Sustainable Ammonia Production Processes

Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier, many studies have recently attempted to find the most environmentally benign, energy efficient, and economically viable production process for ammonia synthesis. The mo...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in energy research Vol. 9
Main Authors Ghavam, Seyedehhoma, Vahdati, Maria, Wilson, I. A. Grant, Styring, Peter
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 29.03.2021
Subjects
Online AccessGet full text
ISSN2296-598X
2296-598X
DOI10.3389/fenrg.2021.580808

Cover

Abstract Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier, many studies have recently attempted to find the most environmentally benign, energy efficient, and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions, surpassing 2.16 kgCO 2 -eq/kg NH 3 and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general, a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover, for production of 1 tonne of hydrogen, 9 tonnes of water is required. Based on this data, for the production of the same amount of ammonia through water electrolysis, 233.6 million tonnes/yr of water is required. In this paper, a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies, either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur.
AbstractList Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier, many studies have recently attempted to find the most environmentally benign, energy efficient, and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions, surpassing 2.16 kgCO2-eq/kg NH3 and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general, a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover, for production of 1 tonne of hydrogen, 9 tonnes of water is required. Based on this data, for the production of the same amount of ammonia through water electrolysis, 233.6 million tonnes/yr of water is required. In this paper, a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies, either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur.
Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier, many studies have recently attempted to find the most environmentally benign, energy efficient, and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions, surpassing 2.16 kgCO 2 -eq/kg NH 3 and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general, a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover, for production of 1 tonne of hydrogen, 9 tonnes of water is required. Based on this data, for the production of the same amount of ammonia through water electrolysis, 233.6 million tonnes/yr of water is required. In this paper, a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies, either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur.
Author Wilson, I. A. Grant
Ghavam, Seyedehhoma
Vahdati, Maria
Styring, Peter
Author_xml – sequence: 1
  givenname: Seyedehhoma
  surname: Ghavam
  fullname: Ghavam, Seyedehhoma
– sequence: 2
  givenname: Maria
  surname: Vahdati
  fullname: Vahdati, Maria
– sequence: 3
  givenname: I. A. Grant
  surname: Wilson
  fullname: Wilson, I. A. Grant
– sequence: 4
  givenname: Peter
  surname: Styring
  fullname: Styring, Peter
BookMark eNqNkE1LAzEQQINUsNb-AG89emnN5yY5luJHoaCggreQzU5KynZTki3Sf2-3KyIeROYww8B7h3eJBk1sAKFrgmeMKX3roUnrGcWUzITCxzlDQ0p1MRVavQ9-3BdonPMGY0wYFZzgIbp52efWhsaWNUzm221sgp08p1jtXRti050OcoZ8hc69rTOMv_YIvd3fvS4ep6unh-Vivpo6TnE75Y5QpoFRzhx4BZqCEFwXpQbBpAbqJCt8KXyhvKQVc5RarngFrrC-JJiN0LL3VtFuzC6FrU0HE20wp0dMa2NTG1wNBkglvcWYcVtw57nypRalw14qpSSWRxftXftmZw8ftq6_hQSbLp05pTNdOtOnO0Kkh1yKOSfw_2LkL8aF1nYB22RD_Qf5CRZAhlI
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_05_158
crossref_primary_10_1016_j_molliq_2023_121216
crossref_primary_10_1016_j_cej_2023_144855
crossref_primary_10_1021_acs_jpcc_3c02323
crossref_primary_10_1039_D2SC03603G
crossref_primary_10_17660_ActaHortic_2023_1375_11
crossref_primary_10_1088_1361_6528_ad4b22
crossref_primary_10_1080_1536383X_2024_2392032
crossref_primary_10_1021_acsomega_2c00700
crossref_primary_10_1016_j_ijhydene_2023_12_075
crossref_primary_10_3390_eng5030097
crossref_primary_10_1016_j_ijhydene_2024_12_230
crossref_primary_10_1016_j_catcom_2023_106689
crossref_primary_10_1021_acsenergylett_1c02816
crossref_primary_10_1016_j_envres_2023_117278
crossref_primary_10_1016_j_cattod_2021_11_005
crossref_primary_10_1021_acsestengg_1c00484
crossref_primary_10_59797_jfl_v37_i3_203
crossref_primary_10_1088_1402_4896_ad9bfb
crossref_primary_10_1016_j_ces_2024_120023
crossref_primary_10_3390_en18020404
crossref_primary_10_1021_acscatal_2c04584
crossref_primary_10_1002_cssc_202300459
crossref_primary_10_3390_fuels3030026
crossref_primary_10_3389_fsrma_2023_1273271
crossref_primary_10_1515_phys_2022_0232
crossref_primary_10_3390_atmos13122009
crossref_primary_10_1039_D4SE01109K
crossref_primary_10_3390_en16041831
crossref_primary_10_1016_j_energy_2025_134391
crossref_primary_10_2139_ssrn_4161383
crossref_primary_10_1007_s10668_024_05182_4
crossref_primary_10_1021_acs_iecr_2c02189
crossref_primary_10_1016_j_enconman_2024_119125
crossref_primary_10_1016_j_xcrp_2025_102497
crossref_primary_10_1264_jsme2_ME21047
crossref_primary_10_1002_idm2_12152
crossref_primary_10_1007_s12678_024_00870_1
crossref_primary_10_3390_su15021623
crossref_primary_10_1021_accountsmr_4c00183
crossref_primary_10_1039_D4TA04511D
crossref_primary_10_1002_smll_202305616
crossref_primary_10_1016_j_ijhydene_2022_06_066
crossref_primary_10_1002_anie_202402635
crossref_primary_10_1016_j_cej_2024_154129
crossref_primary_10_1016_j_fuel_2024_131863
crossref_primary_10_3390_catal13030562
crossref_primary_10_3390_polym14112214
crossref_primary_10_1021_acs_jpcc_2c02586
crossref_primary_10_1021_acscatal_4c05730
crossref_primary_10_1016_j_fuel_2023_129490
crossref_primary_10_1016_j_jclepro_2024_141620
crossref_primary_10_1007_s10008_022_05228_5
crossref_primary_10_1021_acs_iecr_4c01649
crossref_primary_10_9767_jcerp_20301
crossref_primary_10_1002_ppap_202400218
crossref_primary_10_1021_acsagscitech_4c00753
crossref_primary_10_1039_D2OB01251K
crossref_primary_10_1002_anie_202423661
crossref_primary_10_1016_j_bbrc_2024_150345
crossref_primary_10_35848_1347_4065_ad2fde
crossref_primary_10_1002_cssc_202300563
crossref_primary_10_1021_acsomega_4c07541
crossref_primary_10_1016_j_ijhydene_2025_01_417
crossref_primary_10_3389_fchem_2021_736801
crossref_primary_10_1016_j_cattod_2023_114156
crossref_primary_10_1016_j_ijhydene_2024_03_107
crossref_primary_10_1149_1945_7111_acee27
crossref_primary_10_3390_bioengineering10010082
crossref_primary_10_1016_j_cej_2023_142876
crossref_primary_10_3390_en16083321
crossref_primary_10_1007_s12598_023_02471_1
crossref_primary_10_1002_ange_202423661
crossref_primary_10_1002_anie_202204271
crossref_primary_10_3390_nano13212850
crossref_primary_10_1038_s41929_024_01133_4
crossref_primary_10_1016_j_pmatsci_2023_101104
crossref_primary_10_1007_s13399_025_06579_5
crossref_primary_10_1021_acsenergylett_2c01615
crossref_primary_10_1021_acssuschemeng_3c03813
crossref_primary_10_1016_j_jcou_2022_101997
crossref_primary_10_1002_aenm_202303963
crossref_primary_10_1021_acs_jpca_3c05426
crossref_primary_10_1016_j_jwpe_2024_105174
crossref_primary_10_1021_acssuschemeng_1c05660
crossref_primary_10_1016_j_scitotenv_2023_168225
crossref_primary_10_1038_s44160_023_00321_7
crossref_primary_10_1016_j_jwpe_2023_104223
crossref_primary_10_1016_j_rser_2025_115465
crossref_primary_10_1016_j_talanta_2023_124418
crossref_primary_10_3390_agriculture13112092
crossref_primary_10_1080_08827508_2023_2300112
crossref_primary_10_1007_s11051_023_05790_7
crossref_primary_10_1016_j_ecmx_2024_100645
crossref_primary_10_1016_j_apenergy_2024_123789
crossref_primary_10_1016_j_joule_2024_04_004
crossref_primary_10_55596_001c_88823
crossref_primary_10_1016_j_ijhydene_2023_04_024
crossref_primary_10_1002_cctc_202401936
crossref_primary_10_1016_j_fuel_2023_130544
crossref_primary_10_1021_acsenvironau_3c00001
crossref_primary_10_1016_j_mtcata_2024_100054
crossref_primary_10_1021_acs_energyfuels_2c02982
crossref_primary_10_1177_14750902231207159
crossref_primary_10_3390_biotech12020041
crossref_primary_10_1016_j_seppur_2022_122780
crossref_primary_10_1115_1_4064371
crossref_primary_10_1016_j_envres_2024_119821
crossref_primary_10_1021_acs_chemrev_2c00270
crossref_primary_10_3390_w15223967
crossref_primary_10_3390_en15249558
crossref_primary_10_3390_en17010213
crossref_primary_10_1002_cphc_202200750
crossref_primary_10_1016_j_jclepro_2021_128776
crossref_primary_10_1016_j_memsci_2024_123438
crossref_primary_10_1007_s10668_024_04657_8
crossref_primary_10_1016_j_seta_2024_104126
crossref_primary_10_58430_jib_v130i3_58
crossref_primary_10_1007_s10098_024_03018_3
crossref_primary_10_1039_D3QI01448G
crossref_primary_10_1016_j_fuel_2024_131027
crossref_primary_10_1016_j_jaecs_2024_100259
crossref_primary_10_1002_adma_202303050
crossref_primary_10_1016_j_jclepro_2022_133960
crossref_primary_10_1002_adma_202211260
crossref_primary_10_1016_j_fuel_2024_132124
crossref_primary_10_1016_j_enconman_2024_118488
crossref_primary_10_1016_j_eng_2023_05_001
crossref_primary_10_1016_j_rineng_2024_102399
crossref_primary_10_2139_ssrn_4049524
crossref_primary_10_3390_suschem5020012
crossref_primary_10_1016_j_rser_2023_113389
crossref_primary_10_1021_acs_iecr_3c02943
crossref_primary_10_1002_ange_202315125
crossref_primary_10_1016_j_jenvman_2022_115162
crossref_primary_10_3390_en18061421
crossref_primary_10_1016_j_jpowsour_2022_231991
crossref_primary_10_1177_14680874231177361
crossref_primary_10_1016_j_scitotenv_2023_167911
crossref_primary_10_1016_j_psep_2025_106810
