Application of Apriori Improvement Algorithm in Asthma Case Data Mining
In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data correlation analysis method is among the common mechanisms which are used to mine association between the (1) prescriptions and prescribers (...
Saved in:
| Published in | Journal of healthcare engineering Vol. 2021; pp. 1 - 7 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Hindawi
01.11.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2040-2295 2040-2309 2040-2309 |
| DOI | 10.1155/2021/9018408 |
Cover
| Abstract | In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data correlation analysis method is among the common mechanisms which are used to mine association between the (1) prescriptions and prescribers (doctors in this case) and (2) symptoms and medications for a particular disease in the hospitals. In this paper, initially, a thorough analysis of expected performance and shortcomings of the Apriori algorithm in mining of medical case data is presented. Secondly, we propose an extended version of the traditional Apriori algorithm which is primarily based on the fast response of computer to bit-string logic operation. A comparative evaluation of the proposed and existing Apriori algorithms is presented particularly in terms of running time, mining of frequent items set and strong association rules. Both experimental and simulation results have proved that the proposed extended Apriori algorithm has outperformed existing algorithms when it is applied to asthma medication and combined symptom-medication data for the association analysis. Furthermore, the association relationship between mind asthma case data and medication is effective in the analysis of asthma case data with significant application value which is verified by the experimental data and observations. |
|---|---|
| AbstractList | In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data correlation analysis method is among the common mechanisms which are used to mine association between the (1) prescriptions and prescribers (doctors in this case) and (2) symptoms and medications for a particular disease in the hospitals. In this paper, initially, a thorough analysis of expected performance and shortcomings of the Apriori algorithm in mining of medical case data is presented. Secondly, we propose an extended version of the traditional Apriori algorithm which is primarily based on the fast response of computer to bit-string logic operation. A comparative evaluation of the proposed and existing Apriori algorithms is presented particularly in terms of running time, mining of frequent items set and strong association rules. Both experimental and simulation results have proved that the proposed extended Apriori algorithm has outperformed existing algorithms when it is applied to asthma medication and combined symptom-medication data for the association analysis. Furthermore, the association relationship between mind asthma case data and medication is effective in the analysis of asthma case data with significant application value which is verified by the experimental data and observations. In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data correlation analysis method is among the common mechanisms which are used to mine association between the (1) prescriptions and prescribers (doctors in this case) and (2) symptoms and medications for a particular disease in the hospitals. In this paper, initially, a thorough analysis of expected performance and shortcomings of the Apriori algorithm in mining of medical case data is presented. Secondly, we propose an extended version of the traditional Apriori algorithm which is primarily based on the fast response of computer to bit-string logic operation. A comparative evaluation of the proposed and existing Apriori algorithms is presented particularly in terms of running time, mining of frequent items set and strong association rules. Both experimental and simulation results have proved that the proposed extended Apriori algorithm has outperformed existing algorithms when it is applied to asthma medication and combined symptom-medication data for the association analysis. Furthermore, the association relationship between mind asthma case data and medication is effective in the analysis of asthma case data with significant application value which is verified by the experimental data and observations.In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data correlation analysis method is among the common mechanisms which are used to mine association between the (1) prescriptions and prescribers (doctors in this case) and (2) symptoms and medications for a particular disease in the hospitals. In this paper, initially, a thorough analysis of expected performance and shortcomings of the Apriori algorithm in mining of medical case data is presented. Secondly, we propose an extended version of the traditional Apriori algorithm which is primarily based on the fast response of computer to bit-string logic operation. A comparative evaluation of the proposed and existing Apriori algorithms is presented particularly in terms of running time, mining of frequent items set and strong association rules. Both experimental and simulation results have proved that the proposed extended Apriori algorithm has outperformed existing algorithms when it is applied to asthma medication and combined symptom-medication data for the association analysis. Furthermore, the association relationship between mind asthma case data and medication is effective in the analysis of asthma case data with significant application value which is verified by the experimental data and observations. |
| Author | Wei, Dengjun Chen, Biyu Chen, Peipei Zheng, Yi Wang, Meifang |
| AuthorAffiliation | Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China |
| AuthorAffiliation_xml | – name: Department of Respiratory and Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei Province, China |
| Author_xml | – sequence: 1 givenname: Yi surname: Zheng fullname: Zheng, Yi organization: Department of Respiratory and Critical Care MedicineTaihe HospitalHubei University of MedicineShiyan 442000Hubei ProvinceChinahbmu.edu.cn – sequence: 2 givenname: Peipei surname: Chen fullname: Chen, Peipei organization: Department of Respiratory and Critical Care MedicineTaihe HospitalHubei University of MedicineShiyan 442000Hubei ProvinceChinahbmu.edu.cn – sequence: 3 givenname: Biyu surname: Chen fullname: Chen, Biyu organization: Department of Respiratory and Critical Care MedicineTaihe HospitalHubei University of MedicineShiyan 442000Hubei ProvinceChinahbmu.edu.cn – sequence: 4 givenname: Dengjun surname: Wei fullname: Wei, Dengjun organization: Department of Respiratory and Critical Care MedicineTaihe HospitalHubei University of MedicineShiyan 442000Hubei ProvinceChinahbmu.edu.cn – sequence: 5 givenname: Meifang orcidid: 0000-0002-0422-9385 surname: Wang fullname: Wang, Meifang organization: Department of Respiratory and Critical Care MedicineTaihe HospitalHubei University of MedicineShiyan 442000Hubei ProvinceChinahbmu.edu.cn |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34760144$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkEtLxDAUhYMovneuJUtBq3k0abMRyvgExY2uw502nYm0SW06iv_e6IxPULPJ5ea75-acDbTsvDMI7VBySKkQR4wweqQIzVOSL6F1RlKSME7U8nvNlFhD2yHck3i44inlq2iNp5kkNE3X0XnRdY0tYbDeYV_jouut7y2-bLveP5rWuAEXzSS2hmmLrcNFiAXgEQSDT2AAfG2ddZMttFJDE8z24t5Ed2ent6OL5Orm_HJUXCVlysiQSGGAV5kQDEjGZGUyTjlQlcu6qmsj87zOGCUiF7HDlKzGCnJFzVhlJSkB-CZK5roz18HzEzSNjj9uoX_WlOjXTPRrJnqRSeSP53w3G7emKqOfHj5nPFj9_cXZqZ74R52LTEiiosDeQqD3DzMTBt3aUJqmAWf8LGgmlExlRElEd7_u-ljynnYE2Bwoex9Cb2pd2uEt-rjaNr85OPgx9I_h_Tk-ta6CJ_s3_QIKJKxE |
| CitedBy_id | crossref_primary_10_1155_2023_9858756 crossref_primary_10_3389_fnut_2023_1170084 crossref_primary_10_3389_fpain_2022_937259 crossref_primary_10_1007_s11227_023_05105_6 crossref_primary_10_1016_j_ejon_2024_102566 crossref_primary_10_1155_2022_7007370 crossref_primary_10_1016_j_hermed_2024_100921 crossref_primary_10_1016_j_joim_2023_09_001 crossref_primary_10_2147_JPR_S449175 crossref_primary_10_3390_jpm12071099 |
| Cites_doi | 10.5815/ijitcs.2017.01.07 10.5121/ijnlc.2014.3103 10.1109/CIS.2009.95 10.4028/www.scientific.net/AMM.721.543 10.5815/ijitcs.2017.04.03 10.4028/www.scientific.net/amr.1079-1080.737 10.4028/www.scientific.net/amm.631-632.125 10.5815/ijitcs.2014.07.03 10.1007/s00453-012-9642-6 10.1007/978-3-319-07674-4_65 10.4028/www.scientific.net/amm.333-335.1319 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Yi Zheng et al. Copyright © 2021 Yi Zheng et al. 2021 |
| Copyright_xml | – notice: Copyright © 2021 Yi Zheng et al. – notice: Copyright © 2021 Yi Zheng et al. 2021 |
| DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2021/9018408 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2040-2309 |
| Editor | Khan, Rahim |
| Editor_xml | – sequence: 1 givenname: Rahim surname: Khan fullname: Khan, Rahim |
| EndPage | 7 |
| ExternalDocumentID | 10.1155/2021/9018408 PMC8575609 34760144 10_1155_2021_9018408 |
| Genre | Retracted Publication Journal Article |
| GroupedDBID | 4.4 53G 5VS AAFWJ AAJEY ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV EBD EBS EMOBN GROUPED_DOAJ HYE IAO IEA IHR INH INR ITC KQ8 M48 MET MV1 OK1 P2P RHU RHW RHX RPM SV3 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY CITATION H13 PGMZT CGR CUY CVF ECM EIF EJD IPNFZ NPM RIG 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c420t-65ea3d7552a0726de7313a1986fdffe688f721058586f296db9a891eb97c0caa3 |
| IEDL.DBID | UNPAY |
| ISSN | 2040-2295 2040-2309 |
| IngestDate | Sun Oct 26 03:59:56 EDT 2025 Thu Aug 21 13:30:53 EDT 2025 Fri Sep 05 13:23:16 EDT 2025 Mon Jul 21 06:02:28 EDT 2025 Thu Apr 24 22:58:21 EDT 2025 Wed Oct 01 03:50:02 EDT 2025 Sun Jun 02 19:18:03 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Yi Zheng et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c420t-65ea3d7552a0726de7313a1986fdffe688f721058586f296db9a891eb97c0caa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Correction/Retraction-3 Academic Editor: Rahim Khan |
| ORCID | 0000-0002-0422-9385 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/jhe/2021/9018408.pdf |
| PMID | 34760144 |
| PQID | 2596465600 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_1155_2021_9018408 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8575609 proquest_miscellaneous_2596465600 pubmed_primary_34760144 crossref_citationtrail_10_1155_2021_9018408 crossref_primary_10_1155_2021_9018408 hindawi_primary_10_1155_2021_9018408 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of healthcare engineering |
| PublicationTitleAlternate | J Healthc Eng |
| PublicationYear | 2021 |
| Publisher | Hindawi |
| Publisher_xml | – name: Hindawi |
| References | 13 14 15 16 K. Jia (5) 2017; 43 17 Y. Wang (4) 2013; 31 Z. Zhang (12) 2021; 13 1 2 3 S. Aggarwal (11) 2013; 4 7 8 L. Xu (9) 2010 X. P. Yang (6) 2006; 21 10 38094775 - J Healthc Eng. 2023 Dec 6;2023:9858756 |
| References_xml | – ident: 8 doi: 10.5815/ijitcs.2017.01.07 – volume: 31 start-page: 101 issue: 1 year: 2013 ident: 4 article-title: Application of association rules in information accessibility website based on apriori algorithm publication-title: Journal of Jilin University (Earth Science Edition) – ident: 7 doi: 10.5121/ijnlc.2014.3103 – volume-title: Improved Apriori Algorithm for Mining Association Rules of Many Diseases year: 2010 ident: 9 – volume: 43 start-page: 394 issue: 3 year: 2017 ident: 5 article-title: Application of data mining in mobile health system based on apriori algorithm publication-title: Journal of Beijing University of Technology – ident: 3 doi: 10.1109/CIS.2009.95 – volume: 13 start-page: 1 issue: 3 year: 2021 ident: 12 article-title: Method for identifying potentially dangerous data of underlying network in cloud storage system publication-title: Evolutionary Intelligence – ident: 13 doi: 10.4028/www.scientific.net/AMM.721.543 – ident: 10 doi: 10.5815/ijitcs.2017.04.03 – ident: 1 doi: 10.4028/www.scientific.net/amr.1079-1080.737 – ident: 2 doi: 10.4028/www.scientific.net/amm.631-632.125 – volume: 4 start-page: 77 issue: 4 year: 2013 ident: 11 article-title: Comparative study of various improved versions of apriori algorithm publication-title: International Journal of Engineering Trends and Technology – ident: 14 doi: 10.5815/ijitcs.2014.07.03 – ident: 16 doi: 10.1007/s00453-012-9642-6 – ident: 15 doi: 10.1007/978-3-319-07674-4_65 – volume: 21 start-page: 1 year: 2006 ident: 6 article-title: Improvement of apriori algorithm for association rules publication-title: Journal of Zhejiang Ocean University(Natural Science) – ident: 17 doi: 10.4028/www.scientific.net/amm.333-335.1319 – reference: 38094775 - J Healthc Eng. 2023 Dec 6;2023:9858756 |
| SSID | ssj0000393413 |
| Score | 2.2779758 |
| SecondaryResourceType | retracted_publication |
| Snippet | In Chinese medicine, asthma cases contain a large amount of empirical data which are obtained from the clinical diagnosis of doctors throughout the year. Data... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Asthma - diagnosis Asthma - drug therapy Computer Simulation Data Mining - methods Humans |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEF5UEPVBvI0XK1RfJJhzs3kM9SiCPoiFvoVJdmMDNSltivjvnU3S2Hq_5ZiE7E6Wb2Z39vsIafnC5hzsRBcI9rrDcMxFkMQ6YmXiCgRIv2Riun9gna5z13N7NUnS-OsSPqKdSs_NS4QtTEX4IlnkTFVuPXZ6zVSK2l7qlELIlqqPUwLV0xL3T4_Pgc9yX2W9r-l3seXXEsmVSTaEt1cYDGbw52aDrNeBIw0qT2-SBZltkbUZOsFtcht8rEbTPKHBcJTmo5RWEwflPCANBs94qei_0DSjwRgPgLYRyegVFEDvS7mIHdK9uX5qd_RaKEGPHcsodOZKsIXnuhYYnsWE9GzTBtPnLBFJIhnnCSZ6BmYGeMXymYh84L4pI9-LjRjA3iVLWZ7JfUItywMecZNJjLTiSHBgHLgApVGt2Og1cjHtwTCuWcSVmMUgLLMJ1w1Vf4d1f2vkrLEeVuwZP9i1amf8YXY69VSIo0AtbUAm88k4xCSOKeY3w9DIXuW55k22o-p-HEcj3pxPGwPFsD1_J0v7JdO2ki9lBjb6vPH-rx948L92HJJVdVptaTwiS8VoIo8xtimik_LPfgdam-2B priority: 102 providerName: Hindawi Publishing – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9wwEB5RUAscEH0vlMqVaC9V2rzs2AdURVBASNtTV-IWTWKnGynNLrtZUf59x3ksbAvtLXImrxmPZ8Z2vg_gUOlASgxyR1Owd0JBPpdinjkUK3OuKUCqBolp-E2cj8KLS365Bj3baKfA-b2lneWTGs3KT7-ubr6Qwx81Ds-5rd-9zxTXqFaRj2CDYpSyJA7DLtFvxuRA2eG63_n-x0Vb8CQI7eaQMFwJT4_Hti6-Lu7LPv_eRLm5qKZ4c41leSdCne7CTpdasrjtC09hzVTPYPsO4OBzOItv16vZJGfxdFZMZgVrpxaamUIWlz-oqR7_ZEXF4jkdIDumWMdOsEY2bAglXsDo9Ov343Ono1JwstB3a0dwg4GOOPfRjXyhTRR4AXpKilznuRFS5lQKulQ7UIuvhE4VSuWZVEWZmyEGL2G9mlTmNTDfj1Cm0hOGcrEs1RKFRKnRslhbvPoBfOw1mGQdzriluyiTpt7gPLGqTzrVD-D9Unra4ms8IHfYGeM_Yu96SyXkJ3bxAyszWcwTKvOExYZz3QG8ai23vFNv_AFEKzZdClgM7tUzVTFusLgtwalw6aM_LK3_zxfce_Dh-7BlBdv_HN_Aej1bmANKeOr0bdOXfwNkbvd3 priority: 102 providerName: Scholars Portal |
| Title | Application of Apriori Improvement Algorithm in Asthma Case Data Mining |
| URI | https://dx.doi.org/10.1155/2021/9018408 https://www.ncbi.nlm.nih.gov/pubmed/34760144 https://www.proquest.com/docview/2596465600 https://pubmed.ncbi.nlm.nih.gov/PMC8575609 https://downloads.hindawi.com/journals/jhe/2021/9018408.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2040-2309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000393413 issn: 2040-2309 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2040-2309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000393413 issn: 2040-2309 databaseCode: KQ8 dateStart: 20160101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2040-2309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000393413 issn: 2040-2309 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2040-2309 dateEnd: 20250630 omitProxy: true ssIdentifier: ssj0000393413 issn: 2040-2309 databaseCode: M48 dateStart: 20160101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2040-2309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000393413 issn: 2040-2309 databaseCode: 24P dateStart: 20100101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ri9QwEB_u9hD1g-_H-jginH6R7vWVNMVP5fRchD1EXFhBKNMmdXu3tstul0P_eid9eesbv5Q0HZJmOunMJJPfAByEypMSvcxSpOwtX9CcSzBLLdKVGVekIMMaiWlyIsZT_82Mz3bgRXcWRhmI-BLVejQ3Pul5Xv-tW76uD0_n2rjrziGpMXJN5Gipsl3YE5wM8QHsTU_eRh9MOjkTJ2cSVfdlzw67sHfOt5rYUkiX2l5_ZW_-HDZ5eVMs8cs5LhYXdNLxdfjYjaYJRTkbbapklH79AejxP4d7A661tiqLGuG6CTu6uAVXLyAY3obX0fcNcFZmLFqu8nKVs2atol56ZNHiE1VV888sL1i0pgKyI1Ke7CVWyCZ1hoo7MD1-9f5obLW5GazUd-3KElyjpwLOXbQDVygdeI6HTihFprJMCykz8i1tckaoxg2FSkKUoaOTMEjtFNG7C4OiLPR9YK4boEykIzQZd2miJAqJUqFJi20A8IfwvPtAcdoCl5v8GYu4dmA4jw2L4pZFQ3jaUy8bwI7f0B20LP8L2ZNOEGKaeGY3BQtdbtYx-Y3CgM3Z9hDuNYLRt-T5JtTI94cQbIlMT2BAvbefFPm8Bvc2GVOFTYN-1gvXH1_wwb8SPoQr5rY5R_kIBtVqox-TQVUl-7A78SVd341n--0k-gbmBxrQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VrRDwwFlguWSkwgvKNpcdRzxFhVIhteKBlYqEFE1imw3dJqvdrCr49Yxz0eUWb44zcjKTcWbGHn8DsBurQEoMjKPI2DuhoDmXockdspWGKzKQcYPEdHQsDqfh2xN-sgUv-7MwykLEV6hWk5mNSc-L5m_dyXW193mmbbju7ZEZo9BEThbKXIJtwckRH8H29Phd8sGWk7N5crZQ9dAO3LhPe-d8Y4gNg3S5e-qv_M2f0yavrMsFfjnH-fyCTTq4AR97btpUlNPJus4m-dcfgB7_k92bcL3zVVnSKtct2NLlbbh2AcHwDrxJvm-As8qwZLEsqmXB2rWKZumRJfNP1FXPzlhRsmRFDWT7ZDzZK6yRHTUVKnZgevD6_f6h09VmcPLQd2tHcI2Bijj30Y18oXQUeAF6sRRGGaOFlIZiS5eCEerxY6GyGGXs6SyOcjdHDO7CqKxKfR-Y70coM-kJTc5dnimJQqJUaMtiWwD8MbzoP1Cad8Dltn7GPG0CGM5TK6K0E9EYng3Uixaw4zd0u53I_0L2tFeElCae3U3BUlfrVUpxo7Bgc647hnutYgwjBaFNNQrDMUQbKjMQWFDvzTtlMWvAvW3FVOES088H5frjCz74V8KHcNVetucoH8GoXq71Y3Ko6uxJN3G-AbYrGOM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+Apriori+Improvement+Algorithm+in+Asthma+Case+Data+Mining&rft.jtitle=Journal+of+healthcare+engineering&rft.au=Zheng%2C+Yi&rft.au=Chen%2C+Peipei&rft.au=Chen%2C+Biyu&rft.au=Wei%2C+Dengjun&rft.date=2021-11-01&rft.eissn=2040-2309&rft.volume=2021&rft.spage=9018408&rft_id=info:doi/10.1155%2F2021%2F9018408&rft_id=info%3Apmid%2F34760144&rft.externalDocID=34760144 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-2295&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-2295&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-2295&client=summon |