 Y W Wang (2905610_CR9) 2016; 85 G Chen (2905610_CR37) 2015; 72 G Wang (2905610_CR7) 2001; 37 B Huang (2905610_CR34) 2014; 26 L Eça (2905610_CR41) 2008; 18 B Ji (2905610_CR18) 2017; 29 M Klein (2905610_CR31) 2005; 75 B Ji (2905610_CR36) 2014; 87 R Dutta (2905610_CR42) 2017 X W Luo (2905610_CR1) 2016; 28 R E A Arndt (2905610_CR8) 1981; 13 F Stern (2905610_CR26) 2001; 123 B Ji (2905610_CR6) 2013; 25 P J Roache (2905610_CR24) 2011; 133 M Dreyer (2905610_CR10) 2014; 55 |
| References_xml | – year: 2010 ident: bib22 publication-title: Verification and validation in scientific computing [M] – volume: 79 start-page: 10 year: 2016 end-page: 22 ident: bib12 article-title: Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils [J] publication-title: International Journal of Multiphase Flow – volume: 25 start-page: 510 year: 2013 end-page: 519 ident: bib6 article-title: Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil [J] publication-title: Journal of Hydrodynamics – volume: 126 start-page: 704 year: 2004 end-page: 706 ident: bib27 article-title: Discussion: criticisms of the “correction factor” verification method 1[J] publication-title: Journal of Fluids Engineering – volume: 72 start-page: 133 year: 2015 end-page: 140 ident: bib37 article-title: Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent–divergent channel [J] publication-title: International Journal of Multiphase Flow – volume: 44 start-page: 576 year: 2013 end-page: 595 ident: bib14 article-title: Investigation of three-dimensional effects on a cavitating Venturi flow [J] publication-title: International Journal of Heat and Fluid Flow – year: 1998 ident: bib21 publication-title: Verification and validation in computational science and engineering [M] – volume: 37 start-page: 551 year: 2001 end-page: 581 ident: bib7 article-title: Dynamics of attached turbulent cavitating flows [J] publication-title: Progress in Aerospace Sciences – volume: 68 start-page: 121 year: 2015 end-page: 134 ident: bib11 article-title: Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J] publication-title: International Journal of Multiphase Flow – volume: 112 start-page: 287 year: 2016 end-page: 306 ident: bib13 article-title: Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models [J] publication-title: Ocean Engineering – volume: 29 start-page: 3287 year: 2015 end-page: 3296 ident: bib3 article-title: Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics [J] publication-title: Journal of Mechanical Science and Technology – volume: 135 start-page: 071301 year: 2013 ident: bib16 article-title: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation [J] publication-title: Journal of Fluids Engineering – volume: 60 start-page: 101 year: 2016 end-page: 118 ident: bib40 article-title: An Extended verification and validation study of CFD simulations for planing hulls [J] publication-title: Journal of Ship Research – volume: 28 start-page: 335 year: 2016 end-page: 358 ident: bib1 article-title: A review of cavitation in hydraulic machinery [J] publication-title: Journal of Hydrodynamics – volume: 3 start-page: 354 year: 2006 end-page: 373 ident: bib23 article-title: Comparing 10 methods for solution verification, and linking to model validation [J] publication-title: Journal of Aerospace Computing, Information, and Communication – volume: 50 start-page: 1335 year: 2010 end-page: 1355 ident: bib39 article-title: Quantitative V&V of CFD simulations and certification of CFD codes [J] publication-title: International Journal for Numerical Methods in Fluids – volume: 37 start-page: 6469 year: 2013 end-page: 6488 ident: bib19 article-title: Numerical simulation of cavitation around a two-dimensional hydro-foil using VOF method and LES turbulence model [J] publication-title: Applied Mathematical Modelling – volume: 125 start-page: 38 year: 2003 end-page: 45 ident: bib35 article-title: Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation [J] publication-title: Journal of Fluids Engineering – volume: 132 start-page: 061403 year: 2010 ident: bib28 article-title: Factors of safety for Richardson extrapolation [J] publication-title: Journal of Fluids Engineering – volume: 121 start-page: 289 year: 1999 end-page: 296 ident: bib5 article-title: Investigation of un steady sheet cavitation and cloud cavitation mechanisms [J] publication-title: Journal of Fluids Engineering – volume: 136 start-page: 051303 year: 2014 ident: bib17 article-title: Study of characteristics of cloud cavity around axisymmetric projectile by large eddy simulation [J] publication-title: Journal of Fluids Engineering – reference: . Las Vegas, USA, 2017. – volume: 123 start-page: 792 year: 2001 ident: bib26 article-title: Comprehensive approach to verification and validation of CFD Simulations–Part I: Methodology and procedures [J] publication-title: Journal of Fluids Engineering – volume: 12 start-page: 895 year: 2000 end-page: 911 ident: bib2 article-title: Flow structure and modeling issues in the closure region of attached cavitation [J] publication-title: Physics of Fluids – volume: 136 start-page: 121401 year: 2014 ident: bib25 article-title: Richardson extrapolation-based discretization uncertainty estimation for computational fluid dynamics [J] publication-title: Journal of Fluids Engineering – volume: 18 start-page: 120 year: 2008 end-page: 126 ident: bib41 article-title: Code verification of unsteady flow solvers with method of manufactured solutions [J] publication-title: International Journal of Offshore and Polar Engineering – volume: 29 start-page: 27 year: 2017 end-page: 39 ident: bib18 article-title: Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions [J] publication-title: Journal of Hydrodynamics – volume: 26 start-page: 26 year: 2014 end-page: 36 ident: bib34 article-title: Numerical simulation un-steady cloud cavitating flow with a filter-based density correction model [J] publication-title: Journal of Hydrodynamics – reference: . Yokohama, Japan. 2004. – volume: 27 start-page: 163 year: 2015 end-page: 175 ident: bib33 article-title: A general framework for verification and validation of large eddy simulations [J] publication-title: Journal of Hydrodynamics – volume: 87 start-page: 64 year: 2014 end-page: 77 ident: bib36 article-title: Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction [J] publication-title: Ocean Engineering – reference: Zwart P. J., Gerber A. G., Belamri T. A two-phase flow model for predicting cavitation dynamics[C]. – volume: 133 start-page: 115501 year: 2011 ident: bib24 article-title: Discussion: “Factors of Safety for Richardson Extrapolation” (Xing, T., and Stern, F., 2010, ASME J. Fluids Eng., 132, p. 061403) [J] publication-title: Journal of Fluids Engineering – volume: 60 start-page: 3 year: 2013 end-page: 105 ident: bib29 article-title: Computational ship hydrodynamics: nowadays and way forward [J] publication-title: International Shipbuilding Progress – volume: 55 start-page: 1 year: 2014 end-page: 13 ident: bib10 article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV [J] publication-title: Experiments in Fluids – volume: 13 start-page: 273 year: 1981 end-page: 326 ident: bib8 article-title: Cavitation in fluid machinery and hydraulic structures [J] publication-title: Annual Review of Fluid Mechanics – reference: Dutta R., Xing T. Quantitative solution verification of large eddy simulation of channel flow [C]. – volume: 85 start-page: 48 year: 2016 end-page: 56 ident: bib9 article-title: Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile [J] publication-title: International Journal of Multiphase Flow – volume: 75 start-page: 131 year: 2005 end-page: 147 ident: bib31 article-title: An attempt to assess the quality of large eddy simulations in the context of implicit filtering [J] publication-title: Flow, Turbulence and Combustion – volume: 133 start-page: 115502 year: 2011 ident: bib30 article-title: Closure to “discussion of ‘factors of safety for Richardson Extrapolation’” (2011, ASME J. Fluids Eng., 133, p. 115501) [J] publication-title: Journal of Fluids Engineering – volume: 60 start-page: 119 year: 2014 end-page: 134 ident: bib4 article-title: High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil [J] publication-title: International Journal of Multiphase Flow – volume: 134 start-page: 379 year: 2012 end-page: 389 ident: bib20 article-title: Numerical simulation of cavity shedding from a three-dimensional twisted hydro-foil and induced pressure fluctuation by large-eddy simulation [J] publication-title: Journal of Fluids Engineering – volume: 7 start-page: 1 year: 2006 end-page: 11 ident: bib32 article-title: An improved method to assess the quality of large eddy simulations in the context of implicit filtering [J] publication-title: Journal of Turbulence – volume: 28 start-page: 709 year: 2016 end-page: 712 ident: bib15 article-title: Numerical investigation of unsteady cavitating turbulent flows around twisted hydrofoil from the Lagrangian viewpoint [J] publication-title: Journal of Hydrodynamics – volume: 29 start-page: 3287 issue: 8 year: 2015 end-page: 3296 ident: CR3 article-title: Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics [J] publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-015-0727-4 – volume: 55 start-page: 1 issue: 11 year: 2014 end-page: 13 ident: CR10 article-title: Mind the gap: a new insight into the tip leakage vortex using stereo-PIV [J] publication-title: Experiments in Fluids doi: 10.1007/s00348-014-1849-7 – volume: 87 start-page: 64 year: 2014 end-page: 77 ident: CR36 article-title: Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction [J] publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2014.05.005 – year: 2010 ident: CR22 publication-title: Verification and validation in scientific computing [M] doi: 10.1017/CBO9780511760396 – volume: 112 start-page: 287 year: 2016 end-page: 306 ident: CR13 article-title: Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models [J] publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2015.12.010 – volume: 27 start-page: 163 issue: 2 year: 2015 end-page: 175 ident: CR33 article-title: A general framework for verification and validation of large eddy simulations [J] publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(15)60469-3 – year: 2017 ident: CR42 article-title: Quantitative solution verification of large eddy simulation of channel flow [C] publication-title: Proceedings of the 2nd Thermal and Fluid Engineering Conference and 4th International Workshop on Heat Transfer – volume: 121 start-page: 289 issue: 2 year: 1999 end-page: 296 ident: CR5 article-title: Investigation of unsteady sheet cavitation and cloud cavitation mechanisms [J] publication-title: Journal of Fluids Engineering doi: 10.1115/1.2822206 – volume: 133 start-page: 115501 issue: 11 year: 2011 ident: CR24 article-title: Discussion: “Factors of Safety for Richardson Extrapolation” (Xing, T., and Stern, F., 2010, Asme J. Fluids Eng., 132, p. 061403) [J] publication-title: Journal of Fluids Engineering doi: 10.1115/1.4005029 – volume: 12 start-page: 895 issue: 4 year: 2000 end-page: 911 ident: CR2 article-title: Flow structure and modeling issues in the closure region of attached cavitation [J] publication-title: Physics of Fluids doi: 10.1063/1.870344 – volume: 126 issue: 4 year: 2004 ident: CR27 publication-title: Journal of Fluids Engineering – volume: 18 start-page: 120 issue: 2 year: 2008 end-page: 126 ident: CR41 article-title: Code verification of unsteady flow solvers with method of manufactured solutions [J] publication-title: International Journal of Offshore and Polar Engineering – volume: 79 start-page: 10 issue: 2 year: 2016 end-page: 22 ident: CR12 article-title: Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils [J] publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2015.10.006 – volume: 75 start-page: 131 issue: 1–4 year: 2005 end-page: 147 ident: CR31 article-title: An attempt to assess the quality of large eddy simulations in the context of implicit filtering [J] publication-title: Flow, Turbulence and Combustion doi: 10.1007/s10494-005-8581-6 – volume: 13 start-page: 273 issue: 1 year: 1981 end-page: 326 ident: CR8 article-title: Cavitation in fluid machinery and hydraulic structures [J] publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fl.13.010181.001421 – volume: 133 start-page: 115502 issue: 11 year: 2011 ident: CR30 article-title: Closure to “discussion of ‘factors of safety for Richardson Extrapolation’” (2011, Asme J. Fluids Eng., 133, p. 115501) [J] publication-title: Journal of Fluids Engineering doi: 10.1115/1.4005030 – volume: 68 start-page: 121 issue: 1 year: 2015 end-page: 134 ident: CR11 article-title: Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J] publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2014.10.008 – year: 1998 ident: CR21 publication-title: Verification and validation in computational science and engineering [M] – volume: 132 start-page: 061403 issue: 6 year: 2010 ident: CR28 article-title: Factors of safety for Richardson extrapolation [J] publication-title: Journal of Fluids Engineering doi: 10.1115/1.4001771 – volume: 125 start-page: 38 issue: 1 year: 2003 end-page: 45 ident: CR35 article-title: Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation [J] publication-title: Journal of Fluids Engineering doi: 10.1115/1.1524584 – volume: 135 start-page: 071301 issue: 7 year: 2013 ident: CR16 article-title: Combined experi-mental and computational investigation of unsteady structure of sheet/cloud cavitation [J] publication-title: Journal of Fluids Engineering doi: 10.1115/1.4023650 – volume: 136 start-page: 121401 issue: 12 year: 2014 ident: CR25 article-title: Richardson extrapolation-based discretization uncertainty estimation for computational fluid dynamics [J] publication-title: Journal of Fluids Engineering doi: 10.1115/1.4027353 – volume: 123 start-page: 792 issue: 4 year: 2001 ident: CR26 article-title: Comprehensive approach to verification and validation of Cfd Simulations–Part I: Methodology and procedures [J] publication-title: Journal of Fluids Engineering doi: 10.1115/1.1412235 – volume: 50 start-page: 1335 issue: 11 year: 2010 end-page: 1355 ident: CR39 article-title: Quantitative V&V of CFD simulations and certification of Cfd codes [J] publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.1090 – volume: 72 start-page: 133 issue: 5 year: 2015 end-page: 140 ident: CR37 article-title: Combined experimental and computational investigation of cavitation evolution and excited pressure fluctuation in a convergent–divergent channel [J] publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2015.02.007 – volume: 3 start-page: 354 issue: 7 year: 2006 end-page: 373 ident: CR23 article-title: Comparing 10 methods for solu-tion verification, and linking to model validation [J] publication-title: Journal of Aerospace Computing, Information, and Communication doi: 10.2514/1.20800 – volume: 60 start-page: 101 issue: 2 year: 2016 end-page: 118 ident: CR40 article-title: An Extended verification and validation study of CFD simulations for planing hulls [J] publication-title: Journal of Ship Research doi: 10.5957/JOSR.60.2.160010 – volume: 37 start-page: 6469 issue: 9 year: 2013 end-page: 6488 ident: CR19 article-title: Numerical simulation of cavitation around a two-dimensional hydrofoil using Vof method and Les turbulence model [J] publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2012.09.002 – year: 2004 ident: CR38 article-title: A two-phase flow model for predicting cavitation dynamics[C] publication-title: Fifth International Conference on Multiphase Flow – volume: 601–4 start-page: 3 year: 2013 end-page: 105 ident: CR29 article-title: Computational ship hydrodynamics: nowadays and way forward [J] publication-title: International Shipbuilding Progress – volume: 28 start-page: 335 issue: 3 year: 2016 end-page: 358 ident: CR1 article-title: A review of cavitation in hydraulic machinery [J] publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(16)60638-8 – volume: 28 start-page: 709 issue: 4 year: 2016 end-page: 712 ident: CR15 article-title: Numerical investigation of unsteady cavitating turbulent flows around twisted hydrofoil from the Lagrangian viewpoint [J] publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(16)60674-1 – volume: 29 start-page: 27 issue: 1 year: 2017 end-page: 39 ident: CR18 article-title: Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions [J] publication-title: Journal of Hydrodyna-mics doi: 10.1016/S1001-6058(16)60715-1 – volume: 85 start-page: 48 issue: 8 year: 2016 end-page: 56 ident: CR9 article-title: Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile [J] publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2016.05.013 – volume: 25 start-page: 510 issue: 4 year: 2013 end-page: 519 ident: CR6 article-title: Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil [J] publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(11)60390-X – volume: 60 start-page: 119 issue: 3 year: 2014 end-page: 134 ident: CR4 article-title: High-speed visualization and Piv measurements of cavitating flows around a semi-circular leading-edge flat plate and Naca0015 hydrofoil [J] publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2013.12.004 – volume: 134 start-page: 379 issue: 4 year: 2012 end-page: 389 ident: CR20 article-title: Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation [J] publication-title: Journal of Fluids Engineering doi: 10.1115/1.4006416 – volume: 37 start-page: 551 issue: 6 year: 2001 end-page: 581 ident: CR7 article-title: Dynamics of attached turbulent cavitating flows [J] publication-title: Progress in Aerospace Sciences doi: 10.1016/S0376-0421(01)00014-8 – volume: 7 start-page: 1 year: 2006 end-page: 11 ident: CR32 article-title: An improved method to assess the quality of large eddy simulations in the context of implicit filtering [J] publication-title: Journal of Turbulence doi: 10.1080/14685240600726710 – volume: 44 start-page: 576 issue: 4 year: 2013 end-page: 595 ident: CR14 article-title: Investigation of three-dimensional effects on a cavitating Venturi flow [J] publication-title: International Journal of Heat and Fluid Flow doi: 10.1016/j.ijheatfluidflow.2013.08.013 – volume: 136 start-page: 051303 issue: 5 year: 2014 ident: CR17 article-title: Study of charac-teristics of cloud cavity around axisymmetric projectile by large eddy simulation [J] publication-title: Journal of Fluids Engineering doi: 10.1115/1.4026583 – volume: 26 start-page: 26 issue: 1 year: 2014 end-page: 36 ident: CR34 article-title: Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model [J] publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(14)60004-4 – volume: 79 start-page: 10 issue: 2 year: 2016 ident: 2905610_CR12 publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2015.10.006 – volume: 112 start-page: 287 year: 2016 ident: 2905610_CR13 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2015.12.010 – volume: 134 start-page: 379 issue: 4 year: 2012 ident: 2905610_CR20 publication-title: Journal of Fluids Engineering doi: 10.1115/1.4006416 – volume-title: Verification and validation in scientific computing [M] year: 2010 ident: 2905610_CR22 doi: 10.1017/CBO9780511760396 – volume: 85 start-page: 48 issue: 8 year: 2016 ident: 2905610_CR9 publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2016.05.013 – volume-title: Proceedings of the 2nd Thermal and Fluid Engineering Conference and 4th International Workshop on Heat Transfer year: 2017 ident: 2905610_CR42 – volume: 68 start-page: 121 issue: 1 year: 2015 ident: 2905610_CR11 publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2014.10.008 – volume: 55 start-page: 1 issue: 11 year: 2014 ident: 2905610_CR10 publication-title: Experiments in Fluids doi: 10.1007/s00348-014-1849-7 – volume: 13 start-page: 273 issue: 1 year: 1981 ident: 2905610_CR8 publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fl.13.010181.001421 – volume: 133 start-page: 115501 issue: 11 year: 2011 ident: 2905610_CR24 publication-title: Journal of Fluids Engineering doi: 10.1115/1.4005029 – volume: 60 start-page: 101 issue: 2 year: 2016 ident: 2905610_CR40 publication-title: Journal of Ship Research doi: 10.5957/JOSR.60.2.160010 – volume: 121 start-page: 289 issue: 2 year: 1999 ident: 2905610_CR5 publication-title: Journal of Fluids Engineering doi: 10.1115/1.2822206 – volume: 37 start-page: 6469 issue: 9 year: 2013 ident: 2905610_CR19 publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2012.09.002 – volume: 126 issue: 4 year: 2004 ident: 2905610_CR27 publication-title: Journal of Fluids Engineering – volume: 7 start-page: 1 year: 2006 ident: 2905610_CR32 publication-title: Journal of Turbulence doi: 10.1080/14685240600726710 – volume: 72 start-page: 133 issue: 5 year: 2015 ident: 2905610_CR37 publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2015.02.007 – volume-title: Verification and validation in computational science and engineering [M] year: 1998 ident: 2905610_CR21 – volume: 133 start-page: 115502 issue: 11 year: 2011 ident: 2905610_CR30 publication-title: Journal of Fluids Engineering doi: 10.1115/1.4005030 – volume: 3 start-page: 354 issue: 7 year: 2006 ident: 2905610_CR23 publication-title: Journal of Aerospace Computing, Information, and Communication doi: 10.2514/1.20800 – volume: 136 start-page: 121401 issue: 12 year: 2014 ident: 2905610_CR25 publication-title: Journal of Fluids Engineering doi: 10.1115/1.4027353 – volume: 75 start-page: 131 issue: 1–4 year: 2005 ident: 2905610_CR31 publication-title: Flow, Turbulence and Combustion doi: 10.1007/s10494-005-8581-6 – volume: 28 start-page: 335 issue: 3 year: 2016 ident: 2905610_CR1 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(16)60638-8 – volume: 28 start-page: 709 issue: 4 year: 2016 ident: 2905610_CR15 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(16)60674-1 – volume: 44 start-page: 576 issue: 4 year: 2013 ident: 2905610_CR14 publication-title: International Journal of Heat and Fluid Flow doi: 10.1016/j.ijheatfluidflow.2013.08.013 – volume: 132 start-page: 061403 issue: 6 year: 2010 ident: 2905610_CR28 publication-title: Journal of Fluids Engineering doi: 10.1115/1.4001771 – volume: 29 start-page: 3287 issue: 8 year: 2015 ident: 2905610_CR3 publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-015-0727-4 – volume: 12 start-page: 895 issue: 4 year: 2000 ident: 2905610_CR2 publication-title: Physics of Fluids doi: 10.1063/1.870344 – volume: 27 start-page: 163 issue: 2 year: 2015 ident: 2905610_CR33 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(15)60469-3 – volume: 135 start-page: 071301 issue: 7 year: 2013 ident: 2905610_CR16 publication-title: Journal of Fluids Engineering doi: 10.1115/1.4023650 – volume: 125 start-page: 38 issue: 1 year: 2003 ident: 2905610_CR35 publication-title: Journal of Fluids Engineering doi: 10.1115/1.1524584 – volume: 123 start-page: 792 issue: 4 year: 2001 ident: 2905610_CR26 publication-title: Journal of Fluids Engineering doi: 10.1115/1.1412235 – volume: 136 start-page: 051303 issue: 5 year: 2014 ident: 2905610_CR17 publication-title: Journal of Fluids Engineering doi: 10.1115/1.4026583 – volume: 25 start-page: 510 issue: 4 year: 2013 ident: 2905610_CR6 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(11)60390-X – volume-title: Fifth International Conference on Multiphase Flow year: 2004 ident: 2905610_CR38 – volume: 26 start-page: 26 issue: 1 year: 2014 ident: 2905610_CR34 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(14)60004-4 – volume: 601–4 start-page: 3 year: 2013 ident: 2905610_CR29 publication-title: International Shipbuilding Progress – volume: 60 start-page: 119 issue: 3 year: 2014 ident: 2905610_CR4 publication-title: International Journal of Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2013.12.004 – volume: 37 start-page: 551 issue: 6 year: 2001 ident: 2905610_CR7 publication-title: Progress in Aerospace Sciences doi: 10.1016/S0376-0421(01)00014-8 – volume: 87 start-page: 64 year: 2014 ident: 2905610_CR36 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2014.05.005 – volume: 29 start-page: 27 issue: 1 year: 2017 ident: 2905610_CR18 publication-title: Journal of Hydrodyna-mics doi: 10.1016/S1001-6058(16)60715-1 – volume: 18 start-page: 120 issue: 2 year: 2008 ident: 2905610_CR41 publication-title: International Journal of Offshore and Polar Engineering – volume: 50 start-page: 1335 issue: 11 year: 2010 ident: 2905610_CR39 publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.1090 |
| SSID | ssj0036904 ssib060475366 |
| Score | 2.446783 |
| Snippet | In this paper, we investigate the verification and validation(V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y... In this paper, we investigate the verification and validation (V&V) procedures for the URANS simulations of the turbulent cavitating flow around a Clark-Y... In this paper, we investigate the verification and validation (V&V) procedures for the Urans simulations of the turbulent cavitating flow around a Clark-Y... |
| SourceID | wanfang crossref springer elsevier chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 610 |
| SubjectTerms | Cavitating flow cavitation Engineering Engineering Fluid Dynamics Hydrology/Water Resources Numerical and Computational Physics Simulation uncertainty verification and validation (V&V) 不确定性 估计方法 模拟验证 水翼 流动模拟 湍流流场 空化模型 空泡流 |
| Title | Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil |
| URI | http://lib.cqvip.com/qk/86648X/201704/673042488.html https://dx.doi.org/10.1016/S1001-6058(16)60774-6 https://link.springer.com/article/10.1016/S1001-6058(16)60774-6 https://d.wanfangdata.com.cn/periodical/sdlxyjyjz-e201704009 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1878-0342 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: ADMLS dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-0342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1878-0342 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: ACRLP dateStart: 20060401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1878-0342 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: AIKHN dateStart: 20060401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1878-0342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: .~1 dateStart: 0 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-0342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: AKRWK dateStart: 20060401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1878-0342 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: AFBBN dateStart: 20060201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Lb9Mw2JrGBQ6Ipygbkw8gwSFrHk7jHKuJqVDRw0ZhN8vPLlNJxtoNyoHfzvc5TjYOqBKnJJY_y_L3dL4XIa9lXCimWRlpzeKIMVdG0mRlhLRlcpWAksNs5E-z0WTOPp7lZzvkqMuFwbDKIPtbme6ldRgZhtMcXlbV8DTxPZJzdHzFYMRg2W3GCuxicPi7D_PI4PbnPcsYOoSzb7N42hX84Ntk9M4vEvkaC-dNvfgOmuNfuqr3mfpMn9rJenFHKR0_Ig-DNUnH7YYfkx1bPyEP7tQYfErcF3hx4c8clbWhQFtV20mJNo7OT8azU7qqvoU-XiscBKuQgi5S16iTqJY3vpJ3vaBu2fyg8gp7MflJ5xsDgrypls_I_Pj956NJFJorRJql8RrdtsDcTpWJM85m3GqV6pFSutBFmuU6s4XKjZE8tiVPteEGZEPJeW7LVEvQd8_Jbt3U9gWhudPS363iUjFjE0A2XFSAn60EY5GZAdnrj1RctkU0MJ4Mva6cDwjrDlnoUJcc22MsRR-AhngSiCcBXx5PYjQghz1Yt-YWAN5hUPxFYQKUxzbQYYdxEVh8tQ3iTSCMW4CVWf7cXGwufgmbYtUikJ7ly__f1B65j8u0wYj7ZHd9dW1fgYG0VgeeAw7IvfGH6WSGz-nJ1-kfwn0JtQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1LT9RAeIJ4UA8EX2FFdA6a6KFsH9N25kiIZFXYg7CG22SeS8naIrug64HfzjfTacGD2cRbO5nvSzPfc_q9EHon4lISRVikFIkjQiyLhM5Y5HhL5zIBI-eqkY_GxWhCvpzmp2tov6uFcWmVQfe3Ot1r67AyDKc5vKiq4XHiZyTnLvAVgxNTPEAPSZ6W7ga2e9PneWRw_fOhZZc75LbflfG0KPzih6T46LFEvsnCWVNPf4Lp-Jex6oOmvtSntqKe3rNKB5toI7iTeK_94qdozdTP0JN7TQafI_sdHmz4NYdFrTEwV9WOUsKNxZNve-NjPK9-hEFec7cIbiEGYySvnFHCSlz7Vt71FNtZ8wuLSzeMyW86W2rQ5E01e4EmB59O9kdRmK4QKZLGCxe3Bem2kiVWW5NRo2SqCilVqco0y1VmSplrLWhsGE2VphqUA6M0NyxVAgzeS7ReN7XZQji3SvjLVcwk0SYBasNNBQTaCPAWiR6g7f5I-UXbRcMllLmwK6UDRLpD5io0JnfzMWa8z0BzdOKOThzePJ14MUC7PViHcwUA7SjI_2IxDtZjFeiwozgPMj5fBfE-MMYdwFzPfi_Pl-d_uEld2yJQn-zV_3_UW_RodHJ0yA8_j79uo8cOZZuZ-BqtLy6vzA54Swv5xkvDLYV6Cac |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Verification+and+validation+of+URANS+simulations+of+the+turbulent+cavitating+flow+around+the+hydrofoil&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=Long%2C+Yun&rft.au=Long%2C+Xin-ping&rft.au=Ji%2C+Bin&rft.au=Huai%2C+Wen-xin&rft.date=2017-08-01&rft.pub=Elsevier+Ltd&rft.issn=1001-6058&rft.volume=29&rft.issue=4&rft.spage=610&rft.epage=620&rft_id=info:doi/10.1016%2FS1001-6058%2816%2960774-6&rft.externalDocID=S1001605816607746 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86648X%2F86648X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fsdlxyjyjz-e%2Fsdlxyjyjz-e.jpg |