crossref_primary_10_1021_acssuschemeng_3c04694
crossref_primary_10_1002_cssc_202301570
crossref_primary_10_1016_j_jcou_2024_102756
crossref_primary_10_1002_ange_202204271
crossref_primary_10_1063_5_0231360
crossref_primary_10_1016_j_clcb_2023_100056
crossref_primary_10_3390_aerospace12030231
crossref_primary_10_1039_D4SU00647J
crossref_primary_10_1021_acs_jpca_4c01800
crossref_primary_10_1021_acsanm_3c06163
crossref_primary_10_1016_j_ijhydene_2024_07_047
crossref_primary_10_3390_nano12111869
crossref_primary_10_1016_j_fuel_2024_133749
crossref_primary_10_1016_j_enconman_2022_115814
crossref_primary_10_1016_j_ijhydene_2024_02_229
crossref_primary_10_3390_en15228396
crossref_primary_10_1002_anie_202315125
crossref_primary_10_3390_app13137619
crossref_primary_10_3390_en14217296
crossref_primary_10_3390_ma17235825
crossref_primary_10_1146_annurev_chembioeng_101121_085323
crossref_primary_10_1021_acsami_4c11396
crossref_primary_10_1109_TPS_2024_3362629
crossref_primary_10_1016_j_memsci_2022_121161
crossref_primary_10_7316_KHNES_2022_33_6_723
crossref_primary_10_3390_nano11081927
crossref_primary_10_1039_D3SE01421E
crossref_primary_10_1016_j_apcatb_2023_122540
crossref_primary_10_1071_AN23300
crossref_primary_10_1021_jacs_3c06259
crossref_primary_10_1039_D4EE04438J
crossref_primary_10_1021_acscatal_4c01557
crossref_primary_10_1016_j_molliq_2023_123583
crossref_primary_10_1016_j_ijhydene_2024_06_106
crossref_primary_10_3390_su17051886
crossref_primary_10_33494_nzjfs542024x329x
crossref_primary_10_3390_en14206721
crossref_primary_10_1016_j_seta_2023_103148
crossref_primary_10_1039_D3RA06475A
crossref_primary_10_1016_j_ijhydene_2023_10_059
crossref_primary_10_1016_j_fuel_2023_130626
crossref_primary_10_1016_j_ijhydene_2023_06_098
crossref_primary_10_3390_en15218246
crossref_primary_10_1016_j_paerosci_2023_100922
crossref_primary_10_1016_j_recm_2022_07_006
crossref_primary_10_3390_en16010280
crossref_primary_10_3390_en17246464
crossref_primary_10_1016_j_mseb_2023_116912
crossref_primary_10_1080_15567249_2023_2185839
crossref_primary_10_1016_j_cej_2024_149727
crossref_primary_10_1088_1755_1315_1037_1_012061
crossref_primary_10_1002_cctc_202401001
crossref_primary_10_1021_acsaem_4c00135
crossref_primary_10_1016_j_rser_2023_113691
crossref_primary_10_1016_j_cej_2023_144318
crossref_primary_10_1021_acs_iecr_4c00384
crossref_primary_10_3389_fenrg_2024_1460894
crossref_primary_10_1039_D2SU00054G
crossref_primary_10_3390_microorganisms13020268
crossref_primary_10_1007_s10311_024_01722_6
crossref_primary_10_1016_j_jcis_2024_12_055
crossref_primary_10_1016_j_cej_2022_141128
crossref_primary_10_1016_j_comptc_2024_115010
crossref_primary_10_1016_j_fuel_2024_131350
crossref_primary_10_51646_jsesd_v14iFICTS_2024_444
crossref_primary_10_1002_ange_202402635
crossref_primary_10_3389_fpls_2022_929114
crossref_primary_10_1021_jacs_2c13015
crossref_primary_10_1021_acssuschemeng_4c05611
crossref_primary_10_1039_D2SU00152G
crossref_primary_10_1016_j_ijhydene_2022_12_285
crossref_primary_10_3390_en15249617
crossref_primary_10_37434_tpwj2024_10_06
crossref_primary_10_1098_rsos_212004
crossref_primary_10_1002_cctc_202300850
crossref_primary_10_1021_acsaem_2c01820
crossref_primary_10_1021_acsami_2c18878
crossref_primary_10_1021_acs_iecr_2c00383
crossref_primary_10_12944_CARJ_11_3_16
crossref_primary_10_1016_j_cattod_2024_114723
crossref_primary_10_1016_j_fluid_2024_114125
crossref_primary_10_1038_s41467_024_48145_z
crossref_primary_10_1016_j_energy_2023_127880
crossref_primary_10_3390_pr12112434
crossref_primary_10_1016_j_compchemeng_2023_108260
crossref_primary_10_1016_j_jclepro_2024_143993
crossref_primary_10_1021_acs_organomet_3c00411
crossref_primary_10_1115_1_4063663
crossref_primary_10_1016_j_coche_2023_100915
crossref_primary_10_1002_aesr_202400083
crossref_primary_10_1016_j_ces_2022_118097
crossref_primary_10_1088_1361_6439_aca4db
crossref_primary_10_1016_j_joule_2024_101810
crossref_primary_10_1021_acscatal_3c00716
crossref_primary_10_1088_2053_1591_ac88b8
crossref_primary_10_1016_j_fuel_2024_131643
crossref_primary_10_1016_j_electacta_2023_143056
crossref_primary_10_1016_j_seta_2025_104278
crossref_primary_10_1007_s10668_023_03846_1
crossref_primary_10_1016_j_oneear_2023_05_006
crossref_primary_10_1038_s41467_023_41107_x
crossref_primary_10_1016_j_jclepro_2024_143188
crossref_primary_10_3389_fenrg_2021_671279
crossref_primary_10_1021_acs_iecr_3c01679
crossref_primary_10_3390_su16010351
crossref_primary_10_1016_j_enconman_2025_119494
crossref_primary_10_3390_en16145451
crossref_primary_10_1016_j_fluid_2023_113736
crossref_primary_10_1016_j_jenvman_2023_118348
crossref_primary_10_1016_j_ijhydene_2023_03_087
crossref_primary_10_1016_j_scitotenv_2022_154162
crossref_primary_10_1039_D4SU00423J
crossref_primary_10_1063_5_0227022
crossref_primary_10_3390_catal13030639
crossref_primary_10_3390_agriculture12091383
crossref_primary_10_1039_D3RA04148D
crossref_primary_10_1039_D2PY01593E
crossref_primary_10_1093_hr_uhad141
crossref_primary_10_3390_plants11212875
crossref_primary_10_1016_j_ijhydene_2023_10_207
crossref_primary_10_1016_j_enconman_2021_114990
crossref_primary_10_1016_j_jphotochemrev_2024_100680
crossref_primary_10_1088_2516_1083_acac5c
crossref_primary_10_3390_en16052472
crossref_primary_10_1007_s41918_023_00186_6
crossref_primary_10_4028_p_3vugm2
crossref_primary_10_1016_j_crgsc_2022_100307
crossref_primary_10_1016_j_envres_2024_118204
crossref_primary_10_1016_j_jenvman_2023_118215
crossref_primary_10_1016_j_matpr_2022_07_054
crossref_primary_10_1016_j_cej_2024_150242
crossref_primary_10_1002_smtd_202301373
crossref_primary_10_1016_j_ijhydene_2021_10_077
crossref_primary_10_37636_recit_v7n4e304
crossref_primary_10_1007_s12518_023_00511_0
crossref_primary_10_1016_j_cogsc_2023_100860
crossref_primary_10_1021_acsenergylett_4c01100
crossref_primary_10_1016_j_fuel_2023_129858
crossref_primary_10_1016_j_watres_2022_119107
crossref_primary_10_1002_ep_14580
Cites_doi 10.1038/ncomms11335
10.1016/j.ssi.2005.07.018
10.1039/c8ta11201k
10.1016/j.joule.2018.04.017
10.1016/j.apenergy.2015.01.045
10.1016/j.biortech.2018.02.092
10.1126/science.282.5386.98
10.1007/s10008-011-1376-x
10.1016/j.wasman.2013.02.019
10.3389/fenrg.2014.00001
10.1039/c8cy02316f
10.1201/b18921
10.1039/b004885m
10.1016/j.jclepro.2018.06.130
10.1016/j.jclepro.2017.10.080
10.1021/acssuschemeng.7b02070
10.1016/j.renene.2020.05.041
10.2741/4542
10.1016/j.ssi.2009.08.001
10.1016/B978-0-12-809597-3.00304-7
10.1016/j.ijhydene.2008.06.060
10.1007/s11426-009-0135-7
10.1016/j.jclepro.2017.12.229
10.1039/C6RA27822A
10.3389/fenrg.2017.00019
10.1063/1.4985090
10.1016/j.rser.2008.03.003
10.1126/science.361.6398.120
10.1016/j.biortech.2008.12.020
10.1016/j.jclepro.2017.01.148
10.1016/j.ijhydene.2009.11.126
10.1016/j.jclepro.2017.09.243
10.1016/s0360-3199(02)00135-0
10.4172/2090-4568.1000128
10.1016/j.envint.2013.11.019
10.3390/en81112357
10.1006/jcat.2000.2877
10.1002/cjoc.201190209
10.1623/hysj.52.2.247
10.1016/j.renene.2016.07.040
10.1016/j.enzmictec.2005.09.015
10.1016/j.ijhydene.2013.09.054
10.1007/s11157-015-9383-5
10.1016/j.ijhydene.2014.05.018
10.1016/j.ijhydene.2006.08.014
10.1016/j.ijhydene.2017.12.081
10.1016/j.eiar.2014.08.003
10.1016/j.ijhydene.2009.12.040
10.1016/j.ijhydene.2009.02.010
10.1016/j.jclepro.2016.07.023
10.1038/srep01145
10.1016/j.ecolecon.2017.06.019
10.3390/environments5020024
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3389/fenrg.2021.580808
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_e1d7fa0034a64cf48fb95bc0f7888707
10.3389/fenrg.2021.580808
10_3389_fenrg_2021_580808
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c420t-4c1239e3243cef8e92e55496b9e5379e2c736fb5f68f72d3c22a484dec6afb103
IEDL.DBID UNPAY
ISSN 2296-598X
IngestDate Wed Aug 27 01:29:02 EDT 2025
Wed Oct 01 17:08:13 EDT 2025
Wed Oct 01 03:40:16 EDT 2025
Thu Apr 24 22:56:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c420t-4c1239e3243cef8e92e55496b9e5379e2c736fb5f68f72d3c22a484dec6afb103
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fenrg.2021.580808/pdf
ParticipantIDs doaj_primary_oai_doaj_org_article_e1d7fa0034a64cf48fb95bc0f7888707
unpaywall_primary_10_3389_fenrg_2021_580808
crossref_primary_10_3389_fenrg_2021_580808
crossref_citationtrail_10_3389_fenrg_2021_580808
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-29
PublicationDateYYYYMMDD 2021-03-29
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-29
  day: 29
PublicationDecade 2020
PublicationTitle Frontiers in energy research
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Valdez-Vazquez (B87) 2009; 13
Yoo (B98) 2013
B25
B27
Arora (B104) 2016; 55
Arora (B8) 2018; 199
Pfromm (B71) 2017; 9
Alcamo (B3) 2007; 52
De Gioannis (B20) 2013; 33
Wilson (B92) 2017; 5
Ciranna (B18) 2014
Guerra (B33) 2020; 157
Kordali (B45) 2000; 17
Garagounis (B28) 2014; 2
B32
Tallaksen (B83) 2013
(B40) 2007
B38
Akroum-Amrouche (B2) 2013
B39
Lan (B47) 2013; 3
Bicer (B10) 2018; 170
Cavinato (B15) 2011
(B42) 2013
Parkinson (B67) 2018; 43
Kothari (B46) 2017; 22
Bicer (B12) 2017
Kataoka (B102) 2005
Soloveichik (B80)
Kevin Breen (B44) 2012
Morgan (B65) 2013
B41
Wang (B88) 2018; 2
Marnellos (B56) 2000; 193
Arora (B7) 2017; 148
(B17) 2016
Szymanski (B82) 2017
Martinez-Frias (B58) 2003; 28
Hawkes (B35) 2007; 32
Nordvang (B66) 2017
Ghimire (B29) 2015; 144
Dincer (B21) 2018
Heffer (B36) 2016
Xu (B94) 2009; 52
Acar (B1) 2018
Soloveichik (B81)
Peng (B68) 2018; 177
Matzen (B59) 2015; 5
Cong (B19) 2019; 9
Marnellos (B55) 1998; 282
Kapdan (B43) 2006; 38
Liu (B50) 2008
Pengyu (B69) 2017; 7
B100
Greenlee (B31) 2017
Makhlouf (B54) 2015; 50
Ali (B4) 2016; 7
Distefano (B22) 2017; 142
Michael (B61) 2015; 5
Chu (B103) 2008; 33
B63
Mehmeti (B60) 2018; 5
Loney (B52) 2017
Sen (B76) 2008; 67
Frattini (B26) 2016; 99
B70
Elgowainy (B23) 2015
B73
B75
Giddey (B30) 2013; 38
Ercin (B24) 2014; 64
Hoekstra (B37) 2011
Tapia-Venegas (B84) 2015; 14
Argun (B6) 2010; 35
Guo (B34) 2019; 7
Liu (B51) 2006; 177
Pham (B72) 2000
Bicer (B11) 2016; 135
Service (B77) 2018; 361
Amar (B5) 2011; 15
Singh (B78) 2015; 8
Micolucci (B62) 2018; 171
Liu (B49) 2009; 100
Zilouie (B99) 2015
(B86) 2015
Bolzonella (B13) 2018; 257
Tenca (B85) 2011
Wang (B89) 2011; 29
(B93) 2016
B14
Luo (B53) 2014; 39
Skodra (B79) 2009; 180
Will (B91) 2018
Lee (B101) 2010; 35
Lapina (B48) 2013
Arslan (B9) 2015
Reddy (B74) 2016
Morgan (B64) 2017; 5
Chong (B16) 2009; 34
Wijers (B90) 2011
Marrony (B57) 2015
Yaswanth (B97) 2018
References_xml – volume: 7
  start-page: 1
  year: 2016
  ident: B4
  article-title: Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11335
– volume: 177
  start-page: 73
  year: 2006
  ident: B51
  article-title: Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2−δ (M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2005.07.018
– volume: 7
  start-page: 3531
  year: 2019
  ident: B34
  article-title: Recent progress in electrocatalytic nitrogen reduction
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/c8ta11201k
– ident: B41
– volume-title: The essential chemical industry
  year: 2016
  ident: B17
– ident: B73
– year: 2016
  ident: B36
  article-title: Global nitrogen fertiliser demand and supply: trend, current level and outlook
– volume: 2
  start-page: 1
  year: 2018
  ident: B88
  article-title: Greening ammonia toward the solar ammonia refinery
  publication-title: Joule
  doi: 10.1016/j.joule.2018.04.017
– volume: 144
  start-page: 73
  year: 2015
  ident: B29
  article-title: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2015.01.045
– volume-title: Energy technology prospectives, pathways to a clean energy system
  year: 2012
  ident: B44
– start-page: 1
  volume-title: Impact of pH management interval on biohydrogen production from organic fraction of municipal solid wastes by mesophilic thermophilic anaerobic codigestion
  year: 2015
  ident: B9
– volume: 257
  start-page: 311
  year: 2018
  ident: B13
  article-title: Recent developments in biohythane production from household food wastes: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.02.092
– start-page: 2
  year: 2005
  ident: B102
  article-title: Studies on hydrogen-methane fermentation process for treating garbage and waste paper
  publication-title: ADSW 2005 Conference Proceedings.
– start-page: 253
  volume-title: Biofuel and biorefinery technologies
  year: 2015
  ident: B99
  article-title: Biohydrogen from lignocellulosic wastes
– volume: 282
  start-page: 98
  year: 1998
  ident: B55
  article-title: Ammonia synthesis at atmospheric pressure
  publication-title: Science
  doi: 10.1126/science.282.5386.98
– volume: 15
  start-page: 1845
  year: 2011
  ident: B5
  article-title: Solid-state electrochemical synthesis of ammonia: A review
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-011-1376-x
– volume: 33
  start-page: 1345
  year: 2013
  ident: B20
  article-title: A review of dark fermentative hydrogen production from biodegradable municipal waste fractions
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2013.02.019
– volume: 2
  start-page: 1
  year: 2014
  ident: B28
  article-title: Electrochemical synthesis of ammonia in solid electrolyte cells
  publication-title: Front. Energ. Res.
  doi: 10.3389/fenrg.2014.00001
– year: 2013
  ident: B83
  article-title: Ammonia production using wind energy: an early calculation of life cycle carbon emissions and fossil energy consumption
– volume: 9
  start-page: 1208
  year: 2019
  ident: B19
  article-title: Electrochemical synthesis of ammonia from N2 and H2O using a typical non-noble metal carbon-based catalyst under ambient conditions
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c8cy02316f
– ident: B38
– volume-title: Proton conducting ceramics: from fundamentals to applied research
  year: 2015
  ident: B57
  doi: 10.1201/b18921
– year: 2017
  ident: B66
  article-title: Hydrogen production from ammonia for next generation carbon-free energy technologies
– volume: 17
  start-page: 1673
  year: 2000
  ident: B45
  article-title: Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell
  publication-title: Chem. Commun.
  doi: 10.1039/b004885m
– volume: 199
  start-page: 177
  year: 2018
  ident: B8
  article-title: Remote, small-scale, ‘greener’ routes of ammonia production
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.06.130
– volume: 67
  start-page: 980
  year: 2008
  ident: B76
  article-title: Status of biohydrogen production
  publication-title: J. scientific Ind. Res.
– volume: 171
  start-page: 1376
  year: 2018
  ident: B62
  article-title: Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.10.080
– volume: 5
  start-page: 9554
  year: 2017
  ident: B64
  article-title: Sustainable ammonia production from U.S. Offshore wind farms: a techno-economic review
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02070
– year: 2016
  ident: B74
  article-title: Evaluation of biohydrogen production potential of sugarcane bagasse using activated sludge in a dark fermentation process
– start-page: 42
  volume-title: Comprehensive energy systems
  year: 2018
  ident: B21
  article-title: 3.2 ammonia production
– year: 2015
  ident: B86
  article-title: World population prospects: the 2015 Revision, key findings and advance tables
– year: 2017
  ident: B31
  article-title: Topical conference: NH3 Energy
– volume-title: Natural gas assisted steam electrolyzer
  year: 2000
  ident: B72
– volume: 157
  start-page: 404
  year: 2020
  ident: B33
  article-title: Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2020.05.041
– volume: 22
  start-page: 1195
  year: 2017
  ident: B46
  article-title: A critical review on factors influencing fermentative hydrogen production
  publication-title: Front. Biosci.
  doi: 10.2741/4542
– volume: 180
  start-page: 1332
  year: 2009
  ident: B79
  article-title: Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2009.08.001
– start-page: 3
  volume-title: Comprehensive energy systems
  year: 2018
  ident: B1
  article-title: 3.1. Hydrogen production
  doi: 10.1016/B978-0-12-809597-3.00304-7
– year: 2013
  ident: B42
  article-title: Climate change 2013: the physical science basis
– volume: 33
  start-page: 4739
  year: 2008
  ident: B103
  article-title: A pH‐temperature ‐phased two‐stage process for hydrogen and methane production from food waste
  publication-title: Int. J. Hydrog. Energy.
  doi: 10.1016/j.ijhydene.2008.06.060
– volume: 52
  start-page: 1171
  year: 2009
  ident: B94
  article-title: Electrochemical synthesis of ammonia using a cell with a Nafion membrane and SmFe0.7Cu0.3−x Ni x O3 (x = 0−0.3) cathode at atmospheric pressure and lower temperature
  publication-title: Sci. China Ser. B-Chem.
  doi: 10.1007/s11426-009-0135-7
– volume: 177
  start-page: 597
  year: 2018
  ident: B68
  article-title: A review on the non-thermal plasma-assisted ammonia synthesis technologies
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.12.229
– ident: B63
– volume: 7
  start-page: 12610
  year: 2017
  ident: B69
  article-title: Comparison of dry and wet milling pre-treatment methods for improving the anaerobic digestion performance of the Pennisetum hybrid
  publication-title: R. Soc. Chem. (Rsc)
  doi: 10.1039/C6RA27822A
– volume: 5
  start-page: 1
  year: 2017
  ident: B92
  article-title: Why synthetic fuels are necessary in future energy systems
  publication-title: Front. Energ. Res.
  doi: 10.3389/fenrg.2017.00019
– volume-title: The water footprint assessment manual setting the global standard
  year: 2011
  ident: B37
– volume: 9
  start-page: 1
  year: 2017
  ident: B71
  article-title: Towards sustainable agriculture: fossil-free ammonia
  publication-title: J. Renew. Sustain. Energ.
  doi: 10.1063/1.4985090
– ident: B32
– volume: 13
  start-page: 1000
  year: 2009
  ident: B87
  article-title: Hydrogen production by fermentative consortia
  publication-title: Renew. Sustain. Energ. Rev.
  doi: 10.1016/j.rser.2008.03.003
– volume-title: Renewable energy to fuels through microwave-plasma catalytic synthesis of ammonia
  year: 2016
  ident: B93
– volume: 361
  start-page: 120
  year: 2018
  ident: B77
  article-title: Liquid sunshine
  publication-title: Science
  doi: 10.1126/science.361.6398.120
– volume: 100
  start-page: 2719
  year: 2009
  ident: B49
  article-title: Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.12.020
– volume: 55
  start-page: 6422
  year: 2016
  ident: B104
  article-title: Small-scale ammonia production from biomass: a techno-enviroEconomic perspective
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1016/j.jclepro.2017.01.148
– volume: 35
  start-page: 13458
  year: 2010
  ident: B101
  article-title: Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste
  publication-title: Int. J. Hydrog. Energy.
  doi: 10.1016/j.ijhydene.2009.11.126
– volume: 170
  start-page: 1594
  year: 2018
  ident: B10
  article-title: Life cycle assessment of ammonia utilization in city transportation and power generation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.09.243
– year: 2017
  ident: B52
  article-title: NH3 Energy+Exploring peptide-bound catalysts for electrochemical ammonia generation
– volume: 28
  start-page: 483
  year: 2003
  ident: B58
  article-title: A natural gas-assisted steam electrolyzer for high-efficiency production of hydrogen
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/s0360-3199(02)00135-0
– volume: 5
  start-page: 1
  year: 2015
  ident: B61
  article-title: Techn-oeconomics and sustainability of renewable methanol and ammonia productions using wind power-based hydrogen
  publication-title: Adv. Chem. Eng.
  doi: 10.4172/2090-4568.1000128
– volume: 64
  start-page: 71
  year: 2014
  ident: B24
  article-title: Water footprint scenarios for 2050: a global analysis
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2013.11.019
– ident: B25
– volume: 8
  start-page: 13062
  year: 2015
  ident: B78
  article-title: Biohydrogen production from lignocellulosic biomass: technology and sustainability
  publication-title: Energies
  doi: 10.3390/en81112357
– volume: 193
  start-page: 80
  year: 2000
  ident: B56
  article-title: Synthesis of ammonia at atmospheric pressure with the use of solid state proton conductors
  publication-title: J. Catal.
  doi: 10.1006/jcat.2000.2877
– volume: 29
  start-page: 1114
  year: 2011
  ident: B89
  article-title: Chemical stability, ionic conductivity of BaCe0.9−xZrxSm0.10O3−αand its application to ammonia synthesis at atmospheric pressure
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201190209
– start-page: 220
  volume-title: Biohydrogen production in extreme conditions: a comprehensive study of the fermentative metabolism of a polyextremophilic BacteriumPhD thesis
  year: 2014
  ident: B18
– ident: B39
– volume: 52
  start-page: 247
  year: 2007
  ident: B3
  article-title: Future long-term changes in global water resources driven by socio-economic and climatic changes
  publication-title: Hydrological Sci. J.
  doi: 10.1623/hysj.52.2.247
– year: 2018
  ident: B97
  article-title: Biohydrogen and volatile fatty acids production form food waste hydrolysate
– year: 2011
  ident: B90
  article-title: Modeling a solid oxide fuel-assisted electrolysis cell in cycle tempo
– volume: 99
  start-page: 472
  year: 2016
  ident: B26
  article-title: A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants
  publication-title: Renew. Energ.
  doi: 10.1016/j.renene.2016.07.040
– volume: 38
  start-page: 569
  year: 2006
  ident: B43
  article-title: Bio-hydrogen production from waste materials
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2005.09.015
– start-page: 499
  year: 2013
  ident: B2
  article-title: Biohydrogen production by dark and photo-fermentation processes
– year: 2013
  ident: B65
  article-title: Techno-economic feasibility study of ammonia plants powered by offshore wind
– year: 2008
  ident: B50
  article-title: Bio-hydrogen production by dark fermentation from organic wastes and residues
– volume: 38
  start-page: 14576
  year: 2013
  ident: B30
  article-title: Review of electrochemical ammonia production technologies and materials
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2013.09.054
– ident: B14
– volume: 14
  start-page: 761
  year: 2015
  ident: B84
  article-title: Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-015-9383-5
– year: 2013
  ident: B48
  article-title: Electrolytes and electrodes for electrochemical synthesis of ammonia
– volume: 39
  start-page: 10359
  year: 2014
  ident: B53
  article-title: Elementary reaction modeling and experimental characterization of solid oxide fuel-assisted steam electrolysis cells
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2014.05.018
– ident: B81
  article-title: New generation of fuel cells: fast, furious and flexible
– ident: B80
  article-title: NH3 Energy Future of ammonia production: improvement of haber-bosch process or electrochemical synthesis?
– volume-title: Electrochemical ammonia synthesis from water and nitrogen using solid state ion conductors
  year: 2013
  ident: B98
– ident: B27
– year: 2007
  ident: B40
  article-title: Tracking industrial energy efficiency and CO2 emissions
– year: 2017
  ident: B12
  article-title: Investigation of novel ammonia production options using photoelectrochemical hydrogen
– volume: 32
  start-page: 172
  year: 2007
  ident: B35
  article-title: Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2006.08.014
– volume: 43
  start-page: 2540
  year: 2018
  ident: B67
  article-title: Hydrogen production using methane: techno-economics of decarbonizing fuels and chemicals
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2017.12.081
– ident: B100
– start-page: 8
  year: 2015
  ident: B23
  article-title: Life-cycle analysis of water consumption for hydrogen production
– volume-title: Ottimizzazione del processo di digestione anaerobica a fasi separate dei rifiuti organici per la produzione di bio-hythane
  year: 2011
  ident: B15
– volume: 50
  start-page: 35
  year: 2015
  ident: B54
  article-title: Life cycle impact assessment of ammonia production in Algeria: a comparison with previous studies
  publication-title: Environ. Impact Assess. Rev.
  doi: 10.1016/j.eiar.2014.08.003
– volume: 35
  start-page: 1595
  year: 2010
  ident: B6
  article-title: Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution: Effects of light source and light intensity
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2009.12.040
– start-page: 17
  volume-title: Introducing renewable ammonia by Thyssenkrupp
  year: 2018
  ident: B91
– ident: B75
– volume: 34
  start-page: 3277
  year: 2009
  ident: B16
  article-title: Biohydrogen production from biomass and industrial wastes by dark fermentation
  publication-title: Int. J. Hydrogen Energ.
  doi: 10.1016/j.ijhydene.2009.02.010
– year: 2011
  ident: B85
  article-title: Biohydrogen production from agricultural and livestock residues within an integrated bioenergy concept
– year: 2017
  ident: B82
  article-title: Nitrogenase inspired peptide-functionalized catalyst for efficient emission-free ammonia production
– volume: 5
  start-page: 1
  year: 2015
  ident: B59
  article-title: Technoeconomics and sustainability of renewable methanol and ammonia productions using wind powerd-based hydrogen
  publication-title: Adv. Chem. Eng.
  doi: 10.4172/2090-4568.1000128
– volume: 135
  start-page: 1379
  year: 2016
  ident: B11
  article-title: Comparative life cycle assessment of various ammonia production methods
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.07.023
– volume: 3
  start-page: 1
  year: 2013
  ident: B47
  article-title: Synthesis of ammonia directly from air and water at ambient temperature and pressure
  publication-title: Scientific Rep.
  doi: 10.1038/srep01145
– ident: B70
– volume: 142
  start-page: 130
  year: 2017
  ident: B22
  article-title: Are we in deep water? Water scarcity and its limits to economic growth
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2017.06.019
– volume: 148
  start-page: 363
  year: 2017
  ident: B7
  article-title: Multi-objective optimization of biomass based ammonia production - potential and perspective in different countries
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.01.148
– volume: 5
  start-page: 1
  year: 2018
  ident: B60
  article-title: Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies
  publication-title: Environments
  doi: 10.3390/environments5020024
SSID ssj0001325410
Score 2.6217163
SecondaryResourceType review_article
Snippet Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier, many studies have recently...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms ammonia production
energy carrier
fertilizer
Haber-Bosch
sustainable hydrogen production
water intensity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF-iAeIryUgYGBApNbMePsSCqigEhQaVuke2cEVIVKmiF-Peck1DCQhfWyLGd73N0d8ndd4ScVfXVNjGxUCaLufMmthJUbIyVFLhKTFGpfd6L0ZjfTbJJq9VXyAmr5YFr4PqQFtKbIKNiBE7Flbc6sy7xIXaTdR05mrFWMFV9XWG4ibT5jYlRmO57pOMZ40GaXmVBS1H9MkSVXn-XrC_Kmfn8MNNpy8gMt8hm4x1Gg3pX22QNyh3SbWkG7pLzx5-Sp2gQTtGLiR5q3VbEOGoy_-F9j4yHt083o7hpdxA7TpM5AoVWRAN6OMyBV6ApoK3XwmrImNRAnWTC28wL5SUtmKPUcMULcMJ4myZsn3TK1xIOSIQvJXcFLcCjh2DRJktrjaI-RV44E2mPJN_PnrtGCzy0pJjmGBMEuPIKrjzAlddw9cjF8pZZLYTx1-DrAOhyYNCwri4gs3nDbL6K2R65XNKxesnD_1jyiGyEKUOOGdXHpDN_W8AJOh1ze1qdry_vYdMU
  priority: 102
  providerName: Directory of Open Access Journals
Title Sustainable Ammonia Production Processes
URI https://www.frontiersin.org/articles/10.3389/fenrg.2021.580808/pdf
https://doaj.org/article/e1d7fa0034a64cf48fb95bc0f7888707
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH3-L6ogcPonRt0zSP4yqKeBBBF9ZTSdJEFpe66C6iv95MW9dVRBGPLRPafjNpZpKZbwD2yvpqHamQCZWG1DgVam5FqJTmxFIRqbxk-7xk5x160U27E7UwmFbpsHQfG0H3ioopuE4RwxnuIyp55Dy0dz62I3ErRV5EcTTI3TTMMDxkasBM5_KqfYtd5YhkYSpFtzrO_H7spwWp5O2fh9lRMVAvz6rfn1hszhbBvL9mlWNy3xoNdcu8fmFw_N93LMFC7YsG7WrAMkzZYgXmJxgKV2H_-qPAKmijzfZUcFWxxHqNBnWdgX1ag87Z6c3JeVg3VwgNJdHQq8WvWdJ6fyox1gkrifWehWRa2jTh0hLDE-Z06phwnOSJIURRQXNrmHI6jpJ1aBQPhd2AwP8CqMlJbp33R7T3ALjWShAXeyugCYubEL0jnJmaeRwbYPQzH4EgEFkJRIZAZBUQTTgYDxlUtBs_CR-j2saCyJhd3vCgZzXomY1z7hTS8SjmTZIKp2WqTeRwD4BHvAmHY6X__sjNP0lvwRxeYeoakdvQGD6O7I73ZYZ6t9wD2K1N9g3CgvI0
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSDb7G-yMGDKKnJZrOPYxVFPIighXoKu5tdKZZYtEX017uTxFpFFPGYsEOSbyaZmezMNwB7ZX-1jlTIhEpDapwKNbciVEpzYqmIVF6yfV6y8w696KbdiV4YLKt02LqPg6B7RcUUXJeI4RvuMyp55Dy0dz63I3ErRV5EcTTI3TTMMNxkasBM5_KqfYtT5YhkYSpFt9rO_F72k0MqefvnYXZUDNTLs-r3J5zN2SKY99usakzuW6OhbpnXLwyO_3uOJVioY9GgXQksw5QtVmB-gqFwFfavPxqsgjbabE8FVxVLrNdoUPcZ2Kc16Jyd3pych_VwhdBQEg29WrzPktbHU4mxTlhJrI8sJNPSpgmXlhieMKdTx4TjJE8MIYoKmlvDlNNxlKxDo3go7AYE_hNATU5y63w8on0EwLVWgrjYWwFNWNyE6B3hzNTM4zgAo5_5DASByEogMgQiq4BowsFYZFDRbvy0-BjVNl6IjNnlCQ96VoOe2TjnTiEdj2LeJKlwWqbaRA7_AfCIN-FwrPTfL7n5p9VbMIdHWLpG5DY0ho8ju-NjmaHerY31DRrK8T8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+Ammonia+Production+Processes&rft.jtitle=Frontiers+in+energy+research&rft.au=Ghavam%2C+Seyedehhoma&rft.au=Vahdati%2C+Maria&rft.au=Wilson%2C+I.+A.+Grant&rft.au=Styring%2C+Peter&rft.date=2021-03-29&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.580808&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2021_580808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon