In situ etching-induced self-assembly of metal cluster decorated one-dimensional semiconductors for solar-powered water splitting: unraveling cooperative synergy by photoelectrochemical investigations

Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gol...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 9; no. 43; pp. 17118 - 17132
Main Authors Xiao, Fang-Xing, Liu, Bin
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 01.01.2017
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/C7NR06697J

Cover

Abstract Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Au x @GSH) enwrapped ZnO nanowire array (NW) heterostructures (Au x /ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Au x clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Au x /ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Ag x clusters (Ag x /ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Au x clusters as photosensitizer was unambiguously revealed and the merits of Au x clusters in boosting charge transfer arising from their unique core–shell architecture were highlighted by systematic comparison under identical conditions, based on which Au x cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications.
AbstractList Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Aux@GSH) enwrapped ZnO nanowire array (NW) heterostructures (Aux/ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Aux clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Aux/ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Agx clusters (Agx/ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Aux clusters as photosensitizer was unambiguously revealed and the merits of Aux clusters in boosting charge transfer arising from their unique core–shell architecture were highlighted by systematic comparison under identical conditions, based on which Aux cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications.
Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Au @GSH) enwrapped ZnO nanowire array (NW) heterostructures (Au /ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Au clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Au /ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Ag clusters (Ag /ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Au clusters as photosensitizer was unambiguously revealed and the merits of Au clusters in boosting charge transfer arising from their unique core-shell architecture were highlighted by systematic comparison under identical conditions, based on which Au cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications.
Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Aux@GSH) enwrapped ZnO nanowire array (NW) heterostructures (Aux/ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Aux clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Aux/ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Agx clusters (Agx/ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Aux clusters as photosensitizer was unambiguously revealed and the merits of Aux clusters in boosting charge transfer arising from their unique core-shell architecture were highlighted by systematic comparison under identical conditions, based on which Aux cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications.Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Aux@GSH) enwrapped ZnO nanowire array (NW) heterostructures (Aux/ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Aux clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Aux/ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Agx clusters (Agx/ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Aux clusters as photosensitizer was unambiguously revealed and the merits of Aux clusters in boosting charge transfer arising from their unique core-shell architecture were highlighted by systematic comparison under identical conditions, based on which Aux cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications.
Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Au x @GSH) enwrapped ZnO nanowire array (NW) heterostructures (Au x /ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Au x clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Au x /ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Ag x clusters (Ag x /ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Au x clusters as photosensitizer was unambiguously revealed and the merits of Au x clusters in boosting charge transfer arising from their unique core–shell architecture were highlighted by systematic comparison under identical conditions, based on which Au x cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications.
Author Liu, Bin
Xiao, Fang-Xing
Author_xml – sequence: 1
  givenname: Fang-Xing
  orcidid: 0000-0001-5673-5362
  surname: Xiao
  fullname: Xiao, Fang-Xing
  organization: College of Materials Science and Engineering, Fuzhou University, Fuzhou, China
– sequence: 2
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29087419$$D View this record in MEDLINE/PubMed
BookMark eNptkstqFUEQhgeJmItufABpcCOB0b7OxV04GI0EBdH10NNTc06Hnu6xq-eEeUMfyz4mRgiuqhbf__9FVZ0WRz54KIqXjL5lVLTvNvWXb7Sq2vrzk-KEU0lLIWp-9NBX8rg4RbyhtGpFJZ4Vx7ylTS1Ze1L8uvIEbVoIJLOzfltaPywGBoLgxlIjwtS7lYSRTJC0I8YtmCCSAUyIOmUwz1IOdgKPNvhMZIU14eCSQkQyhkgwOB3LOdxCzIJbfTDA2dmUcuJ7svio9-ByT0wIM2RfuweCq4e4XUm_knkXUgAHJsVgdoeAHGT9HjDZbaaDx-fF01E7hBf39az4cfnh--ZTef3149Xm4ro0ktNU8p7m0blQemAUtBq5oYPSjawbMfZ1b3ojZSV6o6BvKjm0UrWUDYpyCUYxJc6KN3e-cww_lzxAN1k04Jz2EBbsWKsaJRomaEZfP0JvwhLzjrDjlOULcCFlpl7dU0s_wdDN0U46rt3fG2Xg_A4wMSBGGB8QRrvDA3T_HiDD9BFsbPqzoRS1df-T_AYqqrjI
CitedBy_id crossref_primary_10_1021_acscatal_2c05401
crossref_primary_10_1007_s12209_022_00314_1
crossref_primary_10_1039_D0TA04750C
crossref_primary_10_1016_j_ijhydene_2021_12_107
crossref_primary_10_1039_C8TA02802H
crossref_primary_10_1088_2053_1591_aac185
crossref_primary_10_1039_C7RA13222K
crossref_primary_10_1039_D2NR02741K
crossref_primary_10_1039_C9DT02849H
crossref_primary_10_1002_smll_202307619
crossref_primary_10_1021_acs_inorgchem_4c01091
crossref_primary_10_1021_acs_jpcc_8b02895
crossref_primary_10_1039_D2NR05937A
crossref_primary_10_1016_j_matchemphys_2018_04_089
crossref_primary_10_1016_j_cej_2020_127195
crossref_primary_10_1016_j_jcis_2018_05_023
crossref_primary_10_1021_acs_jpcc_1c07629
crossref_primary_10_1039_C9SE00719A
crossref_primary_10_1039_C8TA08841A
crossref_primary_10_1039_D3TA01154B
crossref_primary_10_1021_acs_inorgchem_3c02700
crossref_primary_10_1016_j_apcatb_2019_118395
crossref_primary_10_1016_j_apsusc_2018_01_054
crossref_primary_10_1002_slct_201901703
crossref_primary_10_1016_j_solidstatesciences_2019_105934
crossref_primary_10_1016_j_cej_2020_124676
crossref_primary_10_1039_D0TA07235D
crossref_primary_10_1021_acs_inorgchem_9b03538
crossref_primary_10_1016_j_cattod_2018_01_005
crossref_primary_10_1016_j_ijhydene_2019_05_120
crossref_primary_10_1016_j_surfcoat_2020_125605
crossref_primary_10_1039_C9NR00887J
crossref_primary_10_1002_chem_202303973
crossref_primary_10_1016_j_jclepro_2021_126200
crossref_primary_10_1039_C9NR00229D
crossref_primary_10_1021_acs_chemrev_9b00232
crossref_primary_10_1016_j_jcat_2024_115667
crossref_primary_10_1039_D2TA00572G
crossref_primary_10_1088_2515_7655_ab0718
crossref_primary_10_1021_acscatal_2c01667
crossref_primary_10_1039_D2NR05044G
crossref_primary_10_1039_C8CY02283F
crossref_primary_10_1039_C9TA01144G
crossref_primary_10_1039_D4TA00237G
crossref_primary_10_1021_acsenergylett_0c02180
crossref_primary_10_1016_j_apsusc_2018_02_139
crossref_primary_10_1016_j_matlet_2018_12_139
crossref_primary_10_1039_D2AN01324J
crossref_primary_10_1021_acs_inorgchem_3c02951
crossref_primary_10_1039_C9TA11579J
crossref_primary_10_1039_C8NR03557A
crossref_primary_10_1016_j_ceramint_2025_01_543
crossref_primary_10_1016_j_ccr_2023_215285
crossref_primary_10_1021_acs_inorgchem_2c03634
crossref_primary_10_1021_acs_inorgchem_3c00295
crossref_primary_10_1039_C9NJ02593F
crossref_primary_10_1016_j_jcis_2018_06_055
crossref_primary_10_1038_s41598_018_26447_9
crossref_primary_10_1007_s41664_022_00224_0
crossref_primary_10_1016_j_jssc_2022_123238
crossref_primary_10_3390_pharmaceutics11110575
crossref_primary_10_1016_j_ccr_2022_214948
crossref_primary_10_1016_j_cej_2021_133465
crossref_primary_10_1021_acs_inorgchem_3c03283
crossref_primary_10_3866_PKU_WHXB202306048
crossref_primary_10_1002_smll_202300804
crossref_primary_10_1007_s10563_018_9259_0
crossref_primary_10_1039_C9NR02304F
crossref_primary_10_1016_j_jelechem_2024_118506
crossref_primary_10_1039_C8NR06788K
crossref_primary_10_1155_2019_6042026
crossref_primary_10_1021_acs_inorgchem_9b03073
crossref_primary_10_1016_j_jcat_2021_05_019
crossref_primary_10_1002_smll_202302372
crossref_primary_10_1016_j_apsusc_2023_156980
crossref_primary_10_1016_j_cattod_2018_09_010
crossref_primary_10_1016_j_surfin_2025_105874
crossref_primary_10_1021_acs_jpclett_0c02460
crossref_primary_10_1038_s41598_020_59491_5
crossref_primary_10_1016_j_ccr_2018_12_013
crossref_primary_10_1016_j_apsusc_2020_147252
crossref_primary_10_1002_admi_201701098
crossref_primary_10_1007_s10853_019_03780_6
crossref_primary_10_1007_s12598_019_01255_w
crossref_primary_10_1016_j_electacta_2019_135369
crossref_primary_10_1039_D3TA03709F
crossref_primary_10_1007_s11164_020_04346_x
crossref_primary_10_1038_s41598_020_78542_5
crossref_primary_10_1039_D0CC01300E
crossref_primary_10_1002_chem_201902886
Cites_doi 10.1021/ja044825a
10.1021/jp805786p
10.1039/C5TA10563C
10.1002/adfm.201700016
10.1021/jz400111d
10.1038/am.2013.3
10.1021/nl050788p
10.1149/1.2115350
10.1039/C6TA07845A
10.1016/j.jcat.2009.06.011
10.1039/C4NR01380H
10.1038/238037a0
10.1002/anie.201000527
10.1002/adma.200904317
10.1021/ja403807f
10.1021/nl061700q
10.1021/ja0299452
10.1021/jacs.5b06323
10.1039/c2nr30480e
10.1016/S0955-2219(99)00203-4
10.1002/adma.201606688
10.1016/j.apcatb.2016.09.068
10.1021/acs.chemrev.5b00267
10.1021/cm020781y
10.1039/C4TA04526B
10.1021/jz300547d
10.1039/c4ta01077a
10.1126/science.1150176
10.1021/cr60234a002
10.1021/acsami.5b09091
10.1021/acs.accounts.6b00523
10.1021/nn900897r
10.1038/srep22742
10.1039/C4TA04461D
10.1016/S0008-6223(97)00096-1
10.1039/c2jm16452c
10.1021/jz300940c
10.1039/C5TA08202A
10.1021/ja042192u
10.1002/smll.201401919
10.1039/C5TA03255E
10.1021/ja5017365
10.1002/adfm.201002295
10.1021/ja203878q
10.1002/adfm.201402443
10.1021/jz100133n
10.1021/jz301191t
10.1021/jp3034984
10.1021/ja053915s
10.1021/jacs.7b00452
10.1021/ar300213z
10.1021/acs.chemrev.5b00703
10.1021/ja801173r
10.1021/am302462d
10.1039/C2CS35367A
10.1039/c2jm15122g
10.1021/nl101225f
10.1016/j.apsusc.2016.05.009
10.1039/C5TA01087J
10.1039/c2ee03461a
10.1021/ja306199p
10.1021/nl1022354
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2017
Copyright_xml – notice: Copyright Royal Society of Chemistry 2017
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/C7NR06697J
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 17132
ExternalDocumentID 29087419
10_1039_C7NR06697J
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABIQK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGQPQ
AGRSR
AHGCF
AHGXI
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BLAPV
BSQNT
C6K
CAG
CITATION
COF
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
FEDTE
GGIMP
H13
HVGLF
HZ~
H~N
J3G
J3H
J3I
L-8
O-G
O9-
OK1
P2P
R56
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
-JG
AGSTE
NPM
RRC
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c420t-2b0dec235ad10ea5f2c0d5a84783fb7bcbc4463bc5eb864d945901d5024ec5153
ISSN 2040-3364
2040-3372
IngestDate Sat Sep 27 20:30:58 EDT 2025
Sun Jun 29 15:30:53 EDT 2025
Wed Feb 19 02:41:40 EST 2025
Thu Apr 24 22:58:30 EDT 2025
Tue Jul 01 00:33:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-2b0dec235ad10ea5f2c0d5a84783fb7bcbc4463bc5eb864d945901d5024ec5153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5673-5362
PMID 29087419
PQID 2010872344
PQPubID 2047485
PageCount 15
ParticipantIDs proquest_miscellaneous_1958538130
proquest_journals_2010872344
pubmed_primary_29087419
crossref_primary_10_1039_C7NR06697J
crossref_citationtrail_10_1039_C7NR06697J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20170101
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 20170101
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2017
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Xu (C7NR06697J-(cit8)/*[position()=1]) 2016; 4
Long (C7NR06697J-(cit46)/*[position()=1]) 2017; 139
Liu (C7NR06697J-(cit62)/*[position()=1]) 2016; 6
Li (C7NR06697J-(cit4)/*[position()=1]) 2015; 3
Liu (C7NR06697J-(cit43)/*[position()=1]) 2003; 125
Weng (C7NR06697J-(cit51)/*[position()=1]) 2014; 2
Tang (C7NR06697J-(cit5)/*[position()=1]) 2015; 3
Chen (C7NR06697J-(cit18)/*[position()=1]) 2014; 136
Sakai (C7NR06697J-(cit63)/*[position()=1]) 2010; 22
Li (C7NR06697J-(cit12)/*[position()=1]) 2017; 50
Chen (C7NR06697J-(cit33)/*[position()=1]) 2013; 135
Whetten (C7NR06697J-(cit24)/*[position()=1]) 2007; 318
Meekins (C7NR06697J-(cit61)/*[position()=1]) 2009; 3
Zhang (C7NR06697J-(cit49)/*[position()=1]) 2016; 4
Li (C7NR06697J-(cit19)/*[position()=1]) 2013; 46
Han (C7NR06697J-(cit50)/*[position()=1]) 2015; 25
Liu (C7NR06697J-(cit44)/*[position()=1]) 2004; 126
Xiao (C7NR06697J-(cit10)/*[position()=1]) 2012; 22
Fujishima (C7NR06697J-(cit1)/*[position()=1]) 1972; 238
Xiao (C7NR06697J-(cit53)/*[position()=1]) 2012; 4
Xiao (C7NR06697J-(cit56)/*[position()=1]) 2014; 6
Negishi (C7NR06697J-(cit22)/*[position()=1]) 2012; 3
Kurashige (C7NR06697J-(cit28)/*[position()=1]) 2012; 3
Chen (C7NR06697J-(cit17)/*[position()=1]) 2013; 135
Jin (C7NR06697J-(cit64)/*[position()=1]) 2016; 116
Chen (C7NR06697J-(cit34)/*[position()=1]) 2014; 136
Xiao (C7NR06697J-(cit40)/*[position()=1]) 2015; 11
Tian (C7NR06697J-(cit15)/*[position()=1]) 2005; 127
Wu (C7NR06697J-(cit20)/*[position()=1]) 2010; 10
Zhu (C7NR06697J-(cit58)/*[position()=1]) 2017; 27
Xiao (C7NR06697J-(cit54)/*[position()=1]) 2012; 22
Xiao (C7NR06697J-(cit42)/*[position()=1]) 2012; 116
Chen (C7NR06697J-(cit30)/*[position()=1]) 2012; 3
Bahena (C7NR06697J-(cit23)/*[position()=1]) 2013; 4
Bera (C7NR06697J-(cit7)/*[position()=1]) 2016; 383
Zhang (C7NR06697J-(cit57)/*[position()=1]) 2012; 5
Chen (C7NR06697J-(cit16)/*[position()=1]) 2013; 42
Degen (C7NR06697J-(cit39)/*[position()=1]) 2000; 20
Zhu (C7NR06697J-(cit25)/*[position()=1]) 2010; 1
Xiao (C7NR06697J-(cit21)/*[position()=1]) 2015; 137
Wei (C7NR06697J-(cit48)/*[position()=1]) 2003; 15
Zhang (C7NR06697J-(cit13)/*[position()=1]) 2017; 29
Sakai (C7NR06697J-(cit31)/*[position()=1]) 2010; 22
Zhang (C7NR06697J-(cit11)/*[position()=1]) 2015; 115
Xiao (C7NR06697J-(cit52)/*[position()=1]) 2012; 22
Luo (C7NR06697J-(cit35)/*[position()=1]) 2012; 134
Yuan (C7NR06697J-(cit37)/*[position()=1]) 2013; 5
Zhu (C7NR06697J-(cit66)/*[position()=1]) 2008; 112
Shichibu (C7NR06697J-(cit27)/*[position()=1]) 2005; 127
Rao (C7NR06697J-(cit29)/*[position()=1]) 2010; 49
Kogo (C7NR06697J-(cit32)/*[position()=1]) 2012; 4
Yu (C7NR06697J-(cit6)/*[position()=1]) 2015; 3
Dotzauer (C7NR06697J-(cit36)/*[position()=1]) 2006; 6
Huang (C7NR06697J-(cit55)/*[position()=1]) 2009; 266
Greene (C7NR06697J-(cit2)/*[position()=1]) 2005; 5
Zhang (C7NR06697J-(cit45)/*[position()=1]) 2017; 202
Kwiatkowski (C7NR06697J-(cit3)/*[position()=1]) 2015; 3
Tang (C7NR06697J-(cit26)/*[position()=1]) 2011; 133
Parks (C7NR06697J-(cit38)/*[position()=1]) 1965; 65
Wang (C7NR06697J-(cit9)/*[position()=1]) 2016; 4
Biniak (C7NR06697J-(cit47)/*[position()=1]) 1997; 35
Cocivera (C7NR06697J-(cit60)/*[position()=1]) 1984; 131
Zhu (C7NR06697J-(cit65)/*[position()=1]) 2008; 130
Xiao (C7NR06697J-(cit41)/*[position()=1]) 2015; 7
Thimsen (C7NR06697J-(cit14)/*[position()=1]) 2011; 11
Li (C7NR06697J-(cit59)/*[position()=1]) 2011; 21
References_xml – volume: 126
  start-page: 16744
  year: 2004
  ident: C7NR06697J-(cit44)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja044825a
– volume: 112
  start-page: 14221
  year: 2008
  ident: C7NR06697J-(cit66)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp805786p
– volume: 4
  start-page: 5124
  year: 2016
  ident: C7NR06697J-(cit8)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10563C
– volume: 27
  start-page: 1700016
  year: 2017
  ident: C7NR06697J-(cit58)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700016
– volume: 4
  start-page: 975
  year: 2013
  ident: C7NR06697J-(cit23)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400111d
– volume: 5
  start-page: e39
  year: 2013
  ident: C7NR06697J-(cit37)/*[position()=1]
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2013.3
– volume: 5
  start-page: 1231
  year: 2005
  ident: C7NR06697J-(cit2)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl050788p
– volume: 131
  start-page: 2514
  year: 1984
  ident: C7NR06697J-(cit60)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2115350
– volume: 4
  start-page: 18804
  year: 2016
  ident: C7NR06697J-(cit49)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07845A
– volume: 266
  start-page: 228
  year: 2009
  ident: C7NR06697J-(cit55)/*[position()=1]
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2009.06.011
– volume: 6
  start-page: 6727
  year: 2014
  ident: C7NR06697J-(cit56)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR01380H
– volume: 238
  start-page: 37
  year: 1972
  ident: C7NR06697J-(cit1)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 49
  start-page: 3925
  year: 2010
  ident: C7NR06697J-(cit29)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201000527
– volume: 22
  start-page: 3185
  year: 2010
  ident: C7NR06697J-(cit63)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904317
– volume: 135
  start-page: 8822
  year: 2013
  ident: C7NR06697J-(cit33)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403807f
– volume: 6
  start-page: 2268
  year: 2006
  ident: C7NR06697J-(cit36)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl061700q
– volume: 125
  start-page: 4430
  year: 2003
  ident: C7NR06697J-(cit43)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0299452
– volume: 137
  start-page: 10735
  year: 2015
  ident: C7NR06697J-(cit21)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06323
– volume: 4
  start-page: 4217
  year: 2012
  ident: C7NR06697J-(cit32)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr30480e
– volume: 20
  start-page: 667
  year: 2000
  ident: C7NR06697J-(cit39)/*[position()=1]
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/S0955-2219(99)00203-4
– volume: 29
  start-page: 1606688
  year: 2017
  ident: C7NR06697J-(cit13)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606688
– volume: 202
  start-page: 620
  year: 2017
  ident: C7NR06697J-(cit45)/*[position()=1]
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2016.09.068
– volume: 115
  start-page: 10307
  year: 2015
  ident: C7NR06697J-(cit11)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00267
– volume: 15
  start-page: 433
  year: 2003
  ident: C7NR06697J-(cit48)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm020781y
– volume: 3
  start-page: 1199
  year: 2015
  ident: C7NR06697J-(cit6)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04526B
– volume: 3
  start-page: 1624
  year: 2012
  ident: C7NR06697J-(cit22)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300547d
– volume: 2
  start-page: 9380
  year: 2014
  ident: C7NR06697J-(cit51)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c4ta01077a
– volume: 318
  start-page: 407
  year: 2007
  ident: C7NR06697J-(cit24)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1150176
– volume: 65
  start-page: 177
  year: 1965
  ident: C7NR06697J-(cit38)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr60234a002
– volume: 7
  start-page: 28105
  year: 2015
  ident: C7NR06697J-(cit41)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09091
– volume: 50
  start-page: 112
  year: 2017
  ident: C7NR06697J-(cit12)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00523
– volume: 3
  start-page: 3437
  year: 2009
  ident: C7NR06697J-(cit61)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn900897r
– volume: 6
  start-page: 22742
  year: 2016
  ident: C7NR06697J-(cit62)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep22742
– volume: 3
  start-page: 2485
  year: 2015
  ident: C7NR06697J-(cit4)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04461D
– volume: 135
  start-page: 8822
  year: 2013
  ident: C7NR06697J-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403807f
– volume: 35
  start-page: 1799
  year: 1997
  ident: C7NR06697J-(cit47)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/S0008-6223(97)00096-1
– volume: 22
  start-page: 7819
  year: 2012
  ident: C7NR06697J-(cit54)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16452c
– volume: 3
  start-page: 2493
  year: 2012
  ident: C7NR06697J-(cit30)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz300940c
– volume: 4
  start-page: 6926
  year: 2016
  ident: C7NR06697J-(cit9)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08202A
– volume: 127
  start-page: 7632
  year: 2005
  ident: C7NR06697J-(cit15)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja042192u
– volume: 11
  start-page: 554
  year: 2015
  ident: C7NR06697J-(cit40)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201401919
– volume: 3
  start-page: 15876
  year: 2015
  ident: C7NR06697J-(cit5)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03255E
– volume: 136
  start-page: 6075
  year: 2014
  ident: C7NR06697J-(cit34)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5017365
– volume: 21
  start-page: 1717
  year: 2011
  ident: C7NR06697J-(cit59)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002295
– volume: 22
  start-page: 3185
  year: 2010
  ident: C7NR06697J-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904317
– volume: 133
  start-page: 16037
  year: 2011
  ident: C7NR06697J-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja203878q
– volume: 25
  start-page: 221
  year: 2015
  ident: C7NR06697J-(cit50)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201402443
– volume: 1
  start-page: 1003
  year: 2010
  ident: C7NR06697J-(cit25)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100133n
– volume: 3
  start-page: 2649
  year: 2012
  ident: C7NR06697J-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz301191t
– volume: 116
  start-page: 16487
  year: 2012
  ident: C7NR06697J-(cit42)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3034984
– volume: 127
  start-page: 13464
  year: 2005
  ident: C7NR06697J-(cit27)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja053915s
– volume: 139
  start-page: 4486
  year: 2017
  ident: C7NR06697J-(cit46)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00452
– volume: 46
  start-page: 1749
  year: 2013
  ident: C7NR06697J-(cit19)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300213z
– volume: 116
  start-page: 10346
  year: 2016
  ident: C7NR06697J-(cit64)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00703
– volume: 130
  start-page: 5883
  year: 2008
  ident: C7NR06697J-(cit65)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801173r
– volume: 4
  start-page: 7055
  year: 2012
  ident: C7NR06697J-(cit53)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am302462d
– volume: 42
  start-page: 2679
  year: 2013
  ident: C7NR06697J-(cit16)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35367A
– volume: 22
  start-page: 2868
  year: 2012
  ident: C7NR06697J-(cit52)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15122g
– volume: 10
  start-page: 2568
  year: 2010
  ident: C7NR06697J-(cit20)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl101225f
– volume: 383
  start-page: 165
  year: 2016
  ident: C7NR06697J-(cit7)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.05.009
– volume: 22
  start-page: 2868
  year: 2012
  ident: C7NR06697J-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15122g
– volume: 3
  start-page: 12748
  year: 2015
  ident: C7NR06697J-(cit3)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01087J
– volume: 136
  start-page: 6075
  year: 2014
  ident: C7NR06697J-(cit18)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5017365
– volume: 5
  start-page: 6506
  year: 2012
  ident: C7NR06697J-(cit57)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03461a
– volume: 134
  start-page: 16662
  year: 2012
  ident: C7NR06697J-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306199p
– volume: 11
  start-page: 35
  year: 2011
  ident: C7NR06697J-(cit14)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl1022354
SSID ssj0069363
Score 2.5022461
Snippet Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 17118
SubjectTerms Charge transfer
Etching
Glutathione
Gold
Heterostructures
Light irradiation
Low dimensional semiconductors
Metal clusters
Nanoparticles
Nanowires
Photovoltaic cells
Self-assembly
Solar energy conversion
Surface charge
Water splitting
Zinc oxide
Title In situ etching-induced self-assembly of metal cluster decorated one-dimensional semiconductors for solar-powered water splitting: unraveling cooperative synergy by photoelectrochemical investigations
URI https://www.ncbi.nlm.nih.gov/pubmed/29087419
https://www.proquest.com/docview/2010872344
https://www.proquest.com/docview/1958538130
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customers
  customDbUrl: https://pubs.rsc.org
  eissn: 2040-3372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069363
  issn: 2040-3364
  databaseCode: AETIL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW7QUOiG8WCjKCC6oCSWwna25V1apbQQ9oK-0tih1H2mo3WTXJofyD_rP-LGYSJ5uUrQRcolXifM7b8bM984aQT0IGsRRSOdC5MYcLyR3JZejINPZSzhIvrfPWfpwHpxf8bCEWo9FNL2qpKtUX_WtnXsn_WBX2gV0xS_YfLNtdFHbAb7AvbMHCsP0rG8-yg2JZVgf46aELcmB8XeF6fmFWqQOs2KzVyq6gY86jXlVFUxFco-GhYZ4ZJ0F9_0abA05cAzLwKnURHgxBLHDs62ywmBpGqsd4gQKYa9mmSlcZVjBaNcm7-cZYKfHiuskqVDh7kpe5rbejW4GC5Vbgo50xtBwZHH5eQJMOcotlXE_onsTwjou2r8UoomVV49Oqh9vJCy_sTV6Y2sn5GNHIWDjwyLIHPM567tULvcZb_-H4XYa6qTrMroBDyfCy3wi-xWZdQ8CX7hQolNx2fl1IYnvoAdnzoYNwx2Tv8Hg--95264FkAWv1bZn8ur0V6knbk4fk5p4RS81c5k_IYzvkoIcNfp6SkcmekUc9Icrn5HaWUUQSvYMkOkASzVNaI4laJNEOSfQOkugQSRSQRAdIojWSaIekb3SLI9rDEbU4ouqa7sIRHeLoBbk4OZ4fnTq2xoejue-Wjq9ceFSfiTjxXBOL1NduImLgTFOWqlBppTkPmNLCqGnAE8kxWToRQC2NBi7OXpJxBq_4mlDDp6mUJhRSKlztj1OGMZxBEitXSSMm5HNrnEhbAXysw7KK6kAMJqOj8PxnbdOzCfnYtd00si87W-23No6sWygiDC-Zhj7jfEI-dIfBaeNKXJyZvCoiVHgCpgH8cUJeNdjobtNi6c29R96Sh9v_0j4Zl1eVeQfUuFTvLWh_AzDByB8
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+etching-induced+self-assembly+of+metal+cluster+decorated+one-dimensional+semiconductors+for+solar-powered+water+splitting%3A+unraveling+cooperative+synergy+by+photoelectrochemical+investigations&rft.jtitle=Nanoscale&rft.au=Xiao%2C+Fang-Xing&rft.au=Liu%2C+Bin&rft.date=2017-01-01&rft.eissn=2040-3372&rft.volume=9&rft.issue=43&rft.spage=17118&rft_id=info:doi/10.1039%2Fc7nr06697j&rft_id=info%3Apmid%2F29087419&rft.externalDocID=29087419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon