Sustainable Ammonia Production Processes
Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier, many studies have recently attempted to find the most environmentally benign, energy efficient, and economically viable production process for ammonia synthesis. The mo...
Saved in:
Published in | Frontiers in energy research Vol. 9 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
29.03.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-598X 2296-598X |
DOI | 10.3389/fenrg.2021.580808 |
Cover
Abstract | Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier, many studies have recently attempted to find the most environmentally benign, energy efficient, and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions, surpassing 2.16 kgCO
2
-eq/kg NH
3
and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general, a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover, for production of 1 tonne of hydrogen, 9 tonnes of water is required. Based on this data, for the production of the same amount of ammonia through water electrolysis, 233.6 million tonnes/yr of water is required. In this paper, a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies, either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur. |
---|---|
AbstractList | Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier, many studies have recently attempted to find the most environmentally benign, energy efficient, and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions, surpassing 2.16 kgCO2-eq/kg NH3 and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general, a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover, for production of 1 tonne of hydrogen, 9 tonnes of water is required. Based on this data, for the production of the same amount of ammonia through water electrolysis, 233.6 million tonnes/yr of water is required. In this paper, a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies, either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur. Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier, many studies have recently attempted to find the most environmentally benign, energy efficient, and economically viable production process for ammonia synthesis. The most commonly utilized ammonia production method is the Haber-Bosch process. The downside to this technology is the high greenhouse gas emissions, surpassing 2.16 kgCO 2 -eq/kg NH 3 and high amounts of energy usage of over 30 GJ/tonne NH3 mainly due to the strict operational conditions at high temperature and pressure. The most widely adopted technology for sustainable hydrogen production used for ammonia synthesis is water electrolysis coupled with renewable technologies such as wind and solar. In general, a water electrolyzer requires a continuous supply of pretreated water with high purity levels for its operation. Moreover, for production of 1 tonne of hydrogen, 9 tonnes of water is required. Based on this data, for the production of the same amount of ammonia through water electrolysis, 233.6 million tonnes/yr of water is required. In this paper, a critical review of different sustainable hydrogen production processes and emerging technologies for sustainable ammonia synthesis along with a comparative life cycle assessment of various ammonia production methods has been carried out. We find that through the review of each of the studied technologies, either large amounts of GHG emissions are produced or high volumes of pretreated water is required or a combination of both these factors occur. |
Author | Wilson, I. A. Grant Ghavam, Seyedehhoma Vahdati, Maria Styring, Peter |
Author_xml | – sequence: 1 givenname: Seyedehhoma surname: Ghavam fullname: Ghavam, Seyedehhoma – sequence: 2 givenname: Maria surname: Vahdati fullname: Vahdati, Maria – sequence: 3 givenname: I. A. Grant surname: Wilson fullname: Wilson, I. A. Grant – sequence: 4 givenname: Peter surname: Styring fullname: Styring, Peter |
BookMark | eNqNkE1LAzEQQINUsNb-AG89emnN5yY5luJHoaCggreQzU5KynZTki3Sf2-3KyIeROYww8B7h3eJBk1sAKFrgmeMKX3roUnrGcWUzITCxzlDQ0p1MRVavQ9-3BdonPMGY0wYFZzgIbp52efWhsaWNUzm221sgp08p1jtXRti050OcoZ8hc69rTOMv_YIvd3fvS4ep6unh-Vivpo6TnE75Y5QpoFRzhx4BZqCEFwXpQbBpAbqJCt8KXyhvKQVc5RarngFrrC-JJiN0LL3VtFuzC6FrU0HE20wp0dMa2NTG1wNBkglvcWYcVtw57nypRalw14qpSSWRxftXftmZw8ftq6_hQSbLp05pTNdOtOnO0Kkh1yKOSfw_2LkL8aF1nYB22RD_Qf5CRZAhlI |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_05_158 crossref_primary_10_1016_j_molliq_2023_121216 crossref_primary_10_1016_j_cej_2023_144855 crossref_primary_10_1021_acs_jpcc_3c02323 crossref_primary_10_1039_D2SC03603G crossref_primary_10_17660_ActaHortic_2023_1375_11 crossref_primary_10_1088_1361_6528_ad4b22 crossref_primary_10_1080_1536383X_2024_2392032 crossref_primary_10_1021_acsomega_2c00700 crossref_primary_10_1016_j_ijhydene_2023_12_075 crossref_primary_10_3390_eng5030097 crossref_primary_10_1016_j_ijhydene_2024_12_230 crossref_primary_10_1016_j_catcom_2023_106689 crossref_primary_10_1021_acsenergylett_1c02816 crossref_primary_10_1016_j_envres_2023_117278 crossref_primary_10_1016_j_cattod_2021_11_005 crossref_primary_10_1021_acsestengg_1c00484 crossref_primary_10_59797_jfl_v37_i3_203 crossref_primary_10_1088_1402_4896_ad9bfb crossref_primary_10_1016_j_ces_2024_120023 crossref_primary_10_3390_en18020404 crossref_primary_10_1021_acscatal_2c04584 crossref_primary_10_1002_cssc_202300459 crossref_primary_10_3390_fuels3030026 crossref_primary_10_3389_fsrma_2023_1273271 crossref_primary_10_1515_phys_2022_0232 crossref_primary_10_3390_atmos13122009 crossref_primary_10_1039_D4SE01109K crossref_primary_10_3390_en16041831 crossref_primary_10_1016_j_energy_2025_134391 crossref_primary_10_2139_ssrn_4161383 crossref_primary_10_1007_s10668_024_05182_4 crossref_primary_10_1021_acs_iecr_2c02189 crossref_primary_10_1016_j_enconman_2024_119125 crossref_primary_10_1016_j_xcrp_2025_102497 crossref_primary_10_1264_jsme2_ME21047 crossref_primary_10_1002_idm2_12152 crossref_primary_10_1007_s12678_024_00870_1 crossref_primary_10_3390_su15021623 crossref_primary_10_1021_accountsmr_4c00183 crossref_primary_10_1039_D4TA04511D crossref_primary_10_1002_smll_202305616 crossref_primary_10_1016_j_ijhydene_2022_06_066 crossref_primary_10_1002_anie_202402635 crossref_primary_10_1016_j_cej_2024_154129 crossref_primary_10_1016_j_fuel_2024_131863 crossref_primary_10_3390_catal13030562 crossref_primary_10_3390_polym14112214 crossref_primary_10_1021_acs_jpcc_2c02586 crossref_primary_10_1021_acscatal_4c05730 crossref_primary_10_1016_j_fuel_2023_129490 crossref_primary_10_1016_j_jclepro_2024_141620 crossref_primary_10_1007_s10008_022_05228_5 crossref_primary_10_1021_acs_iecr_4c01649 crossref_primary_10_9767_jcerp_20301 crossref_primary_10_1002_ppap_202400218 crossref_primary_10_1021_acsagscitech_4c00753 crossref_primary_10_1039_D2OB01251K crossref_primary_10_1002_anie_202423661 crossref_primary_10_1016_j_bbrc_2024_150345 crossref_primary_10_35848_1347_4065_ad2fde crossref_primary_10_1002_cssc_202300563 crossref_primary_10_1021_acsomega_4c07541 crossref_primary_10_1016_j_ijhydene_2025_01_417 crossref_primary_10_3389_fchem_2021_736801 crossref_primary_10_1016_j_cattod_2023_114156 crossref_primary_10_1016_j_ijhydene_2024_03_107 crossref_primary_10_1149_1945_7111_acee27 crossref_primary_10_3390_bioengineering10010082 crossref_primary_10_1016_j_cej_2023_142876 crossref_primary_10_3390_en16083321 crossref_primary_10_1007_s12598_023_02471_1 crossref_primary_10_1002_ange_202423661 crossref_primary_10_1002_anie_202204271 crossref_primary_10_3390_nano13212850 crossref_primary_10_1038_s41929_024_01133_4 crossref_primary_10_1016_j_pmatsci_2023_101104 crossref_primary_10_1007_s13399_025_06579_5 crossref_primary_10_1021_acsenergylett_2c01615 crossref_primary_10_1021_acssuschemeng_3c03813 crossref_primary_10_1016_j_jcou_2022_101997 crossref_primary_10_1002_aenm_202303963 crossref_primary_10_1021_acs_jpca_3c05426 crossref_primary_10_1016_j_jwpe_2024_105174 crossref_primary_10_1021_acssuschemeng_1c05660 crossref_primary_10_1016_j_scitotenv_2023_168225 crossref_primary_10_1038_s44160_023_00321_7 crossref_primary_10_1016_j_jwpe_2023_104223 crossref_primary_10_1016_j_rser_2025_115465 crossref_primary_10_1016_j_talanta_2023_124418 crossref_primary_10_3390_agriculture13112092 crossref_primary_10_1080_08827508_2023_2300112 crossref_primary_10_1007_s11051_023_05790_7 crossref_primary_10_1016_j_ecmx_2024_100645 crossref_primary_10_1016_j_apenergy_2024_123789 crossref_primary_10_1016_j_joule_2024_04_004 crossref_primary_10_55596_001c_88823 crossref_primary_10_1016_j_ijhydene_2023_04_024 crossref_primary_10_1002_cctc_202401936 crossref_primary_10_1016_j_fuel_2023_130544 crossref_primary_10_1021_acsenvironau_3c00001 crossref_primary_10_1016_j_mtcata_2024_100054 crossref_primary_10_1021_acs_energyfuels_2c02982 crossref_primary_10_1177_14750902231207159 crossref_primary_10_3390_biotech12020041 crossref_primary_10_1016_j_seppur_2022_122780 crossref_primary_10_1115_1_4064371 crossref_primary_10_1016_j_envres_2024_119821 crossref_primary_10_1021_acs_chemrev_2c00270 crossref_primary_10_3390_w15223967 crossref_primary_10_3390_en15249558 crossref_primary_10_3390_en17010213 crossref_primary_10_1002_cphc_202200750 crossref_primary_10_1016_j_jclepro_2021_128776 crossref_primary_10_1016_j_memsci_2024_123438 crossref_primary_10_1007_s10668_024_04657_8 crossref_primary_10_1016_j_seta_2024_104126 crossref_primary_10_58430_jib_v130i3_58 crossref_primary_10_1007_s10098_024_03018_3 crossref_primary_10_1039_D3QI01448G crossref_primary_10_1016_j_fuel_2024_131027 crossref_primary_10_1016_j_jaecs_2024_100259 crossref_primary_10_1002_adma_202303050 crossref_primary_10_1016_j_jclepro_2022_133960 crossref_primary_10_1002_adma_202211260 crossref_primary_10_1016_j_fuel_2024_132124 crossref_primary_10_1016_j_enconman_2024_118488 crossref_primary_10_1016_j_eng_2023_05_001 crossref_primary_10_1016_j_rineng_2024_102399 crossref_primary_10_2139_ssrn_4049524 crossref_primary_10_3390_suschem5020012 crossref_primary_10_1016_j_rser_2023_113389 crossref_primary_10_1021_acs_iecr_3c02943 crossref_primary_10_1002_ange_202315125 