A comprehensive and user‐friendly framework for 3D‐data visualisation in invertebrates and other organisms
Methods for 3D‐imaging of biological samples are experiencing unprecedented development, with tools such as X‐ray micro‐computed tomography (μCT) becoming more accessible to biologists. These techniques are inherently suited to small subjects and can simultaneously image both external and internal m...
Saved in:
| Published in | Journal of morphology (1931) Vol. 280; no. 2; pp. 223 - 231 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.02.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0362-2525 1097-4687 1097-4687 |
| DOI | 10.1002/jmor.20938 |
Cover
| Abstract | Methods for 3D‐imaging of biological samples are experiencing unprecedented development, with tools such as X‐ray micro‐computed tomography (μCT) becoming more accessible to biologists. These techniques are inherently suited to small subjects and can simultaneously image both external and internal morphology, thus offering considerable benefits for invertebrate research. However, methods for visualising 3D‐data are trailing behind the development of tools for generating such data. Our aim in this article is to make the processing, visualisation and presentation of 3D‐data easier, thereby encouraging more researchers to utilise 3D‐imaging. Here, we present a comprehensive workflow for manipulating and visualising 3D‐data, including basic and advanced options for producing images, videos and interactive 3D‐PDFs, from both volume and surface‐mesh renderings. We discuss the importance of visualisation for quantitative analysis of invertebrate morphology from 3D‐data, and provide example figures illustrating the different options for generating 3D‐figures for publication. As more biology journals adopt 3D‐PDFs as a standard option, research on microscopic invertebrates and other organisms can be presented in high‐resolution 3D‐figures, enhancing the way we communicate science.
We present a comprehensive workflow for manipulating and visualising 3D data, including basic and advanced options for preparing 3D data for geometric morphometric analysis, and for producing publication‐quality images, videos and interactive 3D PDFs. |
|---|---|
| AbstractList | Methods for 3D-imaging of biological samples are experiencing unprecedented development, with tools such as X-ray micro-computed tomography (μCT) becoming more accessible to biologists. These techniques are inherently suited to small subjects and can simultaneously image both external and internal morphology, thus offering considerable benefits for invertebrate research. However, methods for visualising 3D-data are trailing behind the development of tools for generating such data. Our aim in this article is to make the processing, visualisation and presentation of 3D-data easier, thereby encouraging more researchers to utilise 3D-imaging. Here, we present a comprehensive workflow for manipulating and visualising 3D-data, including basic and advanced options for producing images, videos and interactive 3D-PDFs, from both volume and surface-mesh renderings. We discuss the importance of visualisation for quantitative analysis of invertebrate morphology from 3D-data, and provide example figures illustrating the different options for generating 3D-figures for publication. As more biology journals adopt 3D-PDFs as a standard option, research on microscopic invertebrates and other organisms can be presented in high-resolution 3D-figures, enhancing the way we communicate science.Methods for 3D-imaging of biological samples are experiencing unprecedented development, with tools such as X-ray micro-computed tomography (μCT) becoming more accessible to biologists. These techniques are inherently suited to small subjects and can simultaneously image both external and internal morphology, thus offering considerable benefits for invertebrate research. However, methods for visualising 3D-data are trailing behind the development of tools for generating such data. Our aim in this article is to make the processing, visualisation and presentation of 3D-data easier, thereby encouraging more researchers to utilise 3D-imaging. Here, we present a comprehensive workflow for manipulating and visualising 3D-data, including basic and advanced options for producing images, videos and interactive 3D-PDFs, from both volume and surface-mesh renderings. We discuss the importance of visualisation for quantitative analysis of invertebrate morphology from 3D-data, and provide example figures illustrating the different options for generating 3D-figures for publication. As more biology journals adopt 3D-PDFs as a standard option, research on microscopic invertebrates and other organisms can be presented in high-resolution 3D-figures, enhancing the way we communicate science. Methods for 3D‐imaging of biological samples are experiencing unprecedented development, with tools such as X‐ray micro‐computed tomography (μCT) becoming more accessible to biologists. These techniques are inherently suited to small subjects and can simultaneously image both external and internal morphology, thus offering considerable benefits for invertebrate research. However, methods for visualising 3D‐data are trailing behind the development of tools for generating such data. Our aim in this article is to make the processing, visualisation and presentation of 3D‐data easier, thereby encouraging more researchers to utilise 3D‐imaging. Here, we present a comprehensive workflow for manipulating and visualising 3D‐data, including basic and advanced options for producing images, videos and interactive 3D‐PDFs, from both volume and surface‐mesh renderings. We discuss the importance of visualisation for quantitative analysis of invertebrate morphology from 3D‐data, and provide example figures illustrating the different options for generating 3D‐figures for publication. As more biology journals adopt 3D‐PDFs as a standard option, research on microscopic invertebrates and other organisms can be presented in high‐resolution 3D‐figures, enhancing the way we communicate science. We present a comprehensive workflow for manipulating and visualising 3D data, including basic and advanced options for preparing 3D data for geometric morphometric analysis, and for producing publication‐quality images, videos and interactive 3D PDFs. Methods for 3D‐imaging of biological samples are experiencing unprecedented development, with tools such as X‐ray micro‐computed tomography (μCT) becoming more accessible to biologists. These techniques are inherently suited to small subjects and can simultaneously image both external and internal morphology, thus offering considerable benefits for invertebrate research. However, methods for visualising 3D‐data are trailing behind the development of tools for generating such data. Our aim in this article is to make the processing, visualisation and presentation of 3D‐data easier, thereby encouraging more researchers to utilise 3D‐imaging. Here, we present a comprehensive workflow for manipulating and visualising 3D‐data, including basic and advanced options for producing images, videos and interactive 3D‐PDFs, from both volume and surface‐mesh renderings. We discuss the importance of visualisation for quantitative analysis of invertebrate morphology from 3D‐data, and provide example figures illustrating the different options for generating 3D‐figures for publication. As more biology journals adopt 3D‐PDFs as a standard option, research on microscopic invertebrates and other organisms can be presented in high‐resolution 3D‐figures, enhancing the way we communicate science. |
| Author | Semple, Thomas L. Tatarnic, Nikolai J. Peakall, Rod |
| AuthorAffiliation | 1 Division of Ecology and Evolution Research School of Biology, The Australian National University Acton Australia 2 Department of Terrestrial Zoology Western Australian Museum Perth Western Australia Australia 3 Centre for Evolutionary Biology The University of Western Australia Perth Western Australia Australia |
| AuthorAffiliation_xml | – name: 3 Centre for Evolutionary Biology The University of Western Australia Perth Western Australia Australia – name: 1 Division of Ecology and Evolution Research School of Biology, The Australian National University Acton Australia – name: 2 Department of Terrestrial Zoology Western Australian Museum Perth Western Australia Australia |
| Author_xml | – sequence: 1 givenname: Thomas L. orcidid: 0000-0003-2291-8034 surname: Semple fullname: Semple, Thomas L. email: thomas.semple@uqconnect.edu.au organization: Research School of Biology, The Australian National University – sequence: 2 givenname: Rod orcidid: 0000-0001-9407-8404 surname: Peakall fullname: Peakall, Rod organization: Research School of Biology, The Australian National University – sequence: 3 givenname: Nikolai J. orcidid: 0000-0001-8641-4412 surname: Tatarnic fullname: Tatarnic, Nikolai J. organization: The University of Western Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30653713$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctuFDEQRS2UiEwCGz4AeYlAE_zsxwYpSgIEBUVCsLbc7nLGwW0PdveMZscn8I35kvRMh6dQJMu1qFP3uq4P0V6IARB6RskxJYS9vuliOmak5tUjNKOkLueiqMo9NCO8YHMmmTxAhznfEELqWtLH6ICTQvKS8hkKJ9jEbplgASG7FWAdWjxkSLfff9jkILR-g23SHaxj-optTJifjb1W9xqvXB60d1n3LgbstmcFqYcm6R7yTir2C0g4pmsdXO7yE7Rvtc_w9L4eoS9vzz-fvp9fXr27OD25nBvBSDXeUDdgmBGyZWAqwYFXtWF03JGJUmjb0hK4loy2VjItmqqxZWvZWIktGn6EXk26Q1jqzVp7r5bJdTptFCVqm5rapqZ2qY30m4leDk0HrYHQJ_17Imqn_u4Et1DXcaUKWRNasVHgxb1Ait8GyL3qXDbgvQ4Qh6wYLWtBhZTliD7_0-uXyc8vGQEyASbFnBNYZVy_S3i0dv7_73_5z8iDy9IJXjsPmwdI9eHj1adp5g5Sh8J5 |
| CitedBy_id | crossref_primary_10_1242_jeb_246340 crossref_primary_10_1038_s41598_019_51180_2 crossref_primary_10_1098_rstb_2019_0071 crossref_primary_10_1080_08912963_2019_1699921 crossref_primary_10_1093_jcbiol_ruaf010 crossref_primary_10_1038_s41598_020_67486_5 crossref_primary_10_1186_s12862_021_01854_1 crossref_primary_10_1093_biosci_biad120 crossref_primary_10_3897_zookeys_873_35421 crossref_primary_10_1007_s11692_020_09527_5 crossref_primary_10_1098_rsos_201033 crossref_primary_10_1111_jeb_13503 crossref_primary_10_1038_s41598_024_77013_5 crossref_primary_10_1007_s12237_020_00856_4 crossref_primary_10_1636_JoA_S_22_033 crossref_primary_10_1080_00222933_2020_1776906 crossref_primary_10_1038_s41598_021_93012_2 crossref_primary_10_1111_jeb_13902 crossref_primary_10_1002_ar_24293 |
| Cites_doi | 10.1371/journal.pone.0135243 10.1111/syen.12067 10.1016/j.forsciint.2012.03.012 10.3897/zookeys.693.13012 10.1371/journal.pone.0191400 10.1117/12.794057 10.1098/rsbl.2010.0199 10.1007/s12542-013-0184-2 10.3897/zookeys.547.7143 10.2196/10295 10.1002/jmor.20660 10.1086/671931 10.1098/rsif.2013.0304 10.1371/journal.pone.0102355 10.1086/587076 10.1016/j.asd.2015.05.001 10.1002/jmor.20642 10.1038/s41467-018-05654-y 10.1117/12.935640 10.1111/syen.12253 10.1111/j.1469-7998.2011.00892.x 10.1186/s12983-014-0065-x 10.1016/j.jneumeth.2008.02.010 10.1673/031.012.8901 |
| ContentType | Journal Article |
| Copyright | 2019 The Authors. published by Wiley Periodicals, Inc. 2019 The Authors. Journal of Morphology published by Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2019 The Authors. published by Wiley Periodicals, Inc. – notice: 2019 The Authors. Journal of Morphology published by Wiley Periodicals, Inc. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/jmor.20938 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Zoology Biology |
| DocumentTitleAlternate | Semple et al |
| EISSN | 1097-4687 |
| EndPage | 231 |
| ExternalDocumentID | 10.1002/jmor.20938 PMC6590182 30653713 10_1002_jmor_20938 JMOR20938 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Australian Government, Research Training Program (RTP) Scholarship – fundername: Linnean Society of NSW, John Noble Award for Invertebrate Research – fundername: Australian National University |
| GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 186 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIDAL AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TN5 TWZ UB1 V2E VH1 W8V W99 WBKPD WH7 WHG WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ X7M XG1 XJT XOL XPP XV2 YQT ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAYXX AIQQE CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ABUFD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4208-c4e9bec2c45d2ec843e389c219382474afd17e3a521df52a4b8bf7df2b8b0f6b3 |
| IEDL.DBID | UNPAY |
| ISSN | 0362-2525 1097-4687 |
| IngestDate | Sun Oct 26 04:14:28 EDT 2025 Thu Aug 21 13:44:55 EDT 2025 Fri Jul 11 07:16:27 EDT 2025 Mon Jul 21 06:02:44 EDT 2025 Wed Oct 01 04:32:34 EDT 2025 Thu Apr 24 23:10:27 EDT 2025 Wed Aug 20 07:25:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | computed tomography Drishti Meshlab Blender |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs 2019 The Authors. Journal of Morphology published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4208-c4e9bec2c45d2ec843e389c219382474afd17e3a521df52a4b8bf7df2b8b0f6b3 |
| Notes | Funding information Australian Government, Research Training Program (RTP) Scholarship; Linnean Society of NSW, John Noble Award for Invertebrate Research; Australian National University ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Funding information Australian Government, Research Training Program (RTP) Scholarship; Linnean Society of NSW, John Noble Award for Invertebrate Research; Australian National University |
| ORCID | 0000-0001-8641-4412 0000-0001-9407-8404 0000-0003-2291-8034 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmor.20938 |
| PMID | 30653713 |
| PQID | 2179414557 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1002_jmor_20938 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6590182 proquest_miscellaneous_2179414557 pubmed_primary_30653713 crossref_citationtrail_10_1002_jmor_20938 crossref_primary_10_1002_jmor_20938 wiley_primary_10_1002_jmor_20938_JMOR20938 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2019 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States |
| PublicationTitle | Journal of morphology (1931) |
| PublicationTitleAlternate | J Morphol |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2018; 6 2017; 42 2018; 9 2012; 220 2012; 287 2013; 88 2012 2013; 10 2013; 24 2015; 44 2015; 10 2008 1997 2015; 547 2017; 693 2014; 39 2014; 9 2012; 12 2017; 278 2013; 182 2010; 6 2014; 11 2018; 13 2008; 171 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_20_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_18_1 Adams D. C. (e_1_2_5_2_1) 2013; 24 |
| References_xml | – volume: 547 start-page: 193 year: 2015 end-page: 203 article-title: Functional morphology of the copulatory organs of a reed beetle and a shining leaf beetle (Coleoptera: Chrysomelidae: Donaciinae, Criocerinae) using X‐ray micro‐computed tomography publication-title: Zookeys – volume: 182 start-page: 542 issue: 4 year: 2013 end-page: 551 article-title: Surviving in sympatry: Paragenital divergence and sexual mimicry between a pair of traumatically inseminating plant bugs publication-title: The American Naturalist – volume: 171 start-page: E158 issue: 5 year: 2008 end-page: E178 article-title: The tempo and mode of three‐dimensional morphological evolution in male reproductive structures publication-title: The American Naturalist – volume: 287 start-page: 91 issue: 2 year: 2012 end-page: 95 article-title: Micro‐CT scanning provides insight into the functional morphology of millipede genitalia publication-title: Journal of Zoology – volume: 9 start-page: 3325 issue: 1 year: 2018 article-title: Parasitoid biology preserved in mineralized fossils publication-title: Nature Communications – volume: 6 start-page: 699 issue: 5 year: 2010 end-page: 702 article-title: X‐ray micro‐tomography of carboniferous stem‐Dictyoptera: New insights into early insects publication-title: Biology Letters – volume: 13 start-page: e0191400 issue: 2 year: 2018 article-title: A 3D anatomical atlas of appendage musculature in the chelicerate arthropod publication-title: PLoS One – volume: 12 start-page: 1 issue: 89 year: 2012 end-page: 7 article-title: Imaging live bee brains using minimally‐invasive diagnostic radioentomology publication-title: Journal of Insect Science – volume: 39 start-page: 606 issue: 3 year: 2014 end-page: 618 article-title: Virtual dissections through micro‐CT scanning: A method for non‐destructive genitalia ‘dissections’ of valuable Lepidoptera material publication-title: Systematic Entomology – volume: 44 start-page: 388 issue: 4 year: 2015 end-page: 397 article-title: Copulatory courtship by bushcricket genital titillators revealed by functional morphology, μCT scanning for 3D reconstruction and female sense structures publication-title: Arthropod Structure and Development – volume: 278 start-page: 334 issue: 3 year: 2017 end-page: 359 article-title: Investigating the functional morphology of genitalia during copulation in the grasshopper (Scudder, 1878) via correlative microscopy publication-title: Journal of Morphology – volume: 6 start-page: e10295 issue: 3 year: 2018 article-title: Three‐dimensional portable document format (3D PDF) in clinical communication and biomedical sciences: Systematic review of applications, tools, and protocols publication-title: JMIR Medical Informatics – year: 2012 – volume: 693 start-page: 33 year: 2017 end-page: 93 article-title: Next‐generation morphological character discovery and evaluation: An X‐ray micro‐CT enhanced revision of the ant genus wheeler (Hymenoptera, Formicidae, Dorylinae) in the Afrotropics publication-title: ZooKeys – volume: 88 start-page: 111 issue: 1 year: 2013 end-page: 121 article-title: Palaeontology in the third dimension: A comprehensive guide for the integration of three‐dimensional content in publications publication-title: Paläontologische Zeitschrift – volume: 11 start-page: 65 issue: 1 year: 2014 article-title: Overcoming the fragility ‐ X‐ray computed micro‐tomography elucidates brachiopod endoskeletons publication-title: Frontiers in Zoology – year: 2008 – volume: 10 start-page: 20130304 issue: 84 year: 2013 article-title: Metamorphosis revealed: Time‐lapse three‐dimensional imaging inside a living chrysalis publication-title: Journal of the Royal Society: Interface – year: 1997 – volume: 278 start-page: 629 issue: 5 year: 2017 end-page: 651 article-title: Looking into the puparium: Micro‐CT visualization of the internal morphological changes during metamorphosis of the blow fly, , with the first quantitative analysis of organ development in cyclorrhaphous dipterans publication-title: Journal of Morphology – volume: 10 start-page: e0135243 issue: 8 year: 2015 article-title: A new dimension in documenting new species: High‐detail imaging for Myriapod taxonomy and first 3D cybertype of a new millipede species (Diplopoda, Julida, Julidae) publication-title: PLoS One – volume: 9 start-page: e102355 issue: 7 year: 2014 article-title: Three‐dimensional reconstructions come to life‐interactive 3D PDF animations in functional morphology publication-title: PLoS One – volume: 24 start-page: 7 issue: 1 year: 2013 end-page: 14 article-title: A field comes of age: Geometric morphometrics in the 21st century publication-title: Hystrix, the Italian Journal of Mammalogy – volume: 220 start-page: 251 issue: 1–3 year: 2012 end-page: 264 article-title: Virtual forensic entomology: Improving estimates of minimum post‐mortem interval with 3D micro‐computed tomography publication-title: Forensic Science International – volume: 171 start-page: 93 issue: 1 year: 2008 end-page: 97 article-title: Imaging honey bee brain anatomy with micro‐X‐ray‐computed tomography publication-title: Journal of Neuroscience Methods – volume: 42 start-page: 837 year: 2017 end-page: 846 article-title: A new genus of hell ants from the cretaceous (Hymenoptera: Formicidae: Haidomyrmecini) with a novel head structure publication-title: Systematic Entomology – ident: e_1_2_5_3_1 doi: 10.1371/journal.pone.0135243 – ident: e_1_2_5_21_1 doi: 10.1111/syen.12067 – ident: e_1_2_5_18_1 doi: 10.1016/j.forsciint.2012.03.012 – ident: e_1_2_5_7_1 doi: 10.3897/zookeys.693.13012 – ident: e_1_2_5_5_1 doi: 10.1371/journal.pone.0191400 – ident: e_1_2_5_6_1 doi: 10.1117/12.794057 – ident: e_1_2_5_8_1 doi: 10.1098/rsbl.2010.0199 – volume: 24 start-page: 7 issue: 1 year: 2013 ident: e_1_2_5_2_1 article-title: A field comes of age: Geometric morphometrics in the 21st century publication-title: Hystrix, the Italian Journal of Mammalogy – ident: e_1_2_5_10_1 doi: 10.1007/s12542-013-0184-2 – ident: e_1_2_5_19_1 doi: 10.3897/zookeys.547.7143 – ident: e_1_2_5_15_1 doi: 10.2196/10295 – ident: e_1_2_5_13_1 doi: 10.1002/jmor.20660 – ident: e_1_2_5_22_1 doi: 10.1086/671931 – ident: e_1_2_5_12_1 doi: 10.1098/rsif.2013.0304 – ident: e_1_2_5_23_1 doi: 10.1371/journal.pone.0102355 – ident: e_1_2_5_14_1 doi: 10.1086/587076 – ident: e_1_2_5_16_1 – ident: e_1_2_5_27_1 doi: 10.1016/j.asd.2015.05.001 – ident: e_1_2_5_26_1 doi: 10.1002/jmor.20642 – ident: e_1_2_5_24_1 doi: 10.1038/s41467-018-05654-y – ident: e_1_2_5_11_1 doi: 10.1117/12.935640 – ident: e_1_2_5_4_1 doi: 10.1111/syen.12253 – ident: e_1_2_5_25_1 doi: 10.1111/j.1469-7998.2011.00892.x – ident: e_1_2_5_20_1 doi: 10.1186/s12983-014-0065-x – ident: e_1_2_5_17_1 doi: 10.1016/j.jneumeth.2008.02.010 – ident: e_1_2_5_9_1 doi: 10.1673/031.012.8901 |
| SSID | ssj0009951 |
| Score | 2.3213882 |
| Snippet | Methods for 3D‐imaging of biological samples are experiencing unprecedented development, with tools such as X‐ray micro‐computed tomography (μCT) becoming more... Methods for 3D-imaging of biological samples are experiencing unprecedented development, with tools such as X-ray micro-computed tomography (μCT) becoming more... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 223 |
| SubjectTerms | Animals Blender computed tomography Drishti Female Imaging, Three-Dimensional Invertebrates - anatomy & histology Meshlab X-Ray Microtomography |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD6UgpeXqvWWemHEviikbWYmyQR8KWophSoUC0WQMFe6us2WZrdlffIn-Bv7SzpnZpNlrRQUQhKSk5DLOTNfMt_5DsC6DzAtHGepUNqmvBRFqqgzaSUKpgteCW0C2-JTsXvI947yoyV41-XCRH2I_ocbRkZorzHApWo356Kh309GqOdZMcz0zVgRvqcO5tpRVRVqL4a0IJrTvNcmpZvzQxd7o2sQ8zpT8s6kOZXTCzkcLqLZ0B3t3INv3Y1EFsqPjclYbeiff2g8_u-d3oeVGU4l29GxHsCSbVbhVqxcOV2F2_uzMXm_8esobHwIzTZBhvqZPY6seCIbQ_AvyOWv3w71lM1wSlzHBiMeLhP2we9Dlio5H7SY3xnJRWSAE5aKxnFtj4bDqUKyGIl1qNqT9hEc7nz88n43ndVzSDUO4vu5rbzLUM1zQ60WnFkPl7RvM5mgvOTSmay0THpEYVxOJVdCudI46pdbrlDsMSw3o8Y-BZJJxyuWO6pdzpXLxJbixsnCOZZbDxkTeNO911rPxM6x5sawjjLNtMaHWoeHmsDr3vY0Snz81epV5x61j0AcVpGNHU3ammKbhnrvZQJPorv052Eo_VtmLIFywZF6A1T3XtzTDI6DyneBWcGCJrDeu9yNl_c2uNANJvXe_ueDsLb2L8bP4K4HiVVkqj-H5fHZxL7wQGysXoaAuwJ3UDTO priority: 102 providerName: Wiley-Blackwell |
| Title | A comprehensive and user‐friendly framework for 3D‐data visualisation in invertebrates and other organisms |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmor.20938 https://www.ncbi.nlm.nih.gov/pubmed/30653713 https://www.proquest.com/docview/2179414557 https://pubmed.ncbi.nlm.nih.gov/PMC6590182 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmor.20938 |
| UnpaywallVersion | publishedVersion |
| Volume | 280 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-4687 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-4687 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009951 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD6sKVv7sku3bt6laKwvG7hrJNmWH8O6UgrtSlmg24uRdaFpUyc0SUf2tJ-w37hfMh3JNs06ymBgZGPLwrLPkT58Pn0HYNM5mBKWs1iUysQ8E2lcUqvjXKRMpTwXSnu2xWG61-f7J8nJtVX8QR-i_eGGnuHHa3TwsbZhnK-j-_T92cUINT1zJpZgOU0cGu_Acv_wqPelUY2iic-7inHWmKciaxVKr9-8OCfdAJo3-ZIrs2os59_kcLiIaf2ktPsAZNOdwEU535pNyy31_Q-lx__p70O4XyNW0gsm9gjumGoN7oYclvM1uHdQR-fdya8jf_IxVD2CXPVLcxr48URWmuD_kF8_flpUVtbDObENL4w44EzYjruGfFVyNZjgSs9AMyID3DBpNEa4HS72TfllYyRkpJpcTJ5Af_fj5w97cZ3ZIVYYznelyZ3xUMUTTY0SnBkHnJQbPZmgPOPS6m5mmHTYQtuESl6K0mbaUrfftmnJ1qFTjSrzDEhXWp6zxFJlE17artguubYytZYlxoHHCN4237ZQtew5Zt8YFkGwmRb4Ugv_UiN409YdB7GPv9Z63ZhI4XwRAyyyMqPZpKA4uqHyexbB02AybTsMRYCzLosgWzCmtgLqfC9eqQanXu87xfXBgkaw2ZrdrY_3zpvRLVWK_YNPx_7o-b-1-QJWHVDMA1v9JXSmlzPzyoGxabkBS5QfuXLnmG7UvvcbEXk6sw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS9xAFL1YpbUvovbD1NpOqS8tBN2ZyWTyKG1lq64tRUH6EibzgStrVly3Zd_6E_ob_SXOnclmWSxCISQhuQkhN3fmZObccwG2fYBp6ThLZaVtynMp0oo6kxZSMC14IbUJbItj0T3lB2fZWcPNwVyYqA_RDrhhZIT2GgMcB6R3ZqqhF5dDFPQsmHwES1x0BP57Uf59prlbhOqLITGIZjRr1Unpzuza-f7oHsi8z5VcHtdXavJbDQbzeDZ0SPursNIgSbIXXb8GC7Zeh8extuRkHZ70mllzf_DnMBx8BvUeQQ75tT2PvHWiakNwnOL2z1-HisdmMCFuytciHtAS9tmfQx4p-dUfYQZmpP-QPi5YzBlnnj1eDbcK6VwkVooaXY6ew-n-l5NP3bSpuJBqnGb3a1t4p1LNM0OtlpxZD2i0b9WYpDznyplObpnyfb5xGVW8kpXLjaN-u-tExV7AYj2s7QaQjnK8YJmj2mW8ch25W3HjlHCOZdaDugQ-TN97qRs5cqyKMSijkDIt0Udl8FEC71vbqyjC8U-rd1P3lT5GcOJD1XY4HpUUWx1UZM8TeBnd2d6HoTiv_1NPIJ9zdGuA-tvzZ-r-edDhFpi3K2kC2-0n8eDjfQxfywMm5UHv24-w9-p_jN_Ccvekd1QefT0-3ISnHtIVkVf-GhZvrsd2y8Omm-pNCI477xIXvA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1BEYWXAuWWcjOiLyCl7dpO4jxWLKtSaEEVlaq-RI4v6sI2u2p2qbZPfALfyJfgsbNZLUWVQIqSKJ5EiTPjHMVnzgCsuwBTwnIWi1KZmGcijUtqdZyLlKmU50Jpz7bYT3cO-e5RctRwczAXJuhDtD_cMDL8eI0Bbkbabs5VQ7-eDlHQM2fiOtzgSS6Q0dc9mKtH5bmvvugTg2hCk1adlG7Oz138Hl0CmZe5krcm1UhOz-VgsIhn_QepdydUXa29jiHyUL5tTMblhrr4Q-Xxv5_1Lqw0UJVsB9-6B9dMtQo3Q_HK6Sos7zXT8u7g8dAfvA_VNkGS-pk5CcR4IitN8EfIrx8_LUoq68GU2BkhjDjETFjXtSFRlXzv15jiGfhFpI8LVovGqW0HiP2lfL4YCaWo6tP6ARz23n15uxM3JR1ihfP4bm1y5zVU8URTowRnxiEm5YZNJijPuLS6kxkmHajQNqGSl6K0mbbUbbdsWrKHsFQNK_MYSEdanrPEUmUTXtqO2Cq5tjK1liXGocYIXs9ebKEavXMsuzEoglIzLbBTC9-pEbxqbUdB5eOvVi9n_lG4IMSZFVmZ4aQuKA5rKPmeRfAo-Et7HYbqv1mHRZAteFJrgALfiy1V_8QLfaeYGCxoBOutz115e2-8D11hUuzufTrwe2v_YvwClj93e8XH9_sfnsBtBxnzwFt_Ckvjs4l55mDZuHzug-83-5s4cw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CTjBeuIwNwk1G7AWkjNV2HOexAqZp0gZCVBq8RI4vWqFLq7UFlSd-Ar-RX4KPnUQrQxMSUpREiWPFzjn2p5zP3wHY9g6mpeMslZW2Kc-lSCvqTFpIwbTghdQmsC2OxP6QHxxnx-dW8Ud9iO6HG3pGGK_RwafGxXG-ie7Tl59PJ6jpWTB5FdZE5tF4D9aGR-8GH1vVKJqFvKsYZ025kHmnUHr-4dU56QLQvMiXXF_UU7X8psbjVUwbJqW9W6Da5kQuypedxbza0d__UHr8n_behpsNYiWDaGJ34IqtN-BazGG53IDrh0103l_8NAkX70I9IMhVP7MnkR9PVG0I_g_59eOnQ2VlM14S1_LCiAfOhL3295CvSr6OZrjSM9KMyAg3TBqNEW6Pi0NVYdkYiRmpZqezTRjuvfnwaj9tMjukGsP5fm8LbzxU88xQqyVn1gMn7UdPJinPuXKmn1umPLYwLqOKV7JyuXHUH3edqNgW9OpJbe8D6SvHC5Y5ql3GK9eXuxU3TgnnWGY9eEzgefttS93InmP2jXEZBZtpiZ1ahk5N4FlXdhrFPv5a6mlrIqX3RQywqNpOFrOS4uiGyu95AveiyXT1MBQBzvssgXzFmLoCqPO9eqcenQS9b4HrgyVNYLszu0tf70Uwo0uKlAeHb9-Hswf_VudDuOGBYhHZ6o-gNz9b2McejM2rJ42__QZirjjz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+and+user%E2%80%90friendly+framework+for+3D%E2%80%90data+visualisation+in+invertebrates+and+other+organisms&rft.jtitle=Journal+of+morphology+%281931%29&rft.au=Semple%2C+Thomas+L.&rft.au=Peakall%2C+Rod&rft.au=Tatarnic%2C+Nikolai+J.&rft.date=2019-02-01&rft.issn=0362-2525&rft.eissn=1097-4687&rft.volume=280&rft.issue=2&rft.spage=223&rft.epage=231&rft_id=info:doi/10.1002%2Fjmor.20938&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jmor_20938 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-2525&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-2525&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-2525&client=summon |