Restoring hippocampal glucose metabolism rescues cognition across Alzheimer’s disease pathologies

Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer’s disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocam...

Full description

Saved in:
Bibliographic Details
Published inScience Vol. 385; no. 6711; p. eabm6131
Main Authors Minhas, Paras S., Jones, Jeffrey R., Latif-Hernandez, Amira, Sugiura, Yuki, Durairaj, Aarooran S., Wang, Qian, Mhatre, Siddhita D., Uenaka, Takeshi, Crapser, Joshua, Conley, Travis, Ennerfelt, Hannah, Jung, Yoo Jin, Liu, Ling, Prasad, Praveena, Jenkins, Brenita C., Ay, Yeonglong Albert, Matrongolo, Matthew, Goodman, Ryan, Newmeyer, Traci, Heard, Kelly, Kang, Austin, Wilson, Edward N., Yang, Tao, Ullian, Erik M., Serrano, Geidy E., Beach, Thomas G., Wernig, Marius, Rabinowitz, Joshua D., Suematsu, Makoto, Longo, Frank M., McReynolds, Melanie R., Gage, Fred H., Andreasson, Katrin I.
Format Journal Article
LanguageEnglish
Published United States American Association for the Advancement of Science (AAAS) 23.08.2024
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.abm6131

Cover

Abstract Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer’s disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor–dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter–dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD. Alzheimer’s disease has been associated with brain metabolic alterations. Minhas et al . studied the role of glucose metabolism impairments on disease progression using a combination of human induced pluripotent stem cells and mouse models (see the Perspective by Johnson and Macauley). The authors showed that activation of indoleamine-2,3-dioxygenase 1 (IDO1) by either amyloid β or tau oligomers, two prominent Alzheimer’s disease pathological proteins, promotes the conversion of tryptophan to kynurenine, which then suppresses astrocytic glycolysis, thus reducing one of the main fuel sources for neurons. Inhibiting IDO1 rescued synaptic plasticity in vitro and improved cognition in multiple rodent models. Targeting metabolic dysfunctions holds promise for the treatment of neurodegenerative disorders. —Mattia Maroso
AbstractList Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD.
Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer’s disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor–dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter–dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD. Alzheimer’s disease has been associated with brain metabolic alterations. Minhas et al . studied the role of glucose metabolism impairments on disease progression using a combination of human induced pluripotent stem cells and mouse models (see the Perspective by Johnson and Macauley). The authors showed that activation of indoleamine-2,3-dioxygenase 1 (IDO1) by either amyloid β or tau oligomers, two prominent Alzheimer’s disease pathological proteins, promotes the conversion of tryptophan to kynurenine, which then suppresses astrocytic glycolysis, thus reducing one of the main fuel sources for neurons. Inhibiting IDO1 rescued synaptic plasticity in vitro and improved cognition in multiple rodent models. Targeting metabolic dysfunctions holds promise for the treatment of neurodegenerative disorders. —Mattia Maroso
Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD.Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD.
Editor’s summaryAlzheimer’s disease has been associated with brain metabolic alterations. Minhas et al. studied the role of glucose metabolism impairments on disease progression using a combination of human induced pluripotent stem cells and mouse models (see the Perspective by Johnson and Macauley). The authors showed that activation of indoleamine-2,3-dioxygenase 1 (IDO1) by either amyloid β or tau oligomers, two prominent Alzheimer’s disease pathological proteins, promotes the conversion of tryptophan to kynurenine, which then suppresses astrocytic glycolysis, thus reducing one of the main fuel sources for neurons. Inhibiting IDO1 rescued synaptic plasticity in vitro and improved cognition in multiple rodent models. Targeting metabolic dysfunctions holds promise for the treatment of neurodegenerative disorders. —Mattia MarosoINTRODUCTIONAlzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized by a progressive and irreversible loss of synapses and neural circuitry. Major pathophysiologic processes that contribute to synaptic loss, including disrupted proteostasis, accumulation of misfolded amyloid and tau, and microglial dysfunction, are being vigorously investigated with the goal of identifying disease-modifying therapies. However, coincident with these distinct pathologies is a sustained decline in cerebral glucose metabolism, with recent proteomics revealing a marked disruption of astrocytic and microglial metabolism in AD subjects.RATIONALEAstrocytes generate lactate that is exported to neurons to fuel mitochondrial respiration and support synaptic activity. Recent studies have suggested a role for indoleamine-2,3-dioxygenase 1 (IDO1), an enzyme expressed in astrocytes, in multiple neurodegenerative disorders, including AD. IDO1 is the rate-limiting enzyme in the conversion of tryptophan (TRP) to kynurenine (KYN), a metabolite that elicits immune suppression in inflammatory and neoplastic contexts through interaction with the aryl-hydrocarbon receptor (AhR). IDO1 activity is significantly up-regulated by a variety of immunogenic stimuli, and, in the brain, IDO1 is expressed in astrocytes and microglia but not in neurons, where levels can increase in response to inflammatory stimuli.RESULTSWe report that inhibition of IDO1 and production of KYN rescues hippocampal synaptic plasticity and memory function in preclinical models of amyloid and tau pathology by restoring astrocytic metabolic support of neurons. Activation of IDO1 in astrocytes by amyloid β and tau oligomers, two major pathologic effectors in AD, increases KYN and suppresses glycolysis in an AhR-dependent manner. Conversely, pharmacological IDO1 inhibition restores astrocytic glycolysis and lactate production. In amyloid-producing APPSwe-PS1∆E9 and 5XFAD mice and in tau-producing P301S mice, IDO1 inhibition improves hippocampal glucose metabolism, as shown by metabolomic and MALDI-MS (matrix-assisted laser desorption ionization–mass spectrometry) analyses, and restores spatial memory. IDO1 blockade also rescues hippocampal long-term potentiation in a monocarboxylate transporter–dependent manner, suggesting that IDO1 activity disrupts astrocytic metabolic support of neurons. Indeed, in vitro mass labeling of human astrocytes demonstrated that IDO1 regulates astrocyte generation of lactate that is then taken up by human neurons. In cocultures of astrocytes and neurons derived from AD subjects, deficient astrocyte lactate production and transfer to neurons was corrected by IDO1 inhibition, resulting in improved neuronal glucose metabolism.CONCLUSIONIn addition to uncovering a previously uncharacterized role of IDO1 in brain glucose metabolism, our study highlights the potential of brain penetrant IDO1 inhibitors, developed as an adjunctive therapy for cancer, to be repurposed for treating neurodegenerative diseases such as AD. This study also reveals a general mechanism contributing to neuronal dysfunction that cuts across distinct pathologies. In addition to AD, manipulation of IDO1 may be relevant to Parkinson’s disease dementia, which is characterized by amyloid accumulation in addition to α-synuclein, as well as the broad spectrum of tauopathies. There is the possibility that deficient astrocytic glucose metabolism could also underlie other neurodegenerative diseases characterized by the accumulation of other misfolded proteins where increases in kynurenine pathway metabolites have been observed.
Author Travis Conley
Matthew Matrongolo
Hannah Ennerfelt
Brenita C. Jenkins
Austin Kang
Geidy E. Serrano
Tao Yang
Frank M. Longo
Yoo Jin Jung
Joshua Crapser
Fred H. Gage
Siddhita D. Mhatre
Edward N. Wilson
Thomas G. Beach
Ling Liu
Traci Newmeyer
Qian Wang
Kelly Heard
Yuki Sugiura
Marius Wernig
Jeffrey R. Jones
Ryan Goodman
Joshua D. Rabinowitz
Praveena Prasad
Yeonglong Albert Ay
Aarooran S. Durairaj
Erik M. Ullian
Takeshi Uenaka
Katrin I. Andreasson
Amira Latif-Hernandez
Melanie R. McReynolds
Makoto Suematsu
Paras S. Minhas
Author_xml – sequence: 1
  givenname: Paras S.
  orcidid: 0000-0002-7741-3327
  surname: Minhas
  fullname: Minhas, Paras S.
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA., Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
– sequence: 2
  givenname: Jeffrey R.
  orcidid: 0000-0002-7570-2571
  surname: Jones
  fullname: Jones, Jeffrey R.
  organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
– sequence: 3
  givenname: Amira
  surname: Latif-Hernandez
  fullname: Latif-Hernandez, Amira
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 4
  givenname: Yuki
  orcidid: 0000-0002-6983-8958
  surname: Sugiura
  fullname: Sugiura, Yuki
  organization: Central Institute for Experimental Medicine and Life Science, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan., WPI-Bio2Q Research Center, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821 Japan., Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
– sequence: 5
  givenname: Aarooran S.
  orcidid: 0000-0001-9355-3111
  surname: Durairaj
  fullname: Durairaj, Aarooran S.
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 6
  givenname: Qian
  orcidid: 0009-0003-6246-883X
  surname: Wang
  fullname: Wang, Qian
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 7
  givenname: Siddhita D.
  orcidid: 0000-0001-9939-780X
  surname: Mhatre
  fullname: Mhatre, Siddhita D.
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 8
  givenname: Takeshi
  orcidid: 0000-0001-5786-5038
  surname: Uenaka
  fullname: Uenaka, Takeshi
  organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
– sequence: 9
  givenname: Joshua
  orcidid: 0000-0002-8426-2336
  surname: Crapser
  fullname: Crapser, Joshua
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 10
  givenname: Travis
  orcidid: 0000-0002-9385-1386
  surname: Conley
  fullname: Conley, Travis
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 11
  givenname: Hannah
  orcidid: 0000-0003-4861-0740
  surname: Ennerfelt
  fullname: Ennerfelt, Hannah
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 12
  givenname: Yoo Jin
  orcidid: 0000-0002-9015-5529
  surname: Jung
  fullname: Jung, Yoo Jin
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 13
  givenname: Ling
  surname: Liu
  fullname: Liu, Ling
  organization: Lewis Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA., Department of Chemistry, Princeton University, Princeton 08544 NJ, USA
– sequence: 14
  givenname: Praveena
  orcidid: 0009-0002-1485-4798
  surname: Prasad
  fullname: Prasad, Praveena
  organization: Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
– sequence: 15
  givenname: Brenita C.
  orcidid: 0000-0002-0354-8843
  surname: Jenkins
  fullname: Jenkins, Brenita C.
  organization: Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
– sequence: 16
  givenname: Yeonglong Albert
  orcidid: 0009-0000-2255-3042
  surname: Ay
  fullname: Ay, Yeonglong Albert
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 17
  givenname: Matthew
  surname: Matrongolo
  fullname: Matrongolo, Matthew
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 18
  givenname: Ryan
  orcidid: 0009-0007-4828-2675
  surname: Goodman
  fullname: Goodman, Ryan
  organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
– sequence: 19
  givenname: Traci
  surname: Newmeyer
  fullname: Newmeyer, Traci
  organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
– sequence: 20
  givenname: Kelly
  orcidid: 0000-0001-7719-7225
  surname: Heard
  fullname: Heard, Kelly
  organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
– sequence: 21
  givenname: Austin
  orcidid: 0009-0007-0288-3029
  surname: Kang
  fullname: Kang, Austin
  organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
– sequence: 22
  givenname: Edward N.
  orcidid: 0000-0003-0640-5247
  surname: Wilson
  fullname: Wilson, Edward N.
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 23
  givenname: Tao
  orcidid: 0000-0002-7698-3440
  surname: Yang
  fullname: Yang, Tao
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
– sequence: 24
  givenname: Erik M.
  orcidid: 0000-0003-2077-8584
  surname: Ullian
  fullname: Ullian, Erik M.
  organization: Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
– sequence: 25
  givenname: Geidy E.
  orcidid: 0000-0002-9527-2011
  surname: Serrano
  fullname: Serrano, Geidy E.
  organization: Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
– sequence: 26
  givenname: Thomas G.
  orcidid: 0000-0003-3296-6128
  surname: Beach
  fullname: Beach, Thomas G.
  organization: Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA
– sequence: 27
  givenname: Marius
  orcidid: 0000-0002-5309-515X
  surname: Wernig
  fullname: Wernig, Marius
  organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA., Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
– sequence: 28
  givenname: Joshua D.
  orcidid: 0000-0002-1247-4727
  surname: Rabinowitz
  fullname: Rabinowitz, Joshua D.
  organization: Lewis Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA., Department of Chemistry, Princeton University, Princeton 08544 NJ, USA
– sequence: 29
  givenname: Makoto
  orcidid: 0000-0002-7165-6336
  surname: Suematsu
  fullname: Suematsu, Makoto
  organization: Central Institute for Experimental Medicine and Life Science, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan., WPI-Bio2Q Research Center, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821 Japan
– sequence: 30
  givenname: Frank M.
  orcidid: 0000-0002-9514-7325
  surname: Longo
  fullname: Longo, Frank M.
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA., Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
– sequence: 31
  givenname: Melanie R.
  orcidid: 0000-0001-5427-2739
  surname: McReynolds
  fullname: McReynolds, Melanie R.
  organization: Lewis Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA., Department of Chemistry, Princeton University, Princeton 08544 NJ, USA., Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
– sequence: 32
  givenname: Fred H.
  orcidid: 0000-0002-0938-4106
  surname: Gage
  fullname: Gage, Fred H.
  organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
– sequence: 33
  givenname: Katrin I.
  orcidid: 0000-0001-8391-4155
  surname: Andreasson
  fullname: Andreasson, Katrin I.
  organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA., Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA., Chan Zuckerberg Biohub, San Francisco, CA 94158, USA., The Phil and Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, CA 94305, USA
BackLink https://cir.nii.ac.jp/crid/1873399491355938304$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/39172838$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1TAQhS1URC-la3YoEizYpPVPbMfLquJPqoQE7C3HGd9r5NjBThZlxWvwejwJDvd2U4nNzOY7M0fnPEdnMUVA6CXBV4RQcV2sh2jhygyTIIw8QTuCFW8VxewM7TBmou2x5OfoshQ_YKx6TLEiz9A5U0TSnvU7ZL9AWVL2cd8c_Dwna6bZhGYfVpsKNBMsZkjBl6nJUOwKpbFpH_3iU2yMzamU5ib8PICfIP_59bs0oy9gqnI2yyGFtPdQXqCnzoQCl6d9gb6-f_ft9mN79_nDp9ubu9Z2FC9tP1ZXjvaOulE63nEHwrpeUGPwqKwZFUgmFSOddKNyTAjXcSnBMccGwS7Q2-PVOacf1eiiJ18shGAipLVohpWgsu_Ehr5-hH5Pa47V20ZxQYiSrFKvTtQ6TDDqOfvJ5Hv9EF4F-BH4l0MGp61fzBbNko0PmmC99aRPPelTT1V3_Uj3cPr_ijdHRfS-Ptkm6atFpTpFGOequsEd-wtSZaUj
CitedBy_id crossref_primary_10_1038_d41573_024_00160_x
crossref_primary_10_1126_science_adr5836
crossref_primary_10_1093_braincomms_fcaf060
crossref_primary_10_3390_brainsci14090950
crossref_primary_10_1002_smll_202408581
crossref_primary_10_1111_apha_14283
crossref_primary_10_1186_s13195_024_01618_1
crossref_primary_10_3390_ijms26010364
crossref_primary_10_1016_j_expneurol_2024_115070
crossref_primary_10_1186_s13195_024_01623_4
crossref_primary_10_3390_metabo15010034
crossref_primary_10_1016_j_fitote_2025_106408
crossref_primary_10_1038_s41392_025_02141_x
crossref_primary_10_5607_en24029
crossref_primary_10_1002_pmic_202400298
crossref_primary_10_1124_pharmrev_124_000239
crossref_primary_10_3389_fonc_2024_1524651
crossref_primary_10_1002_alz_14481
crossref_primary_10_1016_j_bja_2024_12_032
crossref_primary_10_1002_alz_70077
Cites_doi 10.1084/jem.20220654
10.1038/nature10491
10.1016/j.stem.2015.09.001
10.1111/neup.12189
10.1101/gr.253492.119
10.1021/jacs.7b08012
10.1186/1471-2105-12-323
10.1007/BF00308809
10.1523/JNEUROSCI.1523-15.2015
10.1021/ac1021166
10.1038/s41572-021-00269-y
10.1038/ncomms11915
10.1038/nrn3549
10.1002/cne.24040
10.1016/S0896-6273(00)80974-5
10.1016/j.bbi.2017.12.006
10.1016/j.xpro.2022.101261
10.1021/acs.analchem.8b03132
10.2119/molmed.2014.00032
10.1016/S0197-4580(97)00057-2
10.1002/brb3.41
10.3791/51917
10.1093/brain/aww117
10.1038/s41583-019-0132-6
10.1038/nrn.2018.19
10.1111/j.1365-2990.2005.00655.x
10.3389/fimmu.2020.00388
10.1523/JNEUROSCI.1202-06.2006
10.1186/s13059-014-0550-8
10.1016/j.cell.2019.11.016
10.1038/nature21029
10.1128/JVI.00792-07
10.1152/physrev.00062.2017
10.1038/srep32361
10.1042/BJ20091515
10.1038/s41590-018-0255-3
10.1097/00001756-199401120-00032
10.1158/1535-7163.MCT-17-1104
10.1371/journal.pone.0080355
10.1016/j.stemcr.2023.01.012
10.3389/fnmol.2017.00073
10.1371/journal.pone.0086426
10.1089/ars.2017.7014
10.1093/cercor/11.1.1
10.1016/j.semcdb.2015.03.002
10.1093/nar/gkab382
10.1038/s41573-019-0016-5
10.1016/j.neuron.2007.01.010
10.1016/0306-4522(92)90329-Z
10.1038/s41467-019-11674-z
10.1093/bioinformatics/bts635
10.1016/j.cell.2011.02.018
10.1038/nature24057
10.1016/j.freeradbiomed.2022.09.032
10.1016/j.cmet.2015.10.010
10.3389/fnagi.2021.713726
10.1038/nn.4018
10.1007/s12035-020-02055-5
10.1186/s40478-020-01034-0
10.1101/2024.06.23.598940
10.3791/55718-v
10.1093/hmg/ddh019
10.1038/nature13323
10.1172/JCI77487
10.3389/fncel.2016.00252
10.1002/glia.23250
10.1016/j.jpba.2019.112912
10.1021/ac102422b
10.1113/JP280572
10.1007/978-1-4939-6747-6_23
10.1038/s41591-020-0815-6
ContentType Journal Article
Copyright Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright_xml – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
DOI 10.1126/science.abm6131
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
ExternalDocumentID 39172838
10_1126_science_abm6131
Genre Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: U24 NS072026
– fundername: NIGMS NIH HHS
  grantid: T32 GM007365
– fundername: NIA NIH HHS
  grantid: R37 AG072502
– fundername: NIA NIH HHS
  grantid: RF1 AG056306
– fundername: NIA NIH HHS
  grantid: R01 AG048232
– fundername: NIA NIH HHS
  grantid: RF1 AG058047
– fundername: NIA NIH HHS
  grantid: P30 AG019610
– fundername: NIA NIH HHS
  grantid: P30 AG066515
– fundername: NIA NIH HHS
  grantid: P30 AG062429
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
ABCQX
ABDBF
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PV9
PZZ
RHI
RXW
RYH
RZL
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YJ6
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
2WC
7X8
ID FETCH-LOGICAL-c420t-8d917f28f2fd7f545fe6cf862aa0d9cad9e73793147fd9f366f4577ef3f3b63
ISSN 0036-8075
1095-9203
IngestDate Thu Sep 04 18:24:55 EDT 2025
Fri Jul 25 19:14:06 EDT 2025
Mon Aug 04 01:30:35 EDT 2025
Tue Jul 01 03:14:10 EDT 2025
Thu Apr 24 23:02:10 EDT 2025
Thu Jun 26 23:58:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6711
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-8d917f28f2fd7f545fe6cf862aa0d9cad9e73793147fd9f366f4577ef3f3b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9355-3111
0009-0000-2255-3042
0009-0006-2920-392x
0000-0001-5786-5038
0000-0002-7741-3327
0000-0003-0640-5247
0009-0007-4828-2675
0000-0002-6983-8958
0000-0002-8426-2336
0000-0002-7570-2571
0000-0002-9385-1386
0000-0002-9514-7325
0000-0002-0938-4106
0000-0001-9939-780X
0000-0001-7719-7225
0000-0002-9015-5529
0000-0003-2077-8584
0000-0002-5309-515X
0009-0002-1485-4798
0009-0003-6246-883X
0000-0002-1247-4727
0009-0007-0288-3029
0000-0002-9527-2011
0000-0003-3296-6128
0000-0002-7165-6336
0000-0001-5427-2739
0000-0002-0354-8843
0000-0001-8391-4155
0000-0003-4861-0740
0000-0002-7698-3440
PMID 39172838
PQID 3095611973
PQPubID 1256
ParticipantIDs proquest_miscellaneous_3096278466
proquest_journals_3095611973
pubmed_primary_39172838
crossref_citationtrail_10_1126_science_abm6131
crossref_primary_10_1126_science_abm6131
nii_cinii_1873399491355938304
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-23
20240823
PublicationDateYYYYMMDD 2024-08-23
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science
PublicationTitleAlternate Science
PublicationYear 2024
Publisher American Association for the Advancement of Science (AAAS)
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science (AAAS)
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
38979192 - bioRxiv. 2024 Jun 28:2024.06.23.598940. doi: 10.1101/2024.06.23.598940.
39333710 - Nat Rev Drug Discov. 2024 Nov;23(11):816. doi: 10.1038/d41573-024-00160-x.
39172856 - Science. 2024 Aug 23;385(6711):826-827. doi: 10.1126/science.adr5836.
References_xml – ident: e_1_3_2_26_2
  doi: 10.1084/jem.20220654
– ident: e_1_3_2_11_2
  doi: 10.1038/nature10491
– ident: e_1_3_2_69_2
  doi: 10.1016/j.stem.2015.09.001
– ident: e_1_3_2_66_2
  doi: 10.1111/neup.12189
– ident: e_1_3_2_74_2
  doi: 10.1101/gr.253492.119
– ident: e_1_3_2_46_2
  doi: 10.1021/jacs.7b08012
– ident: e_1_3_2_72_2
  doi: 10.1186/1471-2105-12-323
– ident: e_1_3_2_32_2
  doi: 10.1007/BF00308809
– ident: e_1_3_2_44_2
  doi: 10.1523/JNEUROSCI.1523-15.2015
– ident: e_1_3_2_56_2
  doi: 10.1021/ac1021166
– ident: e_1_3_2_2_2
  doi: 10.1038/s41572-021-00269-y
– ident: e_1_3_2_25_2
  doi: 10.1038/ncomms11915
– ident: e_1_3_2_38_2
  doi: 10.1038/nrn3549
– ident: e_1_3_2_6_2
  doi: 10.1002/cne.24040
– ident: e_1_3_2_23_2
  doi: 10.1016/S0896-6273(00)80974-5
– ident: e_1_3_2_12_2
  doi: 10.1016/j.bbi.2017.12.006
– ident: e_1_3_2_68_2
  doi: 10.1016/j.xpro.2022.101261
– ident: e_1_3_2_53_2
  doi: 10.1021/acs.analchem.8b03132
– ident: e_1_3_2_17_2
  doi: 10.2119/molmed.2014.00032
– ident: e_1_3_2_67_2
  doi: 10.1016/S0197-4580(97)00057-2
– ident: e_1_3_2_62_2
  doi: 10.1002/brb3.41
– ident: e_1_3_2_64_2
  doi: 10.3791/51917
– ident: e_1_3_2_43_2
  doi: 10.1093/brain/aww117
– ident: e_1_3_2_4_2
  doi: 10.1038/s41583-019-0132-6
– ident: e_1_3_2_22_2
  doi: 10.1038/nrn.2018.19
– ident: e_1_3_2_35_2
  doi: 10.1111/j.1365-2990.2005.00655.x
– ident: e_1_3_2_36_2
  doi: 10.3389/fimmu.2020.00388
– ident: e_1_3_2_42_2
  doi: 10.1523/JNEUROSCI.1202-06.2006
– ident: e_1_3_2_73_2
  doi: 10.1186/s13059-014-0550-8
– ident: e_1_3_2_51_2
  doi: 10.1016/j.cell.2019.11.016
– ident: e_1_3_2_52_2
  doi: 10.1038/nature21029
– ident: e_1_3_2_13_2
  doi: 10.1128/JVI.00792-07
– ident: e_1_3_2_7_2
  doi: 10.1152/physrev.00062.2017
– ident: e_1_3_2_30_2
  doi: 10.1038/srep32361
– ident: e_1_3_2_31_2
  doi: 10.1042/BJ20091515
– ident: e_1_3_2_45_2
  doi: 10.1038/s41590-018-0255-3
– ident: e_1_3_2_34_2
  doi: 10.1097/00001756-199401120-00032
– ident: e_1_3_2_15_2
  doi: 10.1158/1535-7163.MCT-17-1104
– ident: e_1_3_2_60_2
  doi: 10.1371/journal.pone.0080355
– ident: e_1_3_2_14_2
  doi: 10.1016/j.stemcr.2023.01.012
– ident: e_1_3_2_8_2
  doi: 10.3389/fnmol.2017.00073
– ident: e_1_3_2_57_2
  doi: 10.1371/journal.pone.0086426
– ident: e_1_3_2_58_2
  doi: 10.1089/ars.2017.7014
– ident: e_1_3_2_33_2
  doi: 10.1093/cercor/11.1.1
– ident: e_1_3_2_39_2
  doi: 10.1016/j.semcdb.2015.03.002
– ident: e_1_3_2_54_2
  doi: 10.1093/nar/gkab382
– ident: e_1_3_2_10_2
  doi: 10.1038/s41573-019-0016-5
– ident: e_1_3_2_28_2
  doi: 10.1016/j.neuron.2007.01.010
– ident: e_1_3_2_37_2
  doi: 10.1016/0306-4522(92)90329-Z
– ident: e_1_3_2_48_2
  doi: 10.1038/s41467-019-11674-z
– ident: e_1_3_2_71_2
  doi: 10.1093/bioinformatics/bts635
– ident: e_1_3_2_20_2
  doi: 10.1016/j.cell.2011.02.018
– ident: e_1_3_2_47_2
  doi: 10.1038/nature24057
– ident: e_1_3_2_55_2
  doi: 10.1093/nar/gkab382
– ident: e_1_3_2_3_2
  doi: 10.1016/j.freeradbiomed.2022.09.032
– ident: e_1_3_2_9_2
  doi: 10.1016/j.cmet.2015.10.010
– ident: e_1_3_2_24_2
  doi: 10.3389/fnagi.2021.713726
– ident: e_1_3_2_27_2
  doi: 10.1038/nn.4018
– ident: e_1_3_2_21_2
  doi: 10.1007/s12035-020-02055-5
– ident: e_1_3_2_50_2
  doi: 10.1186/s40478-020-01034-0
– ident: e_1_3_2_40_2
  doi: 10.1101/2024.06.23.598940
– ident: e_1_3_2_61_2
  doi: 10.3791/55718-v
– ident: e_1_3_2_41_2
  doi: 10.1093/hmg/ddh019
– ident: e_1_3_2_16_2
  doi: 10.1038/nature13323
– ident: e_1_3_2_49_2
  doi: 10.1172/JCI77487
– ident: e_1_3_2_63_2
  doi: 10.3389/fncel.2016.00252
– ident: e_1_3_2_70_2
– ident: e_1_3_2_19_2
  doi: 10.1002/glia.23250
– ident: e_1_3_2_29_2
  doi: 10.1016/j.jpba.2019.112912
– ident: e_1_3_2_65_2
  doi: 10.1021/ac102422b
– ident: e_1_3_2_18_2
  doi: 10.1113/JP280572
– ident: e_1_3_2_59_2
  doi: 10.1007/978-1-4939-6747-6_23
– ident: e_1_3_2_5_2
  doi: 10.1038/s41591-020-0815-6
– reference: 39172856 - Science. 2024 Aug 23;385(6711):826-827. doi: 10.1126/science.adr5836.
– reference: 39333710 - Nat Rev Drug Discov. 2024 Nov;23(11):816. doi: 10.1038/d41573-024-00160-x.
– reference: 38979192 - bioRxiv. 2024 Jun 28:2024.06.23.598940. doi: 10.1101/2024.06.23.598940.
SSID ssib009802091
ssib000823047
ssib025845259
ssib018105125
ssib000823049
ssib004368585
ssib000768425
ssib000075033
ssib017603188
ssib002006171
ssib053847916
ssib023162120
ssib000130275
ssib006542920
ssj0009593
ssib008499897
ssib036356499
ssib058494303
ssib001012315
ssib002172803
ssib037023941
ssib003056250
ssib000381666
ssib005900057
ssib016082449
ssib002306548
ssib017276249
ssib017387408
ssib023629022
ssib026261122
ssib004837881
ssib001224130
ssib000640783
ssib023352243
ssib029927575
ssib006676998
ssib025845261
ssib000161559
ssib004260073
Score 2.633768
Snippet Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer’s disease (AD), with recent proteomic studies highlighting disrupted glial metabolism...
Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism...
Editor’s summaryAlzheimer’s disease has been associated with brain metabolic alterations. Minhas et al. studied the role of glucose metabolism impairments on...
SourceID proquest
pubmed
crossref
nii
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage eabm6131
SubjectTerms Accumulation
Alzheimer Disease - drug therapy
Alzheimer Disease - metabolism
Alzheimer's disease
Amyloid beta-Peptides - metabolism
Animal models
Animals
Astrocytes
Astrocytes - metabolism
Brain
Cell activation
Cell culture
Circuits
Cognition
Cognition - drug effects
Dementia disorders
Disease
Disease Models, Animal
Enzymes
Fuels
Glucose
Glucose - metabolism
Glycolysis
Glycolysis - drug effects
Hippocampus
Hippocampus - metabolism
Humans
Immunogenicity
Indoleamine-Pyrrole 2,3,-Dioxygenase - antagonists & inhibitors
Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism
Inflammation
Inhibition
Ionization
Kynurenine - metabolism
Lactic acid
Lactic Acid - metabolism
Long-Term Potentiation
Male
Mass spectrometry
Mass spectroscopy
Memory
Memory - drug effects
Memory tasks
Metabolism
Metabolites
Mice
Microglia
Monocarboxylic Acid Transporters - metabolism
Neural networks
Neurodegenerative diseases
Neurogenesis
Neurons
Neurons - metabolism
Oligomers
Parkinson's disease
Pathology
Plasticity
Pluripotency
Protein folding
Proteins
Proteomics
Receptors, Aryl Hydrocarbon - metabolism
Spatial analysis
Stem cells
Stimuli
Synapses
Synaptic plasticity
tau Proteins - metabolism
Tryptophan
Tryptophan - metabolism
Title Restoring hippocampal glucose metabolism rescues cognition across Alzheimer’s disease pathologies
URI https://cir.nii.ac.jp/crid/1873399491355938304
https://www.ncbi.nlm.nih.gov/pubmed/39172838
https://www.proquest.com/docview/3095611973
https://www.proquest.com/docview/3096278466
Volume 385
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLa6TkjcIDZOhQ0ZiYuhKFUSu0582QFThRhC65DGVeSk8RbRlqptLtgVr8GD8EI8Cb_jP244VBrcWFEObtTvy3-w_wMhz8OAZUIr6dfL91xx7sskVz5oP6lDFScsMcnJp-_E6AN_czG46HS-t6KWqnXWz6__mlfyP6jCOcDVZMn-A7JuUjgBx4AvjIAwjDfC-KxuC2Oc_atysQCtBN_21Gui0GfFGhCemi4Y4FPnIP89DBYyEci1evSG0-urojQdVDDoQa6aPRtTctWKRgwzRBO2kQZgmrrtnhbILm5xaKMLmmADfKy18nBazjGd7L1aqpU37m_CebCBAOaZeWfu0lv4Ee2P2qvfw1m5dMplXF2WVd07yftYfSrbixoRN6u0Nu-4EdRYJ9mqKSubA9NWMgpYW3gz2_AHWSpiK7n_1AutTpZFX2UzsGLCjQpstv1_04wuXrH2lCKR4gQpTrBDdqMYTLYu2R0evzo-2VrtGWtKtbK1mnf4xRzamZfldk-ntnjO75I76KrQoeXdHukU831yyzYv_bJP9hDRFT3C2uUv7pHcUZK2KEmRknRDSYqUpI6S1FKSOkr--PptRZGMtEXG-2R88vr85cjHPh5-zqNg7ScTGcY6SnSkJ7EGk10XItfgSisVTGSuJrKIGeiJkMd6IjUTQvNBHBeaaRAk7AHpzoF2jwgVcRFk2SDKTdUssGWVSDg3KwYyhwOV9Ei_-TPTHEvcm04r03QLgD1y5B5Y2Oou2289BHRgWjOGSczAsucyBHNdsoQFvEcOGtxSFBGrlJkyn2ajnvXIM3cZBLjZlVPz4nNV3yPM7r8QPfLQ4u3ehUnTPo4lj2_-nk_I7c0HdUC662VVHILdvM6eIkt_AmpMyDU
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restoring+hippocampal+glucose+metabolism+rescues+cognition+across+Alzheimer%E2%80%99s+disease+pathologies&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Minhas%2C+Paras+S.&rft.au=Jones%2C+Jeffrey+R.&rft.au=Latif-Hernandez%2C+Amira&rft.au=Sugiura%2C+Yuki&rft.date=2024-08-23&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=385&rft.issue=6711&rft_id=info:doi/10.1126%2Fscience.abm6131&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abm6131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon