Restoring hippocampal glucose metabolism rescues cognition across Alzheimer’s disease pathologies
Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer’s disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocam...
Saved in:
Published in | Science Vol. 385; no. 6711; p. eabm6131 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science (AAAS)
23.08.2024
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abm6131 |
Cover
Abstract | Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer’s disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor–dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter–dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD.
Alzheimer’s disease has been associated with brain metabolic alterations. Minhas
et al
. studied the role of glucose metabolism impairments on disease progression using a combination of human induced pluripotent stem cells and mouse models (see the Perspective by Johnson and Macauley). The authors showed that activation of indoleamine-2,3-dioxygenase 1 (IDO1) by either amyloid β or tau oligomers, two prominent Alzheimer’s disease pathological proteins, promotes the conversion of tryptophan to kynurenine, which then suppresses astrocytic glycolysis, thus reducing one of the main fuel sources for neurons. Inhibiting IDO1 rescued synaptic plasticity in vitro and improved cognition in multiple rodent models. Targeting metabolic dysfunctions holds promise for the treatment of neurodegenerative disorders. —Mattia Maroso |
---|---|
AbstractList | Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD. Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer’s disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor–dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter–dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD. Alzheimer’s disease has been associated with brain metabolic alterations. Minhas et al . studied the role of glucose metabolism impairments on disease progression using a combination of human induced pluripotent stem cells and mouse models (see the Perspective by Johnson and Macauley). The authors showed that activation of indoleamine-2,3-dioxygenase 1 (IDO1) by either amyloid β or tau oligomers, two prominent Alzheimer’s disease pathological proteins, promotes the conversion of tryptophan to kynurenine, which then suppresses astrocytic glycolysis, thus reducing one of the main fuel sources for neurons. Inhibiting IDO1 rescued synaptic plasticity in vitro and improved cognition in multiple rodent models. Targeting metabolic dysfunctions holds promise for the treatment of neurodegenerative disorders. —Mattia Maroso Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD.Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism in AD. We report that inhibition of indoleamine-2,3-dioxygenase 1 (IDO1), which metabolizes tryptophan to kynurenine (KYN), rescues hippocampal memory function in mouse preclinical models of AD by restoring astrocyte metabolism. Activation of astrocytic IDO1 by amyloid β and tau oligomers increases KYN and suppresses glycolysis in an aryl hydrocarbon receptor-dependent manner. In amyloid and tau models, IDO1 inhibition improves hippocampal glucose metabolism and rescues hippocampal long-term potentiation in a monocarboxylate transporter-dependent manner. In astrocytic and neuronal cocultures from AD subjects, IDO1 inhibition improved astrocytic production of lactate and uptake by neurons. Thus, IDO1 inhibitors presently developed for cancer might be repurposed for treatment of AD. Editor’s summaryAlzheimer’s disease has been associated with brain metabolic alterations. Minhas et al. studied the role of glucose metabolism impairments