Cancer Classification with a Cost-Sensitive Naive Bayes Stacking Ensemble

Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based feature selection (FCBF) method was used to prepr...

Full description

Saved in:
Bibliographic Details
Published inComputational and mathematical methods in medicine Vol. 2021; pp. 1 - 12
Main Authors Xiong, Yueling, Ye, Mingquan, Wu, Changrong
Format Journal Article
LanguageEnglish
Published United States Hindawi 26.04.2021
Subjects
Online AccessGet full text
ISSN1748-670X
1748-6718
1748-6718
DOI10.1155/2021/5556992

Cover

Abstract Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based feature selection (FCBF) method was used to preprocess the data to eliminate irrelevant and redundant features. Then, the classification was carried out in the stacking ensemble learner. A library for support vector machine (LIBSVM), K-nearest neighbor (KNN), decision tree C4.5 (C4.5), and random forest (RF) were used as the primary learners of the stacking ensemble. Given the imbalanced characteristics of cancer gene expression data, the embedding cost-sensitive naive Bayes was used as the metalearner of the stacking ensemble, which was represented as CSNB stacking. The proposed CSNB stacking method was applied to nine cancer datasets to further verify the classification performance of the model. Compared with other classification methods, such as single classifier algorithms and ensemble algorithms, the experimental results showed the effectiveness and robustness of the proposed method in processing different types of cancer data. This method may therefore help guide cancer diagnosis and research.
AbstractList Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based feature selection (FCBF) method was used to preprocess the data to eliminate irrelevant and redundant features. Then, the classification was carried out in the stacking ensemble learner. A library for support vector machine (LIBSVM), K -nearest neighbor (KNN), decision tree C4.5 (C4.5), and random forest (RF) were used as the primary learners of the stacking ensemble. Given the imbalanced characteristics of cancer gene expression data, the embedding cost-sensitive naive Bayes was used as the metalearner of the stacking ensemble, which was represented as CSNB stacking. The proposed CSNB stacking method was applied to nine cancer datasets to further verify the classification performance of the model. Compared with other classification methods, such as single classifier algorithms and ensemble algorithms, the experimental results showed the effectiveness and robustness of the proposed method in processing different types of cancer data. This method may therefore help guide cancer diagnosis and research.
Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based feature selection (FCBF) method was used to preprocess the data to eliminate irrelevant and redundant features. Then, the classification was carried out in the stacking ensemble learner. A library for support vector machine (LIBSVM), K-nearest neighbor (KNN), decision tree C4.5 (C4.5), and random forest (RF) were used as the primary learners of the stacking ensemble. Given the imbalanced characteristics of cancer gene expression data, the embedding cost-sensitive naive Bayes was used as the metalearner of the stacking ensemble, which was represented as CSNB stacking. The proposed CSNB stacking method was applied to nine cancer datasets to further verify the classification performance of the model. Compared with other classification methods, such as single classifier algorithms and ensemble algorithms, the experimental results showed the effectiveness and robustness of the proposed method in processing different types of cancer data. This method may therefore help guide cancer diagnosis and research.
Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based feature selection (FCBF) method was used to preprocess the data to eliminate irrelevant and redundant features. Then, the classification was carried out in the stacking ensemble learner. A library for support vector machine (LIBSVM), K-nearest neighbor (KNN), decision tree C4.5 (C4.5), and random forest (RF) were used as the primary learners of the stacking ensemble. Given the imbalanced characteristics of cancer gene expression data, the embedding cost-sensitive naive Bayes was used as the metalearner of the stacking ensemble, which was represented as CSNB stacking. The proposed CSNB stacking method was applied to nine cancer datasets to further verify the classification performance of the model. Compared with other classification methods, such as single classifier algorithms and ensemble algorithms, the experimental results showed the effectiveness and robustness of the proposed method in processing different types of cancer data. This method may therefore help guide cancer diagnosis and research.Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based feature selection (FCBF) method was used to preprocess the data to eliminate irrelevant and redundant features. Then, the classification was carried out in the stacking ensemble learner. A library for support vector machine (LIBSVM), K-nearest neighbor (KNN), decision tree C4.5 (C4.5), and random forest (RF) were used as the primary learners of the stacking ensemble. Given the imbalanced characteristics of cancer gene expression data, the embedding cost-sensitive naive Bayes was used as the metalearner of the stacking ensemble, which was represented as CSNB stacking. The proposed CSNB stacking method was applied to nine cancer datasets to further verify the classification performance of the model. Compared with other classification methods, such as single classifier algorithms and ensemble algorithms, the experimental results showed the effectiveness and robustness of the proposed method in processing different types of cancer data. This method may therefore help guide cancer diagnosis and research.
Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance. To achieve higher quality cancer classification, in this study, the fast correlation-based feature selection (FCBF) method was used to preprocess the data to eliminate irrelevant and redundant features. Then, the classification was carried out in the stacking ensemble learner. A library for support vector machine (LIBSVM), -nearest neighbor (KNN), decision tree C4.5 (C4.5), and random forest (RF) were used as the primary learners of the stacking ensemble. Given the imbalanced characteristics of cancer gene expression data, the embedding cost-sensitive naive Bayes was used as the metalearner of the stacking ensemble, which was represented as CSNB stacking. The proposed CSNB stacking method was applied to nine cancer datasets to further verify the classification performance of the model. Compared with other classification methods, such as single classifier algorithms and ensemble algorithms, the experimental results showed the effectiveness and robustness of the proposed method in processing different types of cancer data. This method may therefore help guide cancer diagnosis and research.
Author Ye, Mingquan
Wu, Changrong
Xiong, Yueling
AuthorAffiliation 1 School of Medical Information, Wannan Medical College, Wuhu 241002, China
2 School of Computer and Information, Anhui Normal University, Wuhu 241002, China
AuthorAffiliation_xml – name: 2 School of Computer and Information, Anhui Normal University, Wuhu 241002, China
– name: 1 School of Medical Information, Wannan Medical College, Wuhu 241002, China
Author_xml – sequence: 1
  givenname: Yueling
  surname: Xiong
  fullname: Xiong, Yueling
  organization: School of Medical InformationWannan Medical CollegeWuhu 241002Chinawnmc.edu.cn
– sequence: 2
  givenname: Mingquan
  orcidid: 0000-0002-0237-4159
  surname: Ye
  fullname: Ye, Mingquan
  organization: School of Medical InformationWannan Medical CollegeWuhu 241002Chinawnmc.edu.cn
– sequence: 3
  givenname: Changrong
  orcidid: 0000-0002-8977-6694
  surname: Wu
  fullname: Wu, Changrong
  organization: School of Computer and InformationAnhui Normal UniversityWuhu 241002Chinaahnu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33986823$$D View this record in MEDLINE/PubMed
BookMark eNqFkElPwzAQhS0EorRw44xyRIKAlzjLBQmiApUqOBQkbtbEcVpD6pTYbdV_T0pLWSTgYlvjb96beW20bSqjEDok-IwQzs8ppuSccx4mCd1CeyQKYj-MSLy9eeOnFmpb-4wxJxEnu6jFWBKHMWV7qJeCkar20hKs1YWW4HRlvLl2Iw-8tLLOHyhjtdMz5d3B8ryChbLewIF80WbodY1V46xU-2ingNKqg_XdQY_X3Yf01u_f3_TSy74vA4qdH8kwIDTJGclojjOSA4MQQ5DJHOMgWVaY5KypYglJVMggaSYtipDHPMwDyjrIX-lOzQQWcyhLMan1GOqFIFgsIxHLSMQ6koa_WPGTaTZWuVTG1fDZU4EW33-MHolhNRMxThhmUSNwvBaoq9epsk6MtZWqLMGoamoF5TQmURSzoEGPvnptTD7ybgC6AmRdWVurQkjt3iNvrHX52wanP5r-WfhkhY-0yWGu_6bfADeCrQQ
CitedBy_id crossref_primary_10_1038_s41598_024_71934_x
crossref_primary_10_3390_cancers13174468
crossref_primary_10_2196_43815
crossref_primary_10_3390_math9172078
crossref_primary_10_3390_cancers14122897
crossref_primary_10_1007_s10462_024_10814_2
crossref_primary_10_1016_j_engappai_2024_109875
crossref_primary_10_1007_s13755_025_00343_9
crossref_primary_10_3390_children9091383
crossref_primary_10_1007_s11764_023_01465_3
crossref_primary_10_1515_bmt_2023_0266
crossref_primary_10_3389_fonc_2023_1152020
crossref_primary_10_1016_j_iswa_2023_200204
crossref_primary_10_1155_2022_7777211
crossref_primary_10_35940_ijitee_F9906_0511622
Cites_doi 10.1016/j.chinastron.2020.08.005
10.1093/bioinformatics/16.10.906
10.1016/j.asoc.2019.01.015
10.1007/s00500-019-03879-7
10.5958/0976-5506.2019.04356.0
10.1016/j.bspc.2019.01.012
10.1162/coli_a_00323
10.1016/j.eswa.2017.05.033
10.1007/s10853-017-1252-x
10.2174/2213275912666190101121058
10.1016/j.knosys.2013.02.008
10.1016/j.chemolab.2017.12.014
10.1016/j.neucom.2020.01.101
10.3233/JIFS-181665
10.1016/j.engappai.2015.04.003
10.1016/j.asoc.2019.04.031
10.4258/hir.2019.25.4.283
10.1080/24699322.2019.1649074
10.5121/ijcnc.2019.11207
10.1186/s12859-020-03790-1
10.1080/19439962.2019.1579288
10.1016/j.jpdc.2019.12.015
10.1038/s41598-020-66466-z
10.1016/j.ygeno.2019.11.004
10.1016/j.ins.2019.02.062
10.1016/j.neucom.2019.07.061
10.1186/s13638-020-01800-7
10.1007/s40484-020-0226-1
10.1016/j.compeleceng.2013.11.024
10.1186/s12859-020-03731-y
10.2174/1574893614666190204150918
10.1093/bioinformatics/btz772
10.1016/j.compbiomed.2020.104089
10.1016/j.neucom.2020.07.050
10.1007/s00138-020-01094-1
10.1007/s11548-019-02016-x
10.1186/s12984-017-0255-9
10.4015/s1016237220500131
10.1038/s41598-019-53034-3
10.3390/molecules22122086
10.1002/nag.3111
10.1002/ijfe.1698
10.1166/jmihi.2016.1866
10.1504/IJIPT.2017.083033
10.1016/j.gpb.2017.08.002
10.1016/S0893-6080(05)80023-1
10.4018/IJSIR.2020010104
ContentType Journal Article
Copyright Copyright © 2021 Yueling Xiong et al.
Copyright © 2021 Yueling Xiong et al. 2021
Copyright_xml – notice: Copyright © 2021 Yueling Xiong et al.
– notice: Copyright © 2021 Yueling Xiong et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2021/5556992
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1748-6718
Editor Juhola, Martti
Editor_xml – sequence: 1
  givenname: Martti
  surname: Juhola
  fullname: Juhola, Martti
EndPage 12
ExternalDocumentID 10.1155/2021/5556992
PMC8093037
33986823
10_1155_2021_5556992
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61672386
– fundername: Natural Science Foundation of Anhui Province
  grantid: 1708085MF142
– fundername: Ministry of Education of the People's Republic of China
  grantid: 16YJAZH071
GroupedDBID ---
29F
2DF
3YN
4.4
53G
5GY
5VS
6J9
AAFWJ
AAJEY
ABDBF
ACGFO
ACIPV
ACIWK
ADBBV
ADRAZ
AENEX
AFKVX
AHMBA
AIAGR
AJWEG
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CAG
CS3
DIK
EAD
EAP
EAS
EBC
EBD
EBS
EMK
EMOBN
EPL
EST
ESX
F5P
GROUPED_DOAJ
GX1
HYE
IAO
IEA
IHR
INH
INR
ITC
J.P
J9A
KQ8
M48
M4Z
ML~
O5R
OK1
P2P
REM
RHU
RHW
RHX
RNS
RPM
SV3
TFW
TUS
TWF
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
PGMZT
7X7
88E
8FE
8FG
8FI
8FJ
ABJCF
ABUWG
AFKRA
AWYRJ
BENPR
BGLVJ
BPHCQ
BVXVI
CCPQU
CGR
COF
CUY
CVF
ECM
EIF
EJD
FYUFA
HCIFZ
HF~
HMCUK
IPNFZ
L6V
M1P
M7S
NPM
O5S
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
RIG
UKHRP
7X8
5PM
ADTOC
PHGZM
PJZUB
PPXIY
PQGLB
UNPAY
ID FETCH-LOGICAL-c420t-7c64129d31b2d0b1da3a60a4bcd00490b1d3c53a3a0ca97fc49682ff65856d423
IEDL.DBID UNPAY
ISSN 1748-670X
1748-6718
IngestDate Sun Oct 26 04:06:12 EDT 2025
Tue Sep 30 16:53:28 EDT 2025
Thu Oct 02 04:51:13 EDT 2025
Thu Apr 03 07:05:51 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Wed Oct 01 00:53:30 EDT 2025
Sun Jun 02 19:14:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Yueling Xiong et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-7c64129d31b2d0b1da3a60a4bcd00490b1d3c53a3a0ca97fc49682ff65856d423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Academic Editor: Martti Juhola
ORCID 0000-0002-0237-4159
0000-0002-8977-6694
OpenAccessLink https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/cmmm/2021/5556992.pdf
PMID 33986823
PQID 2528177834
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1155_2021_5556992
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8093037
proquest_miscellaneous_2528177834
pubmed_primary_33986823
crossref_citationtrail_10_1155_2021_5556992
crossref_primary_10_1155_2021_5556992
hindawi_primary_10_1155_2021_5556992
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-26
PublicationDateYYYYMMDD 2021-04-26
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computational and mathematical methods in medicine
PublicationTitleAlternate Comput Math Methods Med
PublicationYear 2021
Publisher Hindawi
Publisher_xml – name: Hindawi
References 22
44
23
45
24
46
25
47
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
20
42
21
43
References_xml – ident: 16
  doi: 10.1016/j.chinastron.2020.08.005
– ident: 38
  doi: 10.1093/bioinformatics/16.10.906
– ident: 24
  doi: 10.1016/j.asoc.2019.01.015
– ident: 25
  doi: 10.1007/s00500-019-03879-7
– ident: 17
  doi: 10.5958/0976-5506.2019.04356.0
– ident: 19
  doi: 10.1016/j.bspc.2019.01.012
– ident: 45
  doi: 10.1162/coli_a_00323
– ident: 20
  doi: 10.1016/j.eswa.2017.05.033
– ident: 46
  doi: 10.1007/s10853-017-1252-x
– ident: 37
  doi: 10.2174/2213275912666190101121058
– ident: 23
  doi: 10.1016/j.knosys.2013.02.008
– ident: 14
  doi: 10.1016/j.chemolab.2017.12.014
– ident: 42
  doi: 10.1016/j.neucom.2020.01.101
– ident: 35
  doi: 10.3233/JIFS-181665
– ident: 21
  doi: 10.1016/j.engappai.2015.04.003
– ident: 28
  doi: 10.1016/j.asoc.2019.04.031
– ident: 22
  doi: 10.4258/hir.2019.25.4.283
– ident: 41
  doi: 10.1080/24699322.2019.1649074
– ident: 15
  doi: 10.5121/ijcnc.2019.11207
– ident: 26
  doi: 10.1186/s12859-020-03790-1
– ident: 32
  doi: 10.1080/19439962.2019.1579288
– ident: 7
  doi: 10.1016/j.jpdc.2019.12.015
– ident: 6
  doi: 10.1038/s41598-020-66466-z
– ident: 9
  doi: 10.1016/j.ygeno.2019.11.004
– ident: 40
  doi: 10.1016/j.ins.2019.02.062
– ident: 12
  doi: 10.1016/j.neucom.2019.07.061
– ident: 31
  doi: 10.1186/s13638-020-01800-7
– ident: 30
  doi: 10.1007/s40484-020-0226-1
– ident: 39
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: 3
  doi: 10.1186/s12859-020-03731-y
– ident: 1
  doi: 10.2174/1574893614666190204150918
– ident: 10
  doi: 10.1093/bioinformatics/btz772
– ident: 29
  doi: 10.1016/j.compbiomed.2020.104089
– ident: 47
  doi: 10.1016/j.neucom.2020.07.050
– ident: 4
  doi: 10.1007/s00138-020-01094-1
– ident: 36
  doi: 10.1007/s11548-019-02016-x
– ident: 43
  doi: 10.1186/s12984-017-0255-9
– ident: 8
  doi: 10.4015/s1016237220500131
– ident: 5
  doi: 10.1038/s41598-019-53034-3
– ident: 27
  doi: 10.3390/molecules22122086
– ident: 33
  doi: 10.1002/nag.3111
– ident: 13
  doi: 10.1002/ijfe.1698
– ident: 34
  doi: 10.1166/jmihi.2016.1866
– ident: 44
  doi: 10.1504/IJIPT.2017.083033
– ident: 2
  doi: 10.1016/j.gpb.2017.08.002
– ident: 18
  doi: 10.1016/S0893-6080(05)80023-1
– ident: 11
  doi: 10.4018/IJSIR.2020010104
SSID ssj0051751
Score 2.4056451
Snippet Ensemble learning combines multiple learners to perform combinatorial learning, which has advantages of good flexibility and higher generalization performance....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Bayes Theorem
Computational Biology
Databases, Genetic - statistics & numerical data
Decision Trees
Female
Gene Expression Regulation, Neoplastic
Humans
Machine Learning
Male
Neoplasms - classification
Neoplasms - genetics
Neural Networks, Computer
Oligonucleotide Array Sequence Analysis - statistics & numerical data
Oncogenes
ROC Curve
Support Vector Machine
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEA664PEi3taLCuqLBNNcbR51UVZBHzxg30qSpqywdsXuIvvvzXS7i-v9Umg6Le18aWYmcyF0aKVWlJIMW-1yzDkxWCWOYxE5ljhKYmMgd_jmVrYe-XVbtOsiSeVXF76XdmCeR6dCCKmUX2tnEwmRW3et9njBFV4CRqO8xwTLmLTH8e2f7p2SPHMdMHnfnr5TLL_GRy4Mihc9fNPd7gfhc7mMlmqtMTwbwbyCZlyxiuZvar_4GrpqAnivYdXiEoJ_Kn6HsMka6rDZK_v4HiLVYW0LbzUcz_XQlaHXNS1slocXRemeTdeto8fLi4dmC9dNErDllPRxbCX3MjtjkaEZMVGmmZZEc2OzyqvnR5gVzI8Sq1WcW65kQvPcax5CZl6Z2kCNole4LUjf9vYqN1GcRVA1zuhM5GBiMcWsyZUO0MmYgamtK4hDI4tuWlkSQqTA7rRmd4COJtQvo8oZP9Ad1lj8QXYwBir1fwC4NXTheoMypYImUQwNQwK0OQJu8iTGlJ8vlAUonoJ0QgDVtaevFE-dqsp2QpQX73GAjifg__qC2__7jh20CKfgkKJyFzX6rwO35_WavtmvZvU7KK7tvg
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcQiMEL4nthHwoS8IIMjr8SP0xoq0AMqbywSn2LbMcRSFkKTSvofz9fmkYrsMFLpDiXKL6zfb_zne8QOrBSK0pJhq12OeacGKwSx7GIHEscJbExcHa4ey0ve_yqL_oLaFZttGFg9appB_WkesPi5OlhcuYn_Ld6wgsB9nt0KoSQSvnFeMnrKAVFHLq89ScIrySj6dHIBMuY9Gch8M_enlNOy7dgFT_evYY9X4ZQrozLez151EXxl366WEdrDbAMv09HwgZacOUm-tBtXOdb6GcH5DsM6yqYEB9UiySEfdhQh51BNcI3EMwOy194reH6Q09cFXo4amE_PTwvK_fbFG4b9S7Of3UucVNHAVtOyQjHVnKv1jMWGZoRE2WaaUk0NzarHX--hVnBfCuxWsW55UomNM89OBEy83hrBy2Wg9J9hBPe3qTlJoqzCBLLGZ2JHKwwppg1udIBOp4xMLVNknGodVGktbEhRArsTht2B-iwpb6fJtf4B91BI4s3yPZngkr9JAHPhy7dYFylVNAkiqGmSIB2p4Jrv8SYSnx3WYDiOZG2BJCAe_5JeXdbJ-JOiPIIIA7QUSv8__7g3vv68Qmtwi34rKj8jBZHw7H74qHPyHytR_UfZ1_7LQ
  priority: 102
  providerName: Scholars Portal
Title Cancer Classification with a Cost-Sensitive Naive Bayes Stacking Ensemble
URI https://dx.doi.org/10.1155/2021/5556992
https://www.ncbi.nlm.nih.gov/pubmed/33986823
https://www.proquest.com/docview/2528177834
https://pubmed.ncbi.nlm.nih.gov/PMC8093037
https://downloads.hindawi.com/journals/cmmm/2021/5556992.pdf
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCO)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1748-6718
  dateEnd: 20230629
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: ABDBF
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: GX1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 20250531
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: M48
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1748-6718
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0051751
  issn: 1748-6718
  databaseCode: 24P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB6SDT1eeh_uEVxI-1K8sa3DFvQlXZJuC7uUtgvuQzG6TEJ3vSH2EtJfX42Pbbc3fRG2PNjWaCR9oxnNAOxpLkUchybQ0hYBpaEKRGppwCJLUhuHiVJ4dngy5eMZfZOxbAte9GdhDIaIX0pTDY9RJz0_aWbrjq_Vvl4sFqivR_uMMS6E0wpNsQ07nDkkPoCd2fTtwcf2DGQa8CTMvl1Hae_3ztjGKzZWpEvdZ38FOH_2m7yyKk_lxbmcz79blI6uw6e-Oa0vyufhqlZD_eWHSI__294bcK1Dq_5BK143YcuWt-DypLPH34bXIxSaM79JrYlOR00_-7i560t_tKzq4D16yOOc6k8lli_lha18h3E1btL7h2VlF2pu78Ds6PDDaBx0yRkCTeOwDhLNqcMKhkQqNqGKjCSSh5IqbRproqshmhFXG2opkkJTwdO4KBziYdw4EHcXBuWytPfx2LjTk6mKEhNhtDolDStQtSOCaFUI6cHzvoNy3UUuxwQa87zRYBjLkUN5xyEPnq6pT9uIHb-h2-tY_heyJ70g5G7koTlFlna5qvKYxWmUYKISD-61grF-EyEidc0lHiQbIrMmwKjem0_Kk-MmuncaCgcrEg-erYXrjz_44F8JH8JVvEVTWMwfwaA-W9nHDlHVahe2X2WRKyc0deW7cbbbDaWvLC0dng
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VrTheyg2hgIJUeEHZJvGRWOpLWbUqSF0hwUrLA4p8Ra3YzVZNVlX59XgSZ8tyi5cocUZOPB7b39hzAOxoLkWaxibS0pYRpbGKRG5pxBJLcpvGmVLoO3w85kcT-m7Kphuw1_vCGAwRv5CmHp6gTnpx2s7Wnq_1rp7P56ivJ7uMMS6E0wpNeQ02OXNIfACbk_H7_U-dD2Qe8SyeXt0neW_3zthaFWsr0nX_2V8Bzp_tJm8uqzN5eSFns-8WpcPb8LlvTmeL8mW4bNRQf_0h0uP_tvcObHm0Gu534nUXNmx1D24c-_P4-_B2hEJzHrapNdHoqO3nEDd3QxmOFnUTfUALeZxTw7HE6xt5aevQYVyNm_ThQVXbuZrZBzA5PPg4Oop8coZI0zRuokxz6rCCIYlKTawSI4nksaRKm_Y00ZUQzYgrjbUUWamp4Hlalg7xMG4ciHsIg2pR2cfoNu70ZKqSzCQYrU5Jw0pU7YggWpVCBvC676BC-8jlmEBjVrQaDGMFcqjwHArg5Yr6rIvY8Ru6Hc_yv5C96AWhcCMPj1NkZRfLukhZmicZJioJ4FEnGKuaCBG5ay4JIFsTmRUBRvVef1OdnrTRvfNYOFiRBfBqJVx__MEn_0q4DbfwEY_CUv4UBs350j5ziKpRz_3A-QY6PBrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cancer+Classification+with+a+Cost-Sensitive+Naive+Bayes+Stacking+Ensemble&rft.jtitle=Computational+and+mathematical+methods+in+medicine&rft.au=Xiong%2C+Yueling&rft.au=Ye%2C+Mingquan&rft.au=Wu%2C+Changrong&rft.date=2021-04-26&rft.pub=Hindawi&rft.issn=1748-670X&rft.eissn=1748-6718&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F5556992&rft.externalDocID=10_1155_2021_5556992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-670X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-670X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-670X&client=summon