Provider risk factors for medication administration error alerts: analyses of a large-scale closed-loop medication administration system using RFID and barcode

Purpose To determine the risk factors and rate of medication administration error (MAE) alerts by analyzing large‐scale medication administration data and related error logs automatically recorded in a closed‐loop medication administration system using radio‐frequency identification and barcodes. Me...

Full description

Saved in:
Bibliographic Details
Published inPharmacoepidemiology and drug safety Vol. 25; no. 12; pp. 1387 - 1396
Main Authors Hwang, Yeonsoo, Yoon, Dukyong, Ahn, Eun Kyoung, Hwang, Hee, Park, Rae Woong
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.12.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-8569
1099-1557
1099-1557
DOI10.1002/pds.4068

Cover

Abstract Purpose To determine the risk factors and rate of medication administration error (MAE) alerts by analyzing large‐scale medication administration data and related error logs automatically recorded in a closed‐loop medication administration system using radio‐frequency identification and barcodes. Methods The subject hospital adopted a closed‐loop medication administration system. All medication administrations in the general wards were automatically recorded in real‐time using radio‐frequency identification, barcodes, and hand‐held point‐of‐care devices. MAE alert logs recorded during a full 1 year of 2012. We evaluated risk factors for MAE alerts including administration time, order type, medication route, the number of medication doses administered, and factors associated with nurse practices by logistic regression analysis. Results A total of 2 874 539 medication dose records from 30 232 patients (882.6 patient‐years) were included in 2012. We identified 35 082 MAE alerts (1.22% of total medication doses). The MAE alerts were significantly related to administration at non‐standard time [odds ratio (OR) 1.559, 95% confidence interval (CI) 1.515–1.604], emergency order (OR 1.527, 95%CI 1.464–1.594), and the number of medication doses administered (OR 0.993, 95%CI 0.992–0.993). Medication route, nurse's employment duration, and working schedule were also significantly related. Conclusion The MAE alert rate was 1.22% over the 1‐year observation period in the hospital examined in this study. The MAE alerts were significantly related to administration time, order type, medication route, the number of medication doses administered, nurse's employment duration, and working schedule. The real‐time closed‐loop medication administration system contributed to improving patient safety by preventing potential MAEs. Copyright © 2016 John Wiley & Sons, Ltd.
AbstractList To determine the risk factors and rate of medication administration error (MAE) alerts by analyzing large-scale medication administration data and related error logs automatically recorded in a closed-loop medication administration system using radio-frequency identification and barcodes. The subject hospital adopted a closed-loop medication administration system. All medication administrations in the general wards were automatically recorded in real-time using radio-frequency identification, barcodes, and hand-held point-of-care devices. MAE alert logs recorded during a full 1 year of 2012. We evaluated risk factors for MAE alerts including administration time, order type, medication route, the number of medication doses administered, and factors associated with nurse practices by logistic regression analysis. A total of 2 874 539 medication dose records from 30 232 patients (882.6 patient-years) were included in 2012. We identified 35 082 MAE alerts (1.22% of total medication doses). The MAE alerts were significantly related to administration at non-standard time [odds ratio (OR) 1.559, 95% confidence interval (CI) 1.515-1.604], emergency order (OR 1.527, 95%CI 1.464-1.594), and the number of medication doses administered (OR 0.993, 95%CI 0.992-0.993). Medication route, nurse's employment duration, and working schedule were also significantly related. The MAE alert rate was 1.22% over the 1-year observation period in the hospital examined in this study. The MAE alerts were significantly related to administration time, order type, medication route, the number of medication doses administered, nurse's employment duration, and working schedule. The real-time closed-loop medication administration system contributed to improving patient safety by preventing potential MAEs. Copyright © 2016 John Wiley & Sons, Ltd.
Purpose To determine the risk factors and rate of medication administration error (MAE) alerts by analyzing large‐scale medication administration data and related error logs automatically recorded in a closed‐loop medication administration system using radio‐frequency identification and barcodes. Methods The subject hospital adopted a closed‐loop medication administration system. All medication administrations in the general wards were automatically recorded in real‐time using radio‐frequency identification, barcodes, and hand‐held point‐of‐care devices. MAE alert logs recorded during a full 1 year of 2012. We evaluated risk factors for MAE alerts including administration time, order type, medication route, the number of medication doses administered, and factors associated with nurse practices by logistic regression analysis. Results A total of 2 874 539 medication dose records from 30 232 patients (882.6 patient‐years) were included in 2012. We identified 35 082 MAE alerts (1.22% of total medication doses). The MAE alerts were significantly related to administration at non‐standard time [odds ratio (OR) 1.559, 95% confidence interval (CI) 1.515–1.604], emergency order (OR 1.527, 95%CI 1.464–1.594), and the number of medication doses administered (OR 0.993, 95%CI 0.992–0.993). Medication route, nurse's employment duration, and working schedule were also significantly related. Conclusion The MAE alert rate was 1.22% over the 1‐year observation period in the hospital examined in this study. The MAE alerts were significantly related to administration time, order type, medication route, the number of medication doses administered, nurse's employment duration, and working schedule. The real‐time closed‐loop medication administration system contributed to improving patient safety by preventing potential MAEs. Copyright © 2016 John Wiley & Sons, Ltd.
Purpose To determine the risk factors and rate of medication administration error (MAE) alerts by analyzing large-scale medication administration data and related error logs automatically recorded in a closed-loop medication administration system using radio-frequency identification and barcodes. Methods The subject hospital adopted a closed-loop medication administration system. All medication administrations in the general wards were automatically recorded in real-time using radio-frequency identification, barcodes, and hand-held point-of-care devices. MAE alert logs recorded during a full 1year of 2012. We evaluated risk factors for MAE alerts including administration time, order type, medication route, the number of medication doses administered, and factors associated with nurse practices by logistic regression analysis. Results A total of 2874539 medication dose records from 30232 patients (882.6 patient-years) were included in 2012. We identified 35082 MAE alerts (1.22% of total medication doses). The MAE alerts were significantly related to administration at non-standard time [odds ratio (OR) 1.559, 95% confidence interval (CI) 1.515-1.604], emergency order (OR 1.527, 95%CI 1.464-1.594), and the number of medication doses administered (OR 0.993, 95%CI 0.992-0.993). Medication route, nurse's employment duration, and working schedule were also significantly related. Conclusion The MAE alert rate was 1.22% over the 1-year observation period in the hospital examined in this study. The MAE alerts were significantly related to administration time, order type, medication route, the number of medication doses administered, nurse's employment duration, and working schedule. The real-time closed-loop medication administration system contributed to improving patient safety by preventing potential MAEs. Copyright © 2016 John Wiley & Sons, Ltd.
Purpose To determine the risk factors and rate of medication administration error (MAE) alerts by analyzing large-scale medication administration data and related error logs automatically recorded in a closed-loop medication administration system using radio-frequency identification and barcodes. Methods The subject hospital adopted a closed-loop medication administration system. All medication administrations in the general wards were automatically recorded in real-time using radio-frequency identification, barcodes, and hand-held point-of-care devices. MAE alert logs recorded during a full 1year of 2012. We evaluated risk factors for MAE alerts including administration time, order type, medication route, the number of medication doses administered, and factors associated with nurse practices by logistic regression analysis. Results A total of 2874539 medication dose records from 30232 patients (882.6 patient-years) were included in 2012. We identified 35082 MAE alerts (1.22% of total medication doses). The MAE alerts were significantly related to administration at non-standard time [odds ratio (OR) 1.559, 95% confidence interval (CI) 1.515-1.604], emergency order (OR 1.527, 95%CI 1.464-1.594), and the number of medication doses administered (OR 0.993, 95%CI 0.992-0.993). Medication route, nurse's employment duration, and working schedule were also significantly related. Conclusion The MAE alert rate was 1.22% over the 1-year observation period in the hospital examined in this study. The MAE alerts were significantly related to administration time, order type, medication route, the number of medication doses administered, nurse's employment duration, and working schedule. The real-time closed-loop medication administration system contributed to improving patient safety by preventing potential MAEs.
To determine the risk factors and rate of medication administration error (MAE) alerts by analyzing large-scale medication administration data and related error logs automatically recorded in a closed-loop medication administration system using radio-frequency identification and barcodes.PURPOSETo determine the risk factors and rate of medication administration error (MAE) alerts by analyzing large-scale medication administration data and related error logs automatically recorded in a closed-loop medication administration system using radio-frequency identification and barcodes.The subject hospital adopted a closed-loop medication administration system. All medication administrations in the general wards were automatically recorded in real-time using radio-frequency identification, barcodes, and hand-held point-of-care devices. MAE alert logs recorded during a full 1 year of 2012. We evaluated risk factors for MAE alerts including administration time, order type, medication route, the number of medication doses administered, and factors associated with nurse practices by logistic regression analysis.METHODSThe subject hospital adopted a closed-loop medication administration system. All medication administrations in the general wards were automatically recorded in real-time using radio-frequency identification, barcodes, and hand-held point-of-care devices. MAE alert logs recorded during a full 1 year of 2012. We evaluated risk factors for MAE alerts including administration time, order type, medication route, the number of medication doses administered, and factors associated with nurse practices by logistic regression analysis.A total of 2 874 539 medication dose records from 30 232 patients (882.6 patient-years) were included in 2012. We identified 35 082 MAE alerts (1.22% of total medication doses). The MAE alerts were significantly related to administration at non-standard time [odds ratio (OR) 1.559, 95% confidence interval (CI) 1.515-1.604], emergency order (OR 1.527, 95%CI 1.464-1.594), and the number of medication doses administered (OR 0.993, 95%CI 0.992-0.993). Medication route, nurse's employment duration, and working schedule were also significantly related.RESULTSA total of 2 874 539 medication dose records from 30 232 patients (882.6 patient-years) were included in 2012. We identified 35 082 MAE alerts (1.22% of total medication doses). The MAE alerts were significantly related to administration at non-standard time [odds ratio (OR) 1.559, 95% confidence interval (CI) 1.515-1.604], emergency order (OR 1.527, 95%CI 1.464-1.594), and the number of medication doses administered (OR 0.993, 95%CI 0.992-0.993). Medication route, nurse's employment duration, and working schedule were also significantly related.The MAE alert rate was 1.22% over the 1-year observation period in the hospital examined in this study. The MAE alerts were significantly related to administration time, order type, medication route, the number of medication doses administered, nurse's employment duration, and working schedule. The real-time closed-loop medication administration system contributed to improving patient safety by preventing potential MAEs. Copyright © 2016 John Wiley & Sons, Ltd.CONCLUSIONThe MAE alert rate was 1.22% over the 1-year observation period in the hospital examined in this study. The MAE alerts were significantly related to administration time, order type, medication route, the number of medication doses administered, nurse's employment duration, and working schedule. The real-time closed-loop medication administration system contributed to improving patient safety by preventing potential MAEs. Copyright © 2016 John Wiley & Sons, Ltd.
Author Yoon, Dukyong
Park, Rae Woong
Hwang, Hee
Ahn, Eun Kyoung
Hwang, Yeonsoo
Author_xml – sequence: 1
  givenname: Yeonsoo
  surname: Hwang
  fullname: Hwang, Yeonsoo
  organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
– sequence: 2
  givenname: Dukyong
  surname: Yoon
  fullname: Yoon, Dukyong
  organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
– sequence: 3
  givenname: Eun Kyoung
  surname: Ahn
  fullname: Ahn, Eun Kyoung
  organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
– sequence: 4
  givenname: Hee
  surname: Hwang
  fullname: Hwang, Hee
  organization: Center for Medical Informatics, Seoul National University Bundang Hospital, Seongnam, Korea
– sequence: 5
  givenname: Rae Woong
  surname: Park
  fullname: Park, Rae Woong
  email: veritas@ajou.ac.kr, veritas@ajou.ac.kr
  organization: Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27465030$$D View this record in MEDLINE/PubMed
BookMark eNqNkt9uFCEUxompsX808QkMiTfezMoMMAzemdatjZu10Rq9IyycaWiZYQsz2n2avqqM29Zo1HgFJ9-PL4fvnH2004ceEHpakllJSPVybdOMkbp5gPZKImVRci52pjunRcNruYv2U7ogJGuSPUK7lWA1J5TsoZvTGL46CxFHly5xq80QYsJtiLgD64weXOixtp3rXRritoQYs649xCG9wrrXfpMg4dBijb2O51Akk1VsfEhgCx_C-h9uaZMG6PCYXH-OP8xPjrKjxSsdTbDwGD1stU_w5PY8QJ_mb84O3xaL98cnh68XhWEVaQppSmEpryorDWlbxg0VVIJoK9nm0raMyqYiUGoiV1Q0mgI1xFDbMOB1JegBerH1XcdwNUIaVOeSAe91D2FMqmzqhjLGZfkfaFULympBMvr8N_QijDHnNVGMM9aQejJ8dkuNqxyTWkfX6bhRd1PKwGwLmBhSitAq44Yf4eUMnVclUdMaqLwGalqDny3eP7jz_ANabNFvzsPmr5w6Pfr4K58HCNf3vI6XKv9acPV5eazmZ8vFuy_LuVrS7_Aq0bk
CitedBy_id crossref_primary_10_1016_j_jaip_2019_04_050
crossref_primary_10_1016_j_soncn_2022_151298
crossref_primary_10_1111_jocn_14485
crossref_primary_10_1016_j_procs_2023_03_004
crossref_primary_10_1016_j_profnurs_2022_02_008
crossref_primary_10_1097_NCQ_0000000000000491
crossref_primary_10_36290_far_2022_023
crossref_primary_10_1016_j_sapharm_2020_08_001
crossref_primary_10_1097_NR9_0000000000000028
crossref_primary_10_2478_fon_2018_0014
crossref_primary_10_1007_s10916_019_1269_6
crossref_primary_10_1097_NCQ_0000000000000446
crossref_primary_10_1111_nuf_12617
crossref_primary_10_2147_RMHP_S497454
crossref_primary_10_3390_jcm10051104
crossref_primary_10_7739_jkafn_2021_28_2_149
crossref_primary_10_1002_jppr_1916
crossref_primary_10_1007_s40258_017_0360_8
crossref_primary_10_1097_CIN_0000000000001035
crossref_primary_10_1002_nop2_70139
crossref_primary_10_1097_PTS_0000000000000688
Cites_doi 10.1001/jama.274.1.29
10.2146/ajhp060140
10.1016/j.ijmedinf.2010.10.008
10.1097/01.ccm.0000198106.54306.d7
10.1093/intqhc/mzi015
10.1023/b:phar.0000006519.44483.a0
10.1093/oxfordjournals.pan.a004868
10.1186/1471-2288-12-78
10.1177/1054773806295241
10.1001/jama.290.12.1617
10.1093/ajhp/58.1.54
10.1136/bmjqs-2013-002118
10.2165/00002018-200022040-00005
10.2146/ajhp080357
10.1111/j.1741-6787.2009.00151.x
10.1001/jama.299.18.2200
10.1197/jamia.M2616
10.3389/fpsyg.2014.01573
10.1097/00005110-200101000-00007
10.4040/jkan.2012.42.4.568
10.1007/s001340050857
10.1056/NEJM199102073240604
10.1056/NEJMsa0907115
10.1345/aph.1R147
10.1111/j.1365-2125.2009.03427.x
10.1136/qshc.2006.019497
10.1097/00129804-200503001-00005
10.2146/ajhp080355
10.1093/aje/kwg115
10.1002/sim.4780090710
ContentType Journal Article
Copyright Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
7U7
C1K
DOI 10.1002/pds.4068
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Toxicology Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
Toxicology Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE

ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1099-1557
EndPage 1396
ExternalDocumentID 4268619041
27465030
10_1002_pds_4068
PDS4068
ark_67375_WNG_FTNLKXNF_N
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Health & Welfare, Republic of Korea
  funderid: HI14C3201
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GWYGA
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWP
YCJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
7U7
C1K
ID FETCH-LOGICAL-c4208-9c17d3522d9c0ff45c3739e7f29fff4df439820e1a09b378a3e3c0c3d84e56273
IEDL.DBID DR2
ISSN 1053-8569
1099-1557
IngestDate Fri Sep 05 03:38:04 EDT 2025
Thu Sep 04 17:23:31 EDT 2025
Sun Jul 13 05:28:47 EDT 2025
Thu Apr 03 06:56:32 EDT 2025
Tue Jul 01 04:29:19 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
Wed Jan 22 17:08:08 EST 2025
Sun Sep 21 06:14:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords point-of-care system
patient safety
closed-loop medication administration
radio-frequency identification (RFID)
medication error
pharmacoepidemiology
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2016 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4208-9c17d3522d9c0ff45c3739e7f29fff4df439820e1a09b378a3e3c0c3d84e56273
Notes Supporting info item
ark:/67375/WNG-FTNLKXNF-N
istex:11364CE215FF0E192117C56A322F791C6BC21F1C
ArticleID:PDS4068
Ministry of Health & Welfare, Republic of Korea - No. HI14C3201
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27465030
PQID 1845448061
PQPubID 105383
PageCount 10
ParticipantIDs proquest_miscellaneous_1868344591
proquest_miscellaneous_1826734670
proquest_journals_1845448061
pubmed_primary_27465030
crossref_citationtrail_10_1002_pds_4068
crossref_primary_10_1002_pds_4068
wiley_primary_10_1002_pds_4068_PDS4068
istex_primary_ark_67375_WNG_FTNLKXNF_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12
December 2016
2016-12-00
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bethesda
PublicationTitle Pharmacoepidemiology and drug safety
PublicationTitleAlternate Pharmacoepidemiol Drug Saf
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Dean B, Barber N. Validity and reliability of observational methods for studying medication administration errors. Am J Health Syst Pharm 2001; 58: 54-59.
Agrawal A. Medication errors: prevention using information technology systems. Br J Clin Pharmacol 2009; 67: 681-686. doi:10.1111/j.1365-2125.2009.03427.x.
Helmons PJ, Wargel LN, Daniels CE. Effect of bar-code-assisted medication administration on medication administration errors and accuracy in multiple patient care areas. Am J Health Syst Pharm 2009; 66: 1202-1210. doi:10.2146/ajhp080357.
Poon EG, Keohane CA, Yoon CS, et al. Effect of bar-code technology on the safety of medication administration. N Engl J Med 2010; 362: 1698-1707. doi:10.1056/NEJMsa0907115.
Kopp BJ, Erstad BL, Allen ME, et al. Medication errors and adverse drug events in an intensive care unit: direct observation approach for detection. Crit Care Med 2006; 34: 415-425. doi:10.1097/01.ccm.0000198106.54306.d7.
Scott-Cawiezell J, Pepper GA, Madsen RW, et al. Nursing home error and level of staff credentials. Clin Nurs Res 2007; 16: 72-78. doi:10.1177/1054773806295241.
Tissot E, Cornette C, Demoly P, et al. Medication errors at the administration stage in an intensive care unit. Intensive Care Med 1999; 25: 353-359. doi:10.1007/s001340050857.
Brennan TA, Leape LL, Laird NM, et al. Incidence of adverse events and negligence in hospitalized patients. Results of the Harvard Medical Practice Study I. N Engl J Med 1991; 324: 370-376. doi:10.1056/NEJM199102073240604.
Akiyama M, Koshio A, Kaihotsu N. Analysis of data captured by barcode medication administration system using a PDA; aiming at reducing medication errors at point of care in Japanese Red Cross Kochi Hospital. Stud Health Technol Inform 2010; 160: 774-778.
Aspden P, Wolcott J, Bootman JL, et al. Committee on Identifying and Preventing Medication Errors, Institute of Medicine: Preventing Medication Errors, Quality Chasm Series. National Academies Press: Washington, DC, 2007.
Biron AD, Loiselle CG, Lavoie-Tremblay M. Work interruptions and their contribution to medication administration errors: an evidence review. Worldviews Evid Based Nurs 2009; 6: 70-86. doi:10.1111/j.1741-6787.2009.00151.x.
Welp A, Meier LL, Manser T. Emotional exhaustion and workload predict clinician-rated and objective patient safety. Front Psychol 2014; 5: 1573. doi:10.3389/fpsyg.2014.01573.
King G, Zeng L. Logistic regression in rare events data. Polit Anal 2001; 9: 137-163. doi:10.1093/oxfordjournals.pan.a004868.
Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med 1990; 9: 811-818. doi:10.1002/sim.4780090710.
Franklin BD, O'Grady K, Donyai P, et al. The impact of a closed-loop electronic prescribing and administration system on prescribing errors, administration errors and staff time: a before-and-after study. Qual Saf Health Care 2007; 16: 279-284. doi:10.1136/qshc.2006.019497.
Paoletti RD, Suess TM, Lesko MG, et al. Using bar-code technology and medication observation methodology for safer medication administration. Am J Health Syst Pharm 2007; 64: 536-543. doi:10.2146/ajhp060140.
Tissot E, Cornette C, Limat S, et al. Observational study of potential risk factors of medication administration errors. Pharm World Sci 2003; 25: 264-268. doi:10.1023/b:phar.0000006519.44483.a0.
Blegen MA, Vaughn TE, Goode CJ. Nurse experience and education: effect on quality of care. J Nurs Adm 2001; 31: 33-39.
Cepeda MS, Boston R, Farrar JT, et al. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol 2003; 158: 280-287. doi:10.1093/aje/kwg115.
Lisby M, Nielsen LP, Mainz J. Errors in the medication process: frequency, type, and potential clinical consequences. Int J Qual Health Care 2005; 17: 15-22. doi:10.1093/intqhc/mzi015.
Clayton M. The right way to prevent medication errors. RN 1987; 50: 30-31.
Fagerland MW. t-tests, non-parametric tests, and large studies-a paradox of statistical practice? BMC Med Res Methodol 2012; 12: 78. doi:10.1186/1471-2288-12-78.
Aiken LH, Clarke SP, Cheung RB, et al. Educational levels of hospital nurses and surgical patient mortality. JAMA 2003; 290: 1617-1623. doi:10.1001/jama.290.12.1617.
Keers RN, Williams SD, Cooke J, et al. Prevalence and nature of medication administration errors in health care settings: a systematic review of direct observational evidence. Ann Pharmacother 2013; 47: 237-256. doi:10.1345/aph.1R147.
van den Bemt PM, Egberts TC, de Jong-van den Berg LT, et al. Drug-related problems in hospitalised patients. Drug Saf 2000; 22: 321-333. doi:10.2165/00002018-200022040-00005.
Peris-Lopez P, Orfila A, Mitrokotsa A, et al. A comprehensive RFID solution to enhance inpatient medication safety. Int J Med Inform 2011; 80: 13-24. doi:10.1016/j.ijmedinf.2010.10.008.
Hughes RG, Ortiz E. Medication errors: why they happen, and how they can be prevented. J Infus Nurs 2005; 28: 14-24. doi:10.1097/00129804-200503001-00005.
Raban MZ, Westbrook JI. Are interventions to reduce interruptions and errors during medication administration effective?: a systematic review. BMJ Qual Saf 2014; 23: 414-421. doi:10.1136/bmjqs-2013-002118.
DeYoung JL, Vanderkooi ME, Barletta JF. Effect of bar-code-assisted medication administration on medication error rates in an adult medical intensive care unit. Am J Health Syst Pharm 2009; 66: 1110-1115. doi:10.2146/ajhp080355.
Kim MS. Medication error management climate and perception for system use according to construction of medication error prevention system. J Korean Acad Nurs 2012; 42: 568-578. doi:10.4040/jkan.2012.42.4.568.
Koppel R, Wetterneck T, Telles JL, et al. Workarounds to barcode medication administration systems: their occurrences, causes, and threats to patient safety. J Am Med Inform Assoc 2008; 15: 408-423. doi:10.1197/jamia.M2616.
Bates DW, Cullen DJ, Laird N, et al. Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group. JAMA 1995; 274: 29-34. doi:10.1001/jama.274.1.29.
Cescon DW, Etchells E. Barcoded medication administration: a last line of defense. JAMA 2008; 299: 2200-2202. doi:10.1001/jama.299.18.2200.
Kohn LT, Corrigan J, Donaldson MS. To Err is Human: Building a Safer Health System. National Academy Press: Washington, DC, 2000; 10.17226/9728.
2009; 67
2009; 66
2013; 47
2006; 34
1987; 50
2011; 80
2000; 22
1999; 25
2008; 15
2007
2010; 362
2003; 290
2004
2010; 160
1995; 274
2003; 158
2005; 28
2012; 12
2014; 23
2007; 16
2014; 5
2000
2001; 9
2003; 25
2015
2009; 6
2008; 299
2007; 64
2005; 17
1990; 9
1991; 324
2001; 58
2012; 42
2001; 31
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
Aspden P (e_1_2_9_5_1) 2007
e_1_2_9_10_1
e_1_2_9_35_1
Clayton M (e_1_2_9_12_1) 1987; 50
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_33_1
Kohn LT (e_1_2_9_2_1) 2000
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Akiyama M (e_1_2_9_25_1) 2010; 160
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: King G, Zeng L. Logistic regression in rare events data. Polit Anal 2001; 9: 137-163. doi:10.1093/oxfordjournals.pan.a004868.
– reference: Akiyama M, Koshio A, Kaihotsu N. Analysis of data captured by barcode medication administration system using a PDA; aiming at reducing medication errors at point of care in Japanese Red Cross Kochi Hospital. Stud Health Technol Inform 2010; 160: 774-778.
– reference: Blegen MA, Vaughn TE, Goode CJ. Nurse experience and education: effect on quality of care. J Nurs Adm 2001; 31: 33-39.
– reference: Lisby M, Nielsen LP, Mainz J. Errors in the medication process: frequency, type, and potential clinical consequences. Int J Qual Health Care 2005; 17: 15-22. doi:10.1093/intqhc/mzi015.
– reference: Tissot E, Cornette C, Limat S, et al. Observational study of potential risk factors of medication administration errors. Pharm World Sci 2003; 25: 264-268. doi:10.1023/b:phar.0000006519.44483.a0.
– reference: Biron AD, Loiselle CG, Lavoie-Tremblay M. Work interruptions and their contribution to medication administration errors: an evidence review. Worldviews Evid Based Nurs 2009; 6: 70-86. doi:10.1111/j.1741-6787.2009.00151.x.
– reference: Kim MS. Medication error management climate and perception for system use according to construction of medication error prevention system. J Korean Acad Nurs 2012; 42: 568-578. doi:10.4040/jkan.2012.42.4.568.
– reference: Bates DW, Cullen DJ, Laird N, et al. Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group. JAMA 1995; 274: 29-34. doi:10.1001/jama.274.1.29.
– reference: Brennan TA, Leape LL, Laird NM, et al. Incidence of adverse events and negligence in hospitalized patients. Results of the Harvard Medical Practice Study I. N Engl J Med 1991; 324: 370-376. doi:10.1056/NEJM199102073240604.
– reference: Clayton M. The right way to prevent medication errors. RN 1987; 50: 30-31.
– reference: Poon EG, Keohane CA, Yoon CS, et al. Effect of bar-code technology on the safety of medication administration. N Engl J Med 2010; 362: 1698-1707. doi:10.1056/NEJMsa0907115.
– reference: Peris-Lopez P, Orfila A, Mitrokotsa A, et al. A comprehensive RFID solution to enhance inpatient medication safety. Int J Med Inform 2011; 80: 13-24. doi:10.1016/j.ijmedinf.2010.10.008.
– reference: Hochberg Y, Benjamini Y. More powerful procedures for multiple significance testing. Stat Med 1990; 9: 811-818. doi:10.1002/sim.4780090710.
– reference: Scott-Cawiezell J, Pepper GA, Madsen RW, et al. Nursing home error and level of staff credentials. Clin Nurs Res 2007; 16: 72-78. doi:10.1177/1054773806295241.
– reference: Aspden P, Wolcott J, Bootman JL, et al. Committee on Identifying and Preventing Medication Errors, Institute of Medicine: Preventing Medication Errors, Quality Chasm Series. National Academies Press: Washington, DC, 2007.
– reference: Franklin BD, O'Grady K, Donyai P, et al. The impact of a closed-loop electronic prescribing and administration system on prescribing errors, administration errors and staff time: a before-and-after study. Qual Saf Health Care 2007; 16: 279-284. doi:10.1136/qshc.2006.019497.
– reference: Cescon DW, Etchells E. Barcoded medication administration: a last line of defense. JAMA 2008; 299: 2200-2202. doi:10.1001/jama.299.18.2200.
– reference: Keers RN, Williams SD, Cooke J, et al. Prevalence and nature of medication administration errors in health care settings: a systematic review of direct observational evidence. Ann Pharmacother 2013; 47: 237-256. doi:10.1345/aph.1R147.
– reference: Kopp BJ, Erstad BL, Allen ME, et al. Medication errors and adverse drug events in an intensive care unit: direct observation approach for detection. Crit Care Med 2006; 34: 415-425. doi:10.1097/01.ccm.0000198106.54306.d7.
– reference: Welp A, Meier LL, Manser T. Emotional exhaustion and workload predict clinician-rated and objective patient safety. Front Psychol 2014; 5: 1573. doi:10.3389/fpsyg.2014.01573.
– reference: Koppel R, Wetterneck T, Telles JL, et al. Workarounds to barcode medication administration systems: their occurrences, causes, and threats to patient safety. J Am Med Inform Assoc 2008; 15: 408-423. doi:10.1197/jamia.M2616.
– reference: DeYoung JL, Vanderkooi ME, Barletta JF. Effect of bar-code-assisted medication administration on medication error rates in an adult medical intensive care unit. Am J Health Syst Pharm 2009; 66: 1110-1115. doi:10.2146/ajhp080355.
– reference: Kohn LT, Corrigan J, Donaldson MS. To Err is Human: Building a Safer Health System. National Academy Press: Washington, DC, 2000; 10.17226/9728.
– reference: Hughes RG, Ortiz E. Medication errors: why they happen, and how they can be prevented. J Infus Nurs 2005; 28: 14-24. doi:10.1097/00129804-200503001-00005.
– reference: Aiken LH, Clarke SP, Cheung RB, et al. Educational levels of hospital nurses and surgical patient mortality. JAMA 2003; 290: 1617-1623. doi:10.1001/jama.290.12.1617.
– reference: van den Bemt PM, Egberts TC, de Jong-van den Berg LT, et al. Drug-related problems in hospitalised patients. Drug Saf 2000; 22: 321-333. doi:10.2165/00002018-200022040-00005.
– reference: Raban MZ, Westbrook JI. Are interventions to reduce interruptions and errors during medication administration effective?: a systematic review. BMJ Qual Saf 2014; 23: 414-421. doi:10.1136/bmjqs-2013-002118.
– reference: Fagerland MW. t-tests, non-parametric tests, and large studies-a paradox of statistical practice? BMC Med Res Methodol 2012; 12: 78. doi:10.1186/1471-2288-12-78.
– reference: Paoletti RD, Suess TM, Lesko MG, et al. Using bar-code technology and medication observation methodology for safer medication administration. Am J Health Syst Pharm 2007; 64: 536-543. doi:10.2146/ajhp060140.
– reference: Helmons PJ, Wargel LN, Daniels CE. Effect of bar-code-assisted medication administration on medication administration errors and accuracy in multiple patient care areas. Am J Health Syst Pharm 2009; 66: 1202-1210. doi:10.2146/ajhp080357.
– reference: Tissot E, Cornette C, Demoly P, et al. Medication errors at the administration stage in an intensive care unit. Intensive Care Med 1999; 25: 353-359. doi:10.1007/s001340050857.
– reference: Agrawal A. Medication errors: prevention using information technology systems. Br J Clin Pharmacol 2009; 67: 681-686. doi:10.1111/j.1365-2125.2009.03427.x.
– reference: Dean B, Barber N. Validity and reliability of observational methods for studying medication administration errors. Am J Health Syst Pharm 2001; 58: 54-59.
– reference: Cepeda MS, Boston R, Farrar JT, et al. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol 2003; 158: 280-287. doi:10.1093/aje/kwg115.
– volume: 9
  start-page: 811
  year: 1990
  end-page: 818
  article-title: More powerful procedures for multiple significance testing
  publication-title: Stat Med
– volume: 34
  start-page: 415
  year: 2006
  end-page: 425
  article-title: Medication errors and adverse drug events in an intensive care unit: direct observation approach for detection
  publication-title: Crit Care Med
– volume: 22
  start-page: 321
  year: 2000
  end-page: 333
  article-title: Drug‐related problems in hospitalised patients
  publication-title: Drug Saf
– volume: 25
  start-page: 353
  year: 1999
  end-page: 359
  article-title: Medication errors at the administration stage in an intensive care unit
  publication-title: Intensive Care Med
– volume: 64
  start-page: 536
  year: 2007
  end-page: 543
  article-title: Using bar‐code technology and medication observation methodology for safer medication administration
  publication-title: Am J Health Syst Pharm
– volume: 28
  start-page: 14
  year: 2005
  end-page: 24
  article-title: Medication errors: why they happen, and how they can be prevented
  publication-title: J Infus Nurs
– volume: 5
  start-page: 1573
  year: 2014
  article-title: Emotional exhaustion and workload predict clinician‐rated and objective patient safety
  publication-title: Front Psychol
– volume: 23
  start-page: 414
  year: 2014
  end-page: 421
  article-title: Are interventions to reduce interruptions and errors during medication administration effective?: a systematic review
  publication-title: BMJ Qual Saf
– year: 2007
– volume: 67
  start-page: 681
  year: 2009
  end-page: 686
  article-title: Medication errors: prevention using information technology systems
  publication-title: Br J Clin Pharmacol
– volume: 16
  start-page: 72
  year: 2007
  end-page: 78
  article-title: Nursing home error and level of staff credentials
  publication-title: Clin Nurs Res
– volume: 17
  start-page: 15
  year: 2005
  end-page: 22
  article-title: Errors in the medication process: frequency, type, and potential clinical consequences
  publication-title: Int J Qual Health Care
– volume: 12
  start-page: 78
  year: 2012
  article-title: ‐tests, non‐parametric tests, and large studies—a paradox of statistical practice?
  publication-title: BMC Med Res Methodol
– volume: 16
  start-page: 279
  year: 2007
  end-page: 284
  article-title: The impact of a closed‐loop electronic prescribing and administration system on prescribing errors, administration errors and staff time: a before‐and‐after study
  publication-title: Qual Saf Health Care
– volume: 15
  start-page: 408
  year: 2008
  end-page: 423
  article-title: Workarounds to barcode medication administration systems: their occurrences, causes, and threats to patient safety
  publication-title: J Am Med Inform Assoc
– volume: 6
  start-page: 70
  year: 2009
  end-page: 86
  article-title: Work interruptions and their contribution to medication administration errors: an evidence review
  publication-title: Worldviews Evid Based Nurs
– volume: 58
  start-page: 54
  year: 2001
  end-page: 59
  article-title: Validity and reliability of observational methods for studying medication administration errors
  publication-title: Am J Health Syst Pharm
– volume: 31
  start-page: 33
  year: 2001
  end-page: 39
  article-title: Nurse experience and education: effect on quality of care
  publication-title: J Nurs Adm
– volume: 299
  start-page: 2200
  year: 2008
  end-page: 2202
  article-title: Barcoded medication administration: a last line of defense
  publication-title: JAMA
– volume: 80
  start-page: 13
  year: 2011
  end-page: 24
  article-title: A comprehensive RFID solution to enhance inpatient medication safety
  publication-title: Int J Med Inform
– volume: 290
  start-page: 1617
  year: 2003
  end-page: 1623
  article-title: Educational levels of hospital nurses and surgical patient mortality
  publication-title: JAMA
– volume: 25
  start-page: 264
  year: 2003
  end-page: 268
  article-title: Observational study of potential risk factors of medication administration errors
  publication-title: Pharm World Sci
– volume: 362
  start-page: 1698
  year: 2010
  end-page: 1707
  article-title: Effect of bar‐code technology on the safety of medication administration
  publication-title: N Engl J Med
– volume: 66
  start-page: 1110
  year: 2009
  end-page: 1115
  article-title: Effect of bar‐code‐assisted medication administration on medication error rates in an adult medical intensive care unit
  publication-title: Am J Health Syst Pharm
– volume: 50
  start-page: 30
  year: 1987
  end-page: 31
  article-title: The right way to prevent medication errors
  publication-title: RN
– start-page: 10.17226/9728
  year: 2000
– volume: 42
  start-page: 568
  year: 2012
  end-page: 578
  article-title: Medication error management climate and perception for system use according to construction of medication error prevention system
  publication-title: J Korean Acad Nurs
– volume: 66
  start-page: 1202
  year: 2009
  end-page: 1210
  article-title: Effect of bar‐code‐assisted medication administration on medication administration errors and accuracy in multiple patient care areas
  publication-title: Am J Health Syst Pharm
– year: 2004
– volume: 9
  start-page: 137
  year: 2001
  end-page: 163
  article-title: Logistic regression in rare events data
  publication-title: Polit Anal
– volume: 158
  start-page: 280
  year: 2003
  end-page: 287
  article-title: Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
  publication-title: Am J Epidemiol
– volume: 324
  start-page: 370
  year: 1991
  end-page: 376
  article-title: Incidence of adverse events and negligence in hospitalized patients. Results of the Harvard Medical Practice Study I
  publication-title: N Engl J Med
– volume: 274
  start-page: 29
  year: 1995
  end-page: 34
  article-title: Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group
  publication-title: JAMA
– volume: 47
  start-page: 237
  year: 2013
  end-page: 256
  article-title: Prevalence and nature of medication administration errors in health care settings: a systematic review of direct observational evidence
  publication-title: Ann Pharmacother
– year: 2015
– volume: 160
  start-page: 774
  year: 2010
  end-page: 778
  article-title: Analysis of data captured by barcode medication administration system using a PDA; aiming at reducing medication errors at point of care in Japanese Red Cross Kochi Hospital
  publication-title: Stud Health Technol Inform
– ident: e_1_2_9_3_1
  doi: 10.1001/jama.274.1.29
– ident: e_1_2_9_15_1
  doi: 10.2146/ajhp060140
– ident: e_1_2_9_19_1
  doi: 10.1016/j.ijmedinf.2010.10.008
– ident: e_1_2_9_34_1
  doi: 10.1097/01.ccm.0000198106.54306.d7
– ident: e_1_2_9_8_1
  doi: 10.1093/intqhc/mzi015
– ident: e_1_2_9_26_1
  doi: 10.1023/b:phar.0000006519.44483.a0
– ident: e_1_2_9_32_1
  doi: 10.1093/oxfordjournals.pan.a004868
– ident: e_1_2_9_28_1
  doi: 10.1186/1471-2288-12-78
– ident: e_1_2_9_24_1
  doi: 10.1177/1054773806295241
– ident: e_1_2_9_35_1
  doi: 10.1001/jama.290.12.1617
– ident: e_1_2_9_33_1
  doi: 10.1093/ajhp/58.1.54
– ident: e_1_2_9_22_1
  doi: 10.1136/bmjqs-2013-002118
– ident: e_1_2_9_11_1
  doi: 10.2165/00002018-200022040-00005
– ident: e_1_2_9_13_1
  doi: 10.2146/ajhp080357
– ident: e_1_2_9_23_1
  doi: 10.1111/j.1741-6787.2009.00151.x
– volume: 50
  start-page: 30
  year: 1987
  ident: e_1_2_9_12_1
  article-title: The right way to prevent medication errors
  publication-title: RN
– ident: e_1_2_9_10_1
  doi: 10.1001/jama.299.18.2200
– ident: e_1_2_9_9_1
  doi: 10.1197/jamia.M2616
– ident: e_1_2_9_37_1
  doi: 10.3389/fpsyg.2014.01573
– ident: e_1_2_9_36_1
  doi: 10.1097/00005110-200101000-00007
– ident: e_1_2_9_17_1
  doi: 10.4040/jkan.2012.42.4.568
– ident: e_1_2_9_27_1
  doi: 10.1007/s001340050857
– ident: e_1_2_9_4_1
  doi: 10.1056/NEJM199102073240604
– ident: e_1_2_9_6_1
  doi: 10.1056/NEJMsa0907115
– ident: e_1_2_9_21_1
  doi: 10.1345/aph.1R147
– volume: 160
  start-page: 774
  year: 2010
  ident: e_1_2_9_25_1
  article-title: Analysis of data captured by barcode medication administration system using a PDA; aiming at reducing medication errors at point of care in Japanese Red Cross Kochi Hospital
  publication-title: Stud Health Technol Inform
– ident: e_1_2_9_7_1
  doi: 10.1111/j.1365-2125.2009.03427.x
– ident: e_1_2_9_16_1
  doi: 10.1136/qshc.2006.019497
– ident: e_1_2_9_20_1
  doi: 10.1097/00129804-200503001-00005
– ident: e_1_2_9_18_1
– start-page: 10.17226/9728
  volume-title: To Err is Human: Building a Safer Health System
  year: 2000
  ident: e_1_2_9_2_1
– ident: e_1_2_9_14_1
  doi: 10.2146/ajhp080355
– ident: e_1_2_9_31_1
  doi: 10.1093/aje/kwg115
– volume-title: Committee on Identifying and Preventing Medication Errors, Institute of Medicine: Preventing Medication Errors, Quality Chasm Series
  year: 2007
  ident: e_1_2_9_5_1
– ident: e_1_2_9_30_1
  doi: 10.1002/sim.4780090710
– ident: e_1_2_9_29_1
SSID ssj0009994
Score 2.2802107
Snippet Purpose To determine the risk factors and rate of medication administration error (MAE) alerts by analyzing large‐scale medication administration data and...
To determine the risk factors and rate of medication administration error (MAE) alerts by analyzing large-scale medication administration data and related...
Purpose To determine the risk factors and rate of medication administration error (MAE) alerts by analyzing large-scale medication administration data and...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1387
SubjectTerms Automatic Data Processing
closed-loop medication administration
Humans
Logistic Models
Medical errors
Medical Order Entry Systems
medication error
Medication Errors - prevention & control
Medication Errors - statistics & numerical data
Medication Systems, Hospital
Nurses - organization & administration
patient safety
Pharmaceutical Preparations - administration & dosage
pharmacoepidemiology
point-of-care system
Point-of-Care Systems
Prescription drugs
Radio frequency identification
Radio Frequency Identification Device
radio-frequency identification (RFID)
Risk Factors
Time Factors
Work Schedule Tolerance
Title Provider risk factors for medication administration error alerts: analyses of a large-scale closed-loop medication administration system using RFID and barcode
URI https://api.istex.fr/ark:/67375/WNG-FTNLKXNF-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.4068
https://www.ncbi.nlm.nih.gov/pubmed/27465030
https://www.proquest.com/docview/1845448061
https://www.proquest.com/docview/1826734670
https://www.proquest.com/docview/1868344591
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1053-8569
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009994
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2hsmHD-xEo6CKhsKlT2-OxY3YVxZSHrKikIhKL0bzMolEc2YlEWfEJ_EP_rF_SO-NHFFQqxMqyfD1-zLm-Z3zvnCHklVSI3FAFnkz8CAcoY4E-J5mXKmpYqosg1q7KN4-PTqKPMzZrqyrtXJhGH6L_4WY9w32vrYMLWe9vREOXuh5hNLLzfAPKXIb2eKMchbzHJZQRY96YxWmnO-uH-92JW5Hopn2pP66imdus1YWd7A751t1wU21yOlqv5Ej9_EPL8f-e6C653bJROGjgc4_cMIv7ZDhp5KzP9mC6mZ1V78EQJhuh67MH5HzSTuMDW6AO7dI9gDQYXMredTqILXleMFWFxzEsVav6DQiniWJqKAsQMLdl6Re_ftcIHANqXtZG4-68LJfXtNiIUYOt4P8Ox9mHQ2xVg0QPLrV5SE6yd9O3R1676IOnbKYfQRIk2rJCnSq_KCKmaEJTkxRhWuCuLpBBIWsxgfBTSZOxoIYqX1E9jgxyuYQ-IjuLcmGeEFAINd-kTCJJiqJISKGUbxITF0GBxFUNyOsOAFy1iuh2YY45b7ScQ449wm2PDMjL3nLZqIBcYTN0GOoNRHVqq-YSxr_m73k2zT9_muUZzwdktwMZbz8YNceBNsORMrIrvFZ_GF3d5m_EwpRraxNiexjZ_OtsYrtyCkuxnccNgPsbCpMI-TjFs4cOhn99FD45_GK3T__V8Bm5hUQybsp8dsnOqlqb50jWVvKFc8tLp4xBMQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLWGmQVseD8KA1wkVDaTTl7OA1aIEjpMiaqhI7pAshzbYTFVUyWtxLDiE_gH_owv4dp5VEXDCLGKotw4D5-be5x7fUzI80wgcl3hWFlo-zhAiTj6XEatWHiKxjJ3AmmqfNNgdOq_n9HZDnnVzoWp9SG6H27aM8z3Wju4_iF9uFENXcpqgOEoukL2dHpOe-XwZKMdhczHpJQRZVZEg7hVnrXdw_bMrVi0p1_r14uI5jZvNYEnuUE-t7dc15ucDdarbCC-_aHm-J_PdJNcbwgpvK4RdIvsqMVt0p_UitbnBzDdTNCqDqAPk43W9fkd8nPSzOQDXaMOzeo9gEwYTNbe9DvwLYVeUGWJxzEylavqJXAji6IqKHLgMNeV6b--_6gQOwrEvKiUxN15USwvabHWowZdxP8FTpKjIbYqIUMnLqS6S06Tt9M3I6tZ98ESOtmPOHFCqYmhjIWd5z4VXujFKszdOMddmSOJQuKiHG7HmRdG3FOesIUnI18hnQu9e2R3USzUAwIC0WarmGbIk3zf5xkXwlahCnInR-4qeuRFiwAmGlF0vTbHnNVyzi7DHmG6R3rkWWe5rIVALrDpGxB1Brw804VzIWWf0ncsmabj41masLRH9luUseabUTEca1McLCPBwmt1h9HbdQqHL1Sx1jYutofBzb7MJtCLp9AY27lfI7i7ITf0kZJ7eHbf4PCvj8Imw496-_BfDZ-Sq6PphzEbH6XHj8g15JVBXfWzT3ZX5Vo9Ru62yp4YH_0NfjlFTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWglRAbypspBS4SGjbNNO8HO8QQWlpFUZmKkbqwHD9YdDQZJTMSZcUn8A_8GV_CtfMYDSoVYhVZuXYePjf3OL4-JuRVwRG5LnesIrJ9HKDEDH2uCKyEezJIhHJCYbJ8s_DwzP84DaZtVqVeC9PoQ_Q_3LRnmO-1dvCFUAdr0dCFqEcYjeKbZNsPcXClCdHpWjoKiY-ZUUaQWXEQJp3wrO0edDU3QtG2fqtfr-KZm7TVxJ10h5x3d9ykm1yMVstixL_9Ieb4f490l9xp6Si8bfBzj9yQ8_tkmDd61pf7MFkvz6r3YQj5Wun68gH5mbfr-EBnqEO7dw8gDwYzZ296HdiGPi_IqsLzGJeqZf0GmBFFkTWUChjMdF76r-8_akSOBD4raymwOCvLxTUtNmrUoFP4v8BpejTGVgUU6MKlkA_JWfp-8u7Qand9sLie6keUOJHQtFAk3FbKD7gXeYmMlJsoLAqFFAppi3SYnRReFDNPetzmnoh9iWQu8h6RrXk5l08IcMSaLZOgQJbk-z4rGOe2jGSoHIXMlQ_I6w4AlLeS6HpnjhltxJxdij1CdY8MyMvectHIgFxhMzQY6g1YdaHT5qKAfs4-0HSSnRxPs5RmA7LXgYy2X4ya4kg7wKEy0iu8Vn8afV1P4LC5LFfaxsX2MLTZ19mEeuuUIMF2HjcA7m_IjXwk5B7WHhoY_vVRaD7-pI-7_2r4gtzKxyk9OcqOn5LbSCrDJuVnj2wtq5V8hsRtWTw3HvobjA5D_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Provider+risk+factors+for+medication+administration+error+alerts%3A+analyses+of+a+large%E2%80%90scale+closed%E2%80%90loop+medication+administration+system+using+RFID+and+barcode&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=Hwang%2C+Yeonsoo&rft.au=Yoon%2C+Dukyong&rft.au=Ahn%2C+Eun+Kyoung&rft.au=Hwang%2C+Hee&rft.date=2016-12-01&rft.issn=1053-8569&rft.eissn=1099-1557&rft.volume=25&rft.issue=12&rft.spage=1387&rft.epage=1396&rft_id=info:doi/10.1002%2Fpds.4068&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_pds_4068
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon