Predicting Grade and Patient Survival in Renal Cancer Using Machine Learning Analysis of Nucleolar Prominence
ABSTRACT Background Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability. Methods We develop...
        Saved in:
      
    
          | Published in | Cancer medicine (Malden, MA) Vol. 14; no. 17; pp. e71196 - n/a | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          John Wiley & Sons, Inc
    
        01.09.2025
     Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2045-7634 2045-7634  | 
| DOI | 10.1002/cam4.71196 | 
Cover
| Abstract | ABSTRACT
Background
Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability.
Methods
We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli.
Results
The model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival.
Conclusion
These findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions. | 
    
|---|---|
| AbstractList | ABSTRACT Background Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability. Methods We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli. Results The model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival. Conclusion These findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions. ABSTRACT Background Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability. Methods We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli. Results The model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival. Conclusion These findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions. Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability.BACKGROUNDPatients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability.We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli.METHODSWe developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli.The model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival.RESULTSThe model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival.These findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions.CONCLUSIONThese findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions. Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability. We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli. The model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival. These findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions.  | 
    
| Author | Zhavoronkov, Dmitry Arutyunyan, Alexander Ivanova, Elena Parchiev, Ruslan Grinin, Victor Timakova, Anna Shved, Nina Bakulina, Alesia Osmanov, Yusif Rudenko, Ekaterina Astaeva, Marina Balyasin, Maxim Fayzullin, Alexey Timashev, Peter Demura, Tatiana Ermilov, Dmitry Lychagin, Aleksey  | 
    
| Author_xml | – sequence: 1 givenname: Elena surname: Ivanova fullname: Ivanova, Elena organization: B.V.Petrovsky Russian Research Center of Surgery – sequence: 2 givenname: Alexey orcidid: 0000-0003-4137-8993 surname: Fayzullin fullname: Fayzullin, Alexey email: fayzullin_a_l@staff.sechenov.ru organization: World‐Class Research Center “Digital Biodesign and Personalized Healthcare, Sechenov First Moscow State Medical University (Sechenov University) – sequence: 3 givenname: Victor surname: Grinin fullname: Grinin, Victor organization: PJSC VimpelCom – sequence: 4 givenname: Dmitry surname: Zhavoronkov fullname: Zhavoronkov, Dmitry organization: PJSC VimpelCom – sequence: 5 givenname: Dmitry surname: Ermilov fullname: Ermilov, Dmitry organization: PJSC VimpelCom – sequence: 6 givenname: Maxim surname: Balyasin fullname: Balyasin, Maxim organization: Peoples' Friendship University of Russia – sequence: 7 givenname: Anna surname: Timakova fullname: Timakova, Anna organization: Sechenov First Moscow State Medical University (Sechenov University) – sequence: 8 givenname: Alesia surname: Bakulina fullname: Bakulina, Alesia organization: Sechenov First Moscow State Medical University (Sechenov University) – sequence: 9 givenname: Yusif surname: Osmanov fullname: Osmanov, Yusif organization: Institute of Clinical Morphology and Digital Pathology, Sechenov First Moscow State Medical University (Sechenov University) – sequence: 10 givenname: Ekaterina surname: Rudenko fullname: Rudenko, Ekaterina organization: Institute of Clinical Morphology and Digital Pathology, Sechenov First Moscow State Medical University (Sechenov University) – sequence: 11 givenname: Alexander surname: Arutyunyan fullname: Arutyunyan, Alexander organization: PJSC VimpelCom – sequence: 12 givenname: Ruslan surname: Parchiev fullname: Parchiev, Ruslan organization: Medical Neuronets – sequence: 13 givenname: Nina surname: Shved fullname: Shved, Nina organization: UNIM, Skolkovo Innovation Center – sequence: 14 givenname: Marina surname: Astaeva fullname: Astaeva, Marina organization: Sechenov First Moscow State Medical University (Sechenov University) – sequence: 15 givenname: Aleksey surname: Lychagin fullname: Lychagin, Aleksey organization: Sechenov First Moscow State Medical University (Sechenov University) – sequence: 16 givenname: Tatiana surname: Demura fullname: Demura, Tatiana organization: Institute of Clinical Morphology and Digital Pathology, Sechenov First Moscow State Medical University (Sechenov University) – sequence: 17 givenname: Peter surname: Timashev fullname: Timashev, Peter organization: World‐Class Research Center “Digital Biodesign and Personalized Healthcare, Sechenov First Moscow State Medical University (Sechenov University)  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40926367$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kU9v1DAQxS1URMvSCx8AWeKCQFv8L7FzXK2gVNq2K6Bna-JMileJvTibVvvt8TalQhzqgz0a_d7zaN5rchRiQELecnbGGROfHfTqTHNelS_IiWCqmOtSqqN_6mNyOgwblo9motT8FTlWrBKlLPUJ6dcJG-92PtzS8wQNUggNXcPOY9jRH2O683fQUR_odwy5WEJwmOjNcBBcgvvlA9IVQgqHxiIj-8EPNLb0anQdxg4SXafYZywL35CXLXQDnj6-M3Lz9cvP5bf56vr8YrlYzZ0SrJxLIwB1a3hVoGiMEtqVBpR0pdCoy5pzZypT1EZhvuqiME6XwHWlgRvJUM7IxeTbRNjYbfI9pL2N4O1DI6ZbC2nn84BW1DVjUjpEVSmpoTJtK12lWNs0tcpbmpFPk9cYtrC_h657MuTMHjKwhwzsQwaZ_jDR2xR_jzjsbO8Hh10HAeM4WCmUUcpIWWT0_X_oJo4pb3CiDBNG8Uy9e6TGusfm6e-_EWbg4wS4FIchYfv8eHyC732H-2dIu1xcqknzB5CWuQM | 
    
| Cites_doi | 10.1097/00000478‐198210000‐00007 10.1371/journal.pone.0161496 10.1016/j.csbj.2024.08.011 10.1016/j.jpi.2024.100395 10.1002/ijc.33288 10.3233/CBM‐2011‐0176 10.1016/j.bbe.2017.04.005 10.1111/his.13311 10.1007/s00345‐018‐2447‐8 10.1200/CCI.17.00100 10.1056/NEJMra043172 10.3390/biomedicines11112875 10.1155/2022/7693993 10.3390/biom13091327 10.4103/2153‐3539.137726 10.1016/j.eururo.2011.06.041 10.1038/s41591‐019‐0462‐y 10.1073/pnas.1717139115 10.1371/journal.pone.0222641  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 The Author(s). published by John Wiley & Sons Ltd. 2025 The Author(s). Cancer Medicine published by John Wiley & Sons Ltd. 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: 2025 The Author(s). published by John Wiley & Sons Ltd. – notice: 2025 The Author(s). Cancer Medicine published by John Wiley & Sons Ltd. – notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY DOA  | 
    
| DOI | 10.1002/cam4.71196 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2045-7634 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | oai_doaj_org_article_2bb0033cee49437a98ff3c940fddb426 10.1002/cam4.71196 40926367 10_1002_cam4_71196 CAM471196  | 
    
| Genre | researchArticle Journal Article  | 
    
| GeographicLocations | Russia | 
    
| GeographicLocations_xml | – name: Russia | 
    
| GrantInformation_xml | – fundername: Ministry of Science and Higher Education of the Russian Federation funderid: 075‐15‐2024‐640 – fundername: Ministry of Science and Higher Education of the Russian Federation grantid: 075-15-2024-640  | 
    
| GroupedDBID | 0R~ 1OC 24P 31~ 53G 5VS 7X7 8-0 8-1 8FE 8FH 8FI 8FJ AAMMB AAZKR ABDBF ABUWG ACCMX ACUHS ACXQS ADBBV ADKYN ADPDF ADRAZ ADZMN AEFGJ AENEX AFKRA AGXDD AIDQK AIDYY ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU D-8 D-9 DIK EBS EJD FYUFA GODZA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE HZ~ IHR ITC KQ8 LK8 M48 M7P M~E O9- OK1 OVD PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RPM TEORI TUS UKHRP WIN AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c4206-382ae7f8195e2d8427c68a43c627e76b11c8985b84e5b8b558c76a1797a1830e3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2045-7634 | 
    
| IngestDate | Fri Oct 03 12:39:59 EDT 2025 Sun Oct 26 04:05:55 EDT 2025 Thu Oct 02 21:28:59 EDT 2025 Sat Oct 25 03:51:14 EDT 2025 Sun Sep 14 01:40:36 EDT 2025 Wed Oct 29 21:24:03 EDT 2025 Fri Sep 12 09:20:29 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 17 | 
    
| Keywords | renal cell carcinoma computational pathology digital pathology artificial intelligence computer vision  | 
    
| Language | English | 
    
| License | Attribution 2025 The Author(s). Cancer Medicine published by John Wiley & Sons Ltd. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4206-382ae7f8195e2d8427c68a43c627e76b11c8985b84e5b8b558c76a1797a1830e3 | 
    
| Notes | This work was supported by Ministry of Science and Higher Education of the Russian Federation (075‐15‐2024‐640). Funding ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-4137-8993 | 
    
| OpenAccessLink | https://www.proquest.com/docview/3248802841?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PMID | 40926367 | 
    
| PQID | 3248802841 | 
    
| PQPubID | 2032540 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2bb0033cee49437a98ff3c940fddb426 unpaywall_primary_10_1002_cam4_71196 proquest_miscellaneous_3248448335 proquest_journals_3248802841 pubmed_primary_40926367 crossref_primary_10_1002_cam4_71196 wiley_primary_10_1002_cam4_71196_CAM471196  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2025 | 
    
| PublicationDateYYYYMMDD | 2025-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2025 text: September 2025  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Bognor Regis  | 
    
| PublicationTitle | Cancer medicine (Malden, MA) | 
    
| PublicationTitleAlternate | Cancer Med | 
    
| PublicationYear | 2025 | 
    
| Publisher | John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | 2023; 13 2014; 5 2018; 2 2017; 71 2023; 11 2022; 2022 2017; 37 2005; 353 2022 2021; 148 2011; 60 1982; 6 2018; 115 2019; 14 2019; 25 2018 2024 2024; 24 2024; 15 2010; 9 2018; 36 2016; 11 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_17_1 Schmidt U. (e_1_2_12_15_1) 2018 e_1_2_12_20_1 Weiger M. (e_1_2_12_16_1) 2022 e_1_2_12_21_1 American Cancer Society (e_1_2_12_2_1) 2024 e_1_2_12_22_1 e_1_2_12_23_1 e_1_2_12_14_1 e_1_2_12_13_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_10_1 e_1_2_12_9_1  | 
    
| References_xml | – volume: 15 year: 2024 article-title: LVI‐PathNet: Segmentation‐Classification Pipeline for Detection of Lymphovascular Invasion in Whole Slide Images of Lung Adenocarcinoma publication-title: Journal of Pathology Informatics – volume: 148 start-page: 780 year: 2021 end-page: 790 article-title: Clinical Use of a Machine Learning Histopathological Image Signature in Diagnosis and Survival Prediction of Clear Cell Renal Cell Carcinoma publication-title: International Journal of Cancer – volume: 36 start-page: 1913 year: 2018 end-page: 1926 article-title: WHO/ISUP Classification, Grading and Pathological Staging of Renal Cell Carcinoma: Standards and Controversies publication-title: World Journal of Urology – volume: 13 year: 2023 article-title: Artificial Intelligence Assists in the Detection of Blood Vessels in Whole Slide Images: Practical Benefits for Oncological Pathology publication-title: Biomolecules – volume: 2 start-page: 1 year: 2018 end-page: 12 article-title: Automated Renal Cancer Grading Using Nuclear Pleomorphic Patterns publication-title: JCO Clinical Cancer Informatics – volume: 14 year: 2019 article-title: Automated Clear Cell Renal Carcinoma Grade Classification With Prognostic Significance publication-title: PLoS One – volume: 5 start-page: 23 year: 2014 article-title: Automated Grading of Renal Cell Carcinoma Using Whole Slide Imaging publication-title: Journal of Pathology Informatics – volume: 9 start-page: 461 year: 2010 end-page: 473 article-title: Renal Cell Carcinoma publication-title: Cancer Biomarkers – volume: 2022 year: 2022 article-title: Predicting Clear Cell Renal Cell Carcinoma Survival Using Kurtosis of Cytoplasm in the Hematoxylin Channel From Histology Slides publication-title: Journal of Oncology – year: 2024 – volume: 353 start-page: 2477 year: 2005 end-page: 2490 article-title: Renal‐Cell Carcinoma publication-title: New England Journal of Medicine – volume: 71 start-page: 918 year: 2017 end-page: 925 article-title: Clear Cell Renal Cell Carcinoma: Validation of World Health Organization/International Society of Urological Pathology Grading publication-title: Histopathology – volume: 25 start-page: 1054 year: 2019 end-page: 1056 article-title: Deep Learning Can Predict Microsatellite Instability Directly From Histology in Gastrointestinal Cancer publication-title: Nature Medicine – volume: 11 year: 2023 article-title: Empowering Renal Cancer Management With AI and Digital Pathology: Pathology, Diagnostics and Prognosis publication-title: Biomedicine – volume: 115 start-page: E2970 year: 2018 end-page: E2979 article-title: Predicting Cancer Outcomes From Histology and Genomics Using Convolutional Networks publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 37 start-page: 357 year: 2017 end-page: 364 article-title: Ensemble of Classifiers and Wavelet Transformation for Improved Recognition of Fuhrman Grading in Clear‐Cell Renal Carcinoma publication-title: Biocybernetics and Biomedical Engineering – start-page: 1 year: 2022 end-page: 4 – volume: 11 year: 2016 article-title: Development and Validation of a Histological Method to Measure Microvessel Density in Whole‐Slide Images of Cancer Tissue publication-title: PLoS One – volume: 60 start-page: 644 year: 2011 end-page: 661 article-title: Prognostic Factors and Predictive Models in Renal Cell Carcinoma: A Contemporary Review publication-title: European Urology – start-page: 265 year: 2018 end-page: 273 – volume: 6 start-page: 655 year: 1982 end-page: 663 article-title: Prognostic Significance of Morphologic Parameters in Renal Cell Carcinoma publication-title: American Journal of Surgical Pathology – volume: 24 start-page: 571 year: 2024 end-page: 582 article-title: Towards Accurate and Efficient Diagnoses in Nephropathology: An AI‐Based Approach for Assessing Kidney Transplant Rejection publication-title: Computational and Structural Biotechnology Journal – ident: e_1_2_12_5_1 doi: 10.1097/00000478‐198210000‐00007 – ident: e_1_2_12_11_1 doi: 10.1371/journal.pone.0161496 – ident: e_1_2_12_8_1 doi: 10.1016/j.csbj.2024.08.011 – ident: e_1_2_12_10_1 doi: 10.1016/j.jpi.2024.100395 – ident: e_1_2_12_23_1 doi: 10.1002/ijc.33288 – ident: e_1_2_12_3_1 doi: 10.3233/CBM‐2011‐0176 – ident: e_1_2_12_21_1 doi: 10.1016/j.bbe.2017.04.005 – volume-title: Key Statistics About Kidney Cancer year: 2024 ident: e_1_2_12_2_1 – ident: e_1_2_12_6_1 doi: 10.1111/his.13311 – ident: e_1_2_12_19_1 doi: 10.1007/s00345‐018‐2447‐8 – ident: e_1_2_12_13_1 doi: 10.1200/CCI.17.00100 – ident: e_1_2_12_4_1 doi: 10.1056/NEJMra043172 – ident: e_1_2_12_7_1 doi: 10.3390/biomedicines11112875 – ident: e_1_2_12_22_1 doi: 10.1155/2022/7693993 – ident: e_1_2_12_9_1 doi: 10.3390/biom13091327 – ident: e_1_2_12_14_1 doi: 10.4103/2153‐3539.137726 – ident: e_1_2_12_20_1 doi: 10.1016/j.eururo.2011.06.041 – ident: e_1_2_12_17_1 doi: 10.1038/s41591‐019‐0462‐y – ident: e_1_2_12_18_1 doi: 10.1073/pnas.1717139115 – ident: e_1_2_12_12_1 doi: 10.1371/journal.pone.0222641 – start-page: 265 volume-title: Medical Image Computing and Computer‐Assisted Intervention—MICCAI 21 year: 2018 ident: e_1_2_12_15_1 – start-page: 1 volume-title: IEEE International Symposium on Biomedical Imaging Challenges (ISBIC) year: 2022 ident: e_1_2_12_16_1  | 
    
| SSID | ssj0000702671 | 
    
| Score | 2.3467243 | 
    
| Snippet | ABSTRACT
Background
Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk.... Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic... ABSTRACT Background Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk....  | 
    
| SourceID | doaj unpaywall proquest pubmed crossref wiley  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | e71196 | 
    
| SubjectTerms | Accuracy Aged Annotations Artificial intelligence Automation Carcinoma, Renal Cell - mortality Carcinoma, Renal Cell - pathology Cell density Cell Nucleolus - pathology Classification Clear cell-type renal cell carcinoma computational pathology Computer vision Datasets digital pathology Female Humans Kidney cancer Kidney Neoplasms - mortality Kidney Neoplasms - pathology Machine Learning Male Metastases Middle Aged Morphology Neoplasm Grading Nucleoli Pathology Prognosis renal cell carcinoma ROC Curve Software  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KDml7KG2Ttm6TopKcAm6shyX5mCxNQ2HDkgfkJmRJDoWsN7hZSv99NbLXbCCkl16MsGUjzXvQ-BuAfW-dZ4UVuWsoz0XpeK6Fa3JZUU_Lxoky_QszPZOnV-LHdXm91uoLa8J6eOCecIesRsHj0ZaLSnBlK9003FWiaLyvo3tB61voai2ZSjZYYWclOuKRskNn5-KrohTR-dc8UALqfyy6fAnPl-2d_fPb3t4-DFyT5zl5Da-GkJEc9Ut9A89C-xY2p8Oh-BbMZx2OsX6ZfO-sD8S2nsx6wFRysYzGIIoT-dmS84AfmiCjO5KKBcg0FVMGMuCs3pAVSglZNOQMwY4x9yWzbjGP0-KL23B18u1ycpoPXRRyJxgWtmlmg2rwvCwwrwVTTmoruJNMBSVrSp2udFlrEeKlLkvtlLRRT5WN6l4E_g422kUbPgDxocYTGeGCrASzUvPaSu9sob2qrBcZ7K0oa-56sAzTwyIzg_Q3if4ZHCPRxxkIcJ1uRLabge3mX2zPYGfFMjNo3S8Tg8NojqLDpRl8GR9HfcFDENuGxbKfE1NSzssM3vesHlcSc10muVQZ7I-8f3IjB0ksnphiJkdTkUYf_8euP8ELhv2HU43bDmzcd8uwG4Oi-_pzkv-_mO0HBA priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SFPo4hL7rJi0qDT0UnKwlWZIPoaRL01BwWNou5GZkSQ6FXXvjZmnz76ORHzQQ9mKEPRbyaF5ixt8A7FttLJ1oHpsqYTFPDYsVN1UsssQmaWV4Gv6Fyc_E6Zx_P0_Pt2AoYu8Z-OfOox32k5q3i4N_l9efvcIf9QCih0Yv-YFMvCx9XF3G2FAKE699d417cN87rQy7OuR95B-MtMTWS8kIWPr_LLdcVEDyvyv8fAwP1_VKX__Vi8XtyDa4ppMnsNPHlOS4E4KnsOXqZ_Ag77Pmz2E5a3GMBc7kW6utI7q2ZNYhqpKfa28tvLyR3zX54XCiKUpCS0I1AclDtaUjPRDrBRlgTEhTkTNEQ0YOklnbLD2Zf_EFzE--_pqexn2bhdhwipVvimonK0yoOWoVp9IIpTkzgkonRZkkRmUqLRV3_lKmqTJSaK_IUnt7MHHsJWzXTe1eA7GuxJQNN05knGqhWKmFNXqirMy05RF8GDhbrDo0jaLDTaYF8r8I_I_gCzJ9pEAE7HCjaS-KXqEKWqJBYt7H84wzqTNVVcxkfFJZW_qwI4K9YcuKQaoKHz16e-U9chLB-_GxVyjMkujaNeuOxp9ZGUsjeNVt9bgSL0hUMCEj2B_3fuOHfApisYGkmB7nPIzebF7wLjyi2Ho4lLftwfZVu3ZvfTx0Vb4Lkn0DBeIHdw priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB90D_R88NuzekrEexK6t03SJH1cF89D2GVRF86nkibpId62S90i-tc7SbvlTuQQfCmhTUI-Zia_dCa_ABxZbSydaB6bMmExTw2LFTdlLLLEJmlpeBrOwswX4nTFP5ylZ5dO8Xf8EMMPN68ZwV57Bd_YsrPzvXefHhu95mOZoBTdhD2RIhofwd5qsZx-8XfKIVqJUX34wEp6ucCVdSjQ9f8NY96B22210T9_6IuLq_A1rD8n90DvWt6FnXwbt9tibH79Qer4P127D3d7cEqmnTQ9gBuuegi35r37_RGsl41P-0hp8r7R1hFdWbLsqFnJpxbNDgou-VqRj85XNPMi1ZAQlkDmIWzTkZ7R9Zzs-FBIXZKFp1X2u2yybOo1ZsOCj2F18u7z7DTu72uIDac-hE5R7WTpPXOOWsWpNEJpzoyg0klRJIlRmUoLxR0-ijRVRgqNFkFqNCwTx57AqKor9xSIdYX3_XDjRMapFooVWlijJ8rKTFsewevd7OWbjpYj7wiYae5HLg8jF8FbP7FDDk-lHV7UzXnea2ZOC2_ZGIIFnnEmdabKkpmMT0prC8QvERzuxCLv9ft7jjAUDR8u7UkEr4bPqJne3aIrV7ddHtz8MpZGcNCJ09AS3FVTwYSM4GiQr2s78ibIyzVZ8tl0zkPq2b_V-Rz2qb_LOMTLHcJo27TuBQKsbfGy16Hfplgigg priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_MCX48iF_T6pSIexLqbpM0ScGXeXEO4Y6LOthbSJN0CLvt6HYR_3vPSXs7BjLwpYT2pLQ538nJLwB7wfnAZ07mvilELksvciN9k6uqCEXZeFmmvTCLY3V0Ir-dlqdb8GmzF2bAh5gm3Egzkr0mBXf15f41aKh3K_lRFyhBd-BugYEMyTeXy2mGBYWZq5RxEeR6jookJ3xSvn_d_YZHSsD9_4o2H8L9dXvh_vx25-c3A9nkiQ4fw6MxhGQHA8-fwFZsn8K9xbhI_gxWy57aVM_MvvYuRObawJYDgCr7sUbjgOLFfrXse6QXzYnxPUvFA2yRiisjG3FXz9gGtYR1DTsm8GPKhdmy71ZIhh2fw8nhl5_zo3w8VSH3klOhm-Eu6obWzyIPRnLtlXFSeMV11KouCm8qU9ZGRrzUZWm8Vg71VjtU_1kUO7Dddm18CSzEmlZopI-qktwpI2qngnczE3Tlgszg_WZk7cUAnmEHmGRuafxtGv8MPtOgTxQEeJ1udP2ZHfXH8prsj0CXLisptKtM0whfyVkTQo1RRga7G5bZUQsvLQaLaJ7QARcZvJseo_7QoohrY7ceaDBFFaLM4MXA6ulLMPflSiidwd7E-1t_5EMSi1tI7PxgIVPr1f8Qv4YHnM4dTrVtu7B91a_jGwyGruq3Seb_AuBJAHc priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Predicting Grade and Patient Survival in Renal Cancer Using Machine Learning Analysis of Nucleolar Prominence | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcam4.71196 https://www.ncbi.nlm.nih.gov/pubmed/40926367 https://www.proquest.com/docview/3248802841 https://www.proquest.com/docview/3248448335 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cam4.71196 https://doaj.org/article/2bb0033cee49437a98ff3c940fddb426  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: ABDBF dateStart: 20140401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: GX1 dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: 7X7 dateStart: 20120801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: BENPR dateStart: 20120801 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-7634 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: M48 dateStart: 20120801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: AVUZU dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2045-7634 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000702671 issn: 2045-7634 databaseCode: 24P dateStart: 20120101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6SDfRxKH3HbbqoNKeCm7UkS_KhlM2SBwUbk3ZhezKyJIdC1t64WUr_fSX50RbKXgZhyUaWRjMjzegbgGMtlcYzSUNVRSSksSKhoKoKWRLpKK4Ujf1dmDRjl0v6eRWv9iAb7sK4sMpBJnpBrRvlzshPrOK3rGaFafRpcxu6rFHOuzqk0JB9agX90UOM7cMBdshYEzg4Pcvyq_HUxTI4ZjwacUrxiZJr-oFHkUPt_0szeQD__1mdD-H-tt7IXz_lzc2_Bq3XSOeP4VFvSqJ5N_dPYM_UT-Fe2jvLn8E6b13ZxTWji1Zqg2StUd4BqaIvWyskLJuh7zW6Mu5DC8cALfJBBCj1QZYG9fir12hAL0FNhTIHguz2xChvm7VtZl98Dsvzs6-Ly7DPrhAqil3Am8DS8Mr50QzWgmKumJCUKIa54ayMIiUSEZeCGkvKOBaKM2nXL5dWDMwMeQGTuqnNISBtSuepocqwhGLJBCkl00rOhOaJ1DSAd8PIFpsORKPo4JJx4ca_8OMfwKkb9LGFA772D5r2uujXUYFLJ4eIVe00oYTLRFQVUQmdVVqX1toI4GiYsqJfjT-KP7wTwNux2q4j5xyRtWm2XRu7VSUkDuBlN9VjT-weGDPCeADH49zv_JH3ni12NCkW85T60qvdHX4ND7DLOOyj2o5gctduzRtrBt2VU9jHNLeUr_i05_OpP1Kw9GIVWZpSYWuWWT7_9hvGhAq5 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkEp7qPomLW1dlV4qBTa2YzsHVMEWuhSyWlGQuKWO7SAkNtkGVog_199W23m0laq9cYmsxImc8cx4xjP-BmBDS6XxQNJQFREJaaxIKKgqQpZEOooLRWN_FiYds9Ep_XYWny3Br-4sjEur7HSiV9S6Um6PfMsu_JbVrDKNPs9-hq5qlIuudiU0ZFtaQW97iLH2YMehub2xLtzV9sEXO98fMd7fOxmOwrbKQKgodolfAkvDCxdPMlgLirliQlKiGOaGszyKlEhEnAtq7CWPY6E4k5aPubTiMDDEfvcerFBCE-v8rezujSfH_S6PFSjMeNTjouItJad0k0eRqxLw10roCwb8z8p9CKvzciZvb-Tl5b8GtF8B9x_Do9Z0RTsNrz2BJVM-hftpG5x_BtNJ7doujxp9raU2SJYaTRrgVvR9bpWSZWt0UaJj4z40dAxXI5-0gFKf1GlQi_d6jjq0FFQVaOxAl50PjiZ1NbXd7IvP4fRO6PwClsuqNGuAtMldZIgqwxKKJRMkl0wrORCaJ1LTAD50lM1mDWhH1sAz48zRP_P0D2DXEb3v4YC2_Y2qPs9auc1w7vQesaYETSjhMhFFQVRCB4XWubVuAljvpixrpf8q-8OrAbzvH1u5dcEYWZpq3vSxrjEhcQAvm6nuR2J9bswI4wFs9HO_8Ec-ebZY0CUb7qTUt14tHvA7WB2dpEfZ0cH48DU8wK7asc-oW4fl63pu3lgT7Dp_2_I5gh93LVq_AaxjPys | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQ14QHwTGGDEeEEKbWzHdh4QGh1lY7SqYJP6ZhzbmZDWpGSrpv1r_HXYzgcgob7tJbISJ3LOvzvf-c53ADtGaYOHisa6SEhMU01iQXURsywxSVpomoazMJMp2z-mn-fpfAN-dWdhfFhlJxODoDaV9nvkA7fwO6g5YZoMijYsYrY3fr_8GfsKUt7T2pXTaCByaC8vnPl29u5gz831a4zHH49G-3FbYSDWFPugL4GV5YX3JVlsBMVcM6Eo0Qxzy1meJFpkIs0Fte6Sp6nQnCmHYa4cKwwtcd-9Btc5IZkPJ-Rz3u_vOFbCjCd9RlQ80GpB3_Ik8fUB_loDQ6mA_-m3t-DGqlyqywt1evqv6hzWvvEduN0qrWi3Qdld2LDlPdiatG75-7CY1b7tI6jRp1oZi1Rp0KxJ2Yq-rZw4coBGP0r01foPjTzUahTCFdAkhHNa1GZ6PUFdnhRUFWjq0y176xvN6mrhurkXH8DxlVD5IWyWVWkfAzI29z4hqi3LKFZMkFwxo9VQGJ4pQyN41VFWLpt0HbJJzIylp78M9I_ggyd638On2A43qvpEthwrce4lHnFKBM0o4SoTRUF0RoeFMbnTayLY7qZMtnx_Jv-gNIKX_WPHsd4No0pbrZo-zigmJI3gUTPV_UictY0ZYTyCnX7u1_7ImwCLNV3kaHdCQ-vJ-gG_gC3HUPLLwfTwKdzEvsxxCKXbhs3zemWfOd3rPH8eQI7g-1Vz1W_bhzzF | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB90D_R88NuzekrEexK6t03SJH1cF89D2GVRF86nkibpId62S90i-tc7SbvlTuQQfCmhTUI-Zia_dCa_ABxZbSydaB6bMmExTw2LFTdlLLLEJmlpeBrOwswX4nTFP5ylZ5dO8Xf8EMMPN68ZwV57Bd_YsrPzvXefHhu95mOZoBTdhD2RIhofwd5qsZx-8XfKIVqJUX34wEp6ucCVdSjQ9f8NY