on disease progression using a combination of human induced pluripotent stem cells and mouse models (see the Perspective by Johnson and Macauley). The authors showed that activation of indoleamine-2,3-dioxygenase 1 (IDO1) by either amyloid β or tau oligomers, two prominent Alzheimer’s disease pathological proteins, promotes the conversion of tryptophan to kynurenine, which then suppresses astrocytic glycolysis, thus reducing one of the main fuel sources for neurons. Inhibiting IDO1 rescued synaptic plasticity in vitro and improved cognition in multiple rodent models. Targeting metabolic dysfunctions holds promise for the treatment of neurodegenerative disorders. —Mattia MarosoINTRODUCTIONAlzheimer’s disease (AD) is an age-associated neurodegenerative disorder characterized by a progressive and irreversible loss of synapses and neural circuitry. Major pathophysiologic processes that contribute to synaptic loss, including disrupted proteostasis, accumulation of misfolded amyloid and tau, and microglial dysfunction, are being vigorously investigated with the goal of identifying disease-modifying therapies. However, coincident with these distinct pathologies is a sustained decline in cerebral glucose metabolism, with recent proteomics revealing a marked disruption of astrocytic and microglial metabolism in AD subjects.RATIONALEAstrocytes generate lactate that is exported to neurons to fuel mitochondrial respiration and support synaptic activity. Recent studies have suggested a role for indoleamine-2,3-dioxygenase 1 (IDO1), an enzyme expressed in astrocytes, in multiple neurodegenerative disorders, including AD. IDO1 is the rate-limiting enzyme in the conversion of tryptophan (TRP) to kynurenine (KYN), a metabolite that elicits immune suppression in inflammatory and neoplastic contexts through interaction with the aryl-hydrocarbon receptor (AhR). IDO1 activity is significantly up-regulated by a variety of immunogenic stimuli, and, in the brain, IDO1 is expressed in astrocytes and microglia but not in neurons, where levels can increase in response to inflammatory stimuli.RESULTSWe report that inhibition of IDO1 and production of KYN rescues hippocampal synaptic plasticity and memory function in preclinical models of amyloid and tau pathology by restoring astrocytic metabolic support of neurons. Activation of IDO1 in astrocytes by amyloid β and tau oligomers, two major pathologic effectors in AD, increases KYN and suppresses glycolysis in an AhR-dependent manner. Conversely, pharmacological IDO1 inhibition restores astrocytic glycolysis and lactate production. In amyloid-producing APPSwe-PS1∆E9 and 5XFAD mice and in tau-producing P301S mice, IDO1 inhibition improves hippocampal glucose metabolism, as shown by metabolomic and MALDI-MS (matrix-assisted laser desorption ionization–mass spectrometry) analyses, and restores spatial memory. IDO1 blockade also rescues hippocampal long-term potentiation in a monocarboxylate transporter–dependent manner, suggesting that IDO1 activity disrupts astrocytic metabolic support of neurons. Indeed, in vitro mass labeling of human astrocytes demonstrated that IDO1 regulates astrocyte generation of lactate that is then taken up by human neurons. In cocultures of astrocytes and neurons derived from AD subjects, deficient astrocyte lactate production and transfer to neurons was corrected by IDO1 inhibition, resulting in improved neuronal glucose metabolism.CONCLUSIONIn addition to uncovering a previously uncharacterized role of IDO1 in brain glucose metabolism, our study highlights the potential of brain penetrant IDO1 inhibitors, developed as an adjunctive therapy for cancer, to be repurposed for treating neurodegenerative diseases such as AD. This study also reveals a general mechanism contributing to neuronal dysfunction that cuts across distinct pathologies. In addition to AD, manipulation of IDO1 may be relevant to Parkinson’s disease dementia, which is characterized by amyloid accumulation in addition to α-synuclein, as well as the broad spectrum of tauopathies. There is the possibility that deficient astrocytic glucose metabolism could also underlie other neurodegenerative diseases characterized by the accumulation of other misfolded proteins where increases in kynurenine pathway metabolites have been observed. |
Author | Travis Conley Matthew Matrongolo Hannah Ennerfelt Brenita C. Jenkins Austin Kang Geidy E. Serrano Tao Yang Frank M. Longo Yoo Jin Jung Joshua Crapser Fred H. Gage Siddhita D. Mhatre Edward N. Wilson Thomas G. Beach Ling Liu Traci Newmeyer Qian Wang Kelly Heard Yuki Sugiura Marius Wernig Jeffrey R. Jones Ryan Goodman Joshua D. Rabinowitz Praveena Prasad Yeonglong Albert Ay Aarooran S. Durairaj Erik M. Ullian Takeshi Uenaka Katrin I. Andreasson Amira Latif-Hernandez Melanie R. McReynolds Makoto Suematsu Paras S. Minhas |
Author_xml | – sequence: 1 givenname: Paras S. orcidid: 0000-0002-7741-3327 surname: Minhas fullname: Minhas, Paras S. organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA., Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA – sequence: 2 givenname: Jeffrey R. orcidid: 0000-0002-7570-2571 surname: Jones fullname: Jones, Jeffrey R. organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA – sequence: 3 givenname: Amira surname: Latif-Hernandez fullname: Latif-Hernandez, Amira organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 4 givenname: Yuki orcidid: 0000-0002-6983-8958 surname: Sugiura fullname: Sugiura, Yuki organization: Central Institute for Experimental Medicine and Life Science, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan., WPI-Bio2Q Research Center, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821 Japan., Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan – sequence: 5 givenname: Aarooran S. orcidid: 0000-0001-9355-3111 surname: Durairaj fullname: Durairaj, Aarooran S. organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 6 givenname: Qian orcidid: 0009-0003-6246-883X surname: Wang fullname: Wang, Qian organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 7 givenname: Siddhita D. orcidid: 0000-0001-9939-780X surname: Mhatre fullname: Mhatre, Siddhita D. organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 8 givenname: Takeshi orcidid: 0000-0001-5786-5038 surname: Uenaka fullname: Uenaka, Takeshi organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA – sequence: 9 givenname: Joshua orcidid: 0000-0002-8426-2336 surname: Crapser fullname: Crapser, Joshua organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 10 givenname: Travis orcidid: 0000-0002-9385-1386 surname: Conley fullname: Conley, Travis organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 11 givenname: Hannah orcidid: 0000-0003-4861-0740 surname: Ennerfelt fullname: Ennerfelt, Hannah organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 12 givenname: Yoo Jin orcidid: 0000-0002-9015-5529 surname: Jung fullname: Jung, Yoo Jin organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 13 givenname: Ling surname: Liu fullname: Liu, Ling organization: Lewis Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA., Department of Chemistry, Princeton University, Princeton 08544 NJ, USA – sequence: 14 givenname: Praveena orcidid: 0009-0002-1485-4798 surname: Prasad fullname: Prasad, Praveena organization: Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA – sequence: 15 givenname: Brenita C. orcidid: 0000-0002-0354-8843 surname: Jenkins fullname: Jenkins, Brenita C. organization: Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA – sequence: 16 givenname: Yeonglong Albert orcidid: 0009-0000-2255-3042 surname: Ay fullname: Ay, Yeonglong Albert organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 17 givenname: Matthew surname: Matrongolo fullname: Matrongolo, Matthew organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 18 givenname: Ryan orcidid: 0009-0007-4828-2675 surname: Goodman fullname: Goodman, Ryan organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA – sequence: 19 givenname: Traci surname: Newmeyer fullname: Newmeyer, Traci organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA – sequence: 20 givenname: Kelly orcidid: 0000-0001-7719-7225 surname: Heard fullname: Heard, Kelly organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA – sequence: 21 givenname: Austin orcidid: 0009-0007-0288-3029 surname: Kang fullname: Kang, Austin organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA – sequence: 22 givenname: Edward N. orcidid: 0000-0003-0640-5247 surname: Wilson fullname: Wilson, Edward N. organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 23 givenname: Tao orcidid: 0000-0002-7698-3440 surname: Yang fullname: Yang, Tao organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA – sequence: 24 givenname: Erik M. orcidid: 0000-0003-2077-8584 surname: Ullian fullname: Ullian, Erik M. organization: Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA – sequence: 25 givenname: Geidy E. orcidid: 0000-0002-9527-2011 surname: Serrano fullname: Serrano, Geidy E. organization: Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA – sequence: 26 givenname: Thomas G. orcidid: 0000-0003-3296-6128 surname: Beach fullname: Beach, Thomas G. organization: Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ 85351, USA – sequence: 27 givenname: Marius orcidid: 0000-0002-5309-515X surname: Wernig fullname: Wernig, Marius organization: Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA., Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA – sequence: 28 givenname: Joshua D. orcidid: 0000-0002-1247-4727 surname: Rabinowitz fullname: Rabinowitz, Joshua D. organization: Lewis Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA., Department of Chemistry, Princeton University, Princeton 08544 NJ, USA – sequence: 29 givenname: Makoto orcidid: 0000-0002-7165-6336 surname: Suematsu fullname: Suematsu, Makoto organization: Central Institute for Experimental Medicine and Life Science, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan., WPI-Bio2Q Research Center, Keio University, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821 Japan – sequence: 30 givenname: Frank M. orcidid: 0000-0002-9514-7325 surname: Longo fullname: Longo, Frank M. organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA., Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA – sequence: 31 givenname: Melanie R. orcidid: 0000-0001-5427-2739 surname: McReynolds fullname: McReynolds, Melanie R. organization: Lewis Institute for Cancer Research, Princeton University, Princeton, NJ 08544, USA., Department of Chemistry, Princeton University, Princeton 08544 NJ, USA., Department of Biochemistry and Molecular Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA – sequence: 32 givenname: Fred H. orcidid: 0000-0002-0938-4106 surname: Gage fullname: Gage, Fred H. organization: Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA – sequence: 33 givenname: Katrin I. orcidid: 0000-0001-8391-4155 surname: Andreasson fullname: Andreasson, Katrin I. organization: Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA., Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA., Chan Zuckerberg Biohub, San Francisco, CA 94158, USA., The Phil and Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, CA 94305, USA |
BackLink | https://cir.nii.ac.jp/crid/1873399491355938304$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/39172838$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1TAQhS1URC-la3YoEizYpPVPbMfLquJPqoQE7C3HGd9r5NjBThZlxWvwejwJDvd2U4nNzOY7M0fnPEdnMUVA6CXBV4RQcV2sh2jhygyTIIw8QTuCFW8VxewM7TBmou2x5OfoshQ_YKx6TLEiz9A5U0TSnvU7ZL9AWVL2cd8c_Dwna6bZhGYfVpsKNBMsZkjBl6nJUOwKpbFpH_3iU2yMzamU5ib8PICfIP_59bs0oy9gqnI2yyGFtPdQXqCnzoQCl6d9gb6-f_ft9mN79_nDp9ubu9Z2FC9tP1ZXjvaOulE63nEHwrpeUGPwqKwZFUgmFSOddKNyTAjXcSnBMccGwS7Q2-PVOacf1eiiJ18shGAipLVohpWgsu_Ehr5-hH5Pa47V20ZxQYiSrFKvTtQ6TDDqOfvJ5Hv9EF4F-BH4l0MGp61fzBbNko0PmmC99aRPPelTT1V3_Uj3cPr_ijdHRfS-Ptkm6atFpTpFGOequsEd-wtSZaUj |
CitedBy_id | crossref_primary_10_1038_d41573_024_00160_x crossref_primary_10_1126_science_adr5836 crossref_primary_10_1093_braincomms_fcaf060 crossref_primary_10_3390_brainsci14090950 crossref_primary_10_1002_smll_202408581 crossref_primary_10_1111_apha_14283 crossref_primary_10_1186_s13195_024_01618_1 crossref_primary_10_3390_ijms26010364 crossref_primary_10_1016_j_expneurol_2024_115070 crossref_primary_10_1186_s13195_024_01623_4 crossref_primary_10_3390_metabo15010034 crossref_primary_10_1016_j_fitote_2025_106408 crossref_primary_10_1038_s41392_025_02141_x crossref_primary_10_5607_en24029 crossref_primary_10_1002_pmic_202400298 crossref_primary_10_1124_pharmrev_124_000239 crossref_primary_10_3389_fonc_2024_1524651 crossref_primary_10_1002_alz_14481 crossref_primary_10_1016_j_bja_2024_12_032 crossref_primary_10_1002_alz_70077 |
Cites_doi | 10.1084/jem.20220654 10.1038/nature10491 10.1016/j.stem.2015.09.001 10.1111/neup.12189 10.1101/gr.253492.119 10.1021/jacs.7b08012 10.1186/1471-2105-12-323 10.1007/BF00308809 10.1523/JNEUROSCI.1523-15.2015 10.1021/ac1021166 10.1038/s41572-021-00269-y 10.1038/ncomms11915 10.1038/nrn3549 10.1002/cne.24040 10.1016/S0896-6273(00)80974-5 10.1016/j.bbi.2017.12.006 10.1016/j.xpro.2022.101261 10.1021/acs.analchem.8b03132 10.2119/molmed.2014.00032 10.1016/S0197-4580(97)00057-2 10.1002/brb3.41 10.3791/51917 10.1093/brain/aww117 10.1038/s41583-019-0132-6 10.1038/nrn.2018.19 10.1111/j.1365-2990.2005.00655.x 10.3389/fimmu.2020.00388 10.1523/JNEUROSCI.1202-06.2006 10.1186/s13059-014-0550-8 10.1016/j.cell.2019.11.016 10.1038/nature21029 10.1128/JVI.00792-07 10.1152/physrev.00062.2017 10.1038/srep32361 10.1042/BJ20091515 10.1038/s41590-018-0255-3 10.1097/00001756-199401120-00032 10.1158/1535-7163.MCT-17-1104 10.1371/journal.pone.0080355 10.1016/j.stemcr.2023.01.012 10.3389/fnmol.2017.00073 10.1371/journal.pone.0086426 10.1089/ars.2017.7014 10.1093/cercor/11.1.1 10.1016/j.semcdb.2015.03.002 10.1093/nar/gkab382 10.1038/s41573-019-0016-5 10.1016/j.neuron.2007.01.010 10.1016/0306-4522(92)90329-Z 10.1038/s41467-019-11674-z 10.1093/bioinformatics/bts635 10.1016/j.cell.2011.02.018 10.1038/nature24057 10.1016/j.freeradbiomed.2022.09.032 10.1016/j.cmet.2015.10.010 10.3389/fnagi.2021.713726 10.1038/nn.4018 10.1007/s12035-020-02055-5 10.1186/s40478-020-01034-0 10.1101/2024.06.23.598940 10.3791/55718-v 10.1093/hmg/ddh019 10.1038/nature13323 10.1172/JCI77487 10.3389/fncel.2016.00252 10.1002/glia.23250 10.1016/j.jpba.2019.112912 10.1021/ac102422b 10.1113/JP280572 10.1007/978-1-4939-6747-6_23 10.1038/s41591-020-0815-6 |
ContentType | Journal Article |
Copyright | Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
Copyright_xml | – notice: Copyright © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 |
DOI | 10.1126/science.abm6131 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
ExternalDocumentID | 39172838 10_1126_science_abm6131 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: U24 NS072026 – fundername: NIGMS NIH HHS grantid: T32 GM007365 – fundername: NIA NIH HHS grantid: R37 AG072502 – fundername: NIA NIH HHS grantid: RF1 AG056306 – fundername: NIA NIH HHS grantid: R01 AG048232 – fundername: NIA NIH HHS grantid: RF1 AG058047 – fundername: NIA NIH HHS grantid: P30 AG019610 – fundername: NIA NIH HHS grantid: P30 AG066515 – fundername: NIA NIH HHS grantid: P30 AG062429 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO ABCQX ABDBF ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PV9 PZZ RHI RXW RYH RZL SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YJ6 YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 2WC 7X8 |
ID | FETCH-LOGICAL-c420t-8d917f28f2fd7f545fe6cf862aa0d9cad9e73793147fd9f366f4577ef3f3b63 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Sep 04 18:24:55 EDT 2025 Fri Jul 25 19:14:06 EDT 2025 Mon Aug 04 01:30:35 EDT 2025 Tue Jul 01 03:14:10 EDT 2025 Thu Apr 24 23:02:10 EDT 2025 Thu Jun 26 23:58:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6711 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-8d917f28f2fd7f545fe6cf862aa0d9cad9e73793147fd9f366f4577ef3f3b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9355-3111 0009-0000-2255-3042 0009-0006-2920-392x 0000-0001-5786-5038 0000-0002-7741-3327 0000-0003-0640-5247 0009-0007-4828-2675 0000-0002-6983-8958 0000-0002-8426-2336 0000-0002-7570-2571 0000-0002-9385-1386 0000-0002-9514-7325 0000-0002-0938-4106 0000-0001-9939-780X 0000-0001-7719-7225 0000-0002-9015-5529 0000-0003-2077-8584 0000-0002-5309-515X 0009-0002-1485-4798 0009-0003-6246-883X 0000-0002-1247-4727 0009-0007-0288-3029 0000-0002-9527-2011 0000-0003-3296-6128 0000-0002-7165-6336 0000-0001-5427-2739 0000-0002-0354-8843 0000-0001-8391-4155 0000-0003-4861-0740 0000-0002-7698-3440 |
PMID | 39172838 |
PQID | 3095611973 |
PQPubID | 1256 |
ParticipantIDs | proquest_miscellaneous_3096278466 proquest_journals_3095611973 pubmed_primary_39172838 crossref_citationtrail_10_1126_science_abm6131 crossref_primary_10_1126_science_abm6131 nii_cinii_1873399491355938304 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-23 20240823 |
PublicationDateYYYYMMDD | 2024-08-23 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science |
PublicationTitleAlternate | Science |
PublicationYear | 2024 |
Publisher | American Association for the Advancement of Science (AAAS) The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science (AAAS) – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 38979192 - bioRxiv. 2024 Jun 28:2024.06.23.598940. doi: 10.1101/2024.06.23.598940. 39333710 - Nat Rev Drug Discov. 2024 Nov;23(11):816. doi: 10.1038/d41573-024-00160-x. 39172856 - Science. 2024 Aug 23;385(6711):826-827. doi: 10.1126/science.adr5836. |
References_xml | – ident: e_1_3_2_26_2 doi: 10.1084/jem.20220654 – ident: e_1_3_2_11_2 doi: 10.1038/nature10491 – ident: e_1_3_2_69_2 doi: 10.1016/j.stem.2015.09.001 – ident: e_1_3_2_66_2 doi: 10.1111/neup.12189 – ident: e_1_3_2_74_2 doi: 10.1101/gr.253492.119 – ident: e_1_3_2_46_2 doi: 10.1021/jacs.7b08012 – ident: e_1_3_2_72_2 doi: 10.1186/1471-2105-12-323 – ident: e_1_3_2_32_2 doi: 10.1007/BF00308809 – ident: e_1_3_2_44_2 doi: 10.1523/JNEUROSCI.1523-15.2015 – ident: e_1_3_2_56_2 doi: 10.1021/ac1021166 – ident: e_1_3_2_2_2 doi: 10.1038/s41572-021-00269-y – ident: e_1_3_2_25_2 doi: 10.1038/ncomms11915 – ident: e_1_3_2_38_2 doi: 10.1038/nrn3549 – ident: e_1_3_2_6_2 doi: 10.1002/cne.24040 – ident: e_1_3_2_23_2 doi: 10.1016/S0896-6273(00)80974-5 – ident: e_1_3_2_12_2 doi: 10.1016/j.bbi.2017.12.006 – ident: e_1_3_2_68_2 doi: 10.1016/j.xpro.2022.101261 – ident: e_1_3_2_53_2 doi: 10.1021/acs.analchem.8b03132 – ident: e_1_3_2_17_2 doi: 10.2119/molmed.2014.00032 – ident: e_1_3_2_67_2 doi: 10.1016/S0197-4580(97)00057-2 – ident: e_1_3_2_62_2 doi: 10.1002/brb3.41 – ident: e_1_3_2_64_2 doi: 10.3791/51917 – ident: e_1_3_2_43_2 doi: 10.1093/brain/aww117 – ident: e_1_3_2_4_2 doi: 10.1038/s41583-019-0132-6 – ident: e_1_3_2_22_2 doi: 10.1038/nrn.2018.19 – ident: e_1_3_2_35_2 doi: 10.1111/j.1365-2990.2005.00655.x – ident: e_1_3_2_36_2 doi: 10.3389/fimmu.2020.00388 – ident: e_1_3_2_42_2 doi: 10.1523/JNEUROSCI.1202-06.2006 – ident: e_1_3_2_73_2 doi: 10.1186/s13059-014-0550-8 – ident: e_1_3_2_51_2 doi: 10.1016/j.cell.2019.11.016 – ident: e_1_3_2_52_2 doi: 10.1038/nature21029 – ident: e_1_3_2_13_2 doi: 10.1128/JVI.00792-07 – ident: e_1_3_2_7_2 doi: 10.1152/physrev.00062.2017 – ident: e_1_3_2_30_2 doi: 10.1038/srep32361 – ident: e_1_3_2_31_2 doi: 10.1042/BJ20091515 – ident: e_1_3_2_45_2 doi: 10.1038/s41590-018-0255-3 – ident: e_1_3_2_34_2 doi: 10.1097/00001756-199401120-00032 – ident: e_1_3_2_15_2 doi: 10.1158/1535-7163.MCT-17-1104 – ident: e_1_3_2_60_2 doi: 10.1371/journal.pone.0080355 – ident: e_1_3_2_14_2 doi: 10.1016/j.stemcr.2023.01.012 – ident: e_1_3_2_8_2 doi: 10.3389/fnmol.2017.00073 – ident: e_1_3_2_57_2 doi: 10.1371/journal.pone.0086426 – ident: e_1_3_2_58_2 doi: 10.1089/ars.2017.7014 – ident: e_1_3_2_33_2 doi: 10.1093/cercor/11.1.1 – ident: e_1_3_2_39_2 doi: 10.1016/j.semcdb.2015.03.002 – ident: e_1_3_2_54_2 doi: 10.1093/nar/gkab382 – ident: e_1_3_2_10_2 doi: 10.1038/s41573-019-0016-5 – ident: e_1_3_2_28_2 doi: 10.1016/j.neuron.2007.01.010 – ident: e_1_3_2_37_2 doi: 10.1016/0306-4522(92)90329-Z – ident: e_1_3_2_48_2 doi: 10.1038/s41467-019-11674-z – ident: e_1_3_2_71_2 doi: 10.1093/bioinformatics/bts635 – ident: e_1_3_2_20_2 doi: 10.1016/j.cell.2011.02.018 – ident: e_1_3_2_47_2 doi: 10.1038/nature24057 – ident: e_1_3_2_55_2 doi: 10.1093/nar/gkab382 – ident: e_1_3_2_3_2 doi: 10.1016/j.freeradbiomed.2022.09.032 – ident: e_1_3_2_9_2 doi: 10.1016/j.cmet.2015.10.010 – ident: e_1_3_2_24_2 doi: 10.3389/fnagi.2021.713726 – ident: e_1_3_2_27_2 doi: 10.1038/nn.4018 – ident: e_1_3_2_21_2 doi: 10.1007/s12035-020-02055-5 – ident: e_1_3_2_50_2 doi: 10.1186/s40478-020-01034-0 – ident: e_1_3_2_40_2 doi: 10.1101/2024.06.23.598940 – ident: e_1_3_2_61_2 doi: 10.3791/55718-v – ident: e_1_3_2_41_2 doi: 10.1093/hmg/ddh019 – ident: e_1_3_2_16_2 doi: 10.1038/nature13323 – ident: e_1_3_2_49_2 doi: 10.1172/JCI77487 – ident: e_1_3_2_63_2 doi: 10.3389/fncel.2016.00252 – ident: e_1_3_2_70_2 – ident: e_1_3_2_19_2 doi: 10.1002/glia.23250 – ident: e_1_3_2_29_2 doi: 10.1016/j.jpba.2019.112912 – ident: e_1_3_2_65_2 doi: 10.1021/ac102422b – ident: e_1_3_2_18_2 doi: 10.1113/JP280572 – ident: e_1_3_2_59_2 doi: 10.1007/978-1-4939-6747-6_23 – ident: e_1_3_2_5_2 doi: 10.1038/s41591-020-0815-6 – reference: 39172856 - Science. 2024 Aug 23;385(6711):826-827. doi: 10.1126/science.adr5836. – reference: 39333710 - Nat Rev Drug Discov. 2024 Nov;23(11):816. doi: 10.1038/d41573-024-00160-x. – reference: 38979192 - bioRxiv. 2024 Jun 28:2024.06.23.598940. doi: 10.1101/2024.06.23.598940. |
SSID | ssib009802091 ssib000823047 ssib025845259 ssib018105125 ssib000823049 ssib004368585 ssib000768425 ssib000075033 ssib017603188 ssib002006171 ssib053847916 ssib023162120 ssib000130275 ssib006542920 ssj0009593 ssib008499897 ssib036356499 ssib058494303 ssib001012315 ssib002172803 ssib037023941 ssib003056250 ssib000381666 ssib005900057 ssib016082449 ssib002306548 ssib017276249 ssib017387408 ssib023629022 ssib026261122 ssib004837881 ssib001224130 ssib000640783 ssib023352243 ssib029927575 ssib006676998 ssib025845261 ssib000161559 ssib004260073 |
Score | 2.633768 |
Snippet | Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer’s disease (AD), with recent proteomic studies highlighting disrupted glial metabolism... Impaired cerebral glucose metabolism is a pathologic feature of Alzheimer's disease (AD), with recent proteomic studies highlighting disrupted glial metabolism... Editor’s summaryAlzheimer’s disease has been associated with brain metabolic alterations. Minhas et al. studied the role of glucose metabolism impairments on... |
SourceID | proquest pubmed crossref nii |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | eabm6131 |
SubjectTerms | Accumulation Alzheimer Disease - drug therapy Alzheimer Disease - metabolism Alzheimer's disease Amyloid beta-Peptides - metabolism Animal models Animals Astrocytes Astrocytes - metabolism Brain Cell activation Cell culture Circuits Cognition Cognition - drug effects Dementia disorders Disease Disease Models, Animal Enzymes Fuels Glucose Glucose - metabolism Glycolysis Glycolysis - drug effects Hippocampus Hippocampus - metabolism Humans Immunogenicity Indoleamine-Pyrrole 2,3,-Dioxygenase - antagonists & inhibitors Indoleamine-Pyrrole 2,3,-Dioxygenase - metabolism Inflammation Inhibition Ionization Kynurenine - metabolism Lactic acid Lactic Acid - metabolism Long-Term Potentiation Male Mass spectrometry Mass spectroscopy Memory Memory - drug effects Memory tasks Metabolism Metabolites Mice Microglia Monocarboxylic Acid Transporters - metabolism Neural networks Neurodegenerative diseases Neurogenesis Neurons Neurons - metabolism Oligomers Parkinson's disease Pathology Plasticity Pluripotency Protein folding Proteins Proteomics Receptors, Aryl Hydrocarbon - metabolism Spatial analysis Stem cells Stimuli Synapses Synaptic plasticity tau Proteins - metabolism Tryptophan Tryptophan - metabolism |
Title | Restoring hippocampal glucose metabolism rescues cognition across Alzheimer’s disease pathologies |
URI | https://cir.nii.ac.jp/crid/1873399491355938304 https://www.ncbi.nlm.nih.gov/pubmed/39172838 https://www.proquest.com/docview/3095611973 https://www.proquest.com/docview/3096278466 |
Volume | 385 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLa6TkjcIDZOhQ0ZiYuhKFUSu0582QFThRhC65DGVeSk8RbRlqptLtgVr8GD8EI8Cb_jP244VBrcWFEObtTvy3-w_wMhz8OAZUIr6dfL91xx7sskVz5oP6lDFScsMcnJp-_E6AN_czG46HS-t6KWqnXWz6__mlfyP6jCOcDVZMn-A7JuUjgBx4AvjIAwjDfC-KxuC2Oc_atysQCtBN_21Gui0GfFGhCemi4Y4FPnIP89DBYyEci1evSG0-urojQdVDDoQa6aPRtTctWKRgwzRBO2kQZgmrrtnhbILm5xaKMLmmADfKy18nBazjGd7L1aqpU37m_CebCBAOaZeWfu0lv4Ee2P2qvfw1m5dMplXF2WVd07yftYfSrbixoRN6u0Nu-4EdRYJ9mqKSubA9NWMgpYW3gz2_AHWSpiK7n_1AutTpZFX2UzsGLCjQpstv1_04wuXrH2lCKR4gQpTrBDdqMYTLYu2R0evzo-2VrtGWtKtbK1mnf4xRzamZfldk-ntnjO75I76KrQoeXdHukU831yyzYv_bJP9hDRFT3C2uUv7pHcUZK2KEmRknRDSYqUpI6S1FKSOkr--PptRZGMtEXG-2R88vr85cjHPh5-zqNg7ScTGcY6SnSkJ7EGk10XItfgSisVTGSuJrKIGeiJkMd6IjUTQvNBHBeaaRAk7AHpzoF2jwgVcRFk2SDKTdUssGWVSDg3KwYyhwOV9Ei_-TPTHEvcm04r03QLgD1y5B5Y2Oou2289BHRgWjOGSczAsucyBHNdsoQFvEcOGtxSFBGrlJkyn2ajnvXIM3cZBLjZlVPz4nNV3yPM7r8QPfLQ4u3ehUnTPo4lj2_-nk_I7c0HdUC662VVHILdvM6eIkt_AmpMyDU |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Restoring+hippocampal+glucose+metabolism+rescues+cognition+across+Alzheimer%E2%80%99s+disease+pathologies&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Minhas%2C+Paras+S.&rft.au=Jones%2C+Jeffrey+R.&rft.au=Latif-Hernandez%2C+Amira&rft.au=Sugiura%2C+Yuki&rft.date=2024-08-23&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=385&rft.issue=6711&rft_id=info:doi/10.1126%2Fscience.abm6131&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abm6131 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |