Resting-State Striato-Frontal Functional Connectivity is Sensitive to DAT1 Genotype and Predicts Executive Function

Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults t...

Full description

Saved in:
Bibliographic Details
Published inCerebral cortex (New York, N.Y. 1991) Vol. 25; no. 2; pp. 336 - 345
Main Authors Gordon, Evan M., Devaney, Joseph M., Bean, Stephanie, Vaidya, Chandan J.
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 01.02.2015
Subjects
Online AccessGet full text
ISSN1047-3211
1460-2199
1460-2199
DOI10.1093/cercor/bht229

Cover

Abstract Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals.
AbstractList Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals.
Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene ( DAT1 ), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals.
Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals.Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals and with risk for psychiatric disorders defined by executive dysfunction. We used resting-state functional connectivity in 50 healthy adults to examine whether a polymorphism of the dopamine transporter gene (DAT1), which regulates striatal DA function, affects striatal functional connectivity in healthy adults, and whether that connectivity predicts executive function. We found that 9/10 heterozygotes, who are believed to have higher striatal DA signaling, demonstrated stronger connectivity between dorsal caudate (DC) and insular, dorsal anterior cingulate, and dorsolateral prefrontal regions, as well as between ventral striatum and ventrolateral prefrontal cortex, than 10/10 homozygotes. Across subjects, stronger DC-seeded connectivity predicted superior N-back working memory performance, while stronger ventral striatum-seeded connectivity predicted reduced impulsivity in everyday life. Further, mediation analysis suggested that connectivity strength mediated relationships between DAT1 genotype and behavior. These findings suggest that resting-state striato-frontal connectivity may be an endophenotype for executive function in healthy individuals.
Author Gordon, Evan M.
Devaney, Joseph M.
Vaidya, Chandan J.
Bean, Stephanie
Author_xml – sequence: 1
  givenname: Evan M.
  surname: Gordon
  fullname: Gordon, Evan M.
– sequence: 2
  givenname: Joseph M.
  surname: Devaney
  fullname: Devaney, Joseph M.
– sequence: 3
  givenname: Stephanie
  surname: Bean
  fullname: Bean, Stephanie
– sequence: 4
  givenname: Chandan J.
  surname: Vaidya
  fullname: Vaidya, Chandan J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23968837$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1P3DAQxa2Kqnz1yBX52EuKP5I4viChhaWVkIpYOFu2MwGjrL21HcT-97hdtiqoUk-e8fzm6WnePtrxwQNCR5R8pUTyEwvRhnhiHjJj8gPao3VLKkal3Ck1qUXFGaW7aD-lR0KoYA37hHYZl23XcbGH0g2k7Px9tcg6A17k6HQO1TwGn_WI55O32QVfylnwHkrz5PIau4QX4JMrLeAc8PnZLcWX4ENerwBr3-PrCL2zOeGLZ7DTb24rdog-DnpM8Pn1PUB384vb2bfq6sfl99nZVWVrRnJVD7LTXcsEEQMY2VNtjLasaZg0ohWMiBaIoL2gglpiypRoaYbaNGzoyhc_QKcb3dVkltBb8DnqUa2iW-q4VkE79Xbi3YO6D0-q5g2tWVsEvrwKxPBzKodSS5csjKP2EKakqCC0Fm0x9H-0UFyIlvGCHv9t64-fbSgF4BvAxpBShEFZV9Iplysu3agoUb-iV5vo1Sb6slW929oK_5t_AZ__tc8
CitedBy_id crossref_primary_10_1002_ajmg_b_32542
crossref_primary_10_1016_j_yebeh_2024_110228
crossref_primary_10_1016_j_dcn_2015_11_004
crossref_primary_10_1016_j_addbeh_2023_107683
crossref_primary_10_1007_s10072_019_04118_5
crossref_primary_10_1016_j_neurobiolaging_2017_02_013
crossref_primary_10_3389_fnbeh_2015_00196
crossref_primary_10_1007_s11682_019_00164_x
crossref_primary_10_1016_j_drugalcdep_2016_12_008
crossref_primary_10_1016_j_neuroimage_2019_116232
crossref_primary_10_1093_brain_awae334
crossref_primary_10_1002_hbm_23605
crossref_primary_10_1016_j_pscychresns_2015_07_005
crossref_primary_10_1016_j_cortex_2016_06_010
crossref_primary_10_1093_brain_awx309
crossref_primary_10_1016_j_ijpsycho_2016_12_014
crossref_primary_10_1016_j_biopsycho_2017_07_019
crossref_primary_10_1017_S0033291719003830
crossref_primary_10_1016_j_neubiorev_2015_09_021
crossref_primary_10_1371_journal_pone_0215849
crossref_primary_10_1089_brain_2014_0327
crossref_primary_10_1016_j_neubiorev_2017_01_013
crossref_primary_10_1016_j_physbeh_2017_07_026
crossref_primary_10_1016_j_neuroimage_2019_116044
crossref_primary_10_1016_j_pscychresns_2015_01_021
crossref_primary_10_1002_hipo_22480
crossref_primary_10_1017_S0033291718000144
crossref_primary_10_1002_brb3_446
crossref_primary_10_1007_s11682_017_9692_0
crossref_primary_10_1016_j_dcn_2015_07_002
crossref_primary_10_1089_brain_2013_0169
crossref_primary_10_1007_s11682_020_00300_y
crossref_primary_10_1016_j_neuroimage_2019_04_005
crossref_primary_10_1016_j_neuroimage_2020_117202
crossref_primary_10_1093_brain_aww124
crossref_primary_10_1016_j_dcn_2015_08_002
crossref_primary_10_1016_j_appet_2018_04_024
crossref_primary_10_1002_hbm_23142
crossref_primary_10_1007_s12264_022_00982_y
crossref_primary_10_1089_neu_2021_0426
crossref_primary_10_1212_WNL_0000000000000592
crossref_primary_10_1007_s11682_021_00589_3
crossref_primary_10_1177_0269881114551079
crossref_primary_10_1016_j_cortex_2017_05_021
crossref_primary_10_3389_fnbeh_2016_00027
crossref_primary_10_1007_s00406_017_0786_x
crossref_primary_10_1016_j_nicl_2015_04_024
crossref_primary_10_1002_hbm_24820
crossref_primary_10_1515_revneuro_2023_0071
Cites_doi 10.1038/sj.tpj.6500026
10.1016/j.bbr.2008.12.003
10.1523/JNEUROSCI.1062-10.2010
10.1038/sj.mp.4000510
10.1152/jn.00783.2009
10.1523/JNEUROSCI.4975-05.2006
10.1093/cercor/bhs126
10.1016/j.neuroimage.2008.04.023
10.1016/j.neuroimage.2009.12.104
10.1002/mrm.1910340409
10.1523/JNEUROSCI.3921-07.2008
10.1523/JNEUROSCI.1111-10.2010
10.1523/JNEUROSCI.0810-09.2009
10.1146/annurev.ne.09.030186.002041
10.1017/S0033291704002892
10.1016/B978-0-444-53839-0.00017-X
10.1186/1471-2156-6-55
10.1080/15622970500518444
10.1038/sj.mp.4002086
10.1016/j.neulet.2009.10.018
10.1037/a0028225
10.1093/cercor/bhn041
10.1002/ajmg.b.30453
10.1002/mrm.24201
10.1016/j.neuroimage.2011.07.044
10.1016/j.neuroimage.2010.04.276
10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1
10.2967/jnumed.111.101626
10.1146/annurev.neuro.24.1.167
10.1016/S0893-133X(99)00099-8
10.1016/j.neurobiolaging.2011.03.002
10.1093/cercor/bhr305
10.1002/ajmg.b.30848
10.1080/13803390903066865
10.1006/nimg.1998.0366
10.1093/cercor/bhs136
10.1016/j.tics.2004.02.010
10.1523/JNEUROSCI.4858-08.2009
10.1016/j.tics.2008.01.001
10.1002/1097-0193(200103)12:3<131::AID-HBM1010>3.0.CO;2-C
10.1176/appi.ajp.157.10.1700
10.1093/acprof:oso/9780195104233.001.0001
10.1098/rstb.2005.1634
10.1111/j.1460-9568.2007.05947.x
10.1176/appi.ajp.160.4.636
10.1089/brain.2012.0080
10.1016/j.neuroimage.2011.07.086
10.1002/hbm.21306
10.1016/j.bandl.2012.05.003
10.1016/j.biopsych.2005.02.006
10.1002/ajmg.b.10948
10.1016/j.biopsych.2006.03.004
10.1016/j.neuroimage.2007.06.021
10.1016/j.jpsychires.2009.11.016
10.1111/j.1467-8721.2009.01598.x
10.1016/j.biopsych.2004.10.011
10.1016/j.pscychresns.2011.01.006
10.1016/j.neuropharm.2009.08.013
10.1016/j.neuroimage.2011.10.018
10.1098/rstb.2007.2055
10.1002/hbm.20131
10.1073/pnas.0704320104
10.1017/S003329171000098X
ContentType Journal Article
Copyright The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2013
Copyright_xml – notice: The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
– notice: The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QG
7TK
5PM
DOI 10.1093/cercor/bht229
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Animal Behavior Abstracts
Neurosciences Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
Animal Behavior Abstracts
DatabaseTitleList Neurosciences Abstracts

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1460-2199
EndPage 345
ExternalDocumentID PMC4351426
23968837
10_1093_cercor_bht229
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R03MH86709
– fundername: NIMH NIH HHS
  grantid: F31MH088066
– fundername: NICHD NIH HHS
  grantid: R24HD050846-06
– fundername: NINDS NIH HHS
  grantid: T32 NS041231
– fundername: NINDS NIH HHS
  grantid: R01NS029525
– fundername: NCRR NIH HHS
  grantid: UL1RR031988
GroupedDBID ---
-E4
.2P
.I3
.ZR
0R~
1TH
29B
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAYXX
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHMMS
AHXPO
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BTRTY
BVRKM
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
NVLIB
O9-
OAWHX
OBOKY
OCZFY
ODMLO
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
P6G
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCN
TEORI
TJX
TLC
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
.GJ
AAPGJ
AAWDT
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
ADMTO
AEHUL
AEKPW
AFFNX
AFFQV
AFSHK
AFYAG
AGKRT
AGMDO
AGQPQ
AHGBF
AJDVS
ANFBD
APJGH
AQDSO
AQKUS
ASAOO
ASPBG
ATDFG
ATTQO
AVNTJ
AVWKF
AZFZN
BZKNY
C1A
CAG
CGR
COF
CUY
CVF
CXTWN
DFGAJ
ECM
EIF
EIHJH
ELUNK
FEDTE
HVGLF
MBLQV
MBTAY
NPM
NTWIH
O0~
OBFPC
O~Y
PB-
RIG
RNI
RZF
RZO
TMA
UQL
7X8
7QG
7TK
5PM
ID FETCH-LOGICAL-c420t-4f98a862707feb9d1abbac25529b7672076e071d7171c0babb0a9bf4b52f871c3
ISSN 1047-3211
1460-2199
IngestDate Thu Aug 21 14:31:58 EDT 2025
Sat Sep 27 23:06:58 EDT 2025
Sat Sep 27 19:24:03 EDT 2025
Mon Jul 21 05:56:42 EDT 2025
Tue Jul 01 02:59:31 EDT 2025
Thu Apr 24 23:08:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords impulsivity
fMRI
functional connectivity
DAT1
working memory
Language English
License The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-4f98a862707feb9d1abbac25529b7672076e071d7171c0babb0a9bf4b52f871c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/cercor/article-pdf/25/2/336/17308275/bht229.pdf
PMID 23968837
PQID 1652377623
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4351426
proquest_miscellaneous_1701476529
proquest_miscellaneous_1652377623
pubmed_primary_23968837
crossref_citationtrail_10_1093_cercor_bht229
crossref_primary_10_1093_cercor_bht229
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cerebral cortex (New York, N.Y. 1991)
PublicationTitleAlternate Cereb Cortex
PublicationYear 2015
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Fuke ( key 20170521003218_BHT229C25) 2001; 1
VanNess ( key 20170521003218_BHT229C62) 2005; 6
Hall ( key 20170521003218_BHT229C30) 1999; 9
Boehler ( key 20170521003218_BHT229C8) 2010; 52
Gizer ( key 20170521003218_BHT229C26) 2012; 121
Mill ( key 20170521003218_BHT229C42) 2002; 114
Rubia ( key 20170521003218_BHT229C51) 2009; 57
Kelly ( key 20170521003218_BHT229C34) 2009; 29
Bertolino ( key 20170521003218_BHT229C4) 2006; 26
Stelzel ( key 20170521003218_BHT229C55) 2010; 30
Willcutt ( key 20170521003218_BHT229C65) 2005; 57
Owen ( key 20170521003218_BHT229C47) 2005; 25
Davis ( key 20170521003218_BHT229C20) 2013; 23
Sasaki ( key 20170521003218_BHT229C53) 2012; 53
Saad ( key 20170521003218_BHT229C52) 2012; 2
Niazy ( key 20170521003218_BHT229C46) 2011; 193
Cubillo ( key 20170521003218_BHT229C18) 2010; 44
Brehmer ( key 20170521003218_BHT229C9) 2009; 467
Blanchard ( key 20170521003218_BHT229C7) 2011; 41
Chen ( key 20170521003218_BHT229C13) 2012; 68
Jacobsen ( key 20170521003218_BHT229C33) 2000; 157
MacKinnon ( key 20170521003218_BHT229C39) 2009; 18
Alexander ( key 20170521003218_BHT229C1) 1986; 9
Yang ( key 20170521003218_BHT229C66) 2007; 144B
Gottesman ( key 20170521003218_BHT229C29) 2003; 160
Forbes ( key 20170521003218_BHT229C24) 2009; 14
Madras ( key 20170521003218_BHT229C40) 2005; 57
White ( key 20170521003218_BHT229C64) 2009; 199
Nagano-Saito ( key 20170521003218_BHT229C45) 2008; 28
Ward ( key 20170521003218_BHT229C63) 2000
Menon ( key 20170521003218_BHT229C41) 2001; 12
Cohen ( key 20170521003218_BHT229C14) 2007; 26
Caldú ( key 20170521003218_BHT229C12) 2007; 37
Di Martino ( key 20170521003218_BHT229C21) 2008; 18
Tu ( key 20170521003218_BHT229C57) 2012; 59
Schmahmann ( key 20170521003218_BHT229C54) 2006
Van Schouwenburg ( key 20170521003218_BHT229C61) 2010; 30
Van De Voorde ( key 20170521003218_BHT229C58) 2010; 32
Aron ( key 20170521003218_BHT229C2) 2004; 8
Rommelse ( key 20170521003218_BHT229C50) 2008; 147B
Klostermann ( key 20170521003218_BHT229C36) 2012; 33
Patton ( key 20170521003218_BHT229C48) 1995; 51
Kessler ( key 20170521003218_BHT229C35) 2005; 35
Stollstorff ( key 20170521003218_BHT229C56) 2010; 53
Dosenbach ( key 20170521003218_BHT229C22) 2008; 12
Hazy ( key 20170521003218_BHT229C31) 2007; 362
Gordon ( key 20170521003218_BHT229C27) 2012; 22
Biswal ( key 20170521003218_BHT229C6) 1995; 34
Brett ( key 20170521003218_BHT229C10) 2003; 16
Bertolino ( key 20170521003218_BHT229C5) 2009; 29
Van Dijk ( key 20170521003218_BHT229C60) 2012; 59
Cole ( key 20170521003218_BHT229C15) 2013; 23
Cropley ( key 20170521003218_BHT229C17) 2006; 59
Brown ( key 20170521003218_BHT229C11) 2011; 193
Gordon ( key 20170521003218_BHT229C28) 2012; 33
Moore ( key 20170521003218_BHT229C44) 2013; 125
Krause ( key 20170521003218_BHT229C37) 2006; 7
Van Dijk ( key 20170521003218_BHT229C59) 2010; 103
Daly ( key 20170521003218_BHT229C19) 1999; 4
Dosenbach ( key 20170521003218_BHT229C23) 2007; 104
Power ( key 20170521003218_BHT229C49) 2012; 59
Heinz ( key 20170521003218_BHT229C32) 2000; 22
Beckmann ( key 20170521003218_BHT229C3) 2005; 360
Cole ( key 20170521003218_BHT229C16) 2010; 4:8
Miller ( key 20170521003218_BHT229C43) 2001; 24
Li ( key 20170521003218_BHT229C38) 2008; 41
10649826 - Neuropsychopharmacology. 2000 Feb;22(2):133-9
21761505 - Hum Brain Mapp. 2012 Jul;33(7):1536-52
18385328 - J Neurosci. 2008 Apr 2;28(14):3697-706
17893706 - Mol Psychiatry. 2009 Jan;14(1):60-70
11911442 - Pharmacogenomics J. 2001;1(2):152-6
21511369 - Neurobiol Aging. 2012 Mar;33(3):623.e15-24
19819301 - Neurosci Lett. 2009 Dec 25;467(2):117-20
20060129 - J Psychiatr Res. 2010 Jul;44(10):629-39
22645252 - Cereb Cortex. 2013 Jul;23(7):1509-16
15050513 - Trends Cogn Sci. 2004 Apr;8(4):170-7
11283309 - Annu Rev Neurosci. 2001;24:167-202
16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
20660273 - J Neurosci. 2010 Jul 21;30(29):9910-8
20053379 - Neuroimage. 2010 Nov 15;53(3):970-7
18400794 - Cereb Cortex. 2008 Dec;18(12):2735-47
19889849 - J Neurophysiol. 2010 Jan;103(1):297-321
19813130 - J Clin Exp Neuropsychol. 2010 Apr;32(4):366-79
11170305 - Hum Brain Mapp. 2001 Mar;12(3):131-43
16682268 - Biol Psychiatry. 2006 May 15;59(10):898-907
22334332 - Magn Reson Med. 2012 Dec;68(6):1828-35
3085570 - Annu Rev Neurosci. 1986;9:357-81
18262825 - Trends Cogn Sci. 2008 Mar;12(3):99-105
11007732 - Am J Psychiatry. 2000 Oct;157(10):1700-3
8778124 - J Clin Psychol. 1995 Nov;51(6):768-74
15841682 - Psychol Med. 2005 Feb;35(2):245-56
22689927 - J Nucl Med. 2012 Jul;53(7):1065-73
12457396 - Am J Med Genet. 2002 Dec 8;114(8):975-9
20157637 - Curr Dir Psychol Sci. 2009 Feb 1;18(1):16
8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
10208453 - Mol Psychiatry. 1999 Mar;4(2):192-6
19176830 - J Neurosci. 2009 Jan 28;29(4):1224-34
19715709 - Neuropharmacology. 2009 Dec;57(7-8):640-52
17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8
17440978 - Am J Med Genet B Neuropsychiatr Genet. 2007 Jun 5;144B(4):541-50
12668349 - Am J Psychiatry. 2003 Apr;160(4):636-45
22854261 - Brain Lang. 2013 Jun;125(3):316-23
21272388 - Psychol Med. 2011 Mar;41(3):611-8
22432927 - Brain Connect. 2012;2(1):25-32
15950006 - Biol Psychiatry. 2005 Jun 1;57(11):1336-46
21810475 - Neuroimage. 2012 Jan 2;59(1):431-8
15950014 - Biol Psychiatry. 2005 Jun 1;57(11):1397-409
18485743 - Neuroimage. 2008 Jul 15;41(4):1352-63
16861140 - World J Biol Psychiatry. 2006;7(3):152-7
19494158 - J Neurosci. 2009 Jun 3;29(22):7364-78
20407579 - Front Syst Neurosci. 2010 Apr 06;4:8
21854968 - Prog Brain Res. 2011;193:259-76
20452445 - Neuroimage. 2010 Oct 1;52(4):1621-32
22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54
9918732 - Neuroimage. 1999 Jan;9(1):108-16
22564179 - J Abnorm Psychol. 2012 Nov;121(4):1011-23
18088284 - Eur J Neurosci. 2007 Dec;26(12):3652-60
22645253 - Cereb Cortex. 2013 Jun;23(6):1444-52
16611807 - J Neurosci. 2006 Apr 12;26(15):3918-22
16309561 - BMC Genet. 2005;6:55
21840407 - Neuroimage. 2012 Jan 2;59(1):238-47
17428778 - Philos Trans R Soc Lond B Biol Sci. 2007 Sep 29;362(1485):1601-13
17689985 - Neuroimage. 2007 Oct 1;37(4):1437-44
19111791 - Behav Brain Res. 2009 Apr 12;199(1):3-23
22047966 - Cereb Cortex. 2012 Sep;22(9):2182-96
21596533 - Psychiatry Res. 2011 Jul 30;193(1):7-16
18729135 - Am J Med Genet B Neuropsychiatr Genet. 2008 Dec 5;147B(8):1536-46
15846822 - Hum Brain Mapp. 2005 May;25(1):46-59
20962241 - J Neurosci. 2010 Oct 20;30(42):14205-12
References_xml – volume: 1
  start-page: 152
  year: 2001
  ident: key 20170521003218_BHT229C25
  article-title: The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression
  publication-title: Pharmacogenomics J
  doi: 10.1038/sj.tpj.6500026
– volume: 199
  start-page: 3
  year: 2009
  ident: key 20170521003218_BHT229C64
  article-title: Some highlights of research on the effects of caudate nucleus lesions over the past 200 years
  publication-title: Behav Brain Res
  doi: 10.1016/j.bbr.2008.12.003
– volume: 30
  start-page: 14205
  year: 2010
  ident: key 20170521003218_BHT229C55
  article-title: Frontostriatal involvement in task switching depends on genetic differences in D2 receptor density
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1062-10.2010
– volume: 4
  start-page: 192
  year: 1999
  ident: key 20170521003218_BHT229C19
  article-title: Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4000510
– volume: 103
  start-page: 297
  year: 2010
  ident: key 20170521003218_BHT229C59
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: J Neurophysiol
  doi: 10.1152/jn.00783.2009
– volume: 26
  start-page: 3918
  year: 2006
  ident: key 20170521003218_BHT229C4
  article-title: Additive effects of genetic variation in dopamine regulating genes on working memory cortical activity in human brain
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4975-05.2006
– volume: 23
  start-page: 1444
  year: 2013
  ident: key 20170521003218_BHT229C20
  article-title: Impulsivity and the modular organization of resting-state neural networks
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhs126
– volume: 41
  start-page: 1352
  year: 2008
  ident: key 20170521003218_BHT229C38
  article-title: Subcortical processes of motor response inhibition during a stop signal task
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.04.023
– volume: 53
  start-page: 970
  year: 2010
  ident: key 20170521003218_BHT229C56
  article-title: Neural response to working memory load varies by dopamine transporter genotype in children
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.12.104
– volume: 34
  start-page: 537
  year: 1995
  ident: key 20170521003218_BHT229C6
  article-title: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.1910340409
– volume: 28
  start-page: 3697
  year: 2008
  ident: key 20170521003218_BHT229C45
  article-title: Dopamine depletion impairs frontostriatal functional connectivity during a set-shifting task
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3921-07.2008
– volume: 30
  start-page: 9910
  year: 2010
  ident: key 20170521003218_BHT229C61
  article-title: The human basal ganglia modulate frontal-posterior connectivity during attention shifting
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1111-10.2010
– volume: 29
  start-page: 7364
  year: 2009
  ident: key 20170521003218_BHT229C34
  article-title: L-Dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.0810-09.2009
– volume: 9
  start-page: 357
  year: 1986
  ident: key 20170521003218_BHT229C1
  article-title: Parallel organization of functionally segregated circuits linking basal ganglia and cortex
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.ne.09.030186.002041
– volume: 35
  start-page: 245
  year: 2005
  ident: key 20170521003218_BHT229C35
  article-title: The world health organization adult ADHD self-report scale (ASRS): a short screening scale for use in the general population
  publication-title: Psychol Med
  doi: 10.1017/S0033291704002892
– volume: 193
  start-page: 259
  year: 2011
  ident: key 20170521003218_BHT229C46
  article-title: Spectral characteristics of resting state networks
  publication-title: Prog Brain Res
  doi: 10.1016/B978-0-444-53839-0.00017-X
– volume: 6
  start-page: 55
  year: 2005
  ident: key 20170521003218_BHT229C62
  article-title: The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-6-55
– volume: 7
  start-page: 152
  year: 2006
  ident: key 20170521003218_BHT229C37
  article-title: Striatal dopamine transporter availability and DAT-1 gene in adults with ADHD: no higher DAT availability in patients with homozygosity for the 10-repeat allele
  publication-title: World J Biol Psychiatry
  doi: 10.1080/15622970500518444
– volume: 14
  start-page: 60
  year: 2009
  ident: key 20170521003218_BHT229C24
  article-title: Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4002086
– volume: 467
  start-page: 117
  year: 2009
  ident: key 20170521003218_BHT229C9
  article-title: Working memory plasticity modulated by dopamine transporter genotype
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2009.10.018
– volume: 121
  start-page: 1011
  year: 2012
  ident: key 20170521003218_BHT229C26
  article-title: Double dissociation between lab measures of inattention and impulsivity and the dopamine transporter gene (DAT1) and dopamine D4 receptor gene (DRD4)
  publication-title: J Abnorm Psychol
  doi: 10.1037/a0028225
– volume: 18
  start-page: 2735
  year: 2008
  ident: key 20170521003218_BHT229C21
  article-title: Functional connectivity of human striatum: a resting state fMRI study
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhn041
– volume: 144B
  start-page: 541
  year: 2007
  ident: key 20170521003218_BHT229C66
  article-title: A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3′-UTR of dopamine transporter gene and attention deficit hyperactivity disorder
  publication-title: Am J Med Genet B Neuropsychiatr Genet
  doi: 10.1002/ajmg.b.30453
– volume: 68
  start-page: 1828
  year: 2012
  ident: key 20170521003218_BHT229C13
  article-title: A method to determine the necessity for global signal regression in resting-state fMRI studies
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24201
– volume: 59
  start-page: 431
  year: 2012
  ident: key 20170521003218_BHT229C60
  article-title: The influence of head motion on intrinsic functional connectivity MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.07.044
– volume: 52
  start-page: 1621
  year: 2010
  ident: key 20170521003218_BHT229C8
  article-title: Pinning down response inhibition in the brain—conjunction analyses of the stop-signal task
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.276
– volume: 16
  year: 2003
  ident: key 20170521003218_BHT229C10
  article-title: Region of interest analysis using an SPM toolbox (abstract)
  publication-title: NeuroImage
– volume: 51
  start-page: 768
  year: 1995
  ident: key 20170521003218_BHT229C48
  article-title: Factor structure of the Barratt impulsiveness scale
  publication-title: J Clin Psychol
  doi: 10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1
– volume: 53
  start-page: 1065
  year: 2012
  ident: key 20170521003218_BHT229C53
  article-title: Quantification of dopamine transporter in human brain using PET with 18F-FE-PE2I
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.111.101626
– volume: 24
  start-page: 167
  year: 2001
  ident: key 20170521003218_BHT229C43
  article-title: An integrative theory of prefrontal cortex function
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.24.1.167
– volume: 22
  start-page: 133
  year: 2000
  ident: key 20170521003218_BHT229C32
  article-title: Genotype influences in vivo dopamine transporter availability in human striatum
  publication-title: Neuropsychopharmacology
  doi: 10.1016/S0893-133X(99)00099-8
– volume: 33
  start-page: 623.e15
  year: 2012
  ident: key 20170521003218_BHT229C36
  article-title: Dopamine and frontostriatal networks in cognitive aging
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2011.03.002
– volume: 22
  start-page: 2182
  year: 2012
  ident: key 20170521003218_BHT229C27
  article-title: Effect of dopamine transporter genotype on intrinsic functional connectivity depends on cognitive state
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhr305
– volume: 147B
  start-page: 1536
  year: 2008
  ident: key 20170521003218_BHT229C50
  article-title: A review and analysis of the relationship between neuropsychological measures and DAT1 in ADHD
  publication-title: Am J Med Genet B Neuropsychiatr Genet
  doi: 10.1002/ajmg.b.30848
– volume: 32
  start-page: 366
  year: 2010
  ident: key 20170521003218_BHT229C58
  article-title: Working memory, response inhibition, and within-subject variability in children with attention-deficit/hyperactivity disorder or reading disorder
  publication-title: J Clin Exp Neuropsychol
  doi: 10.1080/13803390903066865
– volume: 9
  start-page: 108
  year: 1999
  ident: key 20170521003218_BHT229C30
  article-title: Visualization of the dopamine transporter in the human brain postmortem with the new selective ligand [125I]PE2I
  publication-title: NeuroImage
  doi: 10.1006/nimg.1998.0366
– volume: 23
  start-page: 1509
  year: 2013
  ident: key 20170521003218_BHT229C15
  article-title: Dopamine-Dependent architecture of cortico-subcortical network connectivity
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhs136
– volume: 8
  start-page: 170
  year: 2004
  ident: key 20170521003218_BHT229C2
  article-title: Inhibition and the right inferior frontal cortex
  publication-title: Trends Cogn Sci (Regul Ed)
  doi: 10.1016/j.tics.2004.02.010
– volume: 29
  start-page: 1224
  year: 2009
  ident: key 20170521003218_BHT229C5
  article-title: Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.4858-08.2009
– volume: 12
  start-page: 99
  year: 2008
  ident: key 20170521003218_BHT229C22
  article-title: A dual-networks architecture of top-down control
  publication-title: Trends Cogn Sci
  doi: 10.1016/j.tics.2008.01.001
– volume: 12
  start-page: 131
  year: 2001
  ident: key 20170521003218_BHT229C41
  article-title: Error-related brain activation during a Go/noGo response inhibition task
  publication-title: Hum Brain Mapp
  doi: 10.1002/1097-0193(200103)12:3<131::AID-HBM1010>3.0.CO;2-C
– volume: 157
  start-page: 1700
  year: 2000
  ident: key 20170521003218_BHT229C33
  article-title: Prediction of dopamine transporter binding availability by genotype: a preliminary report
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.157.10.1700
– volume-title: Fiber pathways of the brain
  year: 2006
  ident: key 20170521003218_BHT229C54
  doi: 10.1093/acprof:oso/9780195104233.001.0001
– volume: 360
  start-page: 1001
  year: 2005
  ident: key 20170521003218_BHT229C3
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2005.1634
– volume: 26
  start-page: 3652
  year: 2007
  ident: key 20170521003218_BHT229C14
  article-title: Dopamine gene predicts the brain's response to dopaminergic drug
  publication-title: Eur J Neurosci
  doi: 10.1111/j.1460-9568.2007.05947.x
– volume: 160
  start-page: 636
  year: 2003
  ident: key 20170521003218_BHT229C29
  article-title: The endophenotype concept in psychiatry: etymology and strategic intentions
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.160.4.636
– volume: 2
  start-page: 25
  year: 2012
  ident: key 20170521003218_BHT229C52
  article-title: Trouble at rest: how correlation patterns and group differences become distorted after global signal regression
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0080
– volume: 59
  start-page: 238
  year: 2012
  ident: key 20170521003218_BHT229C57
  article-title: Cortico-striatal disconnection within the cingulo-opercular network in schizophrenia revealed by intrinsic functional connectivity analysis: a resting fMRI study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.07.086
– volume: 33
  start-page: 1536
  year: 2012
  ident: key 20170521003218_BHT229C28
  article-title: Using spatial multiple regression to identify intrinsic connectivity networks involved in working memory performance
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.21306
– volume: 125
  start-page: 316
  year: 2013
  ident: key 20170521003218_BHT229C44
  article-title: Bilateral basal ganglia activity in verbal working memory
  publication-title: Brain Lang
  doi: 10.1016/j.bandl.2012.05.003
– volume: 57
  start-page: 1336
  year: 2005
  ident: key 20170521003218_BHT229C65
  article-title: Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2005.02.006
– volume: 114
  start-page: 975
  year: 2002
  ident: key 20170521003218_BHT229C42
  article-title: Expression of the dopamine transporter gene is regulated by the 3′ UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR
  publication-title: Am J Med Genet
  doi: 10.1002/ajmg.b.10948
– volume: 59
  start-page: 898
  year: 2006
  ident: key 20170521003218_BHT229C17
  article-title: Molecular imaging of the dopaminergic system and its association with human cognitive function
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2006.03.004
– volume: 37
  start-page: 1437
  year: 2007
  ident: key 20170521003218_BHT229C12
  article-title: Impact of the COMT Val108/158 Met and DAT genotypes on prefrontal function in healthy subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.06.021
– volume: 44
  start-page: 629
  year: 2010
  ident: key 20170521003218_BHT229C18
  article-title: Reduced activation and inter-regional functional connectivity of fronto-striatal networks in adults with childhood attention-deficit hyperactivity disorder (ADHD) and persisting symptoms during tasks of motor inhibition and cognitive switching
  publication-title: J Psychiatr Res
  doi: 10.1016/j.jpsychires.2009.11.016
– volume: 18
  start-page: 16
  year: 2009
  ident: key 20170521003218_BHT229C39
  article-title: Current directions in mediation analysis
  publication-title: Curr Dir Psychol Sci
  doi: 10.1111/j.1467-8721.2009.01598.x
– volume: 57
  start-page: 1397
  year: 2005
  ident: key 20170521003218_BHT229C40
  article-title: The dopamine transporter and attention-deficit/hyperactivity disorder
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2004.10.011
– volume: 193
  start-page: 7
  year: 2011
  ident: key 20170521003218_BHT229C11
  article-title: Relationship of DAT1 and adult ADHD to task-positive and task-negative working memory networks
  publication-title: Psychiatry Res
  doi: 10.1016/j.pscychresns.2011.01.006
– volume: 57
  start-page: 640
  year: 2009
  ident: key 20170521003218_BHT229C51
  article-title: Methylphenidate normalises activation and functional connectivity deficits in attention and motivation networks in medication-naïve children with ADHD during a rewarded continuous performance task
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2009.08.013
– year: 2000
  ident: key 20170521003218_BHT229C63
  article-title: Simultaneous inference for FMRI data
– volume: 4:8
  year: 2010
  ident: key 20170521003218_BHT229C16
  article-title: Advances and pitfalls in the analysis and interpretation of resting-state FMRI data
  publication-title: Front Syst Neurosci
– volume: 59
  start-page: 2142
  year: 2012
  ident: key 20170521003218_BHT229C49
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 362
  start-page: 1601
  year: 2007
  ident: key 20170521003218_BHT229C31
  article-title: Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/rstb.2007.2055
– volume: 25
  start-page: 46
  year: 2005
  ident: key 20170521003218_BHT229C47
  article-title: N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20131
– volume: 104
  start-page: 11073
  year: 2007
  ident: key 20170521003218_BHT229C23
  article-title: Distinct brain networks for adaptive and stable task control in humans
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0704320104
– volume: 41
  start-page: 611
  year: 2011
  ident: key 20170521003218_BHT229C7
  article-title: Effects of two dopamine-modulating genes (DAT1 9/10 and COMT Val/Met) on N-back working memory performance in healthy volunteers
  publication-title: Psychol Med
  doi: 10.1017/S003329171000098X
– reference: 11911442 - Pharmacogenomics J. 2001;1(2):152-6
– reference: 20962241 - J Neurosci. 2010 Oct 20;30(42):14205-12
– reference: 20053379 - Neuroimage. 2010 Nov 15;53(3):970-7
– reference: 19111791 - Behav Brain Res. 2009 Apr 12;199(1):3-23
– reference: 21272388 - Psychol Med. 2011 Mar;41(3):611-8
– reference: 17689985 - Neuroimage. 2007 Oct 1;37(4):1437-44
– reference: 15050513 - Trends Cogn Sci. 2004 Apr;8(4):170-7
– reference: 22432927 - Brain Connect. 2012;2(1):25-32
– reference: 18400794 - Cereb Cortex. 2008 Dec;18(12):2735-47
– reference: 11283309 - Annu Rev Neurosci. 2001;24:167-202
– reference: 19715709 - Neuropharmacology. 2009 Dec;57(7-8):640-52
– reference: 9918732 - Neuroimage. 1999 Jan;9(1):108-16
– reference: 20660273 - J Neurosci. 2010 Jul 21;30(29):9910-8
– reference: 22689927 - J Nucl Med. 2012 Jul;53(7):1065-73
– reference: 18485743 - Neuroimage. 2008 Jul 15;41(4):1352-63
– reference: 16682268 - Biol Psychiatry. 2006 May 15;59(10):898-907
– reference: 19176830 - J Neurosci. 2009 Jan 28;29(4):1224-34
– reference: 21854968 - Prog Brain Res. 2011;193:259-76
– reference: 10649826 - Neuropsychopharmacology. 2000 Feb;22(2):133-9
– reference: 20407579 - Front Syst Neurosci. 2010 Apr 06;4:8
– reference: 17893706 - Mol Psychiatry. 2009 Jan;14(1):60-70
– reference: 22854261 - Brain Lang. 2013 Jun;125(3):316-23
– reference: 21511369 - Neurobiol Aging. 2012 Mar;33(3):623.e15-24
– reference: 19494158 - J Neurosci. 2009 Jun 3;29(22):7364-78
– reference: 16861140 - World J Biol Psychiatry. 2006;7(3):152-7
– reference: 17440978 - Am J Med Genet B Neuropsychiatr Genet. 2007 Jun 5;144B(4):541-50
– reference: 15950006 - Biol Psychiatry. 2005 Jun 1;57(11):1336-46
– reference: 21596533 - Psychiatry Res. 2011 Jul 30;193(1):7-16
– reference: 16611807 - J Neurosci. 2006 Apr 12;26(15):3918-22
– reference: 22645252 - Cereb Cortex. 2013 Jul;23(7):1509-16
– reference: 18262825 - Trends Cogn Sci. 2008 Mar;12(3):99-105
– reference: 18088284 - Eur J Neurosci. 2007 Dec;26(12):3652-60
– reference: 11170305 - Hum Brain Mapp. 2001 Mar;12(3):131-43
– reference: 10208453 - Mol Psychiatry. 1999 Mar;4(2):192-6
– reference: 17428778 - Philos Trans R Soc Lond B Biol Sci. 2007 Sep 29;362(1485):1601-13
– reference: 12457396 - Am J Med Genet. 2002 Dec 8;114(8):975-9
– reference: 17576922 - Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):11073-8
– reference: 15950014 - Biol Psychiatry. 2005 Jun 1;57(11):1397-409
– reference: 8524021 - Magn Reson Med. 1995 Oct;34(4):537-41
– reference: 16309561 - BMC Genet. 2005;6:55
– reference: 20452445 - Neuroimage. 2010 Oct 1;52(4):1621-32
– reference: 18385328 - J Neurosci. 2008 Apr 2;28(14):3697-706
– reference: 22334332 - Magn Reson Med. 2012 Dec;68(6):1828-35
– reference: 20157637 - Curr Dir Psychol Sci. 2009 Feb 1;18(1):16
– reference: 22047966 - Cereb Cortex. 2012 Sep;22(9):2182-96
– reference: 22019881 - Neuroimage. 2012 Feb 1;59(3):2142-54
– reference: 22564179 - J Abnorm Psychol. 2012 Nov;121(4):1011-23
– reference: 21810475 - Neuroimage. 2012 Jan 2;59(1):431-8
– reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
– reference: 21761505 - Hum Brain Mapp. 2012 Jul;33(7):1536-52
– reference: 18729135 - Am J Med Genet B Neuropsychiatr Genet. 2008 Dec 5;147B(8):1536-46
– reference: 20060129 - J Psychiatr Res. 2010 Jul;44(10):629-39
– reference: 3085570 - Annu Rev Neurosci. 1986;9:357-81
– reference: 21840407 - Neuroimage. 2012 Jan 2;59(1):238-47
– reference: 15841682 - Psychol Med. 2005 Feb;35(2):245-56
– reference: 19889849 - J Neurophysiol. 2010 Jan;103(1):297-321
– reference: 12668349 - Am J Psychiatry. 2003 Apr;160(4):636-45
– reference: 15846822 - Hum Brain Mapp. 2005 May;25(1):46-59
– reference: 11007732 - Am J Psychiatry. 2000 Oct;157(10):1700-3
– reference: 19813130 - J Clin Exp Neuropsychol. 2010 Apr;32(4):366-79
– reference: 19819301 - Neurosci Lett. 2009 Dec 25;467(2):117-20
– reference: 8778124 - J Clin Psychol. 1995 Nov;51(6):768-74
– reference: 22645253 - Cereb Cortex. 2013 Jun;23(6):1444-52
SSID ssj0017252
Score 2.386143
Snippet Individual differences in striatal dopamine (DA) signaling have been associated both with individual differences in executive function in healthy individuals...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 336
SubjectTerms Brain Mapping
Corpus Striatum - physiology
Dopamine Plasma Membrane Transport Proteins - genetics
Executive Function
Female
Frontal Lobe - physiology
Genotyping Techniques
Heterozygote
Humans
Impulsive Behavior
Magnetic Resonance Imaging
Male
Memory, Short-Term
Neural Pathways - physiology
Polymorphism, Genetic
Psychological Tests
Rest
Young Adult
Title Resting-State Striato-Frontal Functional Connectivity is Sensitive to DAT1 Genotype and Predicts Executive Function
URI https://www.ncbi.nlm.nih.gov/pubmed/23968837
https://www.proquest.com/docview/1652377623
https://www.proquest.com/docview/1701476529
https://pubmed.ncbi.nlm.nih.gov/PMC4351426
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkBAvCDYu5SYjob2MbInjxM1jKSsDVIRQh_YWxY7DKrF0alJp45_ybzgndjK3Kwj2ErW2a6s-X-zjc_lMyGuZSx76mPkbq8Ljicy9jCnhFXmRBLzgKlCYOzz5HB8d848n0Umv98uJWlrWcl_93JhXchOpQhnIFbNk_0OyXadQAJ9BvvAECcPzn2T8FSkyyu9eozGigxnmee6NkZMAZn4MW5a19DXhLMpeFDGrYIUoKxM0BKrnu-E0QPrpeWOONdkD6L6pq73DC62WTbu2M1eZHekFup2RYGRR64tNF_vsYcyTY214D2dde3sIJk5N9jtFWsN3Yz43Tgmn7q22VlqMSMOU-LbiWzbLLzMbNVDmmIm175oxgqiNfG4PvZvTI52VGSklQmZXZm3KeOx7sOQm7nJu8qgtbJmzNodh7GzzoWGxvLaDGHYtpRcKzSVjeVozM0kOns7PGkCxMIkHA8NZs0ba_WUy4pgjweJb5DYToNahvv7hU-fgEixiLVEG_itL_wqjH5ixD8zISFZth1nVnK4dh9ajeh01aXqf3LPnGzo0YH1AerrcJjvDEoB5dkl3aRNx3LhytsmdiQ3s2CHVCpTpGpTpFZSpC2U6q2gHZVrPKUKZtlCmAAnaQpl2UO46e0iOx4fT0ZFn7wPxFGd-7fEiGWRwAhe-KLRM8iCTMlNwJmaJFLFgvog1aMy5CESgfAm1fpbIgsuIFQMoCh-RrXJe6ieEgr6WiSLKVZg3RoOB1Jpz6DkrZMD9vE_etHOdKkuWj3e2_EhN0EaYGimlRkp9sts1PzcsMX9q-KoVXArrODrn4OWaL6s0iCMWClBNwr-0EX7ABTSEfh4bYXfDtSjpE7ECg64B8siv1pSz04ZP3iL16Y1_-YzcvXqln5OterHUL0BXr-XLBvW_ASWF8h4
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resting-State+Striato-Frontal+Functional+Connectivity+is+Sensitive+to+DAT1+Genotype+and+Predicts+Executive+Function&rft.jtitle=Cerebral+cortex+%28New+York%2C+N.Y.+1991%29&rft.au=Gordon%2C+Evan+M.&rft.au=Devaney%2C+Joseph+M.&rft.au=Bean%2C+Stephanie&rft.au=Vaidya%2C+Chandan+J.&rft.date=2015-02-01&rft.pub=Oxford+University+Press&rft.issn=1047-3211&rft.eissn=1460-2199&rft.volume=25&rft.issue=2&rft.spage=336&rft.epage=345&rft_id=info:doi/10.1093%2Fcercor%2Fbht229&rft_id=info%3Apmid%2F23968837&rft.externalDocID=PMC4351426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1047-3211&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1047-3211&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1047-3211&client=summon