crossref_primary_10_1016_j_jenvman_2022_115162 crossref_primary_10_3390_en18061421 crossref_primary_10_1016_j_jpowsour_2022_231991 crossref_primary_10_1177_14680874231177361 crossref_primary_10_1016_j_scitotenv_2023_167911 crossref_primary_10_1016_j_psep_2025_106810 crossref_primary_10_1021_acssuschemeng_3c04694 crossref_primary_10_1002_cssc_202301570 crossref_primary_10_1016_j_jcou_2024_102756 crossref_primary_10_1002_ange_202204271 crossref_primary_10_1063_5_0231360 crossref_primary_10_1016_j_clcb_2023_100056 crossref_primary_10_3390_aerospace12030231 crossref_primary_10_1039_D4SU00647J crossref_primary_10_1021_acs_jpca_4c01800 crossref_primary_10_1021_acsanm_3c06163 crossref_primary_10_1016_j_ijhydene_2024_07_047 crossref_primary_10_3390_nano12111869 crossref_primary_10_1016_j_fuel_2024_133749 crossref_primary_10_1016_j_enconman_2022_115814 crossref_primary_10_1016_j_ijhydene_2024_02_229 crossref_primary_10_3390_en15228396 crossref_primary_10_1002_anie_202315125 crossref_primary_10_3390_app13137619 crossref_primary_10_3390_en14217296 crossref_primary_10_3390_ma17235825 crossref_primary_10_1146_annurev_chembioeng_101121_085323 crossref_primary_10_1021_acsami_4c11396 crossref_primary_10_1109_TPS_2024_3362629 crossref_primary_10_1016_j_memsci_2022_121161 crossref_primary_10_7316_KHNES_2022_33_6_723 crossref_primary_10_3390_nano11081927 crossref_primary_10_1039_D3SE01421E crossref_primary_10_1016_j_apcatb_2023_122540 crossref_primary_10_1071_AN23300 crossref_primary_10_1021_jacs_3c06259 crossref_primary_10_1039_D4EE04438J crossref_primary_10_1021_acscatal_4c01557 crossref_primary_10_1016_j_molliq_2023_123583 crossref_primary_10_1016_j_ijhydene_2024_06_106 crossref_primary_10_3390_su17051886 crossref_primary_10_33494_nzjfs542024x329x crossref_primary_10_3390_en14206721 crossref_primary_10_1016_j_seta_2023_103148 crossref_primary_10_1039_D3RA06475A crossref_primary_10_1016_j_ijhydene_2023_10_059 crossref_primary_10_1016_j_fuel_2023_130626 crossref_primary_10_1016_j_ijhydene_2023_06_098 crossref_primary_10_3390_en15218246 crossref_primary_10_1016_j_paerosci_2023_100922 crossref_primary_10_1016_j_recm_2022_07_006 crossref_primary_10_3390_en16010280 crossref_primary_10_3390_en17246464 crossref_primary_10_1016_j_mseb_2023_116912 crossref_primary_10_1080_15567249_2023_2185839 crossref_primary_10_1016_j_cej_2024_149727 crossref_primary_10_1088_1755_1315_1037_1_012061 crossref_primary_10_1002_cctc_202401001 crossref_primary_10_1021_acsaem_4c00135 crossref_primary_10_1016_j_rser_2023_113691 crossref_primary_10_1016_j_cej_2023_144318 crossref_primary_10_1021_acs_iecr_4c00384 crossref_primary_10_3389_fenrg_2024_1460894 crossref_primary_10_1039_D2SU00054G crossref_primary_10_3390_microorganisms13020268 crossref_primary_10_1007_s10311_024_01722_6 crossref_primary_10_1016_j_jcis_2024_12_055 crossref_primary_10_1016_j_cej_2022_141128 crossref_primary_10_1016_j_comptc_2024_115010 crossref_primary_10_1016_j_fuel_2024_131350 crossref_primary_10_51646_jsesd_v14iFICTS_2024_444 crossref_primary_10_1002_ange_202402635 crossref_primary_10_3389_fpls_2022_929114 crossref_primary_10_1021_jacs_2c13015 crossref_primary_10_1021_acssuschemeng_4c05611 crossref_primary_10_1039_D2SU00152G crossref_primary_10_1016_j_ijhydene_2022_12_285 crossref_primary_10_3390_en15249617 crossref_primary_10_37434_tpwj2024_10_06 crossref_primary_10_1098_rsos_212004 crossref_primary_10_1002_cctc_202300850 crossref_primary_10_1021_acsaem_2c01820 crossref_primary_10_1021_acsami_2c18878 crossref_primary_10_1021_acs_iecr_2c00383 crossref_primary_10_12944_CARJ_11_3_16 crossref_primary_10_1016_j_cattod_2024_114723 crossref_primary_10_1016_j_fluid_2024_114125 crossref_primary_10_1038_s41467_024_48145_z crossref_primary_10_1016_j_energy_2023_127880 crossref_primary_10_3390_pr12112434 crossref_primary_10_1016_j_compchemeng_2023_108260 crossref_primary_10_1016_j_jclepro_2024_143993 crossref_primary_10_1021_acs_organomet_3c00411 crossref_primary_10_1115_1_4063663 crossref_primary_10_1016_j_coche_2023_100915 crossref_primary_10_1002_aesr_202400083 crossref_primary_10_1016_j_ces_2022_118097 crossref_primary_10_1088_1361_6439_aca4db crossref_primary_10_1016_j_joule_2024_101810 crossref_primary_10_1021_acscatal_3c00716 crossref_primary_10_1088_2053_1591_ac88b8 crossref_primary_10_1016_j_fuel_2024_131643 crossref_primary_10_1016_j_electacta_2023_143056 crossref_primary_10_1016_j_seta_2025_104278 crossref_primary_10_1007_s10668_023_03846_1 crossref_primary_10_1016_j_oneear_2023_05_006 crossref_primary_10_1038_s41467_023_41107_x crossref_primary_10_1016_j_jclepro_2024_143188 crossref_primary_10_3389_fenrg_2021_671279 crossref_primary_10_1021_acs_iecr_3c01679 crossref_primary_10_3390_su16010351 crossref_primary_10_1016_j_enconman_2025_119494 crossref_primary_10_3390_en16145451 crossref_primary_10_1016_j_fluid_2023_113736 crossref_primary_10_1016_j_jenvman_2023_118348 crossref_primary_10_1016_j_ijhydene_2023_03_087 crossref_primary_10_1016_j_scitotenv_2022_154162 crossref_primary_10_1039_D4SU00423J crossref_primary_10_1063_5_0227022 crossref_primary_10_3390_catal13030639 crossref_primary_10_3390_agriculture12091383 crossref_primary_10_1039_D3RA04148D crossref_primary_10_1039_D2PY01593E crossref_primary_10_1093_hr_uhad141 crossref_primary_10_3390_plants11212875 crossref_primary_10_1016_j_ijhydene_2023_10_207 crossref_primary_10_1016_j_enconman_2021_114990 crossref_primary_10_1016_j_jphotochemrev_2024_100680 crossref_primary_10_1088_2516_1083_acac5c crossref_primary_10_3390_en16052472 crossref_primary_10_1007_s41918_023_00186_6 crossref_primary_10_4028_p_3vugm2 crossref_primary_10_1016_j_crgsc_2022_100307 crossref_primary_10_1016_j_envres_2024_118204 crossref_primary_10_1016_j_jenvman_2023_118215 crossref_primary_10_1016_j_matpr_2022_07_054 crossref_primary_10_1016_j_cej_2024_150242 crossref_primary_10_1002_smtd_202301373 crossref_primary_10_1016_j_ijhydene_2021_10_077 crossref_primary_10_37636_recit_v7n4e304 crossref_primary_10_1007_s12518_023_00511_0 crossref_primary_10_1016_j_cogsc_2023_100860 crossref_primary_10_1021_acsenergylett_4c01100 crossref_primary_10_1016_j_fuel_2023_129858 crossref_primary_10_1016_j_watres_2022_119107 crossref_primary_10_1002_ep_14580 |
Cites_doi | 10.1038/ncomms11335 10.1016/j.ssi.2005.07.018 10.1039/c8ta11201k 10.1016/j.joule.2018.04.017 10.1016/j.apenergy.2015.01.045 10.1016/j.biortech.2018.02.092 10.1126/science.282.5386.98 10.1007/s10008-011-1376-x 10.1016/j.wasman.2013.02.019 10.3389/fenrg.2014.00001 10.1039/c8cy02316f 10.1201/b18921 10.1039/b004885m 10.1016/j.jclepro.2018.06.130 10.1016/j.jclepro.2017.10.080 10.1021/acssuschemeng.7b02070 10.1016/j.renene.2020.05.041 10.2741/4542 10.1016/j.ssi.2009.08.001 10.1016/B978-0-12-809597-3.00304-7 10.1016/j.ijhydene.2008.06.060 10.1007/s11426-009-0135-7 10.1016/j.jclepro.2017.12.229 10.1039/C6RA27822A 10.3389/fenrg.2017.00019 10.1063/1.4985090 10.1016/j.rser.2008.03.003 10.1126/science.361.6398.120 10.1016/j.biortech.2008.12.020 10.1016/j.jclepro.2017.01.148 10.1016/j.ijhydene.2009.11.126 10.1016/j.jclepro.2017.09.243 10.1016/s0360-3199(02)00135-0 10.4172/2090-4568.1000128 10.1016/j.envint.2013.11.019 10.3390/en81112357 10.1006/jcat.2000.2877 10.1002/cjoc.201190209 10.1623/hysj.52.2.247 10.1016/j.renene.2016.07.040 10.1016/j.enzmictec.2005.09.015 10.1016/j.ijhydene.2013.09.054 10.1007/s11157-015-9383-5 10.1016/j.ijhydene.2014.05.018 10.1016/j.ijhydene.2006.08.014 10.1016/j.ijhydene.2017.12.081 10.1016/j.eiar.2014.08.003 10.1016/j.ijhydene.2009.12.040 10.1016/j.ijhydene.2009.02.010 10.1016/j.jclepro.2016.07.023 10.1038/srep01145 10.1016/j.ecolecon.2017.06.019 10.3390/environments5020024 |
ContentType | Journal Article |
DBID | AAYXX CITATION ADTOC UNPAY DOA |
DOI | 10.3389/fenrg.2021.580808 |
DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-598X |
ExternalDocumentID | oai_doaj_org_article_e1d7fa0034a64cf48fb95bc0f7888707 10.3389/fenrg.2021.580808 10_3389_fenrg_2021_580808 |
GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 ADTOC IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c420t-4c1239e3243cef8e92e55496b9e5379e2c736fb5f68f72d3c22a484dec6afb103 |
IEDL.DBID | UNPAY |
ISSN | 2296-598X |
IngestDate | Wed Aug 27 01:29:02 EDT 2025 Wed Oct 01 17:08:13 EDT 2025 Wed Oct 01 03:40:16 EDT 2025 Thu Apr 24 22:56:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c420t-4c1239e3243cef8e92e55496b9e5379e2c736fb5f68f72d3c22a484dec6afb103 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.frontiersin.org/articles/10.3389/fenrg.2021.580808/pdf |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e1d7fa0034a64cf48fb95bc0f7888707 unpaywall_primary_10_3389_fenrg_2021_580808 crossref_primary_10_3389_fenrg_2021_580808 crossref_citationtrail_10_3389_fenrg_2021_580808 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-29 |
PublicationDateYYYYMMDD | 2021-03-29 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-29 day: 29 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in energy research |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Valdez-Vazquez (B87) 2009; 13 Yoo (B98) 2013 B25 B27 Arora (B104) 2016; 55 Arora (B8) 2018; 199 Pfromm (B71) 2017; 9 Alcamo (B3) 2007; 52 De Gioannis (B20) 2013; 33 Wilson (B92) 2017; 5 Ciranna (B18) 2014 Guerra (B33) 2020; 157 Kordali (B45) 2000; 17 Garagounis (B28) 2014; 2 B32 Tallaksen (B83) 2013 (B40) 2007 B38 Akroum-Amrouche (B2) 2013 B39 Lan (B47) 2013; 3 Bicer (B10) 2018; 170 Cavinato (B15) 2011 (B42) 2013 Parkinson (B67) 2018; 43 Kothari (B46) 2017; 22 Bicer (B12) 2017 Kataoka (B102) 2005 Soloveichik (B80) Kevin Breen (B44) 2012 Morgan (B65) 2013 B41 Wang (B88) 2018; 2 Marnellos (B56) 2000; 193 Arora (B7) 2017; 148 (B17) 2016 Szymanski (B82) 2017 Martinez-Frias (B58) 2003; 28 Hawkes (B35) 2007; 32 Nordvang (B66) 2017 Ghimire (B29) 2015; 144 Dincer (B21) 2018 Heffer (B36) 2016 Xu (B94) 2009; 52 Acar (B1) 2018 Soloveichik (B81) Peng (B68) 2018; 177 Matzen (B59) 2015; 5 Cong (B19) 2019; 9 Marnellos (B55) 1998; 282 Kapdan (B43) 2006; 38 Liu (B50) 2008 Pengyu (B69) 2017; 7 B100 Greenlee (B31) 2017 Makhlouf (B54) 2015; 50 Ali (B4) 2016; 7 Distefano (B22) 2017; 142 Michael (B61) 2015; 5 Chu (B103) 2008; 33 B63 Mehmeti (B60) 2018; 5 Loney (B52) 2017 Sen (B76) 2008; 67 Frattini (B26) 2016; 99 B70 Elgowainy (B23) 2015 B73 B75 Giddey (B30) 2013; 38 Ercin (B24) 2014; 64 Hoekstra (B37) 2011 Tapia-Venegas (B84) 2015; 14 Argun (B6) 2010; 35 Guo (B34) 2019; 7 Liu (B51) 2006; 177 Pham (B72) 2000 Bicer (B11) 2016; 135 Service (B77) 2018; 361 Amar (B5) 2011; 15 Singh (B78) 2015; 8 Micolucci (B62) 2018; 171 Liu (B49) 2009; 100 Zilouie (B99) 2015 (B86) 2015 Bolzonella (B13) 2018; 257 Tenca (B85) 2011 Wang (B89) 2011; 29 (B93) 2016 B14 Luo (B53) 2014; 39 Skodra (B79) 2009; 180 Will (B91) 2018 Lee (B101) 2010; 35 Lapina (B48) 2013 Arslan (B9) 2015 Reddy (B74) 2016 Morgan (B64) 2017; 5 Chong (B16) 2009; 34 Wijers (B90) 2011 Marrony (B57) 2015 Yaswanth (B97) 2018 |
References_xml | – volume: 7 start-page: 1 year: 2016 ident: B4 article-title: Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon publication-title: Nat. Commun. doi: 10.1038/ncomms11335 – volume: 177 start-page: 73 year: 2006 ident: B51 article-title: Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2−δ (M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature publication-title: Solid State Ionics doi: 10.1016/j.ssi.2005.07.018 – volume: 7 start-page: 3531 year: 2019 ident: B34 article-title: Recent progress in electrocatalytic nitrogen reduction publication-title: J. Mater. Chem. A. doi: 10.1039/c8ta11201k – ident: B41 – volume-title: The essential chemical industry year: 2016 ident: B17 – ident: B73 – year: 2016 ident: B36 article-title: Global nitrogen fertiliser demand and supply: trend, current level and outlook – volume: 2 start-page: 1 year: 2018 ident: B88 article-title: Greening ammonia toward the solar ammonia refinery publication-title: Joule doi: 10.1016/j.joule.2018.04.017 – volume: 144 start-page: 73 year: 2015 ident: B29 article-title: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2015.01.045 – volume-title: Energy technology prospectives, pathways to a clean energy system year: 2012 ident: B44 – start-page: 1 volume-title: Impact of pH management interval on biohydrogen production from organic fraction of municipal solid wastes by mesophilic thermophilic anaerobic codigestion year: 2015 ident: B9 – volume: 257 start-page: 311 year: 2018 ident: B13 article-title: Recent developments in biohythane production from household food wastes: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.02.092 – start-page: 2 year: 2005 ident: B102 article-title: Studies on hydrogen-methane fermentation process for treating garbage and waste paper publication-title: ADSW 2005 Conference Proceedings. – start-page: 253 volume-title: Biofuel and biorefinery technologies year: 2015 ident: B99 article-title: Biohydrogen from lignocellulosic wastes – volume: 282 start-page: 98 year: 1998 ident: B55 article-title: Ammonia synthesis at atmospheric pressure publication-title: Science doi: 10.1126/science.282.5386.98 – volume: 15 start-page: 1845 year: 2011 ident: B5 article-title: Solid-state electrochemical synthesis of ammonia: A review publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-011-1376-x – volume: 33 start-page: 1345 year: 2013 ident: B20 article-title: A review of dark fermentative hydrogen production from biodegradable municipal waste fractions publication-title: Waste Manag. doi: 10.1016/j.wasman.2013.02.019 – volume: 2 start-page: 1 year: 2014 ident: B28 article-title: Electrochemical synthesis of ammonia in solid electrolyte cells publication-title: Front. Energ. Res. doi: 10.3389/fenrg.2014.00001 – year: 2013 ident: B83 article-title: Ammonia production using wind energy: an early calculation of life cycle carbon emissions and fossil energy consumption – volume: 9 start-page: 1208 year: 2019 ident: B19 article-title: Electrochemical synthesis of ammonia from N2 and H2O using a typical non-noble metal carbon-based catalyst under ambient conditions publication-title: Catal. Sci. Technol. doi: 10.1039/c8cy02316f – ident: B38 – volume-title: Proton conducting ceramics: from fundamentals to applied research year: 2015 ident: B57 doi: 10.1201/b18921 – year: 2017 ident: B66 article-title: Hydrogen production from ammonia for next generation carbon-free energy technologies – volume: 17 start-page: 1673 year: 2000 ident: B45 article-title: Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell publication-title: Chem. Commun. doi: 10.1039/b004885m – volume: 199 start-page: 177 year: 2018 ident: B8 article-title: Remote, small-scale, ‘greener’ routes of ammonia production publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.06.130 – volume: 67 start-page: 980 year: 2008 ident: B76 article-title: Status of biohydrogen production publication-title: J. scientific Ind. Res. – volume: 171 start-page: 1376 year: 2018 ident: B62 article-title: Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.10.080 – volume: 5 start-page: 9554 year: 2017 ident: B64 article-title: Sustainable ammonia production from U.S. Offshore wind farms: a techno-economic review publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b02070 – year: 2016 ident: B74 article-title: Evaluation of biohydrogen production potential of sugarcane bagasse using activated sludge in a dark fermentation process – start-page: 42 volume-title: Comprehensive energy systems year: 2018 ident: B21 article-title: 3.2 ammonia production – year: 2015 ident: B86 article-title: World population prospects: the 2015 Revision, key findings and advance tables – year: 2017 ident: B31 article-title: Topical conference: NH3 Energy – volume-title: Natural gas assisted steam electrolyzer year: 2000 ident: B72 – volume: 157 start-page: 404 year: 2020 ident: B33 article-title: Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan publication-title: Renew. Energ. doi: 10.1016/j.renene.2020.05.041 – volume: 22 start-page: 1195 year: 2017 ident: B46 article-title: A critical review on factors influencing fermentative hydrogen production publication-title: Front. Biosci. doi: 10.2741/4542 – volume: 180 start-page: 1332 year: 2009 ident: B79 article-title: Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure publication-title: Solid State Ionics doi: 10.1016/j.ssi.2009.08.001 – start-page: 3 volume-title: Comprehensive energy systems year: 2018 ident: B1 article-title: 3.1. Hydrogen production doi: 10.1016/B978-0-12-809597-3.00304-7 – year: 2013 ident: B42 article-title: Climate change 2013: the physical science basis – volume: 33 start-page: 4739 year: 2008 ident: B103 article-title: A pH‐temperature ‐phased two‐stage process for hydrogen and methane production from food waste publication-title: Int. J. Hydrog. Energy. doi: 10.1016/j.ijhydene.2008.06.060 – volume: 52 start-page: 1171 year: 2009 ident: B94 article-title: Electrochemical synthesis of ammonia using a cell with a Nafion membrane and SmFe0.7Cu0.3−x Ni x O3 (x = 0−0.3) cathode at atmospheric pressure and lower temperature publication-title: Sci. China Ser. B-Chem. doi: 10.1007/s11426-009-0135-7 – volume: 177 start-page: 597 year: 2018 ident: B68 article-title: A review on the non-thermal plasma-assisted ammonia synthesis technologies publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.12.229 – ident: B63 – volume: 7 start-page: 12610 year: 2017 ident: B69 article-title: Comparison of dry and wet milling pre-treatment methods for improving the anaerobic digestion performance of the Pennisetum hybrid publication-title: R. Soc. Chem. (Rsc) doi: 10.1039/C6RA27822A – volume: 5 start-page: 1 year: 2017 ident: B92 article-title: Why synthetic fuels are necessary in future energy systems publication-title: Front. Energ. Res. doi: 10.3389/fenrg.2017.00019 – volume-title: The water footprint assessment manual setting the global standard year: 2011 ident: B37 – volume: 9 start-page: 1 year: 2017 ident: B71 article-title: Towards sustainable agriculture: fossil-free ammonia publication-title: J. Renew. Sustain. Energ. doi: 10.1063/1.4985090 – ident: B32 – volume: 13 start-page: 1000 year: 2009 ident: B87 article-title: Hydrogen production by fermentative consortia publication-title: Renew. Sustain. Energ. Rev. doi: 10.1016/j.rser.2008.03.003 – volume-title: Renewable energy to fuels through microwave-plasma catalytic synthesis of ammonia year: 2016 ident: B93 – volume: 361 start-page: 120 year: 2018 ident: B77 article-title: Liquid sunshine publication-title: Science doi: 10.1126/science.361.6398.120 – volume: 100 start-page: 2719 year: 2009 ident: B49 article-title: Hydrogen production by immobilized R. faecalis RLD-53 using soluble metabolites from ethanol fermentation bacteria E. harbinense B49 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.12.020 – volume: 55 start-page: 6422 year: 2016 ident: B104 article-title: Small-scale ammonia production from biomass: a techno-enviroEconomic perspective publication-title: Ind. Eng. Chem. Res. doi: 10.1016/j.jclepro.2017.01.148 – volume: 35 start-page: 13458 year: 2010 ident: B101 article-title: Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste publication-title: Int. J. Hydrog. Energy. doi: 10.1016/j.ijhydene.2009.11.126 – volume: 170 start-page: 1594 year: 2018 ident: B10 article-title: Life cycle assessment of ammonia utilization in city transportation and power generation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.09.243 – year: 2017 ident: B52 article-title: NH3 Energy+Exploring peptide-bound catalysts for electrochemical ammonia generation – volume: 28 start-page: 483 year: 2003 ident: B58 article-title: A natural gas-assisted steam electrolyzer for high-efficiency production of hydrogen publication-title: Int. J. Hydrogen Energ. doi: 10.1016/s0360-3199(02)00135-0 – volume: 5 start-page: 1 year: 2015 ident: B61 article-title: Techn-oeconomics and sustainability of renewable methanol and ammonia productions using wind power-based hydrogen publication-title: Adv. Chem. Eng. doi: 10.4172/2090-4568.1000128 – volume: 64 start-page: 71 year: 2014 ident: B24 article-title: Water footprint scenarios for 2050: a global analysis publication-title: Environ. Int. doi: 10.1016/j.envint.2013.11.019 – ident: B25 – volume: 8 start-page: 13062 year: 2015 ident: B78 article-title: Biohydrogen production from lignocellulosic biomass: technology and sustainability publication-title: Energies doi: 10.3390/en81112357 – volume: 193 start-page: 80 year: 2000 ident: B56 article-title: Synthesis of ammonia at atmospheric pressure with the use of solid state proton conductors publication-title: J. Catal. doi: 10.1006/jcat.2000.2877 – volume: 29 start-page: 1114 year: 2011 ident: B89 article-title: Chemical stability, ionic conductivity of BaCe0.9−xZrxSm0.10O3−αand its application to ammonia synthesis at atmospheric pressure publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201190209 – start-page: 220 volume-title: Biohydrogen production in extreme conditions: a comprehensive study of the fermentative metabolism of a polyextremophilic BacteriumPhD thesis year: 2014 ident: B18 – ident: B39 – volume: 52 start-page: 247 year: 2007 ident: B3 article-title: Future long-term changes in global water resources driven by socio-economic and climatic changes publication-title: Hydrological Sci. J. doi: 10.1623/hysj.52.2.247 – year: 2018 ident: B97 article-title: Biohydrogen and volatile fatty acids production form food waste hydrolysate – year: 2011 ident: B90 article-title: Modeling a solid oxide fuel-assisted electrolysis cell in cycle tempo – volume: 99 start-page: 472 year: 2016 ident: B26 article-title: A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants publication-title: Renew. Energ. doi: 10.1016/j.renene.2016.07.040 – volume: 38 start-page: 569 year: 2006 ident: B43 article-title: Bio-hydrogen production from waste materials publication-title: Enzyme Microb. Technol. doi: 10.1016/j.enzmictec.2005.09.015 – start-page: 499 year: 2013 ident: B2 article-title: Biohydrogen production by dark and photo-fermentation processes – year: 2013 ident: B65 article-title: Techno-economic feasibility study of ammonia plants powered by offshore wind – year: 2008 ident: B50 article-title: Bio-hydrogen production by dark fermentation from organic wastes and residues – volume: 38 start-page: 14576 year: 2013 ident: B30 article-title: Review of electrochemical ammonia production technologies and materials publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2013.09.054 – ident: B14 – volume: 14 start-page: 761 year: 2015 ident: B84 article-title: Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-015-9383-5 – year: 2013 ident: B48 article-title: Electrolytes and electrodes for electrochemical synthesis of ammonia – volume: 39 start-page: 10359 year: 2014 ident: B53 article-title: Elementary reaction modeling and experimental characterization of solid oxide fuel-assisted steam electrolysis cells publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2014.05.018 – ident: B81 article-title: New generation of fuel cells: fast, furious and flexible – ident: B80 article-title: NH3 Energy Future of ammonia production: improvement of haber-bosch process or electrochemical synthesis? – volume-title: Electrochemical ammonia synthesis from water and nitrogen using solid state ion conductors year: 2013 ident: B98 – ident: B27 – year: 2007 ident: B40 article-title: Tracking industrial energy efficiency and CO2 emissions – year: 2017 ident: B12 article-title: Investigation of novel ammonia production options using photoelectrochemical hydrogen – volume: 32 start-page: 172 year: 2007 ident: B35 article-title: Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2006.08.014 – volume: 43 start-page: 2540 year: 2018 ident: B67 article-title: Hydrogen production using methane: techno-economics of decarbonizing fuels and chemicals publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2017.12.081 – ident: B100 – start-page: 8 year: 2015 ident: B23 article-title: Life-cycle analysis of water consumption for hydrogen production – volume-title: Ottimizzazione del processo di digestione anaerobica a fasi separate dei rifiuti organici per la produzione di bio-hythane year: 2011 ident: B15 – volume: 50 start-page: 35 year: 2015 ident: B54 article-title: Life cycle impact assessment of ammonia production in Algeria: a comparison with previous studies publication-title: Environ. Impact Assess. Rev. doi: 10.1016/j.eiar.2014.08.003 – volume: 35 start-page: 1595 year: 2010 ident: B6 article-title: Photo-fermentative hydrogen gas production from dark fermentation effluent of ground wheat solution: Effects of light source and light intensity publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2009.12.040 – start-page: 17 volume-title: Introducing renewable ammonia by Thyssenkrupp year: 2018 ident: B91 – ident: B75 – volume: 34 start-page: 3277 year: 2009 ident: B16 article-title: Biohydrogen production from biomass and industrial wastes by dark fermentation publication-title: Int. J. Hydrogen Energ. doi: 10.1016/j.ijhydene.2009.02.010 – year: 2011 ident: B85 article-title: Biohydrogen production from agricultural and livestock residues within an integrated bioenergy concept – year: 2017 ident: B82 article-title: Nitrogenase inspired peptide-functionalized catalyst for efficient emission-free ammonia production – volume: 5 start-page: 1 year: 2015 ident: B59 article-title: Technoeconomics and sustainability of renewable methanol and ammonia productions using wind powerd-based hydrogen publication-title: Adv. Chem. Eng. doi: 10.4172/2090-4568.1000128 – volume: 135 start-page: 1379 year: 2016 ident: B11 article-title: Comparative life cycle assessment of various ammonia production methods publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.07.023 – volume: 3 start-page: 1 year: 2013 ident: B47 article-title: Synthesis of ammonia directly from air and water at ambient temperature and pressure publication-title: Scientific Rep. doi: 10.1038/srep01145 – ident: B70 – volume: 142 start-page: 130 year: 2017 ident: B22 article-title: Are we in deep water? Water scarcity and its limits to economic growth publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2017.06.019 – volume: 148 start-page: 363 year: 2017 ident: B7 article-title: Multi-objective optimization of biomass based ammonia production - potential and perspective in different countries publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.01.148 – volume: 5 start-page: 1 year: 2018 ident: B60 article-title: Life cycle assessment and water footprint of hydrogen production methods: from conventional to emerging technologies publication-title: Environments doi: 10.3390/environments5020024 |
SSID | ssj0001325410 |
Score | 2.6217163 |
SecondaryResourceType | review_article |
Snippet | Due to the important role of ammonia as a fertilizer in the agricultural industry and its promising prospects as an energy carrier, many studies have recently... |
SourceID | doaj unpaywall crossref |
SourceType | Open Website Open Access Repository Enrichment Source Index Database |
SubjectTerms | ammonia production energy carrier fertilizer Haber-Bosch sustainable hydrogen production water intensity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF-iAeIryUgYGBApNbMePsSCqigEhQaVuke2cEVIVKmiF-Peck1DCQhfWyLGd73N0d8ndd4ScVfXVNjGxUCaLufMmthJUbIyVFLhKTFGpfd6L0ZjfTbJJq9VXyAmr5YFr4PqQFtKbIKNiBE7Flbc6sy7xIXaTdR05mrFWMFV9XWG4ibT5jYlRmO57pOMZ40GaXmVBS1H9MkSVXn-XrC_Kmfn8MNNpy8gMt8hm4x1Gg3pX22QNyh3SbWkG7pLzx5-Sp2gQTtGLiR5q3VbEOGoy_-F9j4yHt083o7hpdxA7TpM5AoVWRAN6OMyBV6ApoK3XwmrImNRAnWTC28wL5SUtmKPUcMULcMJ4myZsn3TK1xIOSIQvJXcFLcCjh2DRJktrjaI-RV44E2mPJN_PnrtGCzy0pJjmGBMEuPIKrjzAlddw9cjF8pZZLYTx1-DrAOhyYNCwri4gs3nDbL6K2R65XNKxesnD_1jyiGyEKUOOGdXHpDN_W8AJOh1ze1qdry_vYdMU priority: 102 providerName: Directory of Open Access Journals |
Title | Sustainable Ammonia Production Processes |
URI | https://www.frontiersin.org/articles/10.3389/fenrg.2021.580808/pdf https://doaj.org/article/e1d7fa0034a64cf48fb95bc0f7888707 |
UnpaywallVersion | publishedVersion |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2296-598X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325410 issn: 2296-598X databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2296-598X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325410 issn: 2296-598X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2296-598X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325410 issn: 2296-598X databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH3-L6ogcPonRt0zSP4yqKeBBBF9ZTSdJEFpe66C6iv95MW9dVRBGPLRPafjNpZpKZbwD2yvpqHamQCZWG1DgVam5FqJTmxFIRqbxk-7xk5x160U27E7UwmFbpsHQfG0H3ioopuE4RwxnuIyp55Dy0dz62I3ErRV5EcTTI3TTMMDxkasBM5_KqfYtd5YhkYSpFtzrO_H7spwWp5O2fh9lRMVAvz6rfn1hszhbBvL9mlWNy3xoNdcu8fmFw_N93LMFC7YsG7WrAMkzZYgXmJxgKV2H_-qPAKmijzfZUcFWxxHqNBnWdgX1ag87Z6c3JeVg3VwgNJdHQq8WvWdJ6fyox1gkrifWehWRa2jTh0hLDE-Z06phwnOSJIURRQXNrmHI6jpJ1aBQPhd2AwP8CqMlJbp33R7T3ALjWShAXeyugCYubEL0jnJmaeRwbYPQzH4EgEFkJRIZAZBUQTTgYDxlUtBs_CR-j2saCyJhd3vCgZzXomY1z7hTS8SjmTZIKp2WqTeRwD4BHvAmHY6X__sjNP0lvwRxeYeoakdvQGD6O7I73ZYZ6t9wD2K1N9g3CgvI0 |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60HtSDb7G-yMGDKKnJZrOPYxVFPIighXoKu5tdKZZYtEX017uTxFpFFPGYsEOSbyaZmezMNwB7ZX-1jlTIhEpDapwKNbciVEpzYqmIVF6yfV6y8w696KbdiV4YLKt02LqPg6B7RcUUXJeI4RvuMyp55Dy0dz63I3ErRV5EcTTI3TTMMNxkasBM5_KqfYtT5YhkYSpFt9rO_F72k0MqefvnYXZUDNTLs-r3J5zN2SKY99usakzuW6OhbpnXLwyO_3uOJVioY9GgXQksw5QtVmB-gqFwFfavPxqsgjbabE8FVxVLrNdoUPcZ2Kc16Jyd3pych_VwhdBQEg29WrzPktbHU4mxTlhJrI8sJNPSpgmXlhieMKdTx4TjJE8MIYoKmlvDlNNxlKxDo3go7AYE_hNATU5y63w8on0EwLVWgrjYWwFNWNyE6B3hzNTM4zgAo5_5DASByEogMgQiq4BowsFYZFDRbvy0-BjVNl6IjNnlCQ96VoOe2TjnTiEdj2LeJKlwWqbaRA7_AfCIN-FwrPTfL7n5p9VbMIdHWLpG5DY0ho8ju-NjmaHerY31DRrK8T8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustainable+Ammonia+Production+Processes&rft.jtitle=Frontiers+in+energy+research&rft.au=Ghavam%2C+Seyedehhoma&rft.au=Vahdati%2C+Maria&rft.au=Wilson%2C+I.+A.+Grant&rft.au=Styring%2C+Peter&rft.date=2021-03-29&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=9&rft_id=info:doi/10.3389%2Ffenrg.2021.580808&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fenrg_2021_580808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon |