Bottom-up synthesis of graphene films hosting atom-thick molecular-sieving apertures
Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misor...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 118; no. 37; pp. 1 - 10 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
National Academy of Sciences
14.09.2021
|
Series | Membrane Separations Science Special Feature |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2022201118 |
Cover
Abstract | Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm−2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps. |
---|---|
AbstractList | The energy efficiency of gas separation is expected to benefit from the development of membranes yielding selective but large permeance. The ultimate limit of this is two-dimensional films hosting a high density of molecular-selective apertures (e.g., nanoporous single-layer graphene). Currently, pores are incorporated in single-layer graphene by postsynthetic etching route, and the direct bottom-up synthesis of nanoporous graphene, especially targeting a high pore density, remains a grand challenge attributing to a number of crystallization bottlenecks. We address this by increasing the density of molecular-sized intrinsic vacancy defects in graphene by developing crystallization conditions which promote the growth of misoriented grains, limiting the grains to a few nanometers in size and preventing a complete grain intergrowth while yielding mechanically robust films.
Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (10
12
cm
−2
) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps. Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm−2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps. Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm-2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps.Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance membranes. Herein, we achieve this by a controlled synthesis of nanocrystalline graphene where incomplete growth of a few nanometer-sized, misoriented grains generates molecular-sized pores in the lattice. The density of pores is comparable to that obtained by the state-of-the-art postsynthetic etching (1012 cm-2) and is up to two orders of magnitude higher than that of molecular-sieving intrinsic vacancy defects in single-layer graphene (SLG) prepared by chemical vapor deposition. The porous nanocrystalline graphene (PNG) films are synthesized by precipitation of C dissolved in the Ni matrix where the C concentration is regulated by controlled pyrolysis of precursors (polymers and/or sugar). The PNG film is made of few-layered graphene except near the grain edge where the grains taper down to a single layer and eventually terminate into vacancy defects at a node where three or more grains meet. This unique nanostructure is highly attractive for the membranes because the layered domains improve the mechanical robustness of the film while the atom-thick molecular-sized apertures allow the realization of large gas transport. The combination of gas permeance and gas pair selectivity is comparable to that from the nanoporous SLG membranes prepared by state-of-the-art postsynthetic lattice etching. Overall, the method reported here improves the scale-up potential of graphene membranes by cutting down the processing steps. |
Author | (赵康宁), Kangning Zhao Oveisib, Emad Agrawal, Kumar Varoon Moradi, Mina Dakhchoune, Mostapha Goethem, Cédric Van Li, Shaoxian Boureaub, Victor Huang, Shiqi Hsu, Kuang-Jung Villalobos, Luis Francisco (沈悦卿), Yueqing Shen |
Author_xml | – sequence: 1 givenname: Luis Francisco surname: Villalobos fullname: Villalobos, Luis Francisco – sequence: 2 givenname: Cédric Van surname: Goethem fullname: Goethem, Cédric Van – sequence: 3 givenname: Kuang-Jung surname: Hsu fullname: Hsu, Kuang-Jung – sequence: 4 givenname: Shaoxian surname: Li fullname: Li, Shaoxian – sequence: 5 givenname: Mina surname: Moradi fullname: Moradi, Mina – sequence: 6 givenname: Kangning Zhao surname: (赵康宁) fullname: (赵康宁), Kangning Zhao – sequence: 7 givenname: Mostapha surname: Dakhchoune fullname: Dakhchoune, Mostapha – sequence: 8 givenname: Shiqi surname: Huang fullname: Huang, Shiqi – sequence: 9 givenname: Yueqing Shen surname: (沈悦卿) fullname: (沈悦卿), Yueqing Shen – sequence: 10 givenname: Emad surname: Oveisib fullname: Oveisib, Emad – sequence: 11 givenname: Victor surname: Boureaub fullname: Boureaub, Victor – sequence: 12 givenname: Kumar Varoon surname: Agrawal fullname: Agrawal, Kumar Varoon |
BookMark | eNp1kc1v1TAQxC1URF8LZ05IkbhwSbvxR-xckKACilSJSzlbjrN58SOxg-1U6n9PwiugVuJiH_Y3szuaM3Lig0dCXldwUYFkl7M36YICpRSqqlLPyK6Cpipr3sAJ2QFQWSpO-Sk5S-kAAI1Q8IKcMs4bVgu-I7cfQ85hKpe5SPc-D5hcKkJf7KOZB_RY9G6cUjGElJ3fF2Zj8-Dsj2IKI9plNLFMDu9-D2eMeYmYXpLnvRkTvnr4z8n3z59ur67Lm29fvl59uCktp5DL9W4lGCBbnx5a27dNp3jLBdJaYSspZZJ2UgoJnTRd3QMzlHVGANgVB3ZO3h9956WdsLPoczSjnqObTLzXwTj9eOLdoPfhTqstP9sM3j0YxPBzwZT15JLFcTQew5I0XVczyQXlK_r2CXoIS_RrvI1iSjUc2EqJI2VjSClir63LJruw7XejrkBvvemtN_2vt1V3-UT3J8T_FW-OikPKIf7FqQQpaqXYLygopjk |
CitedBy_id | crossref_primary_10_1002_ange_202200321 crossref_primary_10_1016_j_carbon_2024_118866 crossref_primary_10_1038_s41563_022_01325_y crossref_primary_10_1103_PhysRevLett_131_168001 crossref_primary_10_1038_s41598_024_84308_0 crossref_primary_10_1002_anie_202200321 crossref_primary_10_1016_j_isci_2022_103832 crossref_primary_10_1021_acs_langmuir_3c00797 crossref_primary_10_1002_smll_202404087 crossref_primary_10_1016_j_seppur_2022_122919 crossref_primary_10_1021_acsnano_3c11885 crossref_primary_10_1021_accountsmr_2c00143 crossref_primary_10_1021_acsnano_2c03730 crossref_primary_10_1073_pnas_2106494118 |
Cites_doi | 10.1103/PhysRevB.79.195429 10.1021/nn200297n 10.1021/nn102598m 10.1038/s41563-020-00822-2 10.1126/science.1120411 10.1016/j.carbon.2020.11.068 10.1021/nn202923y 10.1126/sciadv.aau0476 10.1016/S0376-7388(01)00510-5 10.1021/am2011349 10.1038/nature09718 10.1038/ncomms1650 10.1002/adfm.202003979 10.1126/sciadv.aav1851 10.1186/1556-276X-9-618 10.1038/s41586-020-2070-x 10.1021/ja4117268 10.1038/s41563-018-0258-3 10.1007/BF02917551 10.1039/C9EE01238A 10.1021/nl404118f 10.1126/science.1171245 10.1038/s41467-019-12662-z 10.1002/adma.201907850 10.1038/nmat1311 10.1126/science.1249097 10.1021/nn402927q 10.1038/nmat3010 10.1126/science.aau2132 10.1016/j.memsci.2007.02.007 10.1038/nnano.2012.162 10.1038/nmat4113 10.1126/science.aar2009 10.1126/science.1218948 10.1126/sciadv.aay9851 10.1002/adfm.200600952 10.1038/s41563-019-0341-4 10.1038/s41563-019-0577-z 10.1038/nnano.2015.37 10.1039/C8NR01261J 10.1126/science.1254227 10.1016/j.carbon.2019.07.045 10.1002/adma.201804977 10.1021/acsnano.7b02523 10.1021/nl101629g 10.1021/ie8019032 10.1126/science.1208891 10.1038/nature09379 10.1021/nn1033423 10.1002/cphc.202000150 10.1021/acsnano.0c02496 10.1063/1.1702064 10.1209/0295-5075/96/46003 10.1016/S0008-6223(02)00309-3 10.1002/adma.201506058 10.1016/j.memsci.2016.03.035 10.1038/ncomms14486 10.1021/jz200001g 10.1021/acsnano.8b01266 10.1021/acs.jpcc.7b01796 10.1038/nnano.2017.72 10.1016/j.memsci.2009.10.041 10.1016/j.memsci.2020.118406 10.1038/s41467-018-04904-3 10.1021/ar970030f 10.1126/science.aau5321 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Sep 14, 2021 2021 |
Copyright_xml | – notice: Copyright National Academy of Sciences Sep 14, 2021 – notice: 2021 |
DBID | AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2022201118 |
DatabaseName | CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Virology and AIDS Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 10 |
ExternalDocumentID | PMC8449330 10_1073_pnas_2022201118 27075688 |
GrantInformation_xml | – fundername: Shell (Shell Global) grantid: Carbon capture – fundername: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) grantid: 805437 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c420t-2028530e3530f0bcfb9d84b45e268eb722372d77570d7ad6f03a23da500c0bc03 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:33:05 EDT 2025 Thu Sep 04 16:15:42 EDT 2025 Mon Jun 30 08:18:33 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Tue Jul 01 01:03:02 EDT 2025 Thu May 29 08:51:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c420t-2028530e3530f0bcfb9d84b45e268eb722372d77570d7ad6f03a23da500c0bc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Author contributions: L.F.V., C.V.G., and K.V.A. designed research; L.F.V., C.V.G., K.-J.H., S.L., M.M., K.Z., M.D., S.H., Y.S., and E.O. performed research; L.F.V., C.V.G., K.-J.H., S.L., M.M., K.Z., M.D., S.H., Y.S., E.O., V.B., and K.V.A. analyzed data; and L.F.V., C.V.G., and K.V.A. wrote the paper. 1L.F.V. and C.V.G. contributed equally to this work. Edited by Manish Kumar, The University of Texas at Austin, Austin, TX, and accepted by Editorial Board Member Pablo G. Debenedetti March 28, 2021 (received for review December 1, 2020) |
ORCID | 0000-0002-0745-4246 0000-0001-8644-0020 0000-0002-6091-685X 0000-0001-7483-7880 0000-0003-1990-1098 0000-0001-6575-8427 0000-0001-7570-2742 0000-0003-2218-2143 0000-0003-2916-4386 0000-0001-6251-5892 0000-0002-5170-6412 |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/182395 |
PMID | 34493654 |
