Bottom-up synthesis of graphene films hosting atom-thick molecular-sieving apertures

Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misor...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 118; no. 37; pp. 1 - 10
Main Authors Villalobos, Luis Francisco, Goethem, Cédric Van, Hsu, Kuang-Jung, Li, Shaoxian, Moradi, Mina, (赵康宁), Kangning Zhao, Dakhchoune, Mostapha, Huang, Shiqi, (沈悦卿), Yueqing Shen, Oveisib, Emad, Boureaub, Victor, Agrawal, Kumar Varoon
Format Journal Article
LanguageEnglish
Published Washington National Academy of Sciences 14.09.2021
SeriesMembrane Separations Science Special Feature
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2022201118

Cover

Abstract Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm−2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.
AbstractList The energy efficiency of gas separation is expected to benefit from the development of membranes yielding selective but large permeance. The ultimate limit of this is two-dimensional films hosting a high density of molecular-selective apertures (e.g., nanoporous single-layer graphene). Currently, pores are incorporated in single-layer graphene by postsynthetic etching route, and the direct bottom-up synthesis of nanoporous graphene, especially targeting a high pore density, remains a grand challenge attributing to a number of crystallization bottlenecks. We address this by increasing the density of molecular-sized intrinsic vacancy defects in graphene by developing crystallization conditions which promote the growth of misoriented grains, limiting the grains to a few nanometers in size and preventing a complete grain intergrowth while yielding mechanically robust films. Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (10 12 cm −2 ) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.
Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm−2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.
Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm-2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm-2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.
Author (赵康宁), Kangning Zhao
Oveisib, Emad
Agrawal, Kumar Varoon
Moradi, Mina
Dakhchoune, Mostapha
Goethem, Cédric Van
Li, Shaoxian
Boureaub, Victor
Huang, Shiqi
Hsu, Kuang-Jung
Villalobos, Luis Francisco
(沈悦卿), Yueqing Shen
Author_xml – sequence: 1
  givenname: Luis Francisco
  surname: Villalobos
  fullname: Villalobos, Luis Francisco
– sequence: 2
  givenname: Cédric Van
  surname: Goethem
  fullname: Goethem, Cédric Van
– sequence: 3
  givenname: Kuang-Jung
  surname: Hsu
  fullname: Hsu, Kuang-Jung
– sequence: 4
  givenname: Shaoxian
  surname: Li
  fullname: Li, Shaoxian
– sequence: 5
  givenname: Mina
  surname: Moradi
  fullname: Moradi, Mina
– sequence: 6
  givenname: Kangning Zhao
  surname: (赵康宁)
  fullname: (赵康宁), Kangning Zhao
– sequence: 7
  givenname: Mostapha
  surname: Dakhchoune
  fullname: Dakhchoune, Mostapha
– sequence: 8
  givenname: Shiqi
  surname: Huang
  fullname: Huang, Shiqi
– sequence: 9
  givenname: Yueqing Shen
  surname: (沈悦卿)
  fullname: (沈悦卿), Yueqing Shen
– sequence: 10
  givenname: Emad
  surname: Oveisib
  fullname: Oveisib, Emad
– sequence: 11
  givenname: Victor
  surname: Boureaub
  fullname: Boureaub, Victor
– sequence: 12
  givenname: Kumar Varoon
  surname: Agrawal
  fullname: Agrawal, Kumar Varoon
BookMark eNp1kc1v1TAQxC1URF8LZ05IkbhwSbvxR-xckKACilSJSzlbjrN58SOxg-1U6n9PwiugVuJiH_Y3szuaM3Lig0dCXldwUYFkl7M36YICpRSqqlLPyK6Cpipr3sAJ2QFQWSpO-Sk5S-kAAI1Q8IKcMs4bVgu-I7cfQ85hKpe5SPc-D5hcKkJf7KOZB_RY9G6cUjGElJ3fF2Zj8-Dsj2IKI9plNLFMDu9-D2eMeYmYXpLnvRkTvnr4z8n3z59ur67Lm29fvl59uCktp5DL9W4lGCBbnx5a27dNp3jLBdJaYSspZZJ2UgoJnTRd3QMzlHVGANgVB3ZO3h9956WdsLPoczSjnqObTLzXwTj9eOLdoPfhTqstP9sM3j0YxPBzwZT15JLFcTQew5I0XVczyQXlK_r2CXoIS_RrvI1iSjUc2EqJI2VjSClir63LJruw7XejrkBvvemtN_2vt1V3-UT3J8T_FW-OikPKIf7FqQQpaqXYLygopjk
CitedBy_id crossref_primary_10_1002_ange_202200321
crossref_primary_10_1016_j_carbon_2024_118866
crossref_primary_10_1038_s41563_022_01325_y
crossref_primary_10_1103_PhysRevLett_131_168001
crossref_primary_10_1038_s41598_024_84308_0
crossref_primary_10_1002_anie_202200321
crossref_primary_10_1016_j_isci_2022_103832
crossref_primary_10_1021_acs_langmuir_3c00797
crossref_primary_10_1002_smll_202404087
crossref_primary_10_1016_j_seppur_2022_122919
crossref_primary_10_1021_acsnano_3c11885
crossref_primary_10_1021_accountsmr_2c00143
crossref_primary_10_1021_acsnano_2c03730
crossref_primary_10_1073_pnas_2106494118
Cites_doi 10.1103/PhysRevB.79.195429
10.1021/nn200297n
10.1021/nn102598m
10.1038/s41563-020-00822-2
10.1126/science.1120411
10.1016/j.carbon.2020.11.068
10.1021/nn202923y
10.1126/sciadv.aau0476
10.1016/S0376-7388(01)00510-5
10.1021/am2011349
10.1038/nature09718
10.1038/ncomms1650
10.1002/adfm.202003979
10.1126/sciadv.aav1851
10.1186/1556-276X-9-618
10.1038/s41586-020-2070-x
10.1021/ja4117268
10.1038/s41563-018-0258-3
10.1007/BF02917551
10.1039/C9EE01238A
10.1021/nl404118f
10.1126/science.1171245
10.1038/s41467-019-12662-z
10.1002/adma.201907850
10.1038/nmat1311
10.1126/science.1249097
10.1021/nn402927q
10.1038/nmat3010
10.1126/science.aau2132
10.1016/j.memsci.2007.02.007
10.1038/nnano.2012.162
10.1038/nmat4113
10.1126/science.aar2009
10.1126/science.1218948
10.1126/sciadv.aay9851
10.1002/adfm.200600952
10.1038/s41563-019-0341-4
10.1038/s41563-019-0577-z
10.1038/nnano.2015.37
10.1039/C8NR01261J
10.1126/science.1254227
10.1016/j.carbon.2019.07.045
10.1002/adma.201804977
10.1021/acsnano.7b02523
10.1021/nl101629g
10.1021/ie8019032
10.1126/science.1208891
10.1038/nature09379
10.1021/nn1033423
10.1002/cphc.202000150
10.1021/acsnano.0c02496
10.1063/1.1702064
10.1209/0295-5075/96/46003
10.1016/S0008-6223(02)00309-3
10.1002/adma.201506058
10.1016/j.memsci.2016.03.035
10.1038/ncomms14486
10.1021/jz200001g
10.1021/acsnano.8b01266
10.1021/acs.jpcc.7b01796
10.1038/nnano.2017.72
10.1016/j.memsci.2009.10.041
10.1016/j.memsci.2020.118406
10.1038/s41467-018-04904-3
10.1021/ar970030f
10.1126/science.aau5321
ContentType Journal Article
Copyright Copyright National Academy of Sciences Sep 14, 2021
2021
Copyright_xml – notice: Copyright National Academy of Sciences Sep 14, 2021
– notice: 2021
DBID AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2022201118
DatabaseName CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Virology and AIDS Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 10
ExternalDocumentID PMC8449330
10_1073_pnas_2022201118
27075688
GrantInformation_xml – fundername: Shell (Shell Global)
  grantid: Carbon capture
– fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC)
  grantid: 805437
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c420t-2028530e3530f0bcfb9d84b45e268eb722372d77570d7ad6f03a23da500c0bc03
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:33:05 EDT 2025
Thu Sep 04 16:15:42 EDT 2025
Mon Jun 30 08:18:33 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Tue Jul 01 01:03:02 EDT 2025
Thu May 29 08:51:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 37
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c420t-2028530e3530f0bcfb9d84b45e268eb722372d77570d7ad6f03a23da500c0bc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: L.F.V., C.V.G., and K.V.A. designed research; L.F.V., C.V.G., K.-J.H., S.L., M.M., K.Z., M.D., S.H., Y.S., and E.O. performed research; L.F.V., C.V.G., K.-J.H., S.L., M.M., K.Z., M.D., S.H., Y.S., E.O., V.B., and K.V.A. analyzed data; and L.F.V., C.V.G., and K.V.A. wrote the paper.
1L.F.V. and C.V.G. contributed equally to this work.
Edited by Manish Kumar, The University of Texas at Austin, Austin, TX, and accepted by Editorial Board Member Pablo G. Debenedetti March 28, 2021 (received for review December 1, 2020)
ORCID 0000-0002-0745-4246
0000-0001-8644-0020
0000-0002-6091-685X
0000-0001-7483-7880
0000-0003-1990-1098
0000-0001-6575-8427
0000-0001-7570-2742
0000-0003-2218-2143
0000-0003-2916-4386
0000-0001-6251-5892
0000-0002-5170-6412
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/182395
PMID 34493654
PQID 2573889403
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449330
proquest_miscellaneous_2570374524
proquest_journals_2573889403
crossref_citationtrail_10_1073_pnas_2022201118
crossref_primary_10_1073_pnas_2022201118
jstor_primary_27075688
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-14
PublicationDateYYYYMMDD 2021-09-14
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-14
  day: 14
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationSeriesTitle Membrane Separations Science Special Feature
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationYear 2021
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_27_2
  doi: 10.1103/PhysRevB.79.195429
– ident: e_1_3_4_36_2
  doi: 10.1021/nn200297n
– ident: e_1_3_4_32_2
  doi: 10.1021/nn102598m
– ident: e_1_3_4_2_2
  doi: 10.1038/s41563-020-00822-2
– ident: e_1_3_4_5_2
  doi: 10.1126/science.1120411
– ident: e_1_3_4_51_2
  doi: 10.1016/j.carbon.2020.11.068
– ident: e_1_3_4_49_2
  doi: 10.1021/nn202923y
– ident: e_1_3_4_22_2
  doi: 10.1126/sciadv.aau0476
– ident: e_1_3_4_64_2
  doi: 10.1016/S0376-7388(01)00510-5
– ident: e_1_3_4_45_2
  doi: 10.1021/am2011349
– ident: e_1_3_4_31_2
  doi: 10.1038/nature09718
– ident: e_1_3_4_38_2
  doi: 10.1038/ncomms1650
– ident: e_1_3_4_44_2
  doi: 10.1002/adfm.202003979
– ident: e_1_3_4_19_2
  doi: 10.1126/sciadv.aav1851
– ident: e_1_3_4_48_2
  doi: 10.1186/1556-276X-9-618
– ident: e_1_3_4_11_2
  doi: 10.1038/s41586-020-2070-x
– ident: e_1_3_4_14_2
  doi: 10.1021/ja4117268
– ident: e_1_3_4_67_2
  doi: 10.1038/s41563-018-0258-3
– ident: e_1_3_4_46_2
  doi: 10.1007/BF02917551
– ident: e_1_3_4_56_2
  doi: 10.1039/C9EE01238A
– ident: e_1_3_4_26_2
  doi: 10.1021/nl404118f
– ident: e_1_3_4_8_2
  doi: 10.1126/science.1171245
– ident: e_1_3_4_39_2
  doi: 10.1038/s41467-019-12662-z
– ident: e_1_3_4_63_2
  doi: 10.1002/adma.201907850
– ident: e_1_3_4_47_2
  doi: 10.1038/nmat1311
– ident: e_1_3_4_13_2
  doi: 10.1126/science.1249097
– ident: e_1_3_4_53_2
  doi: 10.1021/nn402927q
– ident: e_1_3_4_29_2
  doi: 10.1038/nmat3010
– ident: e_1_3_4_9_2
  doi: 10.1126/science.aau2132
– ident: e_1_3_4_57_2
  doi: 10.1016/j.memsci.2007.02.007
– ident: e_1_3_4_20_2
  doi: 10.1038/nnano.2012.162
– ident: e_1_3_4_4_2
  doi: 10.1038/nmat4113
– ident: e_1_3_4_21_2
  doi: 10.1126/science.aar2009
– ident: e_1_3_4_33_2
  doi: 10.1126/science.1218948
– ident: e_1_3_4_6_2
  doi: 10.1126/sciadv.aay9851
– ident: e_1_3_4_43_2
  doi: 10.1002/adfm.200600952
– ident: e_1_3_4_10_2
  doi: 10.1038/s41563-019-0341-4
– ident: e_1_3_4_7_2
  doi: 10.1038/s41563-019-0577-z
– ident: e_1_3_4_41_2
  doi: 10.1002/adfm.202003979
– ident: e_1_3_4_15_2
  doi: 10.1038/nnano.2015.37
– ident: e_1_3_4_37_2
  doi: 10.1039/C8NR01261J
– ident: e_1_3_4_3_2
  doi: 10.1126/science.1254227
– ident: e_1_3_4_24_2
  doi: 10.1016/j.carbon.2019.07.045
– ident: e_1_3_4_23_2
  doi: 10.1002/adma.201804977
– ident: e_1_3_4_40_2
  doi: 10.1021/acsnano.7b02523
– ident: e_1_3_4_28_2
  doi: 10.1021/nl101629g
– ident: e_1_3_4_66_2
  doi: 10.1021/ie8019032
– ident: e_1_3_4_1_2
  doi: 10.1126/science.1208891
– ident: e_1_3_4_12_2
  doi: 10.1038/nature09379
– ident: e_1_3_4_30_2
  doi: 10.1021/nn1033423
– ident: e_1_3_4_62_2
  doi: 10.1002/cphc.202000150
– ident: e_1_3_4_35_2
  doi: 10.1021/acsnano.0c02496
– ident: e_1_3_4_52_2
  doi: 10.1063/1.1702064
– ident: e_1_3_4_54_2
  doi: 10.1209/0295-5075/96/46003
– ident: e_1_3_4_65_2
  doi: 10.1016/S0008-6223(02)00309-3
– ident: e_1_3_4_60_2
  doi: 10.1002/adma.201506058
– ident: e_1_3_4_59_2
  doi: 10.1016/j.memsci.2016.03.035
– ident: e_1_3_4_34_2
  doi: 10.1038/ncomms14486
– ident: e_1_3_4_50_2
  doi: 10.1021/jz200001g
– ident: e_1_3_4_61_2
  doi: 10.1021/acsnano.8b01266
– ident: e_1_3_4_17_2
  doi: 10.1021/acs.jpcc.7b01796
– ident: e_1_3_4_42_2
  doi: 10.1038/nnano.2017.72
– ident: e_1_3_4_58_2
  doi: 10.1016/j.memsci.2009.10.041
– ident: e_1_3_4_25_2
  doi: 10.1016/j.memsci.2020.118406
– ident: e_1_3_4_18_2
  doi: 10.1038/s41467-018-04904-3
– ident: e_1_3_4_55_2
  doi: 10.1021/ar970030f
– ident: e_1_3_4_16_2
  doi: 10.1126/science.aau5321
SSID ssj0009580
Score 2.465587
Snippet Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance...
The energy efficiency of gas separation is expected to benefit from the development of membranes yielding selective but large permeance. The ultimate limit of...
SourceID pubmedcentral
proquest
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Apertures
Chemical synthesis
Chemical vapor deposition
Crystal defects
Density
Etching
Gas transport
Graphene
Lattice vacancies
Membranes
Nanocrystals
Physical Sciences
Polymers
Pores
Prepolymers
Pyrolysis
Selectivity
Thick films
Title Bottom-up synthesis of graphene films hosting atom-thick molecular-sieving apertures
URI https://www.jstor.org/stable/27075688
https://www.proquest.com/docview/2573889403
https://www.proquest.com/docview/2570374524
https://pubmed.ncbi.nlm.nih.gov/PMC8449330
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWCiMFCQEBqqUtLEidPHMe2HplImkaK-RYnjsIotKU0iIf4G_mjuHNtp2JAGL1YU24nl-3y52HffEfImELmXZj7y4QXCpmDh2iGfMlt4IQWA8CwQuDXwcR6cLej50l8OBr-2vJaaOh3zn7fGlfyPVOEeyBWjZP9BsuahcAOuQb5QgoShvJOMP5R1DTquWSPxAFhyilxEklCDDkPSpetqhHEcMhQR26J7-7fRtU6Ka1crIbcUkrXY4GFCtW2tXpivW6V9CeZ68_CwC0VR-qEa2aOLeZfY-AsmNLoq09aRb9bA4FQaD16aNqBeTksMOpa4PGrP7bPNihu8VY1URk1SfLXPG_WhRRci6Yfw-TIpf2iIq90Ld4KuFm3UqFK4YK_YAW1Tho7FLfe0lu7UdKOJYm6of9BXmLO4SJCIHSwfUF6qW49oe_4pPlnMZnF0vIzerr_bmIMMz-pVQpZ75L7LggDzYZwuJ1sUzmHLbaFGp4mimPf-jzf2bJzWzbX3A9N3v92yZ6JH5KH6EbEOW1TtkoEoHpNdLUrrQPGRv3tCIgMzy8DMKnNLw8ySMLMUzKwOZtYNmFkGZk_J4uQ4OjqzVTIOm1PXqWHduWDZOcKDIndSnqfTLKQp9YUbhCJlYGYyN2PMZ07GkizIHS9xvQwTbnBo7nh7ZKcoC_GMWMmEOwL6uxl1KU9YklPOg0SkYNz7jqBDMtbTF3PFVI8JU65i6THBvBjnO-7me0gOTId1S9Ly96Z7Uh6mncvAaA5CqNjXAorVEod-PvPCcEodb0hem2pQwHiqlhSibGQb5HDyXRg36wnWvAMp3Ps1xepSUrmHlOKO4vM7PP0FedAtoH2yU28a8RIM4jp9JXH6GzoJu3U
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bottom-up+synthesis+of+graphene+films+hosting+atom-thick+molecular-sieving+apertures&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Villalobos%2C+Luis+Francisco&rft.au=Van+Goethem%2C+C%C3%A9dric&rft.au=Hsu%2C+Kuang-Jung&rft.au=Li%2C+Shaoxian&rft.date=2021-09-14&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=37&rft_id=info:doi/10.1073%2Fpnas.2022201118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon