Resting-State Striato-Frontal Functional Connectivity is Sensitive to DAT1 Genotype and Predicts Executive Function
Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults t...
Saved in:
Published in | Cerebral cortex (New York, N.Y. 1991) Vol. 25; no. 2; pp. 336 - 345 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
01.02.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1047-3211 1460-2199 1460-2199 |
DOI | 10.1093/cercor/bht229 |
Cover
Abstract | Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals. |
---|---|
AbstractList | Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals. Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene ( DAT1 ), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals. Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals.Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals. |
Author | Gordon, Evan M. Devaney, Joseph M. Vaidya, Chandan J. Bean, Stephanie |
Author_xml | – sequence: 1 givenname: Evan M. surname: Gordon fullname: Gordon, Evan M. – sequence: 2 givenname: Joseph M. surname: Devaney fullname: Devaney, Joseph M. – sequence: 3 givenname: Stephanie surname: Bean fullname: Bean, Stephanie – sequence: 4 givenname: Chandan J. surname: Vaidya fullname: Vaidya, Chandan J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23968837$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1P3DAQxa2Kqnz1yBX52EuKP5I4viChhaWVkIpYOFu2MwGjrL21HcT-97hdtiqoUk-e8fzm6WnePtrxwQNCR5R8pUTyEwvRhnhiHjJj8gPao3VLKkal3Ck1qUXFGaW7aD-lR0KoYA37hHYZl23XcbGH0g2k7Px9tcg6A17k6HQO1TwGn_WI55O32QVfylnwHkrz5PIau4QX4JMrLeAc8PnZLcWX4ENerwBr3-PrCL2zOeGLZ7DTb24rdog-DnpM8Pn1PUB384vb2bfq6sfl99nZVWVrRnJVD7LTXcsEEQMY2VNtjLasaZg0ohWMiBaIoL2gglpiypRoaYbaNGzoyhc_QKcb3dVkltBb8DnqUa2iW-q4VkE79Xbi3YO6D0-q5g2tWVsEvrwKxPBzKodSS5csjKP2EKakqCC0Fm0x9H-0UFyIlvGCHv9t64-fbSgF4BvAxpBShEFZV9Iplysu3agoUb-iV5vo1Sb6slW929oK_5t_AZ__tc8 |
CitedBy_id | crossref_primary_10_1002_ajmg_b_32542 crossref_primary_10_1016_j_yebeh_2024_110228 crossref_primary_10_1016_j_dcn_2015_11_004 crossref_primary_10_1016_j_addbeh_2023_107683 crossref_primary_10_1007_s10072_019_04118_5 crossref_primary_10_1016_j_neurobiolaging_2017_02_013 crossref_primary_10_3389_fnbeh_2015_00196 crossref_primary_10_1007_s11682_019_00164_x crossref_primary_10_1016_j_drugalcdep_2016_12_008 crossref_primary_10_1016_j_neuroimage_2019_116232 crossref_primary_10_1093_brain_awae334 crossref_primary_10_1002_hbm_23605 crossref_primary_10_1016_j_pscychresns_2015_07_005 crossref_primary_10_1016_j_cortex_2016_06_010 crossref_primary_10_1093_brain_awx309 crossref_primary_10_1016_j_ijpsycho_2016_12_014 crossref_primary_10_1016_j_biopsycho_2017_07_019 crossref_primary_10_1017_S0033291719003830 crossref_primary_10_1016_j_neubiorev_2015_09_021 crossref_primary_10_1371_journal_pone_0215849 crossref_primary_10_1089_brain_2014_0327 crossref_primary_10_1016_j_neubiorev_2017_01_013 crossref_primary_10_1016_j_physbeh_2017_07_026 crossref_primary_10_1016_j_neuroimage_2019_116044 crossref_primary_10_1016_j_pscychresns_2015_01_021 crossref_primary_10_1002_hipo_22480 crossref_primary_10_1017_S0033291718000144 crossref_primary_10_1002_brb3_446 crossref_primary_10_1007_s11682_017_9692_0 crossref_primary_10_1016_j_dcn_2015_07_002 crossref_primary_10_1089_brain_2013_0169 crossref_primary_10_1007_s11682_020_00300_y crossref_primary_10_1016_j_neuroimage_2019_04_005 crossref_primary_10_1016_j_neuroimage_2020_117202 crossref_primary_10_1093_brain_aww124 crossref_primary_10_1016_j_dcn_2015_08_002 crossref_primary_10_1016_j_appet_2018_04_024 crossref_primary_10_1002_hbm_23142 crossref_primary_10_1007_s12264_022_00982_y crossref_primary_10_1089_neu_2021_0426 crossref_primary_10_1212_WNL_0000000000000592 crossref_primary_10_1007_s11682_021_00589_3 crossref_primary_10_1177_0269881114551079 crossref_primary_10_1016_j_cortex_2017_05_021 crossref_primary_10_3389_fnbeh_2016_00027 crossref_primary_10_1007_s00406_017_0786_x crossref_primary_10_1016_j_nicl_2015_04_024 crossref_primary_10_1002_hbm_24820 crossref_primary_10_1515_revneuro_2023_0071 |
Cites_doi | 10.1038/sj.tpj.6500026 10.1016/j.bbr.2008.12.003 10.1523/JNEUROSCI.1062-10.2010 10.1038/sj.mp.4000510 10.1152/jn.00783.2009 10.1523/JNEUROSCI.4975-05.2006 10.1093/cercor/bhs126 10.1016/j.neuroimage.2008.04.023 10.1016/j.neuroimage.2009.12.104 10.1002/mrm.1910340409 10.1523/JNEUROSCI.3921-07.2008 10.1523/JNEUROSCI.1111-10.2010 10.1523/JNEUROSCI.0810-09.2009 10.1146/annurev.ne.09.030186.002041 10.1017/S0033291704002892 10.1016/B978-0-444-53839-0.00017-X 10.1186/1471-2156-6-55 10.1080/15622970500518444 10.1038/sj.mp.4002086 10.1016/j.neulet.2009.10.018 10.1037/a0028225 10.1093/cercor/bhn041 10.1002/ajmg.b.30453 10.1002/mrm.24201 10.1016/j.neuroimage.2011.07.044 10.1016/j.neuroimage.2010.04.276 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1 10.2967/jnumed.111.101626 10.1146/annurev.neuro.24.1.167 10.1016/S0893-133X(99)00099-8 10.1016/j.neurobiolaging.2011.03.002 10.1093/cercor/bhr305 10.1002/ajmg.b.30848 10.1080/13803390903066865 10.1006/nimg.1998.0366 10.1093/cercor/bhs136 10.1016/j.tics.2004.02.010 10.1523/JNEUROSCI.4858-08.2009 10.1016/j.tics.2008.01.001 10.1002/1097-0193(200103)12:3<131::AID-HBM1010>3.0.CO;2-C 10.1176/appi.ajp.157.10.1700 10.1093/acprof:oso/9780195104233.001.0001 10.1098/rstb.2005.1634 10.1111/j.1460-9568.2007.05947.x 10.1176/appi.ajp.160.4.636 10.1089/brain.2012.0080 10.1016/j.neuroimage.2011.07.086 10.1002/hbm.21306 10.1016/j.bandl.2012.05.003 10.1016/j.biopsych.2005.02.006 10.1002/ajmg.b.10948 10.1016/j.biopsych.2006.03.004 10.1016/j.neuroimage.2007.06.021 10.1016/j.jpsychires.2009.11.016 10.1111/j.1467-8721.2009.01598.x 10.1016/j.biopsych.2004.10.011 10.1016/j.pscychresns.2011.01.006 10.1016/j.neuropharm.2009.08.013 10.1016/j.neuroimage.2011.10.018 10.1098/rstb.2007.2055 10.1002/hbm.20131 10.1073/pnas.0704320104 10.1017/S003329171000098X |
ContentType | Journal Article |
Copyright | The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2013 |
Copyright_xml | – notice: The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. – notice: The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QG 7TK 5PM |
DOI | 10.1093/cercor/bht229 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Animal Behavior Abstracts Neurosciences Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts Animal Behavior Abstracts |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1460-2199 |
EndPage | 345 |
ExternalDocumentID | PMC4351426 23968837 10_1093_cercor_bht229 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R03MH86709 – fundername: NIMH NIH HHS grantid: F31MH088066 – fundername: NICHD NIH HHS grantid: R24HD050846-06 – fundername: NINDS NIH HHS grantid: T32 NS041231 – fundername: NINDS NIH HHS grantid: R01NS029525 – fundername: NCRR NIH HHS grantid: UL1RR031988 |
GroupedDBID | --- -E4 .2P .I3 .ZR 0R~ 1TH 29B 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAYXX ABDFA ABEJV ABEUO ABGNP ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHMMS AHXPO AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC BTRTY BVRKM CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN F5P F9B FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z ML0 N9A NGC NLBLG NOMLY NOYVH NU- NVLIB O9- OAWHX OBOKY OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PEELM PQQKQ Q1. Q5Y QBD R44 RD5 ROL ROX ROZ RUSNO RW1 RXO TCN TEORI TJX TLC TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 .GJ AAPGJ AAWDT ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACPQN ACUKT ACVCV ACZBC ADMTO AEHUL AEKPW AFFNX AFFQV AFSHK AFYAG AGKRT AGMDO AGQPQ AHGBF AJDVS ANFBD APJGH AQDSO AQKUS ASAOO ASPBG ATDFG ATTQO AVNTJ AVWKF AZFZN BZKNY C1A CAG CGR COF CUY CVF CXTWN DFGAJ ECM EIF EIHJH ELUNK FEDTE HVGLF MBLQV MBTAY NPM NTWIH O0~ OBFPC O~Y PB- RIG RNI RZF RZO TMA UQL 7X8 7QG 7TK 5PM |
ID | FETCH-LOGICAL-c420t-4f98a862707feb9d1abbac25529b7672076e071d7171c0babb0a9bf4b52f871c3 |
ISSN | 1047-3211 1460-2199 |
IngestDate | Thu Aug 21 14:31:58 EDT 2025 Sat Sep 27 23:06:58 EDT 2025 Sat Sep 27 19:24:03 EDT 2025 Mon Jul 21 05:56:42 EDT 2025 Tue Jul 01 02:59:31 EDT 2025 Thu Apr 24 23:08:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | impulsivity fMRI functional connectivity DAT1 working memory |
Language | English |
License | The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-4f98a862707feb9d1abbac25529b7672076e071d7171c0babb0a9bf4b52f871c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/cercor/article-pdf/25/2/336/17308275/bht229.pdf |
PMID | 23968837 |
PQID | 1652377623 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4351426 proquest_miscellaneous_1701476529 proquest_miscellaneous_1652377623 pubmed_primary_23968837 crossref_citationtrail_10_1093_cercor_bht229 crossref_primary_10_1093_cercor_bht229 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cerebral cortex (New York, N.Y. 1991) |
PublicationTitleAlternate | Cereb Cortex |
PublicationYear | 2015 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Fuke ( key 20170521003218_BHT229C25) 2001; 1 VanNess ( key 20170521003218_BHT229C62) 2005; 6 Hall ( key 20170521003218_BHT229C30) 1999; 9 Boehler ( key 20170521003218_BHT229C8) 2010; 52 Gizer ( key 20170521003218_BHT229C26) 2012; 121 Mill ( key 20170521003218_BHT229C42) 2002; 114 Rubia ( key 20170521003218_BHT229C51) 2009; 57 Kelly ( key 20170521003218_BHT229C34) 2009; 29 Bertolino ( key 20170521003218_BHT229C4) 2006; 26 Stelzel ( key 20170521003218_BHT229C55) 2010; 30 Willcutt ( key 20170521003218_BHT229C65) 2005; 57 Owen ( key 20170521003218_BHT229C47) 2005; 25 Davis ( key 20170521003218_BHT229C20) 2013; 23 Sasaki ( key 20170521003218_BHT229C53) 2012; 53 Saad ( key 20170521003218_BHT229C52) 2012; 2 Niazy ( key 20170521003218_BHT229C46) 2011; 193 Cubillo ( key 20170521003218_BHT229C18) 2010; 44 Brehmer ( key 20170521003218_BHT229C9) 2009; 467 Blanchard ( key 20170521003218_BHT229C7) 2011; 41 Chen ( key 20170521003218_BHT229C13) 2012; 68 Jacobsen ( key 20170521003218_BHT229C33) 2000; 157 MacKinnon ( key 20170521003218_BHT229C39) 2009; 18 Alexander ( key 20170521003218_BHT229C1) 1986; 9 Yang ( key 20170521003218_BHT229C66) 2007; 144B Gottesman ( key 20170521003218_BHT229C29) 2003; 160 Forbes ( key 20170521003218_BHT229C24) 2009; 14 Madras ( key 20170521003218_BHT229C40) 2005; 57 White ( key 20170521003218_BHT229C64) 2009; 199 Nagano-Saito ( key 20170521003218_BHT229C45) 2008; 28 Ward ( key 20170521003218_BHT229C63) 2000 Menon ( key 20170521003218_BHT229C41) 2001; 12 Cohen ( key 20170521003218_BHT229C14) 2007; 26 Caldú ( key 20170521003218_BHT229C12) 2007; 37 Di Martino ( key 20170521003218_BHT229C21) 2008; 18 Tu ( key 20170521003218_BHT229C57) 2012; 59 Schmahmann ( key 20170521003218_BHT229C54) 2006 Van Schouwenburg ( key 20170521003218_BHT229C61) 2010; 30 Van De Voorde ( key 20170521003218_BHT229C58) 2010; 32 Aron ( key 20170521003218_BHT229C2) 2004; 8 Rommelse ( key 20170521003218_BHT229C50) 2008; 147B Klostermann ( key 20170521003218_BHT229C36) 2012; 33 Patton ( key 20170521003218_BHT229C48) 1995; 51 Kessler ( key 20170521003218_BHT229C35) 2005; 35 Stollstorff ( key 20170521003218_BHT229C56) 2010; 53 Dosenbach ( key 20170521003218_BHT229C22) 2008; 12 Hazy ( key 20170521003218_BHT229C31) 2007; 362 Gordon ( key 20170521003218_BHT229C27) 2012; 22 Biswal ( key 20170521003218_BHT229C6) 1995; 34 Brett ( key 20170521003218_BHT229C10) 2003; 16 Bertolino ( key 20170521003218_BHT229C5) 2009; 29 Van Dijk ( key 20170521003218_BHT229C60) 2012; 59 Cole ( key 20170521003218_BHT229C15) 2013; 23 Cropley ( key 20170521003218_BHT229C17) 2006; 59 Brown ( key 20170521003218_BHT229C11) 2011; 193 Gordon ( key 20170521003218_BHT229C28) 2012; 33 Moore ( key 20170521003218_BHT229C44) 2013; 125 Krause ( key 20170521003218_BHT229C37) 2006; 7 Van Dijk ( key 20170521003218_BHT229C59) 2010; 103 Daly ( key 20170521003218_BHT229C19) 1999; 4 Dosenbach ( key 20170521003218_BHT229C23) 2007; 104 Power ( key 20170521003218_BHT229C49) 2012; 59 Heinz ( key 20170521003218_BHT229C32) 2000; 22 Beckmann ( key 20170521003218_BHT229C3) 2005; 360 Cole ( key 20170521003218_BHT229C16) 2010; 4:8 Miller ( key 20170521003218_BHT229C43) 2001; 24 Li ( key 20170521003218_BHT229C38) 2008; 41 10649826 - Neuropsychopharmacology. 2000 Feb;22(2):133-9 21761505 - Hum Brain Mapp. 2012 Jul;33(7):1536-52 18385328 - J Neurosci. 2008 Apr 2;28(14):3697-706 17893706 - Mol Psychiatry. 2009 Jan;14(1):60-70 11911442 - Pharmacogenomics J. 2001;1(2):152-6 21511369 - Neurobiol Aging. 2012 Mar;33(3):623.e15-24 19819301 - Neurosci Lett. 2009 Dec 25;467(2):117-20 20060129 - J Psychiatr Res. 2010 Jul;44(10):629-39 22645252 - Cereb Cortex. 2013 Jul;23(7):1509-16 15050513 - Trends Cogn Sci. 2004 Apr;8(4):170-7 11283309 - Annu Rev Neurosci. 2001;24:167-202 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 20660273 - J Neurosci. 2010 Jul 21;30(29):9910-8 20053379 - Neuroimage. 2010 Nov 15;53(3):970-7 18400794 - Cereb Cortex. 2008 Dec;18(12):2735-47 19889849 - J Neurophysiol. 2010 Jan;103(1):297-321 19813130 - J Clin Exp Neuropsychol. 2010 Apr;32(4):366-79 11170305 - Hum Brain Mapp. 2001 Mar;12(3):131-43 16682268 - Biol Psychiatry. 2006 May 15;59(10):898-907 22334332 - Magn Reson Med. 2012 Dec;68(6):1828-35 3085570 - Annu Rev Neurosci. 1986;9:357-81 18262825 - Trends Cogn Sci. 2008 Mar;12(3):99-105 11007732 - Am J Psychiatry. 2000 Oct;157(10):1700-3 8778124 - J Clin Psychol. 1995 Nov;51(6):768-74 15841682 - Psychol Med. 2005 Feb;35(2):245-56 22689927 - J Nucl Med. 2012 Jul;53(7):1065-73 12457396 - Am J Med Genet. 2002 Dec 8;114(8):975-9 20157637 - Curr Dir Psychol Sci. 2009 Feb 1;18(1):16 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 10208453 - Mol Psychiatry. 1999 Mar;4(2):192-6 19176830 - J Neurosci. 2009 Jan 28;29(4):1224-34 19715709 - Neuropharmacology. 2009 Dec;57(7-8):640-52 17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8 17440978 - Am J Med Genet B Neuropsychiatr Genet. 2007 Jun 5;144B(4):541-50 12668349 - Am J Psychiatry. 2003 Apr;160(4):636-45 22854261 - Brain Lang. 2013 Jun;125(3):316-23 21272388 - Psychol Med. 2011 Mar;41(3):611-8 22432927 - Brain Connect. 2012;2(1):25-32 15950006 - Biol Psychiatry. 2005 Jun 1;57(11):1336-46 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8 15950014 - Biol Psychiatry. 2005 Jun 1;57(11):1397-409 18485743 - Neuroimage. 2008 Jul 15;41(4):1352-63 16861140 - World J Biol Psychiatry. 2006;7(3):152-7 19494158 - J Neurosci. 2009 Jun 3;29(22):7364-78 20407579 - Front Syst Neurosci. 2010 Apr 06;4:8 21854968 - Prog Brain Res. 2011;193:259-76 20452445 - Neuroimage. 2010 Oct 1;52(4):1621-32 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54 9918732 - Neuroimage. 1999 Jan;9(1):108-16 22564179 - J Abnorm Psychol. 2012 Nov;121(4):1011-23 18088284 - Eur J Neurosci. 2007 Dec;26(12):3652-60 22645253 - Cereb Cortex. 2013 Jun;23(6):1444-52 16611807 - J Neurosci. 2006 Apr 12;26(15):3918-22 16309561 - BMC Genet. 2005;6:55 21840407 - Neuroimage. 2012 Jan 2;59(1):238-47 17428778 - Philos Trans R Soc Lond B Biol Sci. 2007 Sep 29;362(1485):1601-13 17689985 - Neuroimage. 2007 Oct 1;37(4):1437-44 19111791 - Behav Brain Res. 2009 Apr 12;199(1):3-23 22047966 - Cereb Cortex. 2012 Sep;22(9):2182-96 21596533 - Psychiatry Res. 2011 Jul 30;193(1):7-16 18729135 - Am J Med Genet B Neuropsychiatr Genet. 2008 Dec 5;147B(8):1536-46 15846822 - Hum Brain Mapp. 2005 May;25(1):46-59 20962241 - J Neurosci. 2010 Oct 20;30(42):14205-12 |
References_xml | – volume: 1 start-page: 152 year: 2001 ident: key 20170521003218_BHT229C25 article-title: The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression publication-title: Pharmacogenomics J doi: 10.1038/sj.tpj.6500026 – volume: 199 start-page: 3 year: 2009 ident: key 20170521003218_BHT229C64 article-title: Some highlights of research on the effects of caudate nucleus lesions over the past 200 years publication-title: Behav Brain Res doi: 10.1016/j.bbr.2008.12.003 – volume: 30 start-page: 14205 year: 2010 ident: key 20170521003218_BHT229C55 article-title: Frontostriatal involvement in task switching depends on genetic differences in D2 receptor density publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1062-10.2010 – volume: 4 start-page: 192 year: 1999 ident: key 20170521003218_BHT229C19 article-title: Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4000510 – volume: 103 start-page: 297 year: 2010 ident: key 20170521003218_BHT229C59 article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization publication-title: J Neurophysiol doi: 10.1152/jn.00783.2009 – volume: 26 start-page: 3918 year: 2006 ident: key 20170521003218_BHT229C4 article-title: Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4975-05.2006 – volume: 23 start-page: 1444 year: 2013 ident: key 20170521003218_BHT229C20 article-title: Impulsivity and the modular organization of resting-state neural networks publication-title: Cereb Cortex doi: 10.1093/cercor/bhs126 – volume: 41 start-page: 1352 year: 2008 ident: key 20170521003218_BHT229C38 article-title: Subcortical processes of motor response inhibition during a stop signal task publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.04.023 – volume: 53 start-page: 970 year: 2010 ident: key 20170521003218_BHT229C56 article-title: Neural response to working memory load varies by dopamine transporter genotype in children publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.12.104 – volume: 34 start-page: 537 year: 1995 ident: key 20170521003218_BHT229C6 article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI publication-title: Magn Reson Med doi: 10.1002/mrm.1910340409 – volume: 28 start-page: 3697 year: 2008 ident: key 20170521003218_BHT229C45 article-title: Dopamine depletion impairs frontostriatal functional connectivity during a set-shifting task publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3921-07.2008 – volume: 30 start-page: 9910 year: 2010 ident: key 20170521003218_BHT229C61 article-title: The human basal ganglia modulate frontal-posterior connectivity during attention shifting publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1111-10.2010 – volume: 29 start-page: 7364 year: 2009 ident: key 20170521003218_BHT229C34 article-title: L-Dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study publication-title: J Neurosci doi: 10.1523/JNEUROSCI.0810-09.2009 – volume: 9 start-page: 357 year: 1986 ident: key 20170521003218_BHT229C1 article-title: Parallel organization of functionally segregated circuits linking basal ganglia and cortex publication-title: Annu Rev Neurosci doi: 10.1146/annurev.ne.09.030186.002041 – volume: 35 start-page: 245 year: 2005 ident: key 20170521003218_BHT229C35 article-title: The world health organization adult ADHD self-report scale (ASRS): a short screening scale for use in the general population publication-title: Psychol Med doi: 10.1017/S0033291704002892 – volume: 193 start-page: 259 year: 2011 ident: key 20170521003218_BHT229C46 article-title: Spectral characteristics of resting state networks publication-title: Prog Brain Res doi: 10.1016/B978-0-444-53839-0.00017-X – volume: 6 start-page: 55 year: 2005 ident: key 20170521003218_BHT229C62 article-title: The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density publication-title: BMC Genet doi: 10.1186/1471-2156-6-55 – volume: 7 start-page: 152 year: 2006 ident: key 20170521003218_BHT229C37 article-title: Striatal dopamine transporter availability and DAT-1 gene in adults with ADHD: no higher DAT availability in patients with homozygosity for the 10-repeat allele publication-title: World J Biol Psychiatry doi: 10.1080/15622970500518444 – volume: 14 start-page: 60 year: 2009 ident: key 20170521003218_BHT229C24 article-title: Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4002086 – volume: 467 start-page: 117 year: 2009 ident: key 20170521003218_BHT229C9 article-title: Working memory plasticity modulated by dopamine transporter genotype publication-title: Neurosci Lett doi: 10.1016/j.neulet.2009.10.018 – volume: 121 start-page: 1011 year: 2012 ident: key 20170521003218_BHT229C26 article-title: Double dissociation between lab measures of inattention and impulsivity and the dopamine transporter gene (DAT1) and dopamine D4 receptor gene (DRD4) publication-title: J Abnorm Psychol doi: 10.1037/a0028225 – volume: 18 start-page: 2735 year: 2008 ident: key 20170521003218_BHT229C21 article-title: Functional connectivity of human striatum: a resting state fMRI study publication-title: Cereb Cortex doi: 10.1093/cercor/bhn041 – volume: 144B start-page: 541 year: 2007 ident: key 20170521003218_BHT229C66 article-title: A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3′-UTR of dopamine transporter gene and attention deficit hyperactivity disorder publication-title: Am J Med Genet B Neuropsychiatr Genet doi: 10.1002/ajmg.b.30453 – volume: 68 start-page: 1828 year: 2012 ident: key 20170521003218_BHT229C13 article-title: A method to determine the necessity for global signal regression in resting-state fMRI studies publication-title: Magn Reson Med doi: 10.1002/mrm.24201 – volume: 59 start-page: 431 year: 2012 ident: key 20170521003218_BHT229C60 article-title: The influence of head motion on intrinsic functional connectivity MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.044 – volume: 52 start-page: 1621 year: 2010 ident: key 20170521003218_BHT229C8 article-title: Pinning down response inhibition in the brain—conjunction analyses of the stop-signal task publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.276 – volume: 16 year: 2003 ident: key 20170521003218_BHT229C10 article-title: Region of interest analysis using an SPM toolbox (abstract) publication-title: NeuroImage – volume: 51 start-page: 768 year: 1995 ident: key 20170521003218_BHT229C48 article-title: Factor structure of the Barratt impulsiveness scale publication-title: J Clin Psychol doi: 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1 – volume: 53 start-page: 1065 year: 2012 ident: key 20170521003218_BHT229C53 article-title: Quantification of dopamine transporter in human brain using PET with 18F-FE-PE2I publication-title: J Nucl Med doi: 10.2967/jnumed.111.101626 – volume: 24 start-page: 167 year: 2001 ident: key 20170521003218_BHT229C43 article-title: An integrative theory of prefrontal cortex function publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.24.1.167 – volume: 22 start-page: 133 year: 2000 ident: key 20170521003218_BHT229C32 article-title: Genotype influences in vivo dopamine transporter availability in human striatum publication-title: Neuropsychopharmacology doi: 10.1016/S0893-133X(99)00099-8 – volume: 33 start-page: 623.e15 year: 2012 ident: key 20170521003218_BHT229C36 article-title: Dopamine and frontostriatal networks in cognitive aging publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2011.03.002 – volume: 22 start-page: 2182 year: 2012 ident: key 20170521003218_BHT229C27 article-title: Effect of dopamine transporter genotype on intrinsic functional connectivity depends on cognitive state publication-title: Cereb Cortex doi: 10.1093/cercor/bhr305 – volume: 147B start-page: 1536 year: 2008 ident: key 20170521003218_BHT229C50 article-title: A review and analysis of the relationship between neuropsychological measures and DAT1 in ADHD publication-title: Am J Med Genet B Neuropsychiatr Genet doi: 10.1002/ajmg.b.30848 – volume: 32 start-page: 366 year: 2010 ident: key 20170521003218_BHT229C58 article-title: Working memory, response inhibition, and within-subject variability in children with attention-deficit/hyperactivity disorder or reading disorder publication-title: J Clin Exp Neuropsychol doi: 10.1080/13803390903066865 – volume: 9 start-page: 108 year: 1999 ident: key 20170521003218_BHT229C30 article-title: Visualization of the dopamine transporter in the human brain postmortem with the new selective ligand [125I]PE2I publication-title: NeuroImage doi: 10.1006/nimg.1998.0366 – volume: 23 start-page: 1509 year: 2013 ident: key 20170521003218_BHT229C15 article-title: Dopamine-Dependent architecture of cortico-subcortical network connectivity publication-title: Cereb Cortex doi: 10.1093/cercor/bhs136 – volume: 8 start-page: 170 year: 2004 ident: key 20170521003218_BHT229C2 article-title: Inhibition and the right inferior frontal cortex publication-title: Trends Cogn Sci (Regul Ed) doi: 10.1016/j.tics.2004.02.010 – volume: 29 start-page: 1224 year: 2009 ident: key 20170521003218_BHT229C5 article-title: Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans publication-title: J Neurosci doi: 10.1523/JNEUROSCI.4858-08.2009 – volume: 12 start-page: 99 year: 2008 ident: key 20170521003218_BHT229C22 article-title: A dual-networks architecture of top-down control publication-title: Trends Cogn Sci doi: 10.1016/j.tics.2008.01.001 – volume: 12 start-page: 131 year: 2001 ident: key 20170521003218_BHT229C41 article-title: Error-related brain activation during a Go/noGo response inhibition task publication-title: Hum Brain Mapp doi: 10.1002/1097-0193(200103)12:3<131::AID-HBM1010>3.0.CO;2-C – volume: 157 start-page: 1700 year: 2000 ident: key 20170521003218_BHT229C33 article-title: Prediction of dopamine transporter binding availability by genotype: a preliminary report publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.157.10.1700 – volume-title: Fiber pathways of the brain year: 2006 ident: key 20170521003218_BHT229C54 doi: 10.1093/acprof:oso/9780195104233.001.0001 – volume: 360 start-page: 1001 year: 2005 ident: key 20170521003218_BHT229C3 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2005.1634 – volume: 26 start-page: 3652 year: 2007 ident: key 20170521003218_BHT229C14 article-title: Dopamine gene predicts the brain's response to dopaminergic drug publication-title: Eur J Neurosci doi: 10.1111/j.1460-9568.2007.05947.x – volume: 160 start-page: 636 year: 2003 ident: key 20170521003218_BHT229C29 article-title: The endophenotype concept in psychiatry: etymology and strategic intentions publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.160.4.636 – volume: 2 start-page: 25 year: 2012 ident: key 20170521003218_BHT229C52 article-title: Trouble at rest: how correlation patterns and group differences become distorted after global signal regression publication-title: Brain Connect doi: 10.1089/brain.2012.0080 – volume: 59 start-page: 238 year: 2012 ident: key 20170521003218_BHT229C57 article-title: Cortico-striatal disconnection within the cingulo-opercular network in schizophrenia revealed by intrinsic functional connectivity analysis: a resting fMRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.07.086 – volume: 33 start-page: 1536 year: 2012 ident: key 20170521003218_BHT229C28 article-title: Using spatial multiple regression to identify intrinsic connectivity networks involved in working memory performance publication-title: Hum Brain Mapp doi: 10.1002/hbm.21306 – volume: 125 start-page: 316 year: 2013 ident: key 20170521003218_BHT229C44 article-title: Bilateral basal ganglia activity in verbal working memory publication-title: Brain Lang doi: 10.1016/j.bandl.2012.05.003 – volume: 57 start-page: 1336 year: 2005 ident: key 20170521003218_BHT229C65 article-title: Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2005.02.006 – volume: 114 start-page: 975 year: 2002 ident: key 20170521003218_BHT229C42 article-title: Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR publication-title: Am J Med Genet doi: 10.1002/ajmg.b.10948 – volume: 59 start-page: 898 year: 2006 ident: key 20170521003218_BHT229C17 article-title: Molecular imaging of the dopaminergic system and its association with human cognitive function publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.03.004 – volume: 37 start-page: 1437 year: 2007 ident: key 20170521003218_BHT229C12 article-title: Impact of the COMT Val108/158 Met and DAT genotypes on prefrontal function in healthy subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.06.021 – volume: 44 start-page: 629 year: 2010 ident: key 20170521003218_BHT229C18 article-title: Reduced activation and inter-regional functional connectivity of fronto-striatal networks in adults with childhood attention-deficit hyperactivity disorder (ADHD) and persisting symptoms during tasks of motor inhibition and cognitive switching publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2009.11.016 – volume: 18 start-page: 16 year: 2009 ident: key 20170521003218_BHT229C39 article-title: Current directions in mediation analysis publication-title: Curr Dir Psychol Sci doi: 10.1111/j.1467-8721.2009.01598.x – volume: 57 start-page: 1397 year: 2005 ident: key 20170521003218_BHT229C40 article-title: The dopamine transporter and attention-deficit/hyperactivity disorder publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2004.10.011 – volume: 193 start-page: 7 year: 2011 ident: key 20170521003218_BHT229C11 article-title: Relationship of DAT1 and adult ADHD to task-positive and task-negative working memory networks publication-title: Psychiatry Res doi: 10.1016/j.pscychresns.2011.01.006 – volume: 57 start-page: 640 year: 2009 ident: key 20170521003218_BHT229C51 article-title: Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2009.08.013 – year: 2000 ident: key 20170521003218_BHT229C63 article-title: Simultaneous inference for FMRI data – volume: 4:8 year: 2010 ident: key 20170521003218_BHT229C16 article-title: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data publication-title: Front Syst Neurosci – volume: 59 start-page: 2142 year: 2012 ident: key 20170521003218_BHT229C49 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 362 start-page: 1601 year: 2007 ident: key 20170521003218_BHT229C31 article-title: Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2007.2055 – volume: 25 start-page: 46 year: 2005 ident: key 20170521003218_BHT229C47 article-title: N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies publication-title: Hum Brain Mapp doi: 10.1002/hbm.20131 – volume: 104 start-page: 11073 year: 2007 ident: key 20170521003218_BHT229C23 article-title: Distinct brain networks for adaptive and stable task control in humans publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0704320104 – volume: 41 start-page: 611 year: 2011 ident: key 20170521003218_BHT229C7 article-title: Effects of two dopamine-modulating genes (DAT1 9/10 and COMT Val/Met) on N-back working memory performance in healthy volunteers publication-title: Psychol Med doi: 10.1017/S003329171000098X – reference: 11911442 - Pharmacogenomics J. 2001;1(2):152-6 – reference: 20962241 - J Neurosci. 2010 Oct 20;30(42):14205-12 – reference: 20053379 - Neuroimage. 2010 Nov 15;53(3):970-7 – reference: 19111791 - Behav Brain Res. 2009 Apr 12;199(1):3-23 – reference: 21272388 - Psychol Med. 2011 Mar;41(3):611-8 – reference: 17689985 - Neuroimage. 2007 Oct 1;37(4):1437-44 – reference: 15050513 - Trends Cogn Sci. 2004 Apr;8(4):170-7 – reference: 22432927 - Brain Connect. 2012;2(1):25-32 – reference: 18400794 - Cereb Cortex. 2008 Dec;18(12):2735-47 – reference: 11283309 - Annu Rev Neurosci. 2001;24:167-202 – reference: 19715709 - Neuropharmacology. 2009 Dec;57(7-8):640-52 – reference: 9918732 - Neuroimage. 1999 Jan;9(1):108-16 – reference: 20660273 - J Neurosci. 2010 Jul 21;30(29):9910-8 – reference: 22689927 - J Nucl Med. 2012 Jul;53(7):1065-73 – reference: 18485743 - Neuroimage. 2008 Jul 15;41(4):1352-63 – reference: 16682268 - Biol Psychiatry. 2006 May 15;59(10):898-907 – reference: 19176830 - J Neurosci. 2009 Jan 28;29(4):1224-34 – reference: 21854968 - Prog Brain Res. 2011;193:259-76 – reference: 10649826 - Neuropsychopharmacology. 2000 Feb;22(2):133-9 – reference: 20407579 - Front Syst Neurosci. 2010 Apr 06;4:8 – reference: 17893706 - Mol Psychiatry. 2009 Jan;14(1):60-70 – reference: 22854261 - Brain Lang. 2013 Jun;125(3):316-23 – reference: 21511369 - Neurobiol Aging. 2012 Mar;33(3):623.e15-24 – reference: 19494158 - J Neurosci. 2009 Jun 3;29(22):7364-78 – reference: 16861140 - World J Biol Psychiatry. 2006;7(3):152-7 – reference: 17440978 - Am J Med Genet B Neuropsychiatr Genet. 2007 Jun 5;144B(4):541-50 – reference: 15950006 - Biol Psychiatry. 2005 Jun 1;57(11):1336-46 – reference: 21596533 - Psychiatry Res. 2011 Jul 30;193(1):7-16 – reference: 16611807 - J Neurosci. 2006 Apr 12;26(15):3918-22 – reference: 22645252 - Cereb Cortex. 2013 Jul;23(7):1509-16 – reference: 18262825 - Trends Cogn Sci. 2008 Mar;12(3):99-105 – reference: 18088284 - Eur J Neurosci. 2007 Dec;26(12):3652-60 – reference: 11170305 - Hum Brain Mapp. 2001 Mar;12(3):131-43 – reference: 10208453 - Mol Psychiatry. 1999 Mar;4(2):192-6 – reference: 17428778 - Philos Trans R Soc Lond B Biol Sci. 2007 Sep 29;362(1485):1601-13 – reference: 12457396 - Am J Med Genet. 2002 Dec 8;114(8):975-9 – reference: 17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8 – reference: 15950014 - Biol Psychiatry. 2005 Jun 1;57(11):1397-409 – reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41 – reference: 16309561 - BMC Genet. 2005;6:55 – reference: 20452445 - Neuroimage. 2010 Oct 1;52(4):1621-32 – reference: 18385328 - J Neurosci. 2008 Apr 2;28(14):3697-706 – reference: 22334332 - Magn Reson Med. 2012 Dec;68(6):1828-35 – reference: 20157637 - Curr Dir Psychol Sci. 2009 Feb 1;18(1):16 – reference: 22047966 - Cereb Cortex. 2012 Sep;22(9):2182-96 – reference: 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54 – reference: 22564179 - J Abnorm Psychol. 2012 Nov;121(4):1011-23 – reference: 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8 – reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 – reference: 21761505 - Hum Brain Mapp. 2012 Jul;33(7):1536-52 – reference: 18729135 - Am J Med Genet B Neuropsychiatr Genet. 2008 Dec 5;147B(8):1536-46 – reference: 20060129 - J Psychiatr Res. 2010 Jul;44(10):629-39 – reference: 3085570 - Annu Rev Neurosci. 1986;9:357-81 – reference: 21840407 - Neuroimage. 2012 Jan 2;59(1):238-47 – reference: 15841682 - Psychol Med. 2005 Feb;35(2):245-56 – reference: 19889849 - J Neurophysiol. 2010 Jan;103(1):297-321 – reference: 12668349 - Am J Psychiatry. 2003 Apr;160(4):636-45 – reference: 15846822 - Hum Brain Mapp. 2005 May;25(1):46-59 – reference: 11007732 - Am J Psychiatry. 2000 Oct;157(10):1700-3 – reference: 19813130 - J Clin Exp Neuropsychol. 2010 Apr;32(4):366-79 – reference: 19819301 - Neurosci Lett. 2009 Dec 25;467(2):117-20 – reference: 8778124 - J Clin Psychol. 1995 Nov;51(6):768-74 – reference: 22645253 - Cereb Cortex. 2013 Jun;23(6):1444-52 |
SSID | ssj0017252 |
Score | 2.386143 |
Snippet | Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 336 |
SubjectTerms | Brain Mapping Corpus Striatum - physiology Dopamine Plasma Membrane Transport Proteins - genetics Executive Function Female Frontal Lobe - physiology Genotyping Techniques Heterozygote Humans Impulsive Behavior Magnetic Resonance Imaging Male Memory, Short-Term Neural Pathways - physiology Polymorphism, Genetic Psychological Tests Rest Young Adult |
Title | Resting-State Striato-Frontal Functional Connectivity is Sensitive to DAT1 Genotype and Predicts Executive Function |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23968837 https://www.proquest.com/docview/1652377623 https://www.proquest.com/docview/1701476529 https://pubmed.ncbi.nlm.nih.gov/PMC4351426 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYu5SYjob2MbInjxM1jKSsDVIRQh_YWxY7DKrF0alJp45_ybzgndjK3Kwj2ErW2a6s-X-zjc_lMyGuZSx76mPkbq8Ljicy9jCnhFXmRBLzgKlCYOzz5HB8d848n0Umv98uJWlrWcl_93JhXchOpQhnIFbNk_0OyXadQAJ9BvvAECcPzn2T8FSkyyu9eozGigxnmee6NkZMAZn4MW5a19DXhLMpeFDGrYIUoKxM0BKrnu-E0QPrpeWOONdkD6L6pq73DC62WTbu2M1eZHekFup2RYGRR64tNF_vsYcyTY214D2dde3sIJk5N9jtFWsN3Yz43Tgmn7q22VlqMSMOU-LbiWzbLLzMbNVDmmIm175oxgqiNfG4PvZvTI52VGSklQmZXZm3KeOx7sOQm7nJu8qgtbJmzNodh7GzzoWGxvLaDGHYtpRcKzSVjeVozM0kOns7PGkCxMIkHA8NZs0ba_WUy4pgjweJb5DYToNahvv7hU-fgEixiLVEG_itL_wqjH5ixD8zISFZth1nVnK4dh9ajeh01aXqf3LPnGzo0YH1AerrcJjvDEoB5dkl3aRNx3LhytsmdiQ3s2CHVCpTpGpTpFZSpC2U6q2gHZVrPKUKZtlCmAAnaQpl2UO46e0iOx4fT0ZFn7wPxFGd-7fEiGWRwAhe-KLRM8iCTMlNwJmaJFLFgvog1aMy5CESgfAm1fpbIgsuIFQMoCh-RrXJe6ieEgr6WiSLKVZg3RoOB1Jpz6DkrZMD9vE_etHOdKkuWj3e2_EhN0EaYGimlRkp9sts1PzcsMX9q-KoVXArrODrn4OWaL6s0iCMWClBNwr-0EX7ABTSEfh4bYXfDtSjpE7ECg64B8siv1pSz04ZP3iL16Y1_-YzcvXqln5OterHUL0BXr-XLBvW_ASWF8h4 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting-State+Striato-Frontal+Functional+Connectivity+is+Sensitive+to+DAT1+Genotype+and+Predicts+Executive+Function&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=Gordon%2C+Evan+M.&rft.au=Devaney%2C+Joseph+M.&rft.au=Bean%2C+Stephanie&rft.au=Vaidya%2C+Chandan+J.&rft.date=2015-02-01&rft.pub=Oxford+University+Press&rft.issn=1047-3211&rft.eissn=1460-2199&rft.volume=25&rft.issue=2&rft.spage=336&rft.epage=345&rft_id=info:doi/10.1093%2Fcercor%2Fbht229&rft_id=info%3Apmid%2F23968837&rft.externalDocID=PMC4351426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3211&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3211&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3211&client=summon |