PQID | 2573889403 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8449330 proquest_miscellaneous_2570374524 proquest_journals_2573889403 crossref_citationtrail_10_1073_pnas_2022201118 crossref_primary_10_1073_pnas_2022201118 jstor_primary_27075688 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-14 |
PublicationDateYYYYMMDD | 2021-09-14 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationSeriesTitle | Membrane Separations Science Special Feature |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationYear | 2021 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_27_2 doi: 10.1103/PhysRevB.79.195429 – ident: e_1_3_4_36_2 doi: 10.1021/nn200297n – ident: e_1_3_4_32_2 doi: 10.1021/nn102598m – ident: e_1_3_4_2_2 doi: 10.1038/s41563-020-00822-2 – ident: e_1_3_4_5_2 doi: 10.1126/science.1120411 – ident: e_1_3_4_51_2 doi: 10.1016/j.carbon.2020.11.068 – ident: e_1_3_4_49_2 doi: 10.1021/nn202923y – ident: e_1_3_4_22_2 doi: 10.1126/sciadv.aau0476 – ident: e_1_3_4_64_2 doi: 10.1016/S0376-7388(01)00510-5 – ident: e_1_3_4_45_2 doi: 10.1021/am2011349 – ident: e_1_3_4_31_2 doi: 10.1038/nature09718 – ident: e_1_3_4_38_2 doi: 10.1038/ncomms1650 – ident: e_1_3_4_44_2 doi: 10.1002/adfm.202003979 – ident: e_1_3_4_19_2 doi: 10.1126/sciadv.aav1851 – ident: e_1_3_4_48_2 doi: 10.1186/1556-276X-9-618 – ident: e_1_3_4_11_2 doi: 10.1038/s41586-020-2070-x – ident: e_1_3_4_14_2 doi: 10.1021/ja4117268 – ident: e_1_3_4_67_2 doi: 10.1038/s41563-018-0258-3 – ident: e_1_3_4_46_2 doi: 10.1007/BF02917551 – ident: e_1_3_4_56_2 doi: 10.1039/C9EE01238A – ident: e_1_3_4_26_2 doi: 10.1021/nl404118f – ident: e_1_3_4_8_2 doi: 10.1126/science.1171245 – ident: e_1_3_4_39_2 doi: 10.1038/s41467-019-12662-z – ident: e_1_3_4_63_2 doi: 10.1002/adma.201907850 – ident: e_1_3_4_47_2 doi: 10.1038/nmat1311 – ident: e_1_3_4_13_2 doi: 10.1126/science.1249097 – ident: e_1_3_4_53_2 doi: 10.1021/nn402927q – ident: e_1_3_4_29_2 doi: 10.1038/nmat3010 – ident: e_1_3_4_9_2 doi: 10.1126/science.aau2132 – ident: e_1_3_4_57_2 doi: 10.1016/j.memsci.2007.02.007 – ident: e_1_3_4_20_2 doi: 10.1038/nnano.2012.162 – ident: e_1_3_4_4_2 doi: 10.1038/nmat4113 – ident: e_1_3_4_21_2 doi: 10.1126/science.aar2009 – ident: e_1_3_4_33_2 doi: 10.1126/science.1218948 – ident: e_1_3_4_6_2 doi: 10.1126/sciadv.aay9851 – ident: e_1_3_4_43_2 doi: 10.1002/adfm.200600952 – ident: e_1_3_4_10_2 doi: 10.1038/s41563-019-0341-4 – ident: e_1_3_4_7_2 doi: 10.1038/s41563-019-0577-z – ident: e_1_3_4_41_2 doi: 10.1002/adfm.202003979 – ident: e_1_3_4_15_2 doi: 10.1038/nnano.2015.37 – ident: e_1_3_4_37_2 doi: 10.1039/C8NR01261J – ident: e_1_3_4_3_2 doi: 10.1126/science.1254227 – ident: e_1_3_4_24_2 doi: 10.1016/j.carbon.2019.07.045 – ident: e_1_3_4_23_2 doi: 10.1002/adma.201804977 – ident: e_1_3_4_40_2 doi: 10.1021/acsnano.7b02523 – ident: e_1_3_4_28_2 doi: 10.1021/nl101629g – ident: e_1_3_4_66_2 doi: 10.1021/ie8019032 – ident: e_1_3_4_1_2 doi: 10.1126/science.1208891 – ident: e_1_3_4_12_2 doi: 10.1038/nature09379 – ident: e_1_3_4_30_2 doi: 10.1021/nn1033423 – ident: e_1_3_4_62_2 doi: 10.1002/cphc.202000150 – ident: e_1_3_4_35_2 doi: 10.1021/acsnano.0c02496 – ident: e_1_3_4_52_2 doi: 10.1063/1.1702064 – ident: e_1_3_4_54_2 doi: 10.1209/0295-5075/96/46003 – ident: e_1_3_4_65_2 doi: 10.1016/S0008-6223(02)00309-3 – ident: e_1_3_4_60_2 doi: 10.1002/adma.201506058 – ident: e_1_3_4_59_2 doi: 10.1016/j.memsci.2016.03.035 – ident: e_1_3_4_34_2 doi: 10.1038/ncomms14486 – ident: e_1_3_4_50_2 doi: 10.1021/jz200001g – ident: e_1_3_4_61_2 doi: 10.1021/acsnano.8b01266 – ident: e_1_3_4_17_2 doi: 10.1021/acs.jpcc.7b01796 – ident: e_1_3_4_42_2 doi: 10.1038/nnano.2017.72 – ident: e_1_3_4_58_2 doi: 10.1016/j.memsci.2009.10.041 – ident: e_1_3_4_25_2 doi: 10.1016/j.memsci.2020.118406 – ident: e_1_3_4_18_2 doi: 10.1038/s41467-018-04904-3 – ident: e_1_3_4_55_2 doi: 10.1021/ar970030f – ident: e_1_3_4_16_2 doi: 10.1126/science.aau5321 |
SSID | ssj0009580 |
Score | 2.465587 |
Snippet | Incorporation of a high density of molecular-sieving nanopores in the graphene lattice by the bottom-up synthesis is highly attractive for high-performance... The energy efficiency of gas separation is expected to benefit from the development of membranes yielding selective but large permeance. The ultimate limit of... |
SourceID | pubmedcentral proquest crossref jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Apertures Chemical synthesis Chemical vapor deposition Crystal defects Density Etching Gas transport Graphene Lattice vacancies Membranes Nanocrystals Physical Sciences Polymers Pores Prepolymers Pyrolysis Selectivity Thick films |
Title | Bottom-up synthesis of graphene films hosting atom-thick molecular-sieving apertures |
URI | https://www.jstor.org/stable/27075688 https://www.proquest.com/docview/2573889403 https://www.proquest.com/docview/2570374524 https://pubmed.ncbi.nlm.nih.gov/PMC8449330 |
Volume | 118 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeOEFMWCiMFCQEBqqUtLEidPHMe2HplImkaK-RYnjsIotKU0iIf4G_mjuHNtp2JAGL1YU24nl-3y52HffEfImELmXZj7y4QXCpmDh2iGfMlt4IQWA8CwQuDXwcR6cLej50l8OBr-2vJaaOh3zn7fGlfyPVOEeyBWjZP9BsuahcAOuQb5QgoShvJOMP5R1DTquWSPxAFhyilxEklCDDkPSpetqhHEcMhQR26J7-7fRtU6Ka1crIbcUkrXY4GFCtW2tXpivW6V9CeZ68_CwC0VR-qEa2aOLeZfY-AsmNLoq09aRb9bA4FQaD16aNqBeTksMOpa4PGrP7bPNihu8VY1URk1SfLXPG_WhRRci6Yfw-TIpf2iIq90Ld4KuFm3UqFK4YK_YAW1Tho7FLfe0lu7UdKOJYm6of9BXmLO4SJCIHSwfUF6qW49oe_4pPlnMZnF0vIzerr_bmIMMz-pVQpZ75L7LggDzYZwuJ1sUzmHLbaFGp4mimPf-jzf2bJzWzbX3A9N3v92yZ6JH5KH6EbEOW1TtkoEoHpNdLUrrQPGRv3tCIgMzy8DMKnNLw8ySMLMUzKwOZtYNmFkGZk_J4uQ4OjqzVTIOm1PXqWHduWDZOcKDIndSnqfTLKQp9YUbhCJlYGYyN2PMZ07GkizIHS9xvQwTbnBo7nh7ZKcoC_GMWMmEOwL6uxl1KU9YklPOg0SkYNz7jqBDMtbTF3PFVI8JU65i6THBvBjnO-7me0gOTId1S9Ly96Z7Uh6mncvAaA5CqNjXAorVEod-PvPCcEodb0hem2pQwHiqlhSibGQb5HDyXRg36wnWvAMp3Ps1xepSUrmHlOKO4vM7PP0FedAtoH2yU28a8RIM4jp9JXH6GzoJu3U |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bottom-up+synthesis+of+graphene+films+hosting+atom-thick+molecular-sieving+apertures&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Villalobos%2C+Luis+Francisco&rft.au=Van+Goethem%2C+C%C3%A9dric&rft.au=Hsu%2C+Kuang-Jung&rft.au=Li%2C+Shaoxian&rft.date=2021-09-14&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=118&rft.issue=37&rft_id=info:doi/10.1073%2Fpnas.2022201118&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |