Application of Apriori Improvement Algorithm in Asthma Case Data Mining

In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data correlation analysis method is among the common mechanisms which are used to mine association between the (1) prescriptions and prescribers (...

Full description

Saved in:
Bibliographic Details
Published inJournal of healthcare engineering Vol. 2021; pp. 1 - 7
Main Authors Zheng, Yi, Chen, Peipei, Chen, Biyu, Wei, Dengjun, Wang, Meifang
Format Journal Article
LanguageEnglish
Published England Hindawi 01.11.2021
Subjects
Online AccessGet full text
ISSN2040-2295
2040-2309
2040-2309
DOI10.1155/2021/9018408

Cover

Abstract In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data correlation analysis method is among the common mechanisms which are used to mine association between the (1) prescriptions and prescribers (doctors in this case) and (2) symptoms and medications for a particular disease in the hospitals. In this paper, initially, a thorough analysis of expected performance and shortcomings of the Apriori algorithm in mining of medical case data is presented. Secondly, we propose an extended version of the traditional Apriori algorithm which is primarily based on the fast response of computer to bit-string logic operation. A comparative evaluation of the proposed and existing Apriori algorithms is presented particularly in terms of running time, mining of frequent items set and strong association rules. Both experimental and simulation results have proved that the proposed extended Apriori algorithm has outperformed existing algorithms when it is applied to asthma medication and combined symptom-medication data for the association analysis. Furthermore, the association relationship between mind asthma case data and medication is effective in the analysis of asthma case data with significant application value which is verified by the experimental data and observations.
AbstractList In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data correlation analysis method is among the common mechanisms which are used to mine association between the (1) prescriptions and prescribers (doctors in this case) and (2) symptoms and medications for a particular disease in the hospitals. In this paper, initially, a thorough analysis of expected performance and shortcomings of the Apriori algorithm in mining of medical case data is presented. Secondly, we propose an extended version of the traditional Apriori algorithm which is primarily based on the fast response of computer to bit-string logic operation. A comparative evaluation of the proposed and existing Apriori algorithms is presented particularly in terms of running time, mining of frequent items set and strong association rules. Both experimental and simulation results have proved that the proposed extended Apriori algorithm has outperformed existing algorithms when it is applied to asthma medication and combined symptom-medication data for the association analysis. Furthermore, the association relationship between mind asthma case data and medication is effective in the analysis of asthma case data with significant application value which is verified by the experimental data and observations.
In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data correlation analysis method is among the common mechanisms which are used to mine association between the (1) prescriptions and prescribers (doctors in this case) and (2) symptoms and medications for a particular disease in the hospitals. In this paper, initially, a thorough analysis of expected performance and shortcomings of the Apriori algorithm in mining of medical case data is presented. Secondly, we propose an extended version of the traditional Apriori algorithm which is primarily based on the fast response of computer to bit-string logic operation. A comparative evaluation of the proposed and existing Apriori algorithms is presented particularly in terms of running time, mining of frequent items set and strong association rules. Both experimental and simulation results have proved that the proposed extended Apriori algorithm has outperformed existing algorithms when it is applied to asthma medication and combined symptom-medication data for the association analysis. Furthermore, the association relationship between mind asthma case data and medication is effective in the analysis of asthma case data with significant application value which is verified by the experimental data and observations.In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data correlation analysis method is among the common mechanisms which are used to mine association between the (1) prescriptions and prescribers (doctors in this case) and (2) symptoms and medications for a particular disease in the hospitals. In this paper, initially, a thorough analysis of expected performance and shortcomings of the Apriori algorithm in mining of medical case data is presented. Secondly, we propose an extended version of the traditional Apriori algorithm which is primarily based on the fast response of computer to bit-string logic operation. A comparative evaluation of the proposed and existing Apriori algorithms is presented particularly in terms of running time, mining of frequent items set and strong association rules. Both experimental and simulation results have proved that the proposed extended Apriori algorithm has outperformed existing algorithms when it is applied to asthma medication and combined symptom-medication data for the association analysis. Furthermore, the association relationship between mind asthma case data and medication is effective in the analysis of asthma case data with significant application value which is verified by the experimental data and observations.
Author Wei, Dengjun
Chen, Biyu
Chen, Peipei
Zheng, Yi
Wang, Meifang
AuthorAffiliation Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
AuthorAffiliation_xml – name: Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China
Author_xml – sequence: 1
  givenname: Yi
  surname: Zheng
  fullname: Zheng, Yi
  organization: Department of Respiratory and Critical Care MedicineTaihe HospitalHubei University of MedicineShiyan 442000Hubei ProvinceChinahbmu.edu.cn
– sequence: 2
  givenname: Peipei
  surname: Chen
  fullname: Chen, Peipei
  organization: Department of Respiratory and Critical Care MedicineTaihe HospitalHubei University of MedicineShiyan 442000Hubei ProvinceChinahbmu.edu.cn
– sequence: 3
  givenname: Biyu
  surname: Chen
  fullname: Chen, Biyu
  organization: Department of Respiratory and Critical Care MedicineTaihe HospitalHubei University of MedicineShiyan 442000Hubei ProvinceChinahbmu.edu.cn
– sequence: 4
  givenname: Dengjun
  surname: Wei
  fullname: Wei, Dengjun
  organization: Department of Respiratory and Critical Care MedicineTaihe HospitalHubei University of MedicineShiyan 442000Hubei ProvinceChinahbmu.edu.cn
– sequence: 5
  givenname: Meifang
  orcidid: 0000-0002-0422-9385
  surname: Wang
  fullname: Wang, Meifang
  organization: Department of Respiratory and Critical Care MedicineTaihe HospitalHubei University of MedicineShiyan 442000Hubei ProvinceChinahbmu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34760144$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtLxDAUhYMovneuJUtBq3k0abMRyvgExY2uw502nYm0SW06iv_e6IxPULPJ5ea75-acDbTsvDMI7VBySKkQR4wweqQIzVOSL6F1RlKSME7U8nvNlFhD2yHck3i44inlq2iNp5kkNE3X0XnRdY0tYbDeYV_jouut7y2-bLveP5rWuAEXzSS2hmmLrcNFiAXgEQSDT2AAfG2ddZMttFJDE8z24t5Ed2ent6OL5Orm_HJUXCVlysiQSGGAV5kQDEjGZGUyTjlQlcu6qmsj87zOGCUiF7HDlKzGCnJFzVhlJSkB-CZK5roz18HzEzSNjj9uoX_WlOjXTPRrJnqRSeSP53w3G7emKqOfHj5nPFj9_cXZqZ74R52LTEiiosDeQqD3DzMTBt3aUJqmAWf8LGgmlExlRElEd7_u-ljynnYE2Bwoex9Cb2pd2uEt-rjaNr85OPgx9I_h_Tk-ta6CJ_s3_QIKJKxE
CitedBy_id crossref_primary_10_1155_2023_9858756
crossref_primary_10_3389_fnut_2023_1170084
crossref_primary_10_3389_fpain_2022_937259
crossref_primary_10_1007_s11227_023_05105_6
crossref_primary_10_1016_j_ejon_2024_102566
crossref_primary_10_1155_2022_7007370
crossref_primary_10_1016_j_hermed_2024_100921
crossref_primary_10_1016_j_joim_2023_09_001
crossref_primary_10_2147_JPR_S449175
crossref_primary_10_3390_jpm12071099
Cites_doi 10.5815/ijitcs.2017.01.07
10.5121/ijnlc.2014.3103
10.1109/CIS.2009.95
10.4028/www.scientific.net/AMM.721.543
10.5815/ijitcs.2017.04.03
10.4028/www.scientific.net/amr.1079-1080.737
10.4028/www.scientific.net/amm.631-632.125
10.5815/ijitcs.2014.07.03
10.1007/s00453-012-9642-6
10.1007/978-3-319-07674-4_65
10.4028/www.scientific.net/amm.333-335.1319
ContentType Journal Article
Copyright Copyright © 2021 Yi Zheng et al.
Copyright © 2021 Yi Zheng et al. 2021
Copyright_xml – notice: Copyright © 2021 Yi Zheng et al.
– notice: Copyright © 2021 Yi Zheng et al. 2021
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2021/9018408
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-2309
Editor Khan, Rahim
Editor_xml – sequence: 1
  givenname: Rahim
  surname: Khan
  fullname: Khan, Rahim
EndPage 7
ExternalDocumentID 10.1155/2021/9018408
PMC8575609
34760144
10_1155_2021_9018408
Genre Retracted Publication
Journal Article
GroupedDBID 4.4
53G
5VS
AAFWJ
AAJEY
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
EBD
EBS
EMOBN
GROUPED_DOAJ
HYE
IAO
IEA
IHR
INH
INR
ITC
KQ8
M48
MET
MV1
OK1
P2P
RHU
RHW
RHX
RPM
SV3
0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
PGMZT
CGR
CUY
CVF
ECM
EIF
EJD
IPNFZ
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c420t-65ea3d7552a0726de7313a1986fdffe688f721058586f296db9a891eb97c0caa3
IEDL.DBID UNPAY
ISSN 2040-2295
2040-2309
IngestDate Sun Oct 26 03:59:56 EDT 2025
Thu Aug 21 13:30:53 EDT 2025
Fri Sep 05 13:23:16 EDT 2025
Mon Jul 21 06:02:28 EDT 2025
Thu Apr 24 22:58:21 EDT 2025
Wed Oct 01 03:50:02 EDT 2025
Sun Jun 02 19:18:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2021 Yi Zheng et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-65ea3d7552a0726de7313a1986fdffe688f721058586f296db9a891eb97c0caa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Correction/Retraction-3
Academic Editor: Rahim Khan
ORCID 0000-0002-0422-9385
OpenAccessLink https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/jhe/2021/9018408.pdf
PMID 34760144
PQID 2596465600
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1155_2021_9018408
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8575609
proquest_miscellaneous_2596465600
pubmed_primary_34760144
crossref_citationtrail_10_1155_2021_9018408
crossref_primary_10_1155_2021_9018408
hindawi_primary_10_1155_2021_9018408
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of healthcare engineering
PublicationTitleAlternate J Healthc Eng
PublicationYear 2021
Publisher Hindawi
Publisher_xml – name: Hindawi
References 13
14
15
16
K. Jia (5) 2017; 43
17
Y. Wang (4) 2013; 31
Z. Zhang (12) 2021; 13
1
2
3
S. Aggarwal (11) 2013; 4
7
8
L. Xu (9) 2010
X. P. Yang (6) 2006; 21
10
38094775 - J Healthc Eng. 2023 Dec 6;2023:9858756
References_xml – ident: 8
  doi: 10.5815/ijitcs.2017.01.07
– volume: 31
  start-page: 101
  issue: 1
  year: 2013
  ident: 4
  article-title: Application of association rules in information accessibility website based on apriori algorithm
  publication-title: Journal of Jilin University (Earth Science Edition)
– ident: 7
  doi: 10.5121/ijnlc.2014.3103
– volume-title: Improved Apriori Algorithm for Mining Association Rules of Many Diseases
  year: 2010
  ident: 9
– volume: 43
  start-page: 394
  issue: 3
  year: 2017
  ident: 5
  article-title: Application of data mining in mobile health system based on apriori algorithm
  publication-title: Journal of Beijing University of Technology
– ident: 3
  doi: 10.1109/CIS.2009.95
– volume: 13
  start-page: 1
  issue: 3
  year: 2021
  ident: 12
  article-title: Method for identifying potentially dangerous data of underlying network in cloud storage system
  publication-title: Evolutionary Intelligence
– ident: 13
  doi: 10.4028/www.scientific.net/AMM.721.543
– ident: 10
  doi: 10.5815/ijitcs.2017.04.03
– ident: 1
  doi: 10.4028/www.scientific.net/amr.1079-1080.737
– ident: 2
  doi: 10.4028/www.scientific.net/amm.631-632.125
– volume: 4
  start-page: 77
  issue: 4
  year: 2013
  ident: 11
  article-title: Comparative study of various improved versions of apriori algorithm
  publication-title: International Journal of Engineering Trends and Technology
– ident: 14
  doi: 10.5815/ijitcs.2014.07.03
– ident: 16
  doi: 10.1007/s00453-012-9642-6
– ident: 15
  doi: 10.1007/978-3-319-07674-4_65
– volume: 21
  start-page: 1
  year: 2006
  ident: 6
  article-title: Improvement of apriori algorithm for association rules
  publication-title: Journal of Zhejiang Ocean University(Natural Science)
– ident: 17
  doi: 10.4028/www.scientific.net/amm.333-335.1319
– reference: 38094775 - J Healthc Eng. 2023 Dec 6;2023:9858756
SSID ssj0000393413
Score 2.2779758
SecondaryResourceType retracted_publication
Snippet In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Asthma - diagnosis
Asthma - drug therapy
Computer Simulation
Data Mining - methods
Humans
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEF5UEPVBvI0XK1RfJJhzs3kM9SiCPoiFvoVJdmMDNSltivjvnU3S2Hq_5ZiE7E6Wb2Z39vsIafnC5hzsRBcI9rrDcMxFkMQ6YmXiCgRIv2Riun9gna5z13N7NUnS-OsSPqKdSs_NS4QtTEX4IlnkTFVuPXZ6zVSK2l7qlELIlqqPUwLV0xL3T4_Pgc9yX2W9r-l3seXXEsmVSTaEt1cYDGbw52aDrNeBIw0qT2-SBZltkbUZOsFtcht8rEbTPKHBcJTmo5RWEwflPCANBs94qei_0DSjwRgPgLYRyegVFEDvS7mIHdK9uX5qd_RaKEGPHcsodOZKsIXnuhYYnsWE9GzTBtPnLBFJIhnnCSZ6BmYGeMXymYh84L4pI9-LjRjA3iVLWZ7JfUItywMecZNJjLTiSHBgHLgApVGt2Og1cjHtwTCuWcSVmMUgLLMJ1w1Vf4d1f2vkrLEeVuwZP9i1amf8YXY69VSIo0AtbUAm88k4xCSOKeY3w9DIXuW55k22o-p-HEcj3pxPGwPFsD1_J0v7JdO2ki9lBjb6vPH-rx948L92HJJVdVptaTwiS8VoIo8xtimik_LPfgdam-2B
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5RUAscEH0vlMqVaC9V2rzs2AdURVBASNtTV-IWTWKnGynNLrtZUf59x3ksbAvtLXImrxmPZ8Z2vg_gUOlASgxyR1Owd0JBPpdinjkUK3OuKUCqBolp-E2cj8KLS365Bj3baKfA-b2lneWTGs3KT7-ubr6Qwx81Ds-5rd-9zxTXqFaRj2CDYpSyJA7DLtFvxuRA2eG63_n-x0Vb8CQI7eaQMFwJT4_Hti6-Lu7LPv_eRLm5qKZ4c41leSdCne7CTpdasrjtC09hzVTPYPsO4OBzOItv16vZJGfxdFZMZgVrpxaamUIWlz-oqR7_ZEXF4jkdIDumWMdOsEY2bAglXsDo9Ov343Ono1JwstB3a0dwg4GOOPfRjXyhTRR4AXpKilznuRFS5lQKulQ7UIuvhE4VSuWZVEWZmyEGL2G9mlTmNTDfj1Cm0hOGcrEs1RKFRKnRslhbvPoBfOw1mGQdzriluyiTpt7gPLGqTzrVD-D9Unra4ms8IHfYGeM_Yu96SyXkJ3bxAyszWcwTKvOExYZz3QG8ai23vFNv_AFEKzZdClgM7tUzVTFusLgtwalw6aM_LK3_zxfce_Dh-7BlBdv_HN_Aej1bmANKeOr0bdOXfwNkbvd3
  priority: 102
  providerName: Scholars Portal
Title Application of Apriori Improvement Algorithm in Asthma Case Data Mining
URI https://dx.doi.org/10.1155/2021/9018408
https://www.ncbi.nlm.nih.gov/pubmed/34760144
https://www.proquest.com/docview/2596465600
https://pubmed.ncbi.nlm.nih.gov/PMC8575609
https://downloads.hindawi.com/journals/jhe/2021/9018408.pdf
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2040-2309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000393413
  issn: 2040-2309
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2040-2309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000393413
  issn: 2040-2309
  databaseCode: KQ8
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2040-2309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000393413
  issn: 2040-2309
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2040-2309
  dateEnd: 20250630
  omitProxy: true
  ssIdentifier: ssj0000393413
  issn: 2040-2309
  databaseCode: M48
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2040-2309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000393413
  issn: 2040-2309
  databaseCode: 24P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEB_u9hD1g-_H-jginH6R7vWVNMVP5fRchD1EXFhBKNMmdXu3tstul0P_eid9eesbv5Q0HZJmOunMJJPfAByEypMSvcxSpOwtX9CcSzBLLdKVGVekIMMaiWlyIsZT_82Mz3bgRXcWRhmI-BLVejQ3Pul5Xv-tW76uD0_n2rjrziGpMXJN5Gipsl3YE5wM8QHsTU_eRh9MOjkTJ2cSVfdlzw67sHfOt5rYUkiX2l5_ZW_-HDZ5eVMs8cs5LhYXdNLxdfjYjaYJRTkbbapklH79AejxP4d7A661tiqLGuG6CTu6uAVXLyAY3obX0fcNcFZmLFqu8nKVs2atol56ZNHiE1VV888sL1i0pgKyI1Ke7CVWyCZ1hoo7MD1-9f5obLW5GazUd-3KElyjpwLOXbQDVygdeI6HTihFprJMCykz8i1tckaoxg2FSkKUoaOTMEjtFNG7C4OiLPR9YK4boEykIzQZd2miJAqJUqFJi20A8IfwvPtAcdoCl5v8GYu4dmA4jw2L4pZFQ3jaUy8bwI7f0B20LP8L2ZNOEGKaeGY3BQtdbtYx-Y3CgM3Z9hDuNYLRt-T5JtTI94cQbIlMT2BAvbefFPm8Bvc2GVOFTYN-1gvXH1_wwb8SPoQr5rY5R_kIBtVqox-TQVUl-7A78SVd341n--0k-gbmBxrQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VrRDwwFlguWSkwgvKNpcdRzxFhVIhteKBlYqEFE1imw3dJqvdrCr49Yxz0eUWb44zcjKTcWbGHn8DsBurQEoMjKPI2DuhoDmXockdspWGKzKQcYPEdHQsDqfh2xN-sgUv-7MwykLEV6hWk5mNSc-L5m_dyXW193mmbbju7ZEZo9BEThbKXIJtwckRH8H29Phd8sGWk7N5crZQ9dAO3LhPe-d8Y4gNg3S5e-qv_M2f0yavrMsFfjnH-fyCTTq4AR97btpUlNPJus4m-dcfgB7_k92bcL3zVVnSKtct2NLlbbh2AcHwDrxJvm-As8qwZLEsqmXB2rWKZumRJfNP1FXPzlhRsmRFDWT7ZDzZK6yRHTUVKnZgevD6_f6h09VmcPLQd2tHcI2Bijj30Y18oXQUeAF6sRRGGaOFlIZiS5eCEerxY6GyGGXs6SyOcjdHDO7CqKxKfR-Y70coM-kJTc5dnimJQqJUaMtiWwD8MbzoP1Cad8Dltn7GPG0CGM5TK6K0E9EYng3Uixaw4zd0u53I_0L2tFeElCae3U3BUlfrVUpxo7Bgc647hnutYgwjBaFNNQrDMUQbKjMQWFDvzTtlMWvAvW3FVOES088H5frjCz74V8KHcNVetucoH8GoXq71Y3Ko6uxJN3G-AbYrGOM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Apriori+Improvement+Algorithm+in+Asthma+Case+Data+Mining&rft.jtitle=Journal+of+healthcare+engineering&rft.au=Zheng%2C+Yi&rft.au=Chen%2C+Peipei&rft.au=Chen%2C+Biyu&rft.au=Wei%2C+Dengjun&rft.date=2021-11-01&rft.eissn=2040-2309&rft.volume=2021&rft.spage=9018408&rft_id=info:doi/10.1155%2F2021%2F9018408&rft_id=info%3Apmid%2F34760144&rft.externalDocID=34760144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-2295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-2295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-2295&client=summon