Rapid and sensitive electrochemical detection of oxidized form of glutathione in whole blood samples using Bi-metallic nanocomposites
We report a facile one-pot synthesis of bimetallic nickel-gold (Ni–Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized glutathione (GSSG) by electrochemical deposition on fluorine doped tin oxide (FTO) substrate. The electrodeposition of Ni–Au nanocomposite on F...
Saved in:
Published in | Chemosphere Vol. 346; p. 140517 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2024
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0045-6535 1879-1298 1879-1298 |
DOI | 10.1016/j.chemosphere.2023.140517 |
Cover
Abstract | We report a facile one-pot synthesis of bimetallic nickel-gold (Ni–Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized glutathione (GSSG) by electrochemical deposition on fluorine doped tin oxide (FTO) substrate. The electrodeposition of Ni–Au nanocomposite on FTO was confirmed by various characterization techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR) spectroscopy. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was utilized for the electrochemical characterization of glutathione reductase (GR)/Ni–Au/FTO working electrode at each stage of modification. The GR enzyme immobilized on the Ni–Au/FTO working electrode via glutaraldehyde cross-linking exhibited excellent selectivity against GSSG in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). The immobilized GR enzyme breaks down the GSSG to reduced glutathione (GSH) and converting NADPH to NADP+ whereby generating an electron for the electrochemical sensing of GSSG. The synergistic behavior of bimetals and good electro-catalytic property of the fabricated sensor provided a broad linear detection range from 1 fM to 1 μM with a limit of detection (LOD) of 6.8 fM, limit of quantification (LOQ) of 20.41 fM and sensitivity of 0.024 mA/μM/cm2. The interference with other molecules such as dopamine, glycine, ascorbic acid, uric acid and glucose was found to be negligible due to the better selectivity of GR enzyme towards GSSG. The shelf-life and response time of the fabricated electrode was found to be 30 days and 32 s, respectively. The real sample analysis of GSSG in whole blood samples showed average recovery percentage from 95 to 101% which matched well with the standard calibration plot of the fabricated sensor with relative standard deviation (RSD) below 10%.
Graphical abstract represented the detection of oxidized form of glutathione in blood sample using Au–Ni nanocomposite. [Display omitted]
•A facile in-line transfer of Au–Ni nanocomposite on FTO surface is demonstrated.•The GR-immobilized enzymatic sensor exhibited excellent selectivity against GSSG.•Linear response with lower limits of detection of about 6.8 fM was achieved.•Improved selectivity and sensitivity caused by synergistic signal amplification of Au–Ni.•The developed sensor is tested in real blood samples by spiking known concentrations of GSSG. |
---|---|
AbstractList | We report a facile one-pot synthesis of bimetallic nickel-gold (Ni-Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized glutathione (GSSG) by electrochemical deposition on fluorine doped tin oxide (FTO) substrate. The electrodeposition of Ni-Au nanocomposite on FTO was confirmed by various characterization techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR) spectroscopy. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was utilized for the electrochemical characterization of glutathione reductase (GR)/Ni-Au/FTO working electrode at each stage of modification. The GR enzyme immobilized on the Ni-Au/FTO working electrode via glutaraldehyde cross-linking exhibited excellent selectivity against GSSG in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). The immobilized GR enzyme breaks down the GSSG to reduced glutathione (GSH) and converting NADPH to NADP+ whereby generating an electron for the electrochemical sensing of GSSG. The synergistic behavior of bimetals and good electro-catalytic property of the fabricated sensor provided a broad linear detection range from 1 fM to 1 μM with a limit of detection (LOD) of 6.8 fM, limit of quantification (LOQ) of 20.41 fM and sensitivity of 0.024 mA/μM/cm2. The interference with other molecules such as dopamine, glycine, ascorbic acid, uric acid and glucose was found to be negligible due to the better selectivity of GR enzyme towards GSSG. The shelf-life and response time of the fabricated electrode was found to be 30 days and 32 s, respectively. The real sample analysis of GSSG in whole blood samples showed average recovery percentage from 95 to 101% which matched well with the standard calibration plot of the fabricated sensor with relative standard deviation (RSD) below 10%.We report a facile one-pot synthesis of bimetallic nickel-gold (Ni-Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized glutathione (GSSG) by electrochemical deposition on fluorine doped tin oxide (FTO) substrate. The electrodeposition of Ni-Au nanocomposite on FTO was confirmed by various characterization techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR) spectroscopy. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was utilized for the electrochemical characterization of glutathione reductase (GR)/Ni-Au/FTO working electrode at each stage of modification. The GR enzyme immobilized on the Ni-Au/FTO working electrode via glutaraldehyde cross-linking exhibited excellent selectivity against GSSG in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). The immobilized GR enzyme breaks down the GSSG to reduced glutathione (GSH) and converting NADPH to NADP+ whereby generating an electron for the electrochemical sensing of GSSG. The synergistic behavior of bimetals and good electro-catalytic property of the fabricated sensor provided a broad linear detection range from 1 fM to 1 μM with a limit of detection (LOD) of 6.8 fM, limit of quantification (LOQ) of 20.41 fM and sensitivity of 0.024 mA/μM/cm2. The interference with other molecules such as dopamine, glycine, ascorbic acid, uric acid and glucose was found to be negligible due to the better selectivity of GR enzyme towards GSSG. The shelf-life and response time of the fabricated electrode was found to be 30 days and 32 s, respectively. The real sample analysis of GSSG in whole blood samples showed average recovery percentage from 95 to 101% which matched well with the standard calibration plot of the fabricated sensor with relative standard deviation (RSD) below 10%. We report a facile one-pot synthesis of bimetallic nickel-gold (Ni–Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized glutathione (GSSG) by electrochemical deposition on fluorine doped tin oxide (FTO) substrate. The electrodeposition of Ni–Au nanocomposite on FTO was confirmed by various characterization techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR) spectroscopy. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was utilized for the electrochemical characterization of glutathione reductase (GR)/Ni–Au/FTO working electrode at each stage of modification. The GR enzyme immobilized on the Ni–Au/FTO working electrode via glutaraldehyde cross-linking exhibited excellent selectivity against GSSG in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). The immobilized GR enzyme breaks down the GSSG to reduced glutathione (GSH) and converting NADPH to NADP+ whereby generating an electron for the electrochemical sensing of GSSG. The synergistic behavior of bimetals and good electro-catalytic property of the fabricated sensor provided a broad linear detection range from 1 fM to 1 μM with a limit of detection (LOD) of 6.8 fM, limit of quantification (LOQ) of 20.41 fM and sensitivity of 0.024 mA/μM/cm2. The interference with other molecules such as dopamine, glycine, ascorbic acid, uric acid and glucose was found to be negligible due to the better selectivity of GR enzyme towards GSSG. The shelf-life and response time of the fabricated electrode was found to be 30 days and 32 s, respectively. The real sample analysis of GSSG in whole blood samples showed average recovery percentage from 95 to 101% which matched well with the standard calibration plot of the fabricated sensor with relative standard deviation (RSD) below 10%. Graphical abstract represented the detection of oxidized form of glutathione in blood sample using Au–Ni nanocomposite. [Display omitted] •A facile in-line transfer of Au–Ni nanocomposite on FTO surface is demonstrated.•The GR-immobilized enzymatic sensor exhibited excellent selectivity against GSSG.•Linear response with lower limits of detection of about 6.8 fM was achieved.•Improved selectivity and sensitivity caused by synergistic signal amplification of Au–Ni.•The developed sensor is tested in real blood samples by spiking known concentrations of GSSG. We report a facile one-pot synthesis of bimetallic nickel-gold (Ni–Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized glutathione (GSSG) by electrochemical deposition on fluorine doped tin oxide (FTO) substrate. The electrodeposition of Ni–Au nanocomposite on FTO was confirmed by various characterization techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR) spectroscopy. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was utilized for the electrochemical characterization of glutathione reductase (GR)/Ni–Au/FTO working electrode at each stage of modification. The GR enzyme immobilized on the Ni–Au/FTO working electrode via glutaraldehyde cross-linking exhibited excellent selectivity against GSSG in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). The immobilized GR enzyme breaks down the GSSG to reduced glutathione (GSH) and converting NADPH to NADP⁺ whereby generating an electron for the electrochemical sensing of GSSG. The synergistic behavior of bimetals and good electro-catalytic property of the fabricated sensor provided a broad linear detection range from 1 fM to 1 μM with a limit of detection (LOD) of 6.8 fM, limit of quantification (LOQ) of 20.41 fM and sensitivity of 0.024 mA/μM/cm². The interference with other molecules such as dopamine, glycine, ascorbic acid, uric acid and glucose was found to be negligible due to the better selectivity of GR enzyme towards GSSG. The shelf-life and response time of the fabricated electrode was found to be 30 days and 32 s, respectively. The real sample analysis of GSSG in whole blood samples showed average recovery percentage from 95 to 101% which matched well with the standard calibration plot of the fabricated sensor with relative standard deviation (RSD) below 10%. We report a facile one-pot synthesis of bimetallic nickel-gold (Ni-Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized glutathione (GSSG) by electrochemical deposition on fluorine doped tin oxide (FTO) substrate. The electrodeposition of Ni-Au nanocomposite on FTO was confirmed by various characterization techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR) spectroscopy. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was utilized for the electrochemical characterization of glutathione reductase (GR)/Ni-Au/FTO working electrode at each stage of modification. The GR enzyme immobilized on the Ni-Au/FTO working electrode via glutaraldehyde cross-linking exhibited excellent selectivity against GSSG in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). The immobilized GR enzyme breaks down the GSSG to reduced glutathione (GSH) and converting NADPH to NADP whereby generating an electron for the electrochemical sensing of GSSG. The synergistic behavior of bimetals and good electro-catalytic property of the fabricated sensor provided a broad linear detection range from 1 fM to 1 μM with a limit of detection (LOD) of 6.8 fM, limit of quantification (LOQ) of 20.41 fM and sensitivity of 0.024 mA/μM/cm . The interference with other molecules such as dopamine, glycine, ascorbic acid, uric acid and glucose was found to be negligible due to the better selectivity of GR enzyme towards GSSG. The shelf-life and response time of the fabricated electrode was found to be 30 days and 32 s, respectively. The real sample analysis of GSSG in whole blood samples showed average recovery percentage from 95 to 101% which matched well with the standard calibration plot of the fabricated sensor with relative standard deviation (RSD) below 10%. |
ArticleNumber | 140517 |
Author | Kumar, Akash Saravanan, Nishakavya Sundaramurthy, Anandhakumar Nagabooshanam, Shalini Ramamoorthy, Sharmiladevi |
Author_xml | – sequence: 1 givenname: Shalini surname: Nagabooshanam fullname: Nagabooshanam, Shalini organization: Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India – sequence: 2 givenname: Akash surname: Kumar fullname: Kumar, Akash organization: Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India – sequence: 3 givenname: Sharmiladevi surname: Ramamoorthy fullname: Ramamoorthy, Sharmiladevi organization: Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India – sequence: 4 givenname: Nishakavya surname: Saravanan fullname: Saravanan, Nishakavya organization: Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India – sequence: 5 givenname: Anandhakumar orcidid: 0000-0001-6870-7318 surname: Sundaramurthy fullname: Sundaramurthy, Anandhakumar email: anandhas@srmist.edu.in, rsanandhakumar@gmail.com organization: Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India |
BackLink | https://cir.nii.ac.jp/crid/1873961342981860480$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/37879374$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUkuL1TAYDTLi3Bn9CxLBhZte8-grK9GLLxgQRNchTb_O_S5pUpN2fOz936Z0BsSNs0nCl_Mg5-SCnPnggZBnnO054_XL094eYQxpOkKEvWBC7nnJKt48IDveNqrgQrVnZMdYWRV1JatzcpHSibFMrtQjci6bjJJNuSO_P5sJe2p8TxP4hDPeAAUHdo5hNUFrHO1hzgMMnoaBhh_Y4y_o6RDiuA6u3TKb-ZivgaKn34_BAe1cCFnSjJODRJeE_pq-wWKE2TiHlnrjgw3jFLIlpMfk4WBcgie3-yX5-u7tl8OH4urT-4-H11eFLQWbiwpUowSTbSmHrgI-dLyuTZOPgiubA-CiHBo7dMJWSknTV7KRPVedYvVQZ9YlebHpTjF8WyDNesRkwTnjISxJS57Dqmqew_kfVLStkEIIxTL06S106Ubo9RRxNPGnvks5A15tABtDShEGbTFHlhObo0GnOdNrr_qk_-pVr73qrdesoP5RuDO5D_f5xvWI2Xhd8yeRquayzP-EtzUr2_UVhw0GuYAbhKiTRfAWeoy5fd0HvIfZH1hX0GQ |
CitedBy_id | crossref_primary_10_1016_j_talanta_2025_127990 crossref_primary_10_1016_j_snb_2024_135597 crossref_primary_10_1016_j_microc_2024_110502 crossref_primary_10_1016_j_microc_2024_112343 crossref_primary_10_1016_j_talanta_2024_127448 crossref_primary_10_1016_j_microc_2024_111606 crossref_primary_10_1039_D4RA05923A |
Cites_doi | 10.1021/acs.analchem.8b01974 10.1002/elan.201400624 10.1016/j.msec.2015.07.034 10.1016/j.talanta.2020.121852 10.1039/c3ay26536f 10.1039/c2an35090d 10.1016/j.snb.2021.130047 10.3389/fnut.2022.1007816 10.1016/j.ijbiomac.2020.02.089 10.1016/j.jpba.2022.114870 10.3109/10715762.2012.667565 10.1016/S1452-3981(23)10867-4 10.1021/jp0709555 10.1038/s41573-021-00233-1 10.1039/C5AY00347D 10.1109/JSEN.2020.2978275 10.1016/j.snb.2018.07.146 10.1016/j.aca.2015.05.036 10.1016/j.inoche.2021.109147 10.1007/s10008-018-04191-4 10.1016/j.saa.2022.120942 10.1016/j.bios.2015.10.071 10.1021/acsanm.1c00394 10.1088/0957-4484/27/34/345101 10.1155/2022/1035441 10.1016/j.chemosphere.2023.140124 10.1016/j.talanta.2017.08.027 10.1016/j.electacta.2022.141273 10.1016/j.psychres.2019.03.018 10.1016/j.snb.2019.126756 10.1039/C4CP02440K 10.1038/s41598-019-56510-y 10.1109/TNB.2017.2698241 10.1016/j.tsf.2011.03.135 10.1080/02772248.2014.923148 10.1002/ptr.7290 10.1007/s00604-020-04318-3 10.1016/j.chemosphere.2021.132187 10.1016/j.matchemphys.2015.02.010 10.3390/bios13010016 10.1021/acsanm.3c00342 10.1016/j.jelechem.2021.115729 10.1021/acssensors.2c01221 10.1039/C7RA11188F 10.1021/acsanm.0c01949 10.1039/B609261F 10.1002/elan.202100143 10.1039/D2CE01600A 10.1021/acsomega.0c04436 10.1021/acs.jpcc.6b09202 10.3390/bios10090114 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.chemosphere.2023.140517 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Ecology |
EISSN | 1879-1298 |
EndPage | 140517 |
ExternalDocumentID | 37879374 10_1016_j_chemosphere_2023_140517 S004565352302787X |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABEFU ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADXHL AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ H~9 IHE J1W K-O KCYFY KOM LY3 LY9 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SCC SCU SDF SDG SDP SEN SEP SES SEW SPCBC SSJ SSZ T5K TWZ WH7 WUQ XPP Y6R ZCG ZMT ZXP ~02 ~G- ~KM AGRNS BNPGV RYH SSH AAYXX CITATION RIG AACTN CGR CUY CVF ECM EIF NPM 7X8 EFLBG 7S9 L.6 |
ID | FETCH-LOGICAL-c420t-5e979203843fb5e1fb166a7b5e219c051124f7cfb2c5993ad5373d19b906f6843 |
IEDL.DBID | .~1 |
ISSN | 0045-6535 1879-1298 |
IngestDate | Thu Sep 04 16:33:49 EDT 2025 Fri Sep 05 05:14:00 EDT 2025 Thu Apr 03 07:01:21 EDT 2025 Thu Apr 24 23:02:35 EDT 2025 Thu Jul 24 02:19:00 EDT 2025 Thu Jun 26 21:54:41 EDT 2025 Sat Aug 23 17:12:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electrodeposition Glutaraldehyde cross-linking Bimetallic nanocomposites Enzyme Glutathione |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-5e979203843fb5e1fb166a7b5e219c051124f7cfb2c5993ad5373d19b906f6843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6870-7318 |
PMID | 37879374 |
PQID | 2882322290 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_3153556179 proquest_miscellaneous_2882322290 pubmed_primary_37879374 crossref_citationtrail_10_1016_j_chemosphere_2023_140517 crossref_primary_10_1016_j_chemosphere_2023_140517 nii_cinii_1873961342981860480 elsevier_sciencedirect_doi_10_1016_j_chemosphere_2023_140517 |
PublicationCentury | 2000 |
PublicationDate | January 2024 2024-01-01 2024-01-00 2024-Jan 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Chemosphere |
PublicationTitleAlternate | Chemosphere |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Cheraghi, Taher, Karimi-Maleh, Karimi, Shabani-Nooshabadi, Alizadeh, Al-Othman, Erk, Yegya Raman, Karaman (bib9) 2022; 287 Liu, Zhou, Pu, Liu, Li, Li, Zhang (bib30) 2021; 342 Zagorchev, Seal, Kranner, Odjakova (bib53) 2012; 46 Tahernejad-Javazmi, Shabani-Nooshabadi, Karimi-Maleh (bib44) 2018; 176 Zhu, Wu, Wang, Xu, Qu, Gao, Guo, Xie (bib56) 2021; 224 Girgis, Baker, Mao, Gil, Javitt, Kantrowitz, Gu, Spielman, Ojeil, Xu (bib16) 2019; 275 Labarrere, Kassab (bib26) 2022; 9 Semwal, Painuli, Abu-Izneid, Rauf, Sharma, Daştan, Kumar, Alshehri, Taheri, Das, Mitra (bib39) 2022; 2022 Forman, Zhang (bib13) 2021; 20 Hasheminezhad, Boozari, Iranshahi, Yazarlu, Sahebkar, Hasanpour, Iranshahy (bib20) 2022; 36 Saitou (bib38) 2014; 9 Pak, Moshaii, Nikkhah, Abbasian, Siampour (bib35) 2021; 900 Lei, Zhou, Zhu, Liu, Dong, Shuang (bib28) 2019; 297 Nagabooshanam, Roy, Deshmukh, Wadhwa, Sulania, Mathur, Krishnamurthy, Bharadwaj, Roy (bib34) 2020; 5 Kannan, Yoon, Yi, Lee, Kim (bib24) 2015; 156 Yadav, Dhiman, Lakshmi, Berlina, Solanki (bib50) 2020; 151 De Sa, Eugénio, Quaresma, Rangel, Vilar (bib10) 2011 Barman, Mukhopadhyay, Goswami, Ghosh, Paily (bib5) 2017; 16 Jahandari, Taher, Karimi-Maleh, Mansouri (bib22) 2019; 186 Lakshmi, Sharma, Solanki, Avasthi (bib27) 2016; 27 Zhu, Jiang, Xu, Li, Cai, Jiang, Zhou (bib55) 2015; 886 Gbomina (bib14) 2022 Moshfegh, Forootanfar, Zare, Shahverdi, Zarrini, Faramarzi (bib32) 2011; 6 Simon, Olumorin, Guo, Burgess (bib40) 2016; 120 Xie, Cheng, Li, Xu, Zhu, Zhang, Li, Liu, Liu, Yao (bib48) 2021; 4 Federici, Masulli, Allocati (bib12) 2021; 33 Aquilano, Baldelli, Ciriolo (bib4) 2014; 26 Geng, Chen, Guan, Liu, Yang, Wang, Liu (bib15) 2017; 7 Aldous, Silvester, Pitner, Compton, Lagunas, Hardacre (bib2) 2007; 111 Liu, Bao, Yang, Wang, Lan, Hou, Wang, Fa (bib29) 2018; 274 Roy, Rutherford, Weaver, Beaver, Rasmussen (bib37) 2020; 10 Nagabooshanam, Roy, Mathur, Mukherjee, Krishnamurthy, Bharadwaj (bib33) 2019; 9 Aldous, Silvester, Villagrán, Pitner, Compton, Lagunas, Hardacre (bib3) 2006; 30 Rawat, Mishra, Barman, Arora, Pal, Paily (bib36) 2020; 20 Beitollahi, Gholami, Ganjali (bib6) 2015; 57 Guan, Wang, Sun (bib17) 2022; 136 Zhang, Gan, Zhen, Hu, Hu (bib54) 2022; 271 Sun, Guo, Ye, Zhou, Han, Guo (bib42) 2022; 13 Habib, Mabrouk, Fekry, Mansour (bib18) 2022; 219 Yuan, Zeng, Deng, Xu, Liu, Gao, Pang (bib52) 2013; 5 Wu, Li, Zhang (bib47) 2015; 27 Yan, Sun, Xu, Li, Zhang (bib51) 2020; 187 Karacan, Tunç, Oruç, Mamaş, Karacan (bib23) 2015; 7 Harfield, Batchelor-McAuley, Compton (bib19) 2012; 137 Cheng, Li, Xu, Liu, Zhang, Liu, Yao (bib8) 2022; 7 Murugan, Murugan, Sundramoorthy, Sundaramurthy (bib31) 2020; 3 Bej, Das, Kundu, Pal, Banerjee (bib7) 2023; 25 Xu, Li, Liu, Zhu, Liu, Zhang, Yao (bib49) 2022; 434 Kumar, Ramamoorthy, Sundaramurthy (bib25) 2023; 342 Abbas, Saeed, Ali, Errachid, Zine, Baraket, Singh (bib1) 2019; 23 Sudhasree, Shakila Banu, Brindha, Kurian (bib43) 2014; 96 Shamsipur, Babaee, Gholivand, Molaabasi, Mousavi, Barati, Hajipour Verdom, Shojaedin-Givi, Naderi-Manesh (bib41) 2023; 6 Hepburn, Batchelor-McAuley, Tschulik, Barnes, Kachoosangi, Compton (bib21) 2014; 16 Wang, Jiang, Leng, Wu, He, Wang (bib45) 2016; 77 Wei, Liu, Gao, Wu, Guo, Ying, Wen, Yang (bib46) 2018; 90 Djouani, Qian (bib11) 2018; 10 Gbomina (10.1016/j.chemosphere.2023.140517_bib14) 2022 Kumar (10.1016/j.chemosphere.2023.140517_bib25) 2023; 342 Yadav (10.1016/j.chemosphere.2023.140517_bib50) 2020; 151 Harfield (10.1016/j.chemosphere.2023.140517_bib19) 2012; 137 Pak (10.1016/j.chemosphere.2023.140517_bib35) 2021; 900 Saitou (10.1016/j.chemosphere.2023.140517_bib38) 2014; 9 Shamsipur (10.1016/j.chemosphere.2023.140517_bib41) 2023; 6 Aquilano (10.1016/j.chemosphere.2023.140517_bib4) 2014; 26 Bej (10.1016/j.chemosphere.2023.140517_bib7) 2023; 25 Karacan (10.1016/j.chemosphere.2023.140517_bib23) 2015; 7 Liu (10.1016/j.chemosphere.2023.140517_bib29) 2018; 274 Semwal (10.1016/j.chemosphere.2023.140517_bib39) 2022; 2022 Abbas (10.1016/j.chemosphere.2023.140517_bib1) 2019; 23 Hasheminezhad (10.1016/j.chemosphere.2023.140517_bib20) 2022; 36 Sun (10.1016/j.chemosphere.2023.140517_bib42) 2022; 13 Habib (10.1016/j.chemosphere.2023.140517_bib18) 2022; 219 Lei (10.1016/j.chemosphere.2023.140517_bib28) 2019; 297 Girgis (10.1016/j.chemosphere.2023.140517_bib16) 2019; 275 Lakshmi (10.1016/j.chemosphere.2023.140517_bib27) 2016; 27 Federici (10.1016/j.chemosphere.2023.140517_bib12) 2021; 33 Zhu (10.1016/j.chemosphere.2023.140517_bib55) 2015; 886 Moshfegh (10.1016/j.chemosphere.2023.140517_bib32) 2011; 6 Zagorchev (10.1016/j.chemosphere.2023.140517_bib53) 2012; 46 Beitollahi (10.1016/j.chemosphere.2023.140517_bib6) 2015; 57 Djouani (10.1016/j.chemosphere.2023.140517_bib11) 2018; 10 Sudhasree (10.1016/j.chemosphere.2023.140517_bib43) 2014; 96 Wu (10.1016/j.chemosphere.2023.140517_bib47) 2015; 27 Cheraghi (10.1016/j.chemosphere.2023.140517_bib9) 2022; 287 Forman (10.1016/j.chemosphere.2023.140517_bib13) 2021; 20 Jahandari (10.1016/j.chemosphere.2023.140517_bib22) 2019; 186 De Sa (10.1016/j.chemosphere.2023.140517_bib10) 2011 Liu (10.1016/j.chemosphere.2023.140517_bib30) 2021; 342 Murugan (10.1016/j.chemosphere.2023.140517_bib31) 2020; 3 Tahernejad-Javazmi (10.1016/j.chemosphere.2023.140517_bib44) 2018; 176 Wang (10.1016/j.chemosphere.2023.140517_bib45) 2016; 77 Zhu (10.1016/j.chemosphere.2023.140517_bib56) 2021; 224 Wei (10.1016/j.chemosphere.2023.140517_bib46) 2018; 90 Simon (10.1016/j.chemosphere.2023.140517_bib40) 2016; 120 Aldous (10.1016/j.chemosphere.2023.140517_bib3) 2006; 30 Barman (10.1016/j.chemosphere.2023.140517_bib5) 2017; 16 Kannan (10.1016/j.chemosphere.2023.140517_bib24) 2015; 156 Labarrere (10.1016/j.chemosphere.2023.140517_bib26) 2022; 9 Nagabooshanam (10.1016/j.chemosphere.2023.140517_bib33) 2019; 9 Zhang (10.1016/j.chemosphere.2023.140517_bib54) 2022; 271 Xu (10.1016/j.chemosphere.2023.140517_bib49) 2022; 434 Xie (10.1016/j.chemosphere.2023.140517_bib48) 2021; 4 Guan (10.1016/j.chemosphere.2023.140517_bib17) 2022; 136 Cheng (10.1016/j.chemosphere.2023.140517_bib8) 2022; 7 Yan (10.1016/j.chemosphere.2023.140517_bib51) 2020; 187 Nagabooshanam (10.1016/j.chemosphere.2023.140517_bib34) 2020; 5 Hepburn (10.1016/j.chemosphere.2023.140517_bib21) 2014; 16 Geng (10.1016/j.chemosphere.2023.140517_bib15) 2017; 7 Rawat (10.1016/j.chemosphere.2023.140517_bib36) 2020; 20 Roy (10.1016/j.chemosphere.2023.140517_bib37) 2020; 10 Yuan (10.1016/j.chemosphere.2023.140517_bib52) 2013; 5 Aldous (10.1016/j.chemosphere.2023.140517_bib2) 2007; 111 |
References_xml | – volume: 111 start-page: 8496 year: 2007 end-page: 8503 ident: bib2 article-title: Voltammetric studies of gold, protons, and [HCl2]-in ionic liquids publication-title: J. Phys. Chem. C – year: 2022 ident: bib14 article-title: Development of an Electrochemical Sensor for the Detection of Glutathione (GSH) (Doctoral Dissertation – volume: 224 year: 2021 ident: bib56 article-title: Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy publication-title: Talanta – volume: 187 year: 2020 ident: bib51 article-title: WS2 quantum dots-MnO2 nanosheet system for use in ratiometric fluorometric/scattered light detection of glutathione publication-title: Microchim. Acta – volume: 27 year: 2016 ident: bib27 article-title: Mesoporous polyaniline nanofiber decorated graphene micro-flowers for enzyme-le ss cholesterol biosensors publication-title: Nanotechnology – volume: 57 start-page: 107 year: 2015 end-page: 112 ident: bib6 article-title: Preparation, characterization and electrochemical application of Ag-ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode publication-title: Mater. Sci. Eng. C – volume: 342 year: 2021 ident: bib30 article-title: Silver nanoparticle-functionalized 3D flower-like copper (II)-porphyrin framework nanocomposites as signal enhancers for fabricating a sensitive glutathione electrochemical sensor publication-title: Sensors Actuators, B Chem. – volume: 9 year: 2019 ident: bib33 article-title: Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things publication-title: Sci. Rep. – volume: 13 start-page: 16 year: 2022 ident: bib42 article-title: Fluorescent sensing of glutathione and related bio-applications publication-title: Biosensors – volume: 2022 year: 2022 ident: bib39 article-title: Diosgenin: an updated pharmacological review and therapeutic perspectives publication-title: Oxid. Med. Cell. Longev. – volume: 7 start-page: 5142 year: 2015 end-page: 5148 ident: bib23 article-title: A new method for screening glutathione reductase inhibitors using square wave voltammetry publication-title: Anal. Methods – volume: 4 start-page: 4853 year: 2021 end-page: 4862 ident: bib48 article-title: Au/Metal-Organic framework nanocapsules for electrochemical determination of glutathione publication-title: ACS Appl. Nano Mater. – volume: 434 year: 2022 ident: bib49 article-title: Dual-signal intrinsic self-calibration ratio electrochemical sensor for glutathione based on silver nanoparticle decorated Prussian Blue analog publication-title: Electrochim. Acta – volume: 25 start-page: 1626 year: 2023 end-page: 1636 ident: bib7 article-title: A de novo strategy for the development of a Zn II–organic framework based luminescent “switch-on” assay for size-exclusive sensitization of the oxidised form of glutathione (GSSG) over the reduced form (GSH): insights into the sensing mechanism through DF publication-title: CrystEngComm – volume: 137 start-page: 2285 year: 2012 end-page: 2296 ident: bib19 article-title: Electrochemical determination of glutathione: a review publication-title: Analyst – volume: 287 year: 2022 ident: bib9 article-title: Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids publication-title: Chemosphere – volume: 9 start-page: 2653 year: 2022 ident: bib26 article-title: Glutathione: a Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation publication-title: Front. Nutr. – volume: 9 start-page: 6033 year: 2014 end-page: 6042 ident: bib38 article-title: Characterization of electrodeposited Ni and Ni-Mo thin films by X-ray diffraction publication-title: Int. J. Electrochem. Sci. – volume: 5 start-page: 1779 year: 2013 end-page: 1783 ident: bib52 article-title: Electrochemical determination of glutathione based on analytical methods accepted manuscript publication-title: Anal. Methods – volume: 886 start-page: 37 year: 2015 end-page: 47 ident: bib55 article-title: Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione publication-title: Anal. Chim. Acta – volume: 151 start-page: 566 year: 2020 end-page: 575 ident: bib50 article-title: A highly sensitive label-free amperometric biosensor for norfloxacin detection based on chitosan-yttria nanocomposite publication-title: Int. J. Biol. Macromol. – volume: 156 start-page: 1 year: 2015 end-page: 8 ident: bib24 article-title: Shape-controlled synthesis of gold–nickel bimetallic nanoparticles and their electrocatalytic properties publication-title: Mater. Chem. Phys. – volume: 20 start-page: 6937 year: 2020 end-page: 6944 ident: bib36 article-title: Two-dimensional MoS2-based electrochemical biosensor for highly selective detection of glutathione publication-title: IEEE Sensor. J. – volume: 176 start-page: 208 year: 2018 end-page: 213 ident: bib44 article-title: Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte publication-title: Talanta – volume: 90 start-page: 11333 year: 2018 end-page: 11339 ident: bib46 article-title: Thiol-disulfide exchange reaction for cellular glutathione detection with surface-enhanced Raman scattering publication-title: Anal. Chem. – volume: 23 start-page: 1129 year: 2019 end-page: 1144 ident: bib1 article-title: Biosensor for the oxidative stress biomarker glutathione based on SAM of cobalt phthalocyanine on a thioctic acid modified gold electrode publication-title: J. Solid State Electrochem. – volume: 30 start-page: 1576 year: 2006 end-page: 1583 ident: bib3 article-title: Electrochemical studies of gold and chloride in ionic liquids publication-title: New J. Chem. – volume: 36 start-page: 112 year: 2022 end-page: 146 ident: bib20 article-title: A mechanistic insight into the biological activities of urolithins as gut microbial metabolites of ellagitannins publication-title: Phytother Res. – volume: 5 start-page: 31765 year: 2020 end-page: 31773 ident: bib34 article-title: Microfluidic affinity sensor based on a molecularly imprinted polymer for ultrasensitive detection of chlorpyrifos publication-title: ACS Omega – volume: 900 year: 2021 ident: bib35 article-title: Nickel-gold bimetallic nanostructures with the improved electrochemical performance for non-enzymatic glucose determination publication-title: J. Electroanal. Chem. – volume: 342 year: 2023 ident: bib25 article-title: Synthesis of Ag nanoparticles for selective dual detection of glutathione and dopamine using N, N-dimethyl-p-phenylenediamine mediated colorimetric probe publication-title: Chemosphere – volume: 16 start-page: 18034 year: 2014 end-page: 18041 ident: bib21 article-title: Diffusional transport to and through thin-layer nanoparticle film modified electrodes: capped CdSe nanoparticle modified electrodes publication-title: Phys. Chem. Chem. Phys. – volume: 27 start-page: 1195 year: 2015 end-page: 1201 ident: bib47 article-title: One step fabrication of Au nanoparticles-Ni-Al layered double hydroxide composite film for the determination of L-cysteine publication-title: Electroanalysis – volume: 6 start-page: 5939 year: 2023 end-page: 5951 ident: bib41 article-title: Bright green light-emitting gold nanoclusters confined in Insulin as selective fluorescent switch probes for sensing and imaging of copper ions and glutathione publication-title: ACS Appl. Nano Mater. – volume: 274 start-page: 433 year: 2018 end-page: 440 ident: bib29 article-title: A core-shell MWCNT@rGONR heterostructure modified glassy carbon electrode for ultrasensitive electrochemical detection of glutathione publication-title: Sensors Actuators, B Chem. – volume: 16 start-page: 271 year: 2017 end-page: 279 ident: bib5 article-title: Detection of glutathione by glutathione-S-transferase-nanoconjugate ensemble electrochemical device publication-title: IEEE Trans. NanoBioscience – volume: 33 start-page: 1852 year: 2021 end-page: 1865 ident: bib12 article-title: An overview of biosensors based on glutathione transferases and for the detection of glutathione publication-title: Electroanalysis – volume: 96 start-page: 743 year: 2014 end-page: 754 ident: bib43 article-title: Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity publication-title: Toxicol. Environ. Chem. – volume: 7 start-page: 51838 year: 2017 end-page: 51846 ident: bib15 article-title: Sheetlike gold nanostructures/graphene oxide composites via a one-pot green fabrication protocol and their interesting two-stage catalytic behaviors publication-title: RSC Adv. – volume: 297 year: 2019 ident: bib28 article-title: Facile synthesis of iron phthalocyanine functionalized N, B–doped reduced graphene oxide nanocomposites and sensitive electrochemical detection for glutathione publication-title: Sensors Actuators B Chem – volume: 3 start-page: 8461 year: 2020 end-page: 8471 ident: bib31 article-title: Gradient triple-layered ZnS/ZnO/Ta2O5–SiO2 core–shell nanoparticles for enzyme-based electrochemical detection of cancer biomarkers publication-title: ACS Appl. Nano Mater. – start-page: 6278 year: 2011 end-page: 6283 ident: bib10 article-title: Electrodeposition of gold thin films from 1-butyl-1-methylpyrrolidinium dicyanamide Au3+ solutions publication-title: Thin Solid Films – volume: 6 start-page: 1419 year: 2011 end-page: 1426 ident: bib32 article-title: Biological synthesis of Au, Ag and Au-Ag bimetallic nanoparticles by A-Amylase publication-title: Dig. J. Nanomater. Biostruct. – volume: 271 year: 2022 ident: bib54 article-title: Monitoring of glutathione using ratiometric fluorescent sensor based on MnO2 nanosheets simultaneously tuning the fluorescence of Rhodamine 6G and thiamine hydrochloride publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. – volume: 77 start-page: 914 year: 2016 end-page: 920 ident: bib45 article-title: Electrochemical sensor for glutathione detection based on mercury ion triggered hybridization chain reaction signal amplification publication-title: Biosens. Bioelectron. – volume: 26 start-page: 196 year: 2014 ident: bib4 article-title: Glutathione: new roles in redox signaling for an old antioxidant publication-title: Front. Pharmacol. – volume: 10 start-page: 114 year: 2020 ident: bib37 article-title: A self-powered biosensor for the detection of glutathione publication-title: Biosensors – volume: 20 start-page: 689 year: 2021 end-page: 709 ident: bib13 article-title: Targeting oxidative stress in disease: promise and limitations of antioxidant therapy publication-title: Nat. Rev. Drug Discov. – volume: 219 year: 2022 ident: bib18 article-title: Glycerol as a new mobile phase modifier for green liquid chromatographic determination of ascorbic acid and glutathione in pharmaceutical tablets publication-title: J. Pharm. Biomed. Anal. – volume: 7 start-page: 2465 year: 2022 end-page: 2474 ident: bib8 article-title: Signal on–off electrochemical sensor for glutathione based on a AuCu-decorated Zr-containing metal–organic framework via solid-state electrochemistry of cuprous chloride publication-title: ACS Sens. – volume: 275 start-page: 78 year: 2019 end-page: 85 ident: bib16 article-title: Effects of acute N-acetylcysteine challenge on cortical glutathione and glutamate in schizophrenia: a pilot in vivo proton magnetic resonance spectroscopy study publication-title: Psychiatr. Res. – volume: 10 start-page: 64228 year: 2018 end-page: 64239 ident: bib11 article-title: Mechanism of electrodeposition of nickel in aqueous solution publication-title: International Journal of Current Research – volume: 186 start-page: 1 year: 2019 end-page: 7 ident: bib22 article-title: Simultaneous voltammetric determination of glutathione, doxorubicin and tyrosine based on the electrocatalytic effect of a nickel (II) complex and of Pt: Co nanoparticles as a conductive mediator publication-title: Microchim. Acta – volume: 46 start-page: 656 year: 2012 end-page: 664 ident: bib53 article-title: Redox state of low-molecular-weight thiols and disulphides during somatic embryogenesis of salt-treated suspension cultures of Dactylis glomerata L publication-title: Free Radic. Res. – volume: 136 year: 2022 ident: bib17 article-title: Dual-mode colorimetric/fluorometric sensor for the detection of glutathione based on the peroxidase-like activity of carbon quantum dots publication-title: Inorg. Chem. Commun. – volume: 120 start-page: 26150 year: 2016 end-page: 26158 ident: bib40 article-title: Role of Au (I) intermediates in the electrochemical formation of highly anisotropic gold nanostructures with near-IR SERS applications publication-title: J. Phys. Chem. C – volume: 90 start-page: 11333 year: 2018 ident: 10.1016/j.chemosphere.2023.140517_bib46 article-title: Thiol-disulfide exchange reaction for cellular glutathione detection with surface-enhanced Raman scattering publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b01974 – volume: 27 start-page: 1195 year: 2015 ident: 10.1016/j.chemosphere.2023.140517_bib47 article-title: One step fabrication of Au nanoparticles-Ni-Al layered double hydroxide composite film for the determination of L-cysteine publication-title: Electroanalysis doi: 10.1002/elan.201400624 – volume: 57 start-page: 107 year: 2015 ident: 10.1016/j.chemosphere.2023.140517_bib6 article-title: Preparation, characterization and electrochemical application of Ag-ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.07.034 – volume: 10 start-page: 64228 year: 2018 ident: 10.1016/j.chemosphere.2023.140517_bib11 article-title: Mechanism of electrodeposition of nickel in aqueous solution publication-title: International Journal of Current Research – volume: 224 year: 2021 ident: 10.1016/j.chemosphere.2023.140517_bib56 article-title: Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy publication-title: Talanta doi: 10.1016/j.talanta.2020.121852 – volume: 5 start-page: 1779 year: 2013 ident: 10.1016/j.chemosphere.2023.140517_bib52 article-title: Electrochemical determination of glutathione based on analytical methods accepted manuscript publication-title: Anal. Methods doi: 10.1039/c3ay26536f – volume: 137 start-page: 2285 year: 2012 ident: 10.1016/j.chemosphere.2023.140517_bib19 article-title: Electrochemical determination of glutathione: a review publication-title: Analyst doi: 10.1039/c2an35090d – volume: 342 year: 2021 ident: 10.1016/j.chemosphere.2023.140517_bib30 article-title: Silver nanoparticle-functionalized 3D flower-like copper (II)-porphyrin framework nanocomposites as signal enhancers for fabricating a sensitive glutathione electrochemical sensor publication-title: Sensors Actuators, B Chem. doi: 10.1016/j.snb.2021.130047 – year: 2022 ident: 10.1016/j.chemosphere.2023.140517_bib14 – volume: 9 start-page: 2653 year: 2022 ident: 10.1016/j.chemosphere.2023.140517_bib26 article-title: Glutathione: a Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation publication-title: Front. Nutr. doi: 10.3389/fnut.2022.1007816 – volume: 151 start-page: 566 year: 2020 ident: 10.1016/j.chemosphere.2023.140517_bib50 article-title: A highly sensitive label-free amperometric biosensor for norfloxacin detection based on chitosan-yttria nanocomposite publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.02.089 – volume: 219 year: 2022 ident: 10.1016/j.chemosphere.2023.140517_bib18 article-title: Glycerol as a new mobile phase modifier for green liquid chromatographic determination of ascorbic acid and glutathione in pharmaceutical tablets publication-title: J. Pharm. Biomed. Anal. doi: 10.1016/j.jpba.2022.114870 – volume: 46 start-page: 656 year: 2012 ident: 10.1016/j.chemosphere.2023.140517_bib53 article-title: Redox state of low-molecular-weight thiols and disulphides during somatic embryogenesis of salt-treated suspension cultures of Dactylis glomerata L publication-title: Free Radic. Res. doi: 10.3109/10715762.2012.667565 – volume: 9 start-page: 6033 issue: 11 year: 2014 ident: 10.1016/j.chemosphere.2023.140517_bib38 article-title: Characterization of electrodeposited Ni and Ni-Mo thin films by X-ray diffraction publication-title: Int. J. Electrochem. Sci. doi: 10.1016/S1452-3981(23)10867-4 – volume: 111 start-page: 8496 year: 2007 ident: 10.1016/j.chemosphere.2023.140517_bib2 article-title: Voltammetric studies of gold, protons, and [HCl2]-in ionic liquids publication-title: J. Phys. Chem. C doi: 10.1021/jp0709555 – volume: 20 start-page: 689 year: 2021 ident: 10.1016/j.chemosphere.2023.140517_bib13 article-title: Targeting oxidative stress in disease: promise and limitations of antioxidant therapy publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-021-00233-1 – volume: 7 start-page: 5142 issue: 12 year: 2015 ident: 10.1016/j.chemosphere.2023.140517_bib23 article-title: A new method for screening glutathione reductase inhibitors using square wave voltammetry publication-title: Anal. Methods doi: 10.1039/C5AY00347D – volume: 6 start-page: 1419 year: 2011 ident: 10.1016/j.chemosphere.2023.140517_bib32 article-title: Biological synthesis of Au, Ag and Au-Ag bimetallic nanoparticles by A-Amylase publication-title: Dig. J. Nanomater. Biostruct. – volume: 20 start-page: 6937 year: 2020 ident: 10.1016/j.chemosphere.2023.140517_bib36 article-title: Two-dimensional MoS2-based electrochemical biosensor for highly selective detection of glutathione publication-title: IEEE Sensor. J. doi: 10.1109/JSEN.2020.2978275 – volume: 274 start-page: 433 year: 2018 ident: 10.1016/j.chemosphere.2023.140517_bib29 article-title: A core-shell MWCNT@rGONR heterostructure modified glassy carbon electrode for ultrasensitive electrochemical detection of glutathione publication-title: Sensors Actuators, B Chem. doi: 10.1016/j.snb.2018.07.146 – volume: 886 start-page: 37 year: 2015 ident: 10.1016/j.chemosphere.2023.140517_bib55 article-title: Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2015.05.036 – volume: 136 year: 2022 ident: 10.1016/j.chemosphere.2023.140517_bib17 article-title: Dual-mode colorimetric/fluorometric sensor for the detection of glutathione based on the peroxidase-like activity of carbon quantum dots publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2021.109147 – volume: 23 start-page: 1129 year: 2019 ident: 10.1016/j.chemosphere.2023.140517_bib1 article-title: Biosensor for the oxidative stress biomarker glutathione based on SAM of cobalt phthalocyanine on a thioctic acid modified gold electrode publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-018-04191-4 – volume: 186 start-page: 1 issue: 493 year: 2019 ident: 10.1016/j.chemosphere.2023.140517_bib22 article-title: Simultaneous voltammetric determination of glutathione, doxorubicin and tyrosine based on the electrocatalytic effect of a nickel (II) complex and of Pt: Co nanoparticles as a conductive mediator publication-title: Microchim. Acta – volume: 271 year: 2022 ident: 10.1016/j.chemosphere.2023.140517_bib54 article-title: Monitoring of glutathione using ratiometric fluorescent sensor based on MnO2 nanosheets simultaneously tuning the fluorescence of Rhodamine 6G and thiamine hydrochloride publication-title: Spectrochim. Acta Part A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2022.120942 – volume: 77 start-page: 914 year: 2016 ident: 10.1016/j.chemosphere.2023.140517_bib45 article-title: Electrochemical sensor for glutathione detection based on mercury ion triggered hybridization chain reaction signal amplification publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.10.071 – volume: 4 start-page: 4853 year: 2021 ident: 10.1016/j.chemosphere.2023.140517_bib48 article-title: Au/Metal-Organic framework nanocapsules for electrochemical determination of glutathione publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.1c00394 – volume: 27 year: 2016 ident: 10.1016/j.chemosphere.2023.140517_bib27 article-title: Mesoporous polyaniline nanofiber decorated graphene micro-flowers for enzyme-le ss cholesterol biosensors publication-title: Nanotechnology doi: 10.1088/0957-4484/27/34/345101 – volume: 2022 year: 2022 ident: 10.1016/j.chemosphere.2023.140517_bib39 article-title: Diosgenin: an updated pharmacological review and therapeutic perspectives publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2022/1035441 – volume: 342 year: 2023 ident: 10.1016/j.chemosphere.2023.140517_bib25 article-title: Synthesis of Ag nanoparticles for selective dual detection of glutathione and dopamine using N, N-dimethyl-p-phenylenediamine mediated colorimetric probe publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.140124 – volume: 176 start-page: 208 year: 2018 ident: 10.1016/j.chemosphere.2023.140517_bib44 article-title: Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte publication-title: Talanta doi: 10.1016/j.talanta.2017.08.027 – volume: 26 start-page: 196 issue: 5 year: 2014 ident: 10.1016/j.chemosphere.2023.140517_bib4 article-title: Glutathione: new roles in redox signaling for an old antioxidant publication-title: Front. Pharmacol. – volume: 434 year: 2022 ident: 10.1016/j.chemosphere.2023.140517_bib49 article-title: Dual-signal intrinsic self-calibration ratio electrochemical sensor for glutathione based on silver nanoparticle decorated Prussian Blue analog publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.141273 – volume: 275 start-page: 78 year: 2019 ident: 10.1016/j.chemosphere.2023.140517_bib16 article-title: Effects of acute N-acetylcysteine challenge on cortical glutathione and glutamate in schizophrenia: a pilot in vivo proton magnetic resonance spectroscopy study publication-title: Psychiatr. Res. doi: 10.1016/j.psychres.2019.03.018 – volume: 297 year: 2019 ident: 10.1016/j.chemosphere.2023.140517_bib28 article-title: Facile synthesis of iron phthalocyanine functionalized N, B–doped reduced graphene oxide nanocomposites and sensitive electrochemical detection for glutathione publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2019.126756 – volume: 16 start-page: 18034 year: 2014 ident: 10.1016/j.chemosphere.2023.140517_bib21 article-title: Diffusional transport to and through thin-layer nanoparticle film modified electrodes: capped CdSe nanoparticle modified electrodes publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP02440K – volume: 9 year: 2019 ident: 10.1016/j.chemosphere.2023.140517_bib33 article-title: Electrochemical micro analytical device interfaced with portable potentiostat for rapid detection of chlorpyrifos using acetylcholinesterase conjugated metal organic framework using Internet of things publication-title: Sci. Rep. doi: 10.1038/s41598-019-56510-y – volume: 16 start-page: 271 year: 2017 ident: 10.1016/j.chemosphere.2023.140517_bib5 article-title: Detection of glutathione by glutathione-S-transferase-nanoconjugate ensemble electrochemical device publication-title: IEEE Trans. NanoBioscience doi: 10.1109/TNB.2017.2698241 – start-page: 6278 year: 2011 ident: 10.1016/j.chemosphere.2023.140517_bib10 article-title: Electrodeposition of gold thin films from 1-butyl-1-methylpyrrolidinium dicyanamide Au3+ solutions publication-title: Thin Solid Films doi: 10.1016/j.tsf.2011.03.135 – volume: 96 start-page: 743 year: 2014 ident: 10.1016/j.chemosphere.2023.140517_bib43 article-title: Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity publication-title: Toxicol. Environ. Chem. doi: 10.1080/02772248.2014.923148 – volume: 36 start-page: 112 issue: 1 year: 2022 ident: 10.1016/j.chemosphere.2023.140517_bib20 article-title: A mechanistic insight into the biological activities of urolithins as gut microbial metabolites of ellagitannins publication-title: Phytother Res. doi: 10.1002/ptr.7290 – volume: 187 year: 2020 ident: 10.1016/j.chemosphere.2023.140517_bib51 article-title: WS2 quantum dots-MnO2 nanosheet system for use in ratiometric fluorometric/scattered light detection of glutathione publication-title: Microchim. Acta doi: 10.1007/s00604-020-04318-3 – volume: 287 year: 2022 ident: 10.1016/j.chemosphere.2023.140517_bib9 article-title: Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132187 – volume: 156 start-page: 1 year: 2015 ident: 10.1016/j.chemosphere.2023.140517_bib24 article-title: Shape-controlled synthesis of gold–nickel bimetallic nanoparticles and their electrocatalytic properties publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2015.02.010 – volume: 13 start-page: 16 year: 2022 ident: 10.1016/j.chemosphere.2023.140517_bib42 article-title: Fluorescent sensing of glutathione and related bio-applications publication-title: Biosensors doi: 10.3390/bios13010016 – volume: 6 start-page: 5939 year: 2023 ident: 10.1016/j.chemosphere.2023.140517_bib41 article-title: Bright green light-emitting gold nanoclusters confined in Insulin as selective fluorescent switch probes for sensing and imaging of copper ions and glutathione publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c00342 – volume: 900 year: 2021 ident: 10.1016/j.chemosphere.2023.140517_bib35 article-title: Nickel-gold bimetallic nanostructures with the improved electrochemical performance for non-enzymatic glucose determination publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2021.115729 – volume: 7 start-page: 2465 year: 2022 ident: 10.1016/j.chemosphere.2023.140517_bib8 article-title: Signal on–off electrochemical sensor for glutathione based on a AuCu-decorated Zr-containing metal–organic framework via solid-state electrochemistry of cuprous chloride publication-title: ACS Sens. doi: 10.1021/acssensors.2c01221 – volume: 7 start-page: 51838 year: 2017 ident: 10.1016/j.chemosphere.2023.140517_bib15 article-title: Sheetlike gold nanostructures/graphene oxide composites via a one-pot green fabrication protocol and their interesting two-stage catalytic behaviors publication-title: RSC Adv. doi: 10.1039/C7RA11188F – volume: 3 start-page: 8461 issue: 8 year: 2020 ident: 10.1016/j.chemosphere.2023.140517_bib31 article-title: Gradient triple-layered ZnS/ZnO/Ta2O5–SiO2 core–shell nanoparticles for enzyme-based electrochemical detection of cancer biomarkers publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01949 – volume: 30 start-page: 1576 year: 2006 ident: 10.1016/j.chemosphere.2023.140517_bib3 article-title: Electrochemical studies of gold and chloride in ionic liquids publication-title: New J. Chem. doi: 10.1039/B609261F – volume: 33 start-page: 1852 year: 2021 ident: 10.1016/j.chemosphere.2023.140517_bib12 article-title: An overview of biosensors based on glutathione transferases and for the detection of glutathione publication-title: Electroanalysis doi: 10.1002/elan.202100143 – volume: 25 start-page: 1626 year: 2023 ident: 10.1016/j.chemosphere.2023.140517_bib7 article-title: A de novo strategy for the development of a Zn II–organic framework based luminescent “switch-on” assay for size-exclusive sensitization of the oxidised form of glutathione (GSSG) over the reduced form (GSH): insights into the sensing mechanism through DF publication-title: CrystEngComm doi: 10.1039/D2CE01600A – volume: 5 start-page: 31765 year: 2020 ident: 10.1016/j.chemosphere.2023.140517_bib34 article-title: Microfluidic affinity sensor based on a molecularly imprinted polymer for ultrasensitive detection of chlorpyrifos publication-title: ACS Omega doi: 10.1021/acsomega.0c04436 – volume: 120 start-page: 26150 issue: 45 year: 2016 ident: 10.1016/j.chemosphere.2023.140517_bib40 article-title: Role of Au (I) intermediates in the electrochemical formation of highly anisotropic gold nanostructures with near-IR SERS applications publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b09202 – volume: 10 start-page: 114 year: 2020 ident: 10.1016/j.chemosphere.2023.140517_bib37 article-title: A self-powered biosensor for the detection of glutathione publication-title: Biosensors doi: 10.3390/bios10090114 |
SSID | ssj0001659 ssib002064272 ssib021068354 ssib017383902 |
Score | 2.4942179 |
Snippet | We report a facile one-pot synthesis of bimetallic nickel-gold (Ni–Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized... We report a facile one-pot synthesis of bimetallic nickel-gold (Ni-Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized... |
SourceID | proquest pubmed crossref nii elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 140517 |
SubjectTerms | ascorbic acid Bimetallic nanocomposites blood crosslinking detection limit dielectric spectroscopy dopamine Electrochemical Techniques Electrochemical Techniques - methods electrochemistry Electrodeposition Electrodes electron microscopy electroplating Enzyme Enzymes, Immobilized fluorine glucose glutaraldehyde Glutaraldehyde cross-linking Glutathione Glutathione Disulfide glutathione-disulfide reductase Graphite Graphite - chemistry Limit of Detection NADP NADP (coenzyme) Nanocomposites Nanocomposites - chemistry oxidation shelf life standard deviation synthesis tin dioxide uric acid voltammetry X-ray diffraction |
Title | Rapid and sensitive electrochemical detection of oxidized form of glutathione in whole blood samples using Bi-metallic nanocomposites |
URI | https://dx.doi.org/10.1016/j.chemosphere.2023.140517 https://cir.nii.ac.jp/crid/1873961342981860480 https://www.ncbi.nlm.nih.gov/pubmed/37879374 https://www.proquest.com/docview/2882322290 https://www.proquest.com/docview/3153556179 |
Volume | 346 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VIh4XBOW1QCtX4hqa-BHHEpeyarWA6AFRaW-REzuVUeusyFY8Dtz438zk0cKhqBKXKLEykeOZzHxJvpkBeClzLitrs0QIKxMpZJpUulCJb5T0jjuMGpSN_OEoXxzLd0u13ID5lAtDtMrR9w8-vffW48jeuJp7qxAox5fQiKDPmhzNbkkZ7FKTrb_6eUnzyHI1QGCpEjr7NuxecrxwXc7ajvL3qWImF-g3qGbVVTHqRgzhaiTaR6TD-3BvhJJsf5jtA9jwcQvuzKcObltw66AvSf39Ifz6aFfBMRsd64ixTj6OjR1w6rFkAHN-3fOyImsb1n4LLvzwjhGopYETNFFiKrbRsxDZV-qry3raO-sslRjuGHHoT9ibkJx5hPSnoWbRxpZI68QM890jOD48-DRfJGMDhqSWPF0nyhtteCoKKZpK-aypsjy3GnfRz9UpYTXZ6LqpeK0Q51inhBYuM5VJ8yZHqcewGXFaT4FVFqW1rxFOecSAztSZE6nMjMPL8bSYQTEteVmP1cmpScZpOdHQPpd_aKskbZWDtmbAL0RXQ4mO6wi9nvRa_mVvJYaS64hvoy3gTGmbFVoYhEUY2qk-IGXpz2B3spISlU4_YWz07XlXcnylob9b5h_nCAxD1LZUmxk8GUzs4s4EmjpCSvns_27gOdzFIzl8THoBm-sv534b4dW62umfnx24uf_2_eLoN_zvJA4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61RVAuCAqlCxRciWtoYjsPS1xg1WqBtgfUSnuznNipjFpn1WzF48CN_81MHi0ciipxWa2ymZXjmZ35NvnmG4DXMuOyNCaJhDAykkLGUZkXaeTqVDrLLVYN6kY-PMpmJ_LjPJ2vwHTshSFa5ZD7-5zeZevhyO6wm7sL76nHl9CIoNuaHMNuvgp3ZCpyEtB_8_Oa55FkaY-BZRrR6fdg55rkhRtz3rTUwE-SmVxg4iDRqpuK1Grw_mYo2pWk_YfwYMCS7F2_3Eew4sIGrE_HEW4bcHev06T-_hh-fTYLb5kJlrVEWackx4YRONWgGcCsW3bErMCamjXfvPU_nGWEaunAKcYoURWb4JgP7CsN1mUd7521hjSGW0Yk-lP23kfnDjH9ma9YMKEh1jpRw1z7BE72946ns2iYwBBVksfLKHUqVzwWhRR1mbqkLpMsMzm-xURXxQTWZJ1XdcmrFIGOsbj_wiaqVHFWZ2i1CWsBl7UFrDRonbsK8ZRDEGhVlVgRy0RZ_DoeFxMoxi3X1SBPTlMyzvTIQ_ui__CWJm_p3lsT4Femi16j4zZGb0e_6r8CTmMtuY35NsYCrpRekyIXCnER1nYSCKQ2_QnsjFGi0en0FMYE11y2muN_Gnq8pf5xjsA6RHNLczWBp32IXV2ZwFhHTCmf_d8FvIL12fHhgT74cPTpOdzHT2R_Z-kFrC0vLt02Yq1l-bL7Lf0GekwloA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+and+sensitive+electrochemical+detection+of+oxidized+form+of+glutathione+in+whole+blood+samples+using+Bi-metallic+nanocomposites&rft.jtitle=Chemosphere+%28Oxford%29&rft.au=Nagabooshanam%2C+Shalini&rft.au=Kumar%2C+Akash&rft.au=Ramamoorthy%2C+Sharmiladevi&rft.au=Saravanan%2C+Nishakavya&rft.date=2024-01-01&rft.eissn=1879-1298&rft.volume=346&rft.spage=140517&rft_id=info:doi/10.1016%2Fj.chemosphere.2023.140517&rft_id=info%3Apmid%2F37879374&rft.externalDocID=37879374 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-6535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-6535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-6535&client=summon |