In situ etching-induced self-assembly of metal cluster decorated one-dimensional semiconductors for solar-powered water splitting: unraveling cooperative synergy by photoelectrochemical investigations
Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gol...
        Saved in:
      
    
          | Published in | Nanoscale Vol. 9; no. 43; pp. 17118 - 17132 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Royal Society of Chemistry
    
        01.01.2017
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2040-3364 2040-3372 2040-3372  | 
| DOI | 10.1039/C7NR06697J | 
Cover
| Abstract | Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Au
x
@GSH) enwrapped ZnO nanowire array (NW) heterostructures (Au
x
/ZnO NWs) were designed by a facile, green, simple yet efficient
in situ
etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Au
x
clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Au
x
/ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Ag
x
clusters (Ag
x
/ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Au
x
clusters as photosensitizer was unambiguously revealed and the merits of Au
x
clusters in boosting charge transfer arising from their unique core–shell architecture were highlighted by systematic comparison under identical conditions, based on which Au
x
cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications. | 
    
|---|---|
| AbstractList | Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Aux@GSH) enwrapped ZnO nanowire array (NW) heterostructures (Aux/ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Aux clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Aux/ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Agx clusters (Agx/ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Aux clusters as photosensitizer was unambiguously revealed and the merits of Aux clusters in boosting charge transfer arising from their unique core–shell architecture were highlighted by systematic comparison under identical conditions, based on which Aux cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications. Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Au @GSH) enwrapped ZnO nanowire array (NW) heterostructures (Au /ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Au clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Au /ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Ag clusters (Ag /ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Au clusters as photosensitizer was unambiguously revealed and the merits of Au clusters in boosting charge transfer arising from their unique core-shell architecture were highlighted by systematic comparison under identical conditions, based on which Au cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications. Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Aux@GSH) enwrapped ZnO nanowire array (NW) heterostructures (Aux/ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Aux clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Aux/ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Agx clusters (Agx/ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Aux clusters as photosensitizer was unambiguously revealed and the merits of Aux clusters in boosting charge transfer arising from their unique core-shell architecture were highlighted by systematic comparison under identical conditions, based on which Aux cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications.Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Aux@GSH) enwrapped ZnO nanowire array (NW) heterostructures (Aux/ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Aux clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Aux/ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Agx clusters (Agx/ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Aux clusters as photosensitizer was unambiguously revealed and the merits of Aux clusters in boosting charge transfer arising from their unique core-shell architecture were highlighted by systematic comparison under identical conditions, based on which Aux cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications. Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical (PEC) properties of metal cluster/semiconductor systems for solar energy conversion. In this work, highly ordered glutathione (GSH)-protected gold (Au) cluster (Au x @GSH) enwrapped ZnO nanowire array (NW) heterostructures (Au x /ZnO NWs) were designed by a facile, green, simple yet efficient in situ etching-induced electrostatic self-assembly strategy by modulating the intrinsic surface charge properties of building blocks, which renders negatively charged Au x clusters spontaneously and uniformly self-assembles them on positively charged ZnO NWs framework with intimate interfacial integration. It was unraveled that such Au x /ZnO NWs heterostructures demonstrated significantly enhanced PEC water splitting performance in comparison with single ZnO NWs, Au nanoparticles (Au/ZnO NWs) and GSH-capped Ag x clusters (Ag x /ZnO NWs) decorated ZnO NWs counterparts under both simulated solar and visible light irradiation. The vitally important role of Au x clusters as photosensitizer was unambiguously revealed and the merits of Au x clusters in boosting charge transfer arising from their unique core–shell architecture were highlighted by systematic comparison under identical conditions, based on which Au x cluster-mediated PEC water splitting mechanism is delineated. It is anticipated that our work can highlight the possibility of harnessing metal clusters as efficient light-harvest antennas and open new avenues for rational construction of various highly energy efficient metal cluster/semiconductor heterostructures for widespread photocatalytic and PEC applications.  | 
    
| Author | Liu, Bin Xiao, Fang-Xing  | 
    
| Author_xml | – sequence: 1 givenname: Fang-Xing orcidid: 0000-0001-5673-5362 surname: Xiao fullname: Xiao, Fang-Xing organization: College of Materials Science and Engineering, Fuzhou University, Fuzhou, China – sequence: 2 givenname: Bin surname: Liu fullname: Liu, Bin organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29087419$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNptkstqFUEQhgeJmItufABpcCOB0b7OxV04GI0EBdH10NNTc06Hnu6xq-eEeUMfyz4mRgiuqhbf__9FVZ0WRz54KIqXjL5lVLTvNvWXb7Sq2vrzk-KEU0lLIWp-9NBX8rg4RbyhtGpFJZ4Vx7ylTS1Ze1L8uvIEbVoIJLOzfltaPywGBoLgxlIjwtS7lYSRTJC0I8YtmCCSAUyIOmUwz1IOdgKPNvhMZIU14eCSQkQyhkgwOB3LOdxCzIJbfTDA2dmUcuJ7svio9-ByT0wIM2RfuweCq4e4XUm_knkXUgAHJsVgdoeAHGT9HjDZbaaDx-fF01E7hBf39az4cfnh--ZTef3149Xm4ro0ktNU8p7m0blQemAUtBq5oYPSjawbMfZ1b3ojZSV6o6BvKjm0UrWUDYpyCUYxJc6KN3e-cww_lzxAN1k04Jz2EBbsWKsaJRomaEZfP0JvwhLzjrDjlOULcCFlpl7dU0s_wdDN0U46rt3fG2Xg_A4wMSBGGB8QRrvDA3T_HiDD9BFsbPqzoRS1df-T_AYqqrjI | 
    
| CitedBy_id | crossref_primary_10_1021_acscatal_2c05401 crossref_primary_10_1007_s12209_022_00314_1 crossref_primary_10_1039_D0TA04750C crossref_primary_10_1016_j_ijhydene_2021_12_107 crossref_primary_10_1039_C8TA02802H crossref_primary_10_1088_2053_1591_aac185 crossref_primary_10_1039_C7RA13222K crossref_primary_10_1039_D2NR02741K crossref_primary_10_1039_C9DT02849H crossref_primary_10_1002_smll_202307619 crossref_primary_10_1021_acs_inorgchem_4c01091 crossref_primary_10_1021_acs_jpcc_8b02895 crossref_primary_10_1039_D2NR05937A crossref_primary_10_1016_j_matchemphys_2018_04_089 crossref_primary_10_1016_j_cej_2020_127195 crossref_primary_10_1016_j_jcis_2018_05_023 crossref_primary_10_1021_acs_jpcc_1c07629 crossref_primary_10_1039_C9SE00719A crossref_primary_10_1039_C8TA08841A crossref_primary_10_1039_D3TA01154B crossref_primary_10_1021_acs_inorgchem_3c02700 crossref_primary_10_1016_j_apcatb_2019_118395 crossref_primary_10_1016_j_apsusc_2018_01_054 crossref_primary_10_1002_slct_201901703 crossref_primary_10_1016_j_solidstatesciences_2019_105934 crossref_primary_10_1016_j_cej_2020_124676 crossref_primary_10_1039_D0TA07235D crossref_primary_10_1021_acs_inorgchem_9b03538 crossref_primary_10_1016_j_cattod_2018_01_005 crossref_primary_10_1016_j_ijhydene_2019_05_120 crossref_primary_10_1016_j_surfcoat_2020_125605 crossref_primary_10_1039_C9NR00887J crossref_primary_10_1002_chem_202303973 crossref_primary_10_1016_j_jclepro_2021_126200 crossref_primary_10_1039_C9NR00229D crossref_primary_10_1021_acs_chemrev_9b00232 crossref_primary_10_1016_j_jcat_2024_115667 crossref_primary_10_1039_D2TA00572G crossref_primary_10_1088_2515_7655_ab0718 crossref_primary_10_1021_acscatal_2c01667 crossref_primary_10_1039_D2NR05044G crossref_primary_10_1039_C8CY02283F crossref_primary_10_1039_C9TA01144G crossref_primary_10_1039_D4TA00237G crossref_primary_10_1021_acsenergylett_0c02180 crossref_primary_10_1016_j_apsusc_2018_02_139 crossref_primary_10_1016_j_matlet_2018_12_139 crossref_primary_10_1039_D2AN01324J crossref_primary_10_1021_acs_inorgchem_3c02951 crossref_primary_10_1039_C9TA11579J crossref_primary_10_1039_C8NR03557A crossref_primary_10_1016_j_ceramint_2025_01_543 crossref_primary_10_1016_j_ccr_2023_215285 crossref_primary_10_1021_acs_inorgchem_2c03634 crossref_primary_10_1021_acs_inorgchem_3c00295 crossref_primary_10_1039_C9NJ02593F crossref_primary_10_1016_j_jcis_2018_06_055 crossref_primary_10_1038_s41598_018_26447_9 crossref_primary_10_1007_s41664_022_00224_0 crossref_primary_10_1016_j_jssc_2022_123238 crossref_primary_10_3390_pharmaceutics11110575 crossref_primary_10_1016_j_ccr_2022_214948 crossref_primary_10_1016_j_cej_2021_133465 crossref_primary_10_1021_acs_inorgchem_3c03283 crossref_primary_10_3866_PKU_WHXB202306048 crossref_primary_10_1002_smll_202300804 crossref_primary_10_1007_s10563_018_9259_0 crossref_primary_10_1039_C9NR02304F crossref_primary_10_1016_j_jelechem_2024_118506 crossref_primary_10_1039_C8NR06788K crossref_primary_10_1155_2019_6042026 crossref_primary_10_1021_acs_inorgchem_9b03073 crossref_primary_10_1016_j_jcat_2021_05_019 crossref_primary_10_1002_smll_202302372 crossref_primary_10_1016_j_apsusc_2023_156980 crossref_primary_10_1016_j_cattod_2018_09_010 crossref_primary_10_1016_j_surfin_2025_105874 crossref_primary_10_1021_acs_jpclett_0c02460 crossref_primary_10_1038_s41598_020_59491_5 crossref_primary_10_1016_j_ccr_2018_12_013 crossref_primary_10_1016_j_apsusc_2020_147252 crossref_primary_10_1002_admi_201701098 crossref_primary_10_1007_s10853_019_03780_6 crossref_primary_10_1007_s12598_019_01255_w crossref_primary_10_1016_j_electacta_2019_135369 crossref_primary_10_1039_D3TA03709F crossref_primary_10_1007_s11164_020_04346_x crossref_primary_10_1038_s41598_020_78542_5 crossref_primary_10_1039_D0CC01300E crossref_primary_10_1002_chem_201902886  | 
    
| Cites_doi | 10.1021/ja044825a 10.1021/jp805786p 10.1039/C5TA10563C 10.1002/adfm.201700016 10.1021/jz400111d 10.1038/am.2013.3 10.1021/nl050788p 10.1149/1.2115350 10.1039/C6TA07845A 10.1016/j.jcat.2009.06.011 10.1039/C4NR01380H 10.1038/238037a0 10.1002/anie.201000527 10.1002/adma.200904317 10.1021/ja403807f 10.1021/nl061700q 10.1021/ja0299452 10.1021/jacs.5b06323 10.1039/c2nr30480e 10.1016/S0955-2219(99)00203-4 10.1002/adma.201606688 10.1016/j.apcatb.2016.09.068 10.1021/acs.chemrev.5b00267 10.1021/cm020781y 10.1039/C4TA04526B 10.1021/jz300547d 10.1039/c4ta01077a 10.1126/science.1150176 10.1021/cr60234a002 10.1021/acsami.5b09091 10.1021/acs.accounts.6b00523 10.1021/nn900897r 10.1038/srep22742 10.1039/C4TA04461D 10.1016/S0008-6223(97)00096-1 10.1039/c2jm16452c 10.1021/jz300940c 10.1039/C5TA08202A 10.1021/ja042192u 10.1002/smll.201401919 10.1039/C5TA03255E 10.1021/ja5017365 10.1002/adfm.201002295 10.1021/ja203878q 10.1002/adfm.201402443 10.1021/jz100133n 10.1021/jz301191t 10.1021/jp3034984 10.1021/ja053915s 10.1021/jacs.7b00452 10.1021/ar300213z 10.1021/acs.chemrev.5b00703 10.1021/ja801173r 10.1021/am302462d 10.1039/C2CS35367A 10.1039/c2jm15122g 10.1021/nl101225f 10.1016/j.apsusc.2016.05.009 10.1039/C5TA01087J 10.1039/c2ee03461a 10.1021/ja306199p 10.1021/nl1022354  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright Royal Society of Chemistry 2017 | 
    
| Copyright_xml | – notice: Copyright Royal Society of Chemistry 2017 | 
    
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8  | 
    
| DOI | 10.1039/C7NR06697J | 
    
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic  | 
    
| DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2040-3372 | 
    
| EndPage | 17132 | 
    
| ExternalDocumentID | 29087419 10_1039_C7NR06697J  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABIQK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGQPQ AGRSR AHGCF AHGXI AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BLAPV BSQNT C6K CAG CITATION COF DU5 EBS ECGLT EE0 EF- EJD F5P FEDTE GGIMP H13 HVGLF HZ~ H~N J3G J3H J3I L-8 O-G O9- OK1 P2P R56 RAOCF RCNCU RNS RPMJG RSCEA RVUXY -JG AGSTE NPM RRC 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8  | 
    
| ID | FETCH-LOGICAL-c420t-2b0dec235ad10ea5f2c0d5a84783fb7bcbc4463bc5eb864d945901d5024ec5153 | 
    
| ISSN | 2040-3364 2040-3372  | 
    
| IngestDate | Sat Sep 27 20:30:58 EDT 2025 Sun Jun 29 15:30:53 EDT 2025 Wed Feb 19 02:41:40 EST 2025 Thu Apr 24 22:58:30 EDT 2025 Tue Jul 01 00:33:51 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 43 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c420t-2b0dec235ad10ea5f2c0d5a84783fb7bcbc4463bc5eb864d945901d5024ec5153 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-5673-5362 | 
    
| PMID | 29087419 | 
    
| PQID | 2010872344 | 
    
| PQPubID | 2047485 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_miscellaneous_1958538130 proquest_journals_2010872344 pubmed_primary_29087419 crossref_primary_10_1039_C7NR06697J crossref_citationtrail_10_1039_C7NR06697J  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20170101 | 
    
| PublicationDateYYYYMMDD | 2017-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2017 text: 20170101 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: Cambridge  | 
    
| PublicationTitle | Nanoscale | 
    
| PublicationTitleAlternate | Nanoscale | 
    
| PublicationYear | 2017 | 
    
| Publisher | Royal Society of Chemistry | 
    
| Publisher_xml | – name: Royal Society of Chemistry | 
    
| References | Xu (C7NR06697J-(cit8)/*[position()=1]) 2016; 4 Long (C7NR06697J-(cit46)/*[position()=1]) 2017; 139 Liu (C7NR06697J-(cit62)/*[position()=1]) 2016; 6 Li (C7NR06697J-(cit4)/*[position()=1]) 2015; 3 Liu (C7NR06697J-(cit43)/*[position()=1]) 2003; 125 Weng (C7NR06697J-(cit51)/*[position()=1]) 2014; 2 Tang (C7NR06697J-(cit5)/*[position()=1]) 2015; 3 Chen (C7NR06697J-(cit18)/*[position()=1]) 2014; 136 Sakai (C7NR06697J-(cit63)/*[position()=1]) 2010; 22 Li (C7NR06697J-(cit12)/*[position()=1]) 2017; 50 Chen (C7NR06697J-(cit33)/*[position()=1]) 2013; 135 Whetten (C7NR06697J-(cit24)/*[position()=1]) 2007; 318 Meekins (C7NR06697J-(cit61)/*[position()=1]) 2009; 3 Zhang (C7NR06697J-(cit49)/*[position()=1]) 2016; 4 Li (C7NR06697J-(cit19)/*[position()=1]) 2013; 46 Han (C7NR06697J-(cit50)/*[position()=1]) 2015; 25 Liu (C7NR06697J-(cit44)/*[position()=1]) 2004; 126 Xiao (C7NR06697J-(cit10)/*[position()=1]) 2012; 22 Fujishima (C7NR06697J-(cit1)/*[position()=1]) 1972; 238 Xiao (C7NR06697J-(cit53)/*[position()=1]) 2012; 4 Xiao (C7NR06697J-(cit56)/*[position()=1]) 2014; 6 Negishi (C7NR06697J-(cit22)/*[position()=1]) 2012; 3 Kurashige (C7NR06697J-(cit28)/*[position()=1]) 2012; 3 Chen (C7NR06697J-(cit17)/*[position()=1]) 2013; 135 Jin (C7NR06697J-(cit64)/*[position()=1]) 2016; 116 Chen (C7NR06697J-(cit34)/*[position()=1]) 2014; 136 Xiao (C7NR06697J-(cit40)/*[position()=1]) 2015; 11 Tian (C7NR06697J-(cit15)/*[position()=1]) 2005; 127 Wu (C7NR06697J-(cit20)/*[position()=1]) 2010; 10 Zhu (C7NR06697J-(cit58)/*[position()=1]) 2017; 27 Xiao (C7NR06697J-(cit54)/*[position()=1]) 2012; 22 Xiao (C7NR06697J-(cit42)/*[position()=1]) 2012; 116 Chen (C7NR06697J-(cit30)/*[position()=1]) 2012; 3 Bahena (C7NR06697J-(cit23)/*[position()=1]) 2013; 4 Bera (C7NR06697J-(cit7)/*[position()=1]) 2016; 383 Zhang (C7NR06697J-(cit57)/*[position()=1]) 2012; 5 Chen (C7NR06697J-(cit16)/*[position()=1]) 2013; 42 Degen (C7NR06697J-(cit39)/*[position()=1]) 2000; 20 Zhu (C7NR06697J-(cit25)/*[position()=1]) 2010; 1 Xiao (C7NR06697J-(cit21)/*[position()=1]) 2015; 137 Wei (C7NR06697J-(cit48)/*[position()=1]) 2003; 15 Zhang (C7NR06697J-(cit13)/*[position()=1]) 2017; 29 Sakai (C7NR06697J-(cit31)/*[position()=1]) 2010; 22 Zhang (C7NR06697J-(cit11)/*[position()=1]) 2015; 115 Xiao (C7NR06697J-(cit52)/*[position()=1]) 2012; 22 Luo (C7NR06697J-(cit35)/*[position()=1]) 2012; 134 Yuan (C7NR06697J-(cit37)/*[position()=1]) 2013; 5 Zhu (C7NR06697J-(cit66)/*[position()=1]) 2008; 112 Shichibu (C7NR06697J-(cit27)/*[position()=1]) 2005; 127 Rao (C7NR06697J-(cit29)/*[position()=1]) 2010; 49 Kogo (C7NR06697J-(cit32)/*[position()=1]) 2012; 4 Yu (C7NR06697J-(cit6)/*[position()=1]) 2015; 3 Dotzauer (C7NR06697J-(cit36)/*[position()=1]) 2006; 6 Huang (C7NR06697J-(cit55)/*[position()=1]) 2009; 266 Greene (C7NR06697J-(cit2)/*[position()=1]) 2005; 5 Zhang (C7NR06697J-(cit45)/*[position()=1]) 2017; 202 Kwiatkowski (C7NR06697J-(cit3)/*[position()=1]) 2015; 3 Tang (C7NR06697J-(cit26)/*[position()=1]) 2011; 133 Parks (C7NR06697J-(cit38)/*[position()=1]) 1965; 65 Wang (C7NR06697J-(cit9)/*[position()=1]) 2016; 4 Biniak (C7NR06697J-(cit47)/*[position()=1]) 1997; 35 Cocivera (C7NR06697J-(cit60)/*[position()=1]) 1984; 131 Zhu (C7NR06697J-(cit65)/*[position()=1]) 2008; 130 Xiao (C7NR06697J-(cit41)/*[position()=1]) 2015; 7 Thimsen (C7NR06697J-(cit14)/*[position()=1]) 2011; 11 Li (C7NR06697J-(cit59)/*[position()=1]) 2011; 21  | 
    
| References_xml | – volume: 126 start-page: 16744 year: 2004 ident: C7NR06697J-(cit44)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja044825a – volume: 112 start-page: 14221 year: 2008 ident: C7NR06697J-(cit66)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp805786p – volume: 4 start-page: 5124 year: 2016 ident: C7NR06697J-(cit8)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10563C – volume: 27 start-page: 1700016 year: 2017 ident: C7NR06697J-(cit58)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700016 – volume: 4 start-page: 975 year: 2013 ident: C7NR06697J-(cit23)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz400111d – volume: 5 start-page: e39 year: 2013 ident: C7NR06697J-(cit37)/*[position()=1] publication-title: NPG Asia Mater. doi: 10.1038/am.2013.3 – volume: 5 start-page: 1231 year: 2005 ident: C7NR06697J-(cit2)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl050788p – volume: 131 start-page: 2514 year: 1984 ident: C7NR06697J-(cit60)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2115350 – volume: 4 start-page: 18804 year: 2016 ident: C7NR06697J-(cit49)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07845A – volume: 266 start-page: 228 year: 2009 ident: C7NR06697J-(cit55)/*[position()=1] publication-title: J. Catal. doi: 10.1016/j.jcat.2009.06.011 – volume: 6 start-page: 6727 year: 2014 ident: C7NR06697J-(cit56)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR01380H – volume: 238 start-page: 37 year: 1972 ident: C7NR06697J-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/238037a0 – volume: 49 start-page: 3925 year: 2010 ident: C7NR06697J-(cit29)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201000527 – volume: 22 start-page: 3185 year: 2010 ident: C7NR06697J-(cit63)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200904317 – volume: 135 start-page: 8822 year: 2013 ident: C7NR06697J-(cit33)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403807f – volume: 6 start-page: 2268 year: 2006 ident: C7NR06697J-(cit36)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl061700q – volume: 125 start-page: 4430 year: 2003 ident: C7NR06697J-(cit43)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0299452 – volume: 137 start-page: 10735 year: 2015 ident: C7NR06697J-(cit21)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06323 – volume: 4 start-page: 4217 year: 2012 ident: C7NR06697J-(cit32)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr30480e – volume: 20 start-page: 667 year: 2000 ident: C7NR06697J-(cit39)/*[position()=1] publication-title: J. Eur. Ceram. Soc. doi: 10.1016/S0955-2219(99)00203-4 – volume: 29 start-page: 1606688 year: 2017 ident: C7NR06697J-(cit13)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201606688 – volume: 202 start-page: 620 year: 2017 ident: C7NR06697J-(cit45)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2016.09.068 – volume: 115 start-page: 10307 year: 2015 ident: C7NR06697J-(cit11)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00267 – volume: 15 start-page: 433 year: 2003 ident: C7NR06697J-(cit48)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm020781y – volume: 3 start-page: 1199 year: 2015 ident: C7NR06697J-(cit6)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04526B – volume: 3 start-page: 1624 year: 2012 ident: C7NR06697J-(cit22)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300547d – volume: 2 start-page: 9380 year: 2014 ident: C7NR06697J-(cit51)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c4ta01077a – volume: 318 start-page: 407 year: 2007 ident: C7NR06697J-(cit24)/*[position()=1] publication-title: Science doi: 10.1126/science.1150176 – volume: 65 start-page: 177 year: 1965 ident: C7NR06697J-(cit38)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr60234a002 – volume: 7 start-page: 28105 year: 2015 ident: C7NR06697J-(cit41)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09091 – volume: 50 start-page: 112 year: 2017 ident: C7NR06697J-(cit12)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00523 – volume: 3 start-page: 3437 year: 2009 ident: C7NR06697J-(cit61)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn900897r – volume: 6 start-page: 22742 year: 2016 ident: C7NR06697J-(cit62)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep22742 – volume: 3 start-page: 2485 year: 2015 ident: C7NR06697J-(cit4)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04461D – volume: 135 start-page: 8822 year: 2013 ident: C7NR06697J-(cit17)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403807f – volume: 35 start-page: 1799 year: 1997 ident: C7NR06697J-(cit47)/*[position()=1] publication-title: Carbon doi: 10.1016/S0008-6223(97)00096-1 – volume: 22 start-page: 7819 year: 2012 ident: C7NR06697J-(cit54)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm16452c – volume: 3 start-page: 2493 year: 2012 ident: C7NR06697J-(cit30)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz300940c – volume: 4 start-page: 6926 year: 2016 ident: C7NR06697J-(cit9)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08202A – volume: 127 start-page: 7632 year: 2005 ident: C7NR06697J-(cit15)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja042192u – volume: 11 start-page: 554 year: 2015 ident: C7NR06697J-(cit40)/*[position()=1] publication-title: Small doi: 10.1002/smll.201401919 – volume: 3 start-page: 15876 year: 2015 ident: C7NR06697J-(cit5)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03255E – volume: 136 start-page: 6075 year: 2014 ident: C7NR06697J-(cit34)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5017365 – volume: 21 start-page: 1717 year: 2011 ident: C7NR06697J-(cit59)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002295 – volume: 22 start-page: 3185 year: 2010 ident: C7NR06697J-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200904317 – volume: 133 start-page: 16037 year: 2011 ident: C7NR06697J-(cit26)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja203878q – volume: 25 start-page: 221 year: 2015 ident: C7NR06697J-(cit50)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201402443 – volume: 1 start-page: 1003 year: 2010 ident: C7NR06697J-(cit25)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100133n – volume: 3 start-page: 2649 year: 2012 ident: C7NR06697J-(cit28)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz301191t – volume: 116 start-page: 16487 year: 2012 ident: C7NR06697J-(cit42)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp3034984 – volume: 127 start-page: 13464 year: 2005 ident: C7NR06697J-(cit27)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja053915s – volume: 139 start-page: 4486 year: 2017 ident: C7NR06697J-(cit46)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00452 – volume: 46 start-page: 1749 year: 2013 ident: C7NR06697J-(cit19)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar300213z – volume: 116 start-page: 10346 year: 2016 ident: C7NR06697J-(cit64)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00703 – volume: 130 start-page: 5883 year: 2008 ident: C7NR06697J-(cit65)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801173r – volume: 4 start-page: 7055 year: 2012 ident: C7NR06697J-(cit53)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am302462d – volume: 42 start-page: 2679 year: 2013 ident: C7NR06697J-(cit16)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35367A – volume: 22 start-page: 2868 year: 2012 ident: C7NR06697J-(cit52)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm15122g – volume: 10 start-page: 2568 year: 2010 ident: C7NR06697J-(cit20)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl101225f – volume: 383 start-page: 165 year: 2016 ident: C7NR06697J-(cit7)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.05.009 – volume: 22 start-page: 2868 year: 2012 ident: C7NR06697J-(cit10)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c2jm15122g – volume: 3 start-page: 12748 year: 2015 ident: C7NR06697J-(cit3)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01087J – volume: 136 start-page: 6075 year: 2014 ident: C7NR06697J-(cit18)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5017365 – volume: 5 start-page: 6506 year: 2012 ident: C7NR06697J-(cit57)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee03461a – volume: 134 start-page: 16662 year: 2012 ident: C7NR06697J-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306199p – volume: 11 start-page: 35 year: 2011 ident: C7NR06697J-(cit14)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl1022354  | 
    
| SSID | ssj0069363 | 
    
| Score | 2.5022461 | 
    
| Snippet | Although recent years have witnessed considerable progress in the synthesis of metal clusters, there is still a paucity of reports on photoelectrochemical... | 
    
| SourceID | proquest pubmed crossref  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 17118 | 
    
| SubjectTerms | Charge transfer Etching Glutathione Gold Heterostructures Light irradiation Low dimensional semiconductors Metal clusters Nanoparticles Nanowires Photovoltaic cells Self-assembly Solar energy conversion Surface charge Water splitting Zinc oxide  | 
    
| Title | In situ etching-induced self-assembly of metal cluster decorated one-dimensional semiconductors for solar-powered water splitting: unraveling cooperative synergy by photoelectrochemical investigations | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29087419 https://www.proquest.com/docview/2010872344 https://www.proquest.com/docview/1958538130  | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection excluding archive 2023 New Customers customDbUrl: https://pubs.rsc.org eissn: 2040-3372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069363 issn: 2040-3364 databaseCode: AETIL dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWW7QUOiG8WCjKCC6oCSWwna25V1apbQQ9oK-0tih1H2mo3WTXJofyD_rP-LGYSJ5uUrQRcolXifM7b8bM984aQT0IGsRRSOdC5MYcLyR3JZejINPZSzhIvrfPWfpwHpxf8bCEWo9FNL2qpKtUX_WtnXsn_WBX2gV0xS_YfLNtdFHbAb7AvbMHCsP0rG8-yg2JZVgf46aELcmB8XeF6fmFWqQOs2KzVyq6gY86jXlVFUxFco-GhYZ4ZJ0F9_0abA05cAzLwKnURHgxBLHDs62ywmBpGqsd4gQKYa9mmSlcZVjBaNcm7-cZYKfHiuskqVDh7kpe5rbejW4GC5Vbgo50xtBwZHH5eQJMOcotlXE_onsTwjou2r8UoomVV49Oqh9vJCy_sTV6Y2sn5GNHIWDjwyLIHPM567tULvcZb_-H4XYa6qTrMroBDyfCy3wi-xWZdQ8CX7hQolNx2fl1IYnvoAdnzoYNwx2Tv8Hg--95264FkAWv1bZn8ur0V6knbk4fk5p4RS81c5k_IYzvkoIcNfp6SkcmekUc9Icrn5HaWUUQSvYMkOkASzVNaI4laJNEOSfQOkugQSRSQRAdIojWSaIekb3SLI9rDEbU4ouqa7sIRHeLoBbk4OZ4fnTq2xoejue-Wjq9ceFSfiTjxXBOL1NduImLgTFOWqlBppTkPmNLCqGnAE8kxWToRQC2NBi7OXpJxBq_4mlDDp6mUJhRSKlztj1OGMZxBEitXSSMm5HNrnEhbAXysw7KK6kAMJqOj8PxnbdOzCfnYtd00si87W-23No6sWygiDC-Zhj7jfEI-dIfBaeNKXJyZvCoiVHgCpgH8cUJeNdjobtNi6c29R96Sh9v_0j4Zl1eVeQfUuFTvLWh_AzDByB8 | 
    
| linkProvider | Royal Society of Chemistry | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+etching-induced+self-assembly+of+metal+cluster+decorated+one-dimensional+semiconductors+for+solar-powered+water+splitting%3A+unraveling+cooperative+synergy+by+photoelectrochemical+investigations&rft.jtitle=Nanoscale&rft.au=Xiao%2C+Fang-Xing&rft.au=Liu%2C+Bin&rft.date=2017-01-01&rft.eissn=2040-3372&rft.volume=9&rft.issue=43&rft.spage=17118&rft_id=info:doi/10.1039%2Fc7nr06697j&rft_id=info%3Apmid%2F29087419&rft.externalDocID=29087419 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |