Bayesian approach to segmentation of statistical parametric maps

A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated bra...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 48; no. 10; pp. 1186 - 1194
Main Authors Rajapakse, J.C., Piyaratna, J.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2001
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
DOI10.1109/10.951522

Cover

Abstract A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated brain voxels, and likelihoods given by statistical parametric maps (SPM's) are directly used to find the maximum a posteriori (MAP) estimation of segmentation. The iterative segmentation algorithm, which is based on a simulated annealing scheme, is fully data-driven and capable of analyzing experiments involving multiple-input stimuli. Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks. The experiments show that an MRF Is a valid representation of the activation patterns obtained in functional brain images, and the present technique renders a superior segmentation scheme to the context-free approach and the SPM approach.
AbstractList A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated brain voxels, and likelihoods given by statistical parametric maps (SPM's) are directly used to find the maximum a posteriori (MAP) estimation of segmentation. The iterative segmentation algorithm, which is based on a simulated annealing scheme, is fully data-driven and capable of analyzing experiments involving multiple-input stimuli. Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks. The experiments show that an MRF is a valid representation of the activation patterns obtained in functional brain images, and the present technique renders a superior segmentation scheme to the context-free approach and the SPM approach.
A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated brain voxels, and likelihoods given by statistical parametric maps (SPM's) are directly used to find the maximum a posteriori (MAP) estimation of segmentation. The iterative segmentation algorithm, which is based on a simulated annealing scheme, is fully data-driven and capable of analyzing experiments involving multiple-input stimuli. Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks. The experiments show that an MRF is a valid representation of the activation patterns obtained in functional brain images, and the present technique renders a superior segmentation scheme to the context-free approach and the SPM approach.A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated brain voxels, and likelihoods given by statistical parametric maps (SPM's) are directly used to find the maximum a posteriori (MAP) estimation of segmentation. The iterative segmentation algorithm, which is based on a simulated annealing scheme, is fully data-driven and capable of analyzing experiments involving multiple-input stimuli. Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks. The experiments show that an MRF is a valid representation of the activation patterns obtained in functional brain images, and the present technique renders a superior segmentation scheme to the context-free approach and the SPM approach.
Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks.
A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar approaches [Holmes and Ford (1993) and Descombes et al. (1998)], a Markov random field (MRF) is used to represent configurations of activated brain voxels, and likelihoods given by statistical parametric maps (SPM's) are directly used to find the maximum a posteriori (MAP) estimation of segmentation. The iterative segmentation algorithm, which is based on a simulated annealing scheme, is fully data-driven and capable of analyzing experiments involving multiple-input stimuli. Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images, and functional MR images acquired in memory retrieval and event-related working memory tasks. The experiments show that an MRF Is a valid representation of the activation patterns obtained in functional brain images, and the present technique renders a superior segmentation scheme to the context-free approach and the SPM approach
Author Rajapakse, J.C.
Piyaratna, J.
Author_xml – sequence: 1
  givenname: J.C.
  surname: Rajapakse
  fullname: Rajapakse, J.C.
  email: asjagath@ntu.edu.sg
  organization: Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore
– sequence: 2
  givenname: J.
  surname: Piyaratna
  fullname: Piyaratna, J.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14083094$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11585043$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1rFTEQAPAgLfb14-C1h7IIKj28NpOPTXJTi7aFghd7Xmazs5qyXyb7Dv3vzWNfLRTR0yTkN8lk5pDtDeNAjL0BfgHA3WWOToMW4hVbgdZ2LbSEPbbiHOzaCacO2GFKD3mrrCpfswMAbTVXcsU-fsZHSgGHAqcpjuh_FvNYJPrR0zDjHMahGNsibZdpDh67YsKIPc0x-KLHKR2z_Ra7RCe7eMTuv375fnWzvvt2fXv16W7tleDztgqBYDx3phFUNgqNb10pGy-trGv0jSaDTrS2JStl3Xht2pp8baAEb508Yh-We3OVvzaU5qoPyVPX4UDjJlXWWgBQSmT5_p_SCDDagvsvFBmV1ugM376AD-MmDvm7-VllhXXCZHS2Q5u6p6aaYugxPlZPvc7g3Q5gyo1sIw4-pGenuJXcqezOF-fjmFKk9pnwajvvbVzmne3lC-vDMrY5Yuj-mnG6ZAQi-nPz7vA3M2GyMw
CODEN IEBEAX
CitedBy_id crossref_primary_10_1002_sim_1723
crossref_primary_10_1007_s00521_007_0102_1
crossref_primary_10_1007_s00521_007_0103_0
crossref_primary_10_1109_MEMB_2006_1607674
crossref_primary_10_1186_1475_925X_3_13
crossref_primary_10_1016_j_media_2010_02_007
crossref_primary_10_1109_TMI_2006_875426
crossref_primary_10_1016_j_imavis_2006_03_001
crossref_primary_10_1109_TMI_2004_824234
crossref_primary_10_1109_TMI_2016_2520024
crossref_primary_10_1016_j_bspc_2008_06_003
crossref_primary_10_1016_j_neucom_2008_04_038
crossref_primary_10_1109_TMI_2003_815074
crossref_primary_10_1109_TMI_2008_915672
crossref_primary_10_1016_j_neucom_2005_06_021
crossref_primary_10_1109_TBME_2004_827532
crossref_primary_10_1109_TNN_2004_836795
crossref_primary_10_1214_07_AOAS157
crossref_primary_10_1007_s11042_014_2020_4
crossref_primary_10_1109_TMI_2003_809140
crossref_primary_10_1016_j_neuroimage_2007_06_003
crossref_primary_10_1109_ACCESS_2020_2994388
Cites_doi 10.1109/34.31443
10.1006/nimg.1995.1023
10.1002/(SICI)1097-0193(1998)6:4<283::AID-HBM7>3.0.CO;2-#
10.1126/science.220.4598.671
10.1523/JNEUROSCI.16-13-04207.1996
10.1109/42.563663
10.1097/00004728-199307000-00004
10.1109/42.746636
10.1097/00004728-199207000-00024
10.1006/nimg.1995.1017
10.1002/hbm.460020402
10.1097/00004647-199701000-00009
10.1073/pnas.89.12.5675
10.1016/S0006-3495(93)81441-3
10.1111/j.2517-6161.1974.tb00999.x
10.1002/mrm.1910300317
10.1038/jcbfm.1992.127
10.1109/42.750253
10.1111/j.2517-6161.1986.tb01412.x
10.1038/jcbfm.1991.122
10.2172/4390578
10.1109/TPAMI.1984.4767596
10.1006/nimg.1998.0372
10.1002/hbm.460010207
10.1006/nimg.2000.0604
10.1002/hbm.460010306
ContentType Journal Article
Copyright 2002 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
Copyright_xml – notice: 2002 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
DBID RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/10.951522
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database
Engineering Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1194
ExternalDocumentID 2433236061
11585043
14083094
10_1109_10_951522
951522
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
IQODW
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c420t-9292a17c097d2e6d4a7cf963dc383bbacd5e7a92f8fe833bdc57fbecb7161c893
IEDL.DBID RIE
ISSN 0018-9294
IngestDate Tue Oct 07 09:11:28 EDT 2025
Sun Sep 28 00:31:50 EDT 2025
Thu Oct 02 17:43:14 EDT 2025
Mon Jun 30 09:04:01 EDT 2025
Wed Feb 19 01:19:37 EST 2025
Wed Apr 02 07:18:11 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Wed Oct 01 06:27:37 EDT 2025
Wed Aug 27 02:52:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Radionuclide study
Human
Cartography
Evaluation
Segmentation
Image processing
Central nervous system
Parametric system
Functional analysis
Digital image
Nuclear magnetic resonance imaging
Statistical model
Medical imagery
Bayes decision
Brain (vertebrata)
Emission tomography
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-9292a17c097d2e6d4a7cf963dc383bbacd5e7a92f8fe833bdc57fbecb7161c893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 11585043
PQID 884828927
PQPubID 85474
PageCount 9
ParticipantIDs proquest_journals_884828927
pubmed_primary_11585043
proquest_miscellaneous_888111442
crossref_citationtrail_10_1109_10_951522
crossref_primary_10_1109_10_951522
pascalfrancis_primary_14083094
proquest_miscellaneous_72175819
ieee_primary_951522
proquest_miscellaneous_28196875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-10-01
PublicationDateYYYYMMDD 2001-10-01
PublicationDate_xml – month: 10
  year: 2001
  text: 2001-10-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2001
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
Frackowiak (ref4) 1997
ref30
ref11
ref33
ref10
Holmes (ref1) 1993
ref2
Villringer (ref32) 1995; 7
ref39
ref38
ref19
ref18
Hojen-Sorensen (ref16) 2000; 12
Bandettini (ref28) 1994; 7
Anderberg (ref27) 1973
ref24
Ogawa (ref31) 1993; 64
ref26
Rencher (ref21) 1995
ref25
ref20
ref22
Adler (ref23) 1981
Venkatraman (ref36)
ref29
ref8
ref7
Friston (ref9) 1994
Rajapakse (ref35) 1998; 2
Thatcher (ref5) 1994
ref3
ref6
Duda (ref17) 2000
References_xml – ident: ref25
  doi: 10.1109/34.31443
– ident: ref10
  doi: 10.1006/nimg.1995.1023
– ident: ref6
  doi: 10.1002/(SICI)1097-0193(1998)6:4<283::AID-HBM7>3.0.CO;2-#
– ident: ref18
  doi: 10.1126/science.220.4598.671
– ident: ref20
  doi: 10.1523/JNEUROSCI.16-13-04207.1996
– ident: ref15
  doi: 10.1109/42.563663
– ident: ref38
  doi: 10.1097/00004728-199307000-00004
– ident: ref3
  doi: 10.1109/42.746636
– volume-title: The Geometry of Random Fields
  year: 1981
  ident: ref23
– ident: ref37
  doi: 10.1097/00004728-199207000-00024
– ident: ref33
  doi: 10.1006/nimg.1995.1017
– volume-title: Quantification of Brain Function, Tracer Kinematics in Image Analysis in Brain PET
  year: 1993
  ident: ref1
  article-title: A Bayesian approach to significance testing for statistical images from PET
– ident: ref19
  doi: 10.1002/hbm.460020402
– ident: ref34
  doi: 10.1097/00004647-199701000-00009
– ident: ref29
  doi: 10.1073/pnas.89.12.5675
– volume-title: Pattern Classification
  year: 2000
  ident: ref17
– volume: 64
  start-page: 803
  year: 1993
  ident: ref31
  article-title: Functional brain mapping by blood oxygenation level dependent contrast magnetic resonance imaging
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(93)81441-3
– volume-title: Proc. Int Conf. Neural Information Processing (ICONIP2000)
  ident: ref36
  article-title: Baseline correction of functional MR time-series
– ident: ref12
  doi: 10.1111/j.2517-6161.1974.tb00999.x
– ident: ref30
  doi: 10.1002/mrm.1910300317
– ident: ref24
  doi: 10.1038/jcbfm.1992.127
– ident: ref11
  doi: 10.1109/42.750253
– volume: 7
  start-page: 12
  year: 1994
  ident: ref28
  article-title: Processing stratergies for time-course data sets in functional MRI of human brain
  publication-title: Magn. Reson. Medicine
– volume-title: Functional Neuroimaging: Technical Foundations
  year: 1994
  ident: ref9
  article-title: Statistical parameter mapping
– volume-title: Cluster Analysis for Applications
  year: 1973
  ident: ref27
– volume-title: Functional Neuroimaging: Technical Foundations
  year: 1994
  ident: ref5
– ident: ref13
  doi: 10.1111/j.2517-6161.1986.tb01412.x
– volume: 12
  start-page: 754
  year: 2000
  ident: ref16
  article-title: Bayesian modeling of fMRI time series
  publication-title: Adv. Neuroinform. Processing Syst.
– ident: ref22
  doi: 10.1038/jcbfm.1991.122
– volume: 7
  start-page: 240
  year: 1995
  ident: ref32
  article-title: Coupling of brain activity and cerebral blood flow: Basis of functional neuroimaging, cerbrovascular and brain meatabolism review
  publication-title: Cerebrovasc. Brain Metabol. Rev.
– volume: 2
  start-page: 185
  issue: 6
  year: 1998
  ident: ref35
  article-title: Neuronal and hymodynamic events from fMRI time-series
  publication-title: J. Adv. Computational Intell.
– ident: ref26
  doi: 10.2172/4390578
– volume-title: Human Brain Function
  year: 1997
  ident: ref4
– ident: ref14
  doi: 10.1109/TPAMI.1984.4767596
– volume-title: Method of Multivariate Analysis
  year: 1995
  ident: ref21
– ident: ref2
  doi: 10.1006/nimg.1998.0372
– ident: ref7
  doi: 10.1002/hbm.460010207
– ident: ref39
  doi: 10.1006/nimg.2000.0604
– ident: ref8
  doi: 10.1002/hbm.460010306
SSID ssj0014846
Score 1.8385563
Snippet A contextual segmentation technique to detect brain activation from functional brain images is presented in the Bayesian framework. Unlike earlier similar...
Simulation results and comparisons with the simple thresholding and the statistical parametric mapping (SPM) approaches are presented with synthetic images,...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1186
SubjectTerms Algorithm design and analysis
Algorithms
Analytical models
Bayes Theorem
Bayesian methods
Biological and medical sciences
Brain
Brain Mapping
Brain modeling
Discrete event simulation
Humans
Image Processing, Computer-Assisted
Image segmentation
Investigative techniques, diagnostic techniques (general aspects)
Iterative algorithms
Magnetic Resonance Imaging
Markov Chains
Markov random fields
Medical sciences
Nervous system
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Radionuclide investigations
Scanning probe microscopy
Simulated annealing
Studies
Title Bayesian approach to segmentation of statistical parametric maps
URI https://ieeexplore.ieee.org/document/951522
https://www.ncbi.nlm.nih.gov/pubmed/11585043
https://www.proquest.com/docview/884828927
https://www.proquest.com/docview/28196875
https://www.proquest.com/docview/72175819
https://www.proquest.com/docview/888111442
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RHhAceCyvUCgW4sAli5M4sXPjIaoKqZyo1FvkJwe6SUWyh_bXM-N4txR1JU6JkrGV2J74m8zMNwDvuNMlcYDkIpJq29LnRtYul94r53hjdaw8d_K9OT4V387qs8SzHXNhvPcx-Mwv6TT68t1g1_Sr7AOiAYQLe7AnVTOnam0dBkLNOTm8QP0tW5FIhAre0ndhbkgEoQXCYy6qG7tQLKtCQZF6xHEJc0GL3Ygz7jxHD-eU7jESFlLAya_lejJLe_UPneN_vtQjeJAQKPs0L5nHcMf3C7j_Fy_hAu6eJI_7E_j4WV96SrRkG_ZxNg1s9D9XKWmpZ0NglJYUGZ-xYyITX1GdLstW-mJ8CqdHX398Oc5T1YXcipJPNHolTpDlrXSlb5zQ0gZUU2fRmDVGW1d7qdsyqOBVVRlnaxlwJRi0vAqL8OcZ7PdD718AQzToQqW4EQ77VrWpvWmDqKSToQqyyOD9ZhY6myjJqTLGeRdNE97ScR6fDN5uRS9mHo7bhBY0vluBzdXDGzN73V4g_kTzNoODzVR3SYPHTilBxmgpM3izvYuqR_4U3fthPXbkg2zQ3tstgeY12mNFmwHbIaGUwt1GCHzK5_Miu368tFZf3vpWB3AvhsPFuMJXsD_9XvvXiI8mcxg14w82lQvR
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkaAceCwUQqG1EAcuWZzEWTs3HqJaoNtTK_UW-dkDbFKR7AF-PePHbinqSpwSJWMrsT3xN5mZbwDeUCNLzwGSs0CqrUubK16bnFsrjKEzLUPlucXJbH7Gvp7X54lnO-TCWGtD8Jmd-tPgyze9XvlfZe8QDSBcuA13asZYHZO1Ni4DJmJWDi1Qg8uGJRqhgjb-yxCbeorQAgEyZdW1fSgUVvFhkXLAkXGxpMV2zBn2nqOHMal7CJSFPuTk-3Q1qqn-_Q-h43--1iN4kDAo-RAXzWO4ZbsJ3P-LmXACdxfJ5_4E3n-Uv6xPtSRr_nEy9mSwF8uUttSR3hGfmBQ4n7FjTye-9JW6NFnKy-EpnB19Pv00z1PdhVyzko5-9EqcIk0bbko7M0xy7VBRjUZzVimpTW25bEonnBVVpYyuucO1oND2KjQCoD3Y6frOPgeCeNC4SlDFDPYtalVb1ThWccNd5XiRwdv1LLQ6kZL72hg_2mCc0MYf4_hk8HojehmZOG4Smvjx3Qisrx5cm9mr9gwRKBq4Geyvp7pNOjy0QjBvjpY8g8PNXVQ-71GRne1XQ-u9kDO0-LZLoIGNFlnRZEC2SAghcL9hDJ_yWVxkV4-X1uqLG9_qEO7NTxfH7fGXk2_7sBuC40KU4UvYGX-u7CtES6M6CFryB1kkDx4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+approach+to+segmentation+of+statistical+parametric+maps&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Rajapakse%2C+J.C.&rft.au=Piyaratna%2C+J.&rft.date=2001-10-01&rft.pub=IEEE&rft.issn=0018-9294&rft.volume=48&rft.issue=10&rft.spage=1186&rft.epage=1194&rft_id=info:doi/10.1109%2F10.951522&rft_id=info%3Apmid%2F11585043&rft.externalDocID=951522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon