Bayesian approach to segmentation of statistical parametric maps
A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated bra...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 48; no. 10; pp. 1186 - 1194 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.10.2001
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 |
| DOI | 10.1109/10.951522 |
Cover
| Abstract | A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated brain voxels, and likelihoods given by statistical parametric maps (SPM's) are directly used to find the maximum a posteriori (MAP) estimation of segmentation. The iterative segmentation algorithm, which is based on a simulated annealing scheme, is fully data-driven and capable of analyzing experiments involving multiple-input stimuli. Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks. The experiments show that an MRF Is a valid representation of the activation patterns obtained in functional brain images, and the present technique renders a superior segmentation scheme to the context-free approach and the SPM approach. |
|---|---|
| AbstractList | A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated brain voxels, and likelihoods given by statistical parametric maps (SPM's) are directly used to find the maximum a posteriori (MAP) estimation of segmentation. The iterative segmentation algorithm, which is based on a simulated annealing scheme, is fully data-driven and capable of analyzing experiments involving multiple-input stimuli. Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks. The experiments show that an MRF is a valid representation of the activation patterns obtained in functional brain images, and the present technique renders a superior segmentation scheme to the context-free approach and the SPM approach. A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated brain voxels, and likelihoods given by statistical parametric maps (SPM's) are directly used to find the maximum a posteriori (MAP) estimation of segmentation. The iterative segmentation algorithm, which is based on a simulated annealing scheme, is fully data-driven and capable of analyzing experiments involving multiple-input stimuli. Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks. The experiments show that an MRF is a valid representation of the activation patterns obtained in functional brain images, and the present technique renders a superior segmentation scheme to the context-free approach and the SPM approach.A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated brain voxels, and likelihoods given by statistical parametric maps (SPM's) are directly used to find the maximum a posteriori (MAP) estimation of segmentation. The iterative segmentation algorithm, which is based on a simulated annealing scheme, is fully data-driven and capable of analyzing experiments involving multiple-input stimuli. Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks. The experiments show that an MRF is a valid representation of the activation patterns obtained in functional brain images, and the present technique renders a superior segmentation scheme to the context-free approach and the SPM approach. Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks. A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated brain voxels, and likelihoods given by statistical parametric maps (SPM's) are directly used to find the maximum a posteriori (MAP) estimation of segmentation. The iterative segmentation algorithm, which is based on a simulated annealing scheme, is fully data-driven and capable of analyzing experiments involving multiple-input stimuli. Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks. The experiments show that an MRF Is a valid representation of the activation patterns obtained in functional brain images, and the present technique renders a superior segmentation scheme to the context-free approach and the SPM approach |
| Author | Rajapakse, J.C. Piyaratna, J. |
| Author_xml | – sequence: 1 givenname: J.C. surname: Rajapakse fullname: Rajapakse, J.C. email: asjagath@ntu.edu.sg organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore – sequence: 2 givenname: J. surname: Piyaratna fullname: Piyaratna, J. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14083094$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11585043$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0c1rFTEQAPAgLfb14-C1h7IIKj28NpOPTXJTi7aFghd7Xmazs5qyXyb7Dv3vzWNfLRTR0yTkN8lk5pDtDeNAjL0BfgHA3WWOToMW4hVbgdZ2LbSEPbbiHOzaCacO2GFKD3mrrCpfswMAbTVXcsU-fsZHSgGHAqcpjuh_FvNYJPrR0zDjHMahGNsibZdpDh67YsKIPc0x-KLHKR2z_Ra7RCe7eMTuv375fnWzvvt2fXv16W7tleDztgqBYDx3phFUNgqNb10pGy-trGv0jSaDTrS2JStl3Xht2pp8baAEb508Yh-We3OVvzaU5qoPyVPX4UDjJlXWWgBQSmT5_p_SCDDagvsvFBmV1ugM376AD-MmDvm7-VllhXXCZHS2Q5u6p6aaYugxPlZPvc7g3Q5gyo1sIw4-pGenuJXcqezOF-fjmFKk9pnwajvvbVzmne3lC-vDMrY5Yuj-mnG6ZAQi-nPz7vA3M2GyMw |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1002_sim_1723 crossref_primary_10_1007_s00521_007_0102_1 crossref_primary_10_1007_s00521_007_0103_0 crossref_primary_10_1109_MEMB_2006_1607674 crossref_primary_10_1186_1475_925X_3_13 crossref_primary_10_1016_j_media_2010_02_007 crossref_primary_10_1109_TMI_2006_875426 crossref_primary_10_1016_j_imavis_2006_03_001 crossref_primary_10_1109_TMI_2004_824234 crossref_primary_10_1109_TMI_2016_2520024 crossref_primary_10_1016_j_bspc_2008_06_003 crossref_primary_10_1016_j_neucom_2008_04_038 crossref_primary_10_1109_TMI_2003_815074 crossref_primary_10_1109_TMI_2008_915672 crossref_primary_10_1016_j_neucom_2005_06_021 crossref_primary_10_1109_TBME_2004_827532 crossref_primary_10_1109_TNN_2004_836795 crossref_primary_10_1214_07_AOAS157 crossref_primary_10_1007_s11042_014_2020_4 crossref_primary_10_1109_TMI_2003_809140 crossref_primary_10_1016_j_neuroimage_2007_06_003 crossref_primary_10_1109_ACCESS_2020_2994388 |
| Cites_doi | 10.1109/34.31443 10.1006/nimg.1995.1023 10.1002/(SICI)1097-0193(1998)6:4<283::AID-HBM7>3.0.CO;2-# 10.1126/science.220.4598.671 10.1523/JNEUROSCI.16-13-04207.1996 10.1109/42.563663 10.1097/00004728-199307000-00004 10.1109/42.746636 10.1097/00004728-199207000-00024 10.1006/nimg.1995.1017 10.1002/hbm.460020402 10.1097/00004647-199701000-00009 10.1073/pnas.89.12.5675 10.1016/S0006-3495(93)81441-3 10.1111/j.2517-6161.1974.tb00999.x 10.1002/mrm.1910300317 10.1038/jcbfm.1992.127 10.1109/42.750253 10.1111/j.2517-6161.1986.tb01412.x 10.1038/jcbfm.1991.122 10.2172/4390578 10.1109/TPAMI.1984.4767596 10.1006/nimg.1998.0372 10.1002/hbm.460010207 10.1006/nimg.2000.0604 10.1002/hbm.460010306 |
| ContentType | Journal Article |
| Copyright | 2002 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001 |
| Copyright_xml | – notice: 2002 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001 |
| DBID | RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/10.951522 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database Engineering Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 1194 |
| ExternalDocumentID | 2433236061 11585043 14083094 10_1109_10_951522 951522 |
| Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION IQODW RIG CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c420t-9292a17c097d2e6d4a7cf963dc383bbacd5e7a92f8fe833bdc57fbecb7161c893 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 |
| IngestDate | Tue Oct 07 09:11:28 EDT 2025 Sun Sep 28 00:31:50 EDT 2025 Thu Oct 02 17:43:14 EDT 2025 Mon Jun 30 09:04:01 EDT 2025 Wed Feb 19 01:19:37 EST 2025 Wed Apr 02 07:18:11 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Wed Oct 01 06:27:37 EDT 2025 Wed Aug 27 02:52:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Radionuclide study Human Cartography Evaluation Segmentation Image processing Central nervous system Parametric system Functional analysis Digital image Nuclear magnetic resonance imaging Statistical model Medical imagery Bayes decision Brain (vertebrata) Emission tomography |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c420t-9292a17c097d2e6d4a7cf963dc383bbacd5e7a92f8fe833bdc57fbecb7161c893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PMID | 11585043 |
| PQID | 884828927 |
| PQPubID | 85474 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_884828927 pubmed_primary_11585043 proquest_miscellaneous_888111442 crossref_citationtrail_10_1109_10_951522 crossref_primary_10_1109_10_951522 pascalfrancis_primary_14083094 proquest_miscellaneous_72175819 ieee_primary_951522 proquest_miscellaneous_28196875 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2001-10-01 |
| PublicationDateYYYYMMDD | 2001-10-01 |
| PublicationDate_xml | – month: 10 year: 2001 text: 2001-10-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2001 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref37 ref14 Frackowiak (ref4) 1997 ref30 ref11 ref33 ref10 Holmes (ref1) 1993 ref2 Villringer (ref32) 1995; 7 ref39 ref38 ref19 ref18 Hojen-Sorensen (ref16) 2000; 12 Bandettini (ref28) 1994; 7 Anderberg (ref27) 1973 ref24 Ogawa (ref31) 1993; 64 ref26 Rencher (ref21) 1995 ref25 ref20 ref22 Adler (ref23) 1981 Venkatraman (ref36) ref29 ref8 ref7 Friston (ref9) 1994 Rajapakse (ref35) 1998; 2 Thatcher (ref5) 1994 ref3 ref6 Duda (ref17) 2000 |
| References_xml | – ident: ref25 doi: 10.1109/34.31443 – ident: ref10 doi: 10.1006/nimg.1995.1023 – ident: ref6 doi: 10.1002/(SICI)1097-0193(1998)6:4<283::AID-HBM7>3.0.CO;2-# – ident: ref18 doi: 10.1126/science.220.4598.671 – ident: ref20 doi: 10.1523/JNEUROSCI.16-13-04207.1996 – ident: ref15 doi: 10.1109/42.563663 – ident: ref38 doi: 10.1097/00004728-199307000-00004 – ident: ref3 doi: 10.1109/42.746636 – volume-title: The Geometry of Random Fields year: 1981 ident: ref23 – ident: ref37 doi: 10.1097/00004728-199207000-00024 – ident: ref33 doi: 10.1006/nimg.1995.1017 – volume-title: Quantification of Brain Function, Tracer Kinematics in Image Analysis in Brain PET year: 1993 ident: ref1 article-title: A Bayesian approach to significance testing for statistical images from PET – ident: ref19 doi: 10.1002/hbm.460020402 – ident: ref34 doi: 10.1097/00004647-199701000-00009 – ident: ref29 doi: 10.1073/pnas.89.12.5675 – volume-title: Pattern Classification year: 2000 ident: ref17 – volume: 64 start-page: 803 year: 1993 ident: ref31 article-title: Functional brain mapping by blood oxygenation level dependent contrast magnetic resonance imaging publication-title: Biophys. J. doi: 10.1016/S0006-3495(93)81441-3 – volume-title: Proc. Int Conf. Neural Information Processing (ICONIP2000) ident: ref36 article-title: Baseline correction of functional MR time-series – ident: ref12 doi: 10.1111/j.2517-6161.1974.tb00999.x – ident: ref30 doi: 10.1002/mrm.1910300317 – ident: ref24 doi: 10.1038/jcbfm.1992.127 – ident: ref11 doi: 10.1109/42.750253 – volume: 7 start-page: 12 year: 1994 ident: ref28 article-title: Processing stratergies for time-course data sets in functional MRI of human brain publication-title: Magn. Reson. Medicine – volume-title: Functional Neuroimaging: Technical Foundations year: 1994 ident: ref9 article-title: Statistical parameter mapping – volume-title: Cluster Analysis for Applications year: 1973 ident: ref27 – volume-title: Functional Neuroimaging: Technical Foundations year: 1994 ident: ref5 – ident: ref13 doi: 10.1111/j.2517-6161.1986.tb01412.x – volume: 12 start-page: 754 year: 2000 ident: ref16 article-title: Bayesian modeling of fMRI time series publication-title: Adv. Neuroinform. Processing Syst. – ident: ref22 doi: 10.1038/jcbfm.1991.122 – volume: 7 start-page: 240 year: 1995 ident: ref32 article-title: Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging, cerbrovascular and brain meatabolism review publication-title: Cerebrovasc. Brain Metabol. Rev. – volume: 2 start-page: 185 issue: 6 year: 1998 ident: ref35 article-title: Neuronal and hymodynamic events from fMRI time-series publication-title: J. Adv. Computational Intell. – ident: ref26 doi: 10.2172/4390578 – volume-title: Human Brain Function year: 1997 ident: ref4 – ident: ref14 doi: 10.1109/TPAMI.1984.4767596 – volume-title: Method of Multivariate Analysis year: 1995 ident: ref21 – ident: ref2 doi: 10.1006/nimg.1998.0372 – ident: ref7 doi: 10.1002/hbm.460010207 – ident: ref39 doi: 10.1006/nimg.2000.0604 – ident: ref8 doi: 10.1002/hbm.460010306 |
| SSID | ssj0014846 |
| Score | 1.8385563 |
| Snippet | A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar... Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images,... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1186 |
| SubjectTerms | Algorithm design and analysis Algorithms Analytical models Bayes Theorem Bayesian methods Biological and medical sciences Brain Brain Mapping Brain modeling Discrete event simulation Humans Image Processing, Computer-Assisted Image segmentation Investigative techniques, diagnostic techniques (general aspects) Iterative algorithms Magnetic Resonance Imaging Markov Chains Markov random fields Medical sciences Nervous system Radiodiagnosis. Nmr imagery. Nmr spectrometry Radionuclide investigations Scanning probe microscopy Simulated annealing Studies |
| Title | Bayesian approach to segmentation of statistical parametric maps |
| URI | https://ieeexplore.ieee.org/document/951522 https://www.ncbi.nlm.nih.gov/pubmed/11585043 https://www.proquest.com/docview/884828927 https://www.proquest.com/docview/28196875 https://www.proquest.com/docview/72175819 https://www.proquest.com/docview/888111442 |
| Volume | 48 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHhAceCyvUCgW4sAli5M4sXPjIaoKqZyo1FvkJwe6SUWyh_bXM-N4txR1JU6JkrGV2J74m8zMNwDvuNMlcYDkIpJq29LnRtYul94r53hjdaw8d_K9OT4V387qs8SzHXNhvPcx-Mwv6TT68t1g1_Sr7AOiAYQLe7AnVTOnam0dBkLNOTm8QP0tW5FIhAre0ndhbkgEoQXCYy6qG7tQLKtCQZF6xHEJc0GL3Ygz7jxHD-eU7jESFlLAya_lejJLe_UPneN_vtQjeJAQKPs0L5nHcMf3C7j_Fy_hAu6eJI_7E_j4WV96SrRkG_ZxNg1s9D9XKWmpZ0NglJYUGZ-xYyITX1GdLstW-mJ8CqdHX398Oc5T1YXcipJPNHolTpDlrXSlb5zQ0gZUU2fRmDVGW1d7qdsyqOBVVRlnaxlwJRi0vAqL8OcZ7PdD718AQzToQqW4EQ77VrWpvWmDqKSToQqyyOD9ZhY6myjJqTLGeRdNE97ScR6fDN5uRS9mHo7bhBY0vluBzdXDGzN73V4g_kTzNoODzVR3SYPHTilBxmgpM3izvYuqR_4U3fthPXbkg2zQ3tstgeY12mNFmwHbIaGUwt1GCHzK5_Miu368tFZf3vpWB3AvhsPFuMJXsD_9XvvXiI8mcxg14w82lQvR |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAceCwUQqG1EAcuWZzEWTs3HqJaoNtTK_UW-dkDbFKR7AF-PePHbinqSpwSJWMrsT3xN5mZbwDeUCNLzwGSs0CqrUubK16bnFsrjKEzLUPlucXJbH7Gvp7X54lnO-TCWGtD8Jmd-tPgyze9XvlfZe8QDSBcuA13asZYHZO1Ni4DJmJWDi1Qg8uGJRqhgjb-yxCbeorQAgEyZdW1fSgUVvFhkXLAkXGxpMV2zBn2nqOHMal7CJSFPuTk-3Q1qqn-_Q-h43--1iN4kDAo-RAXzWO4ZbsJ3P-LmXACdxfJ5_4E3n-Uv6xPtSRr_nEy9mSwF8uUttSR3hGfmBQ4n7FjTye-9JW6NFnKy-EpnB19Pv00z1PdhVyzko5-9EqcIk0bbko7M0xy7VBRjUZzVimpTW25bEonnBVVpYyuucO1oND2KjQCoD3Y6frOPgeCeNC4SlDFDPYtalVb1ThWccNd5XiRwdv1LLQ6kZL72hg_2mCc0MYf4_hk8HojehmZOG4Smvjx3Qisrx5cm9mr9gwRKBq4Geyvp7pNOjy0QjBvjpY8g8PNXVQ-71GRne1XQ-u9kDO0-LZLoIGNFlnRZEC2SAghcL9hDJ_yWVxkV4-X1uqLG9_qEO7NTxfH7fGXk2_7sBuC40KU4UvYGX-u7CtES6M6CFryB1kkDx4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+approach+to+segmentation+of+statistical+parametric+maps&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Rajapakse%2C+J.C.&rft.au=Piyaratna%2C+J.&rft.date=2001-10-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=48&rft.issue=10&rft.spage=1186&rft.epage=1194&rft_id=info:doi/10.1109%2F10.951522&rft_id=info%3Apmid%2F11585043&rft.externalDocID=951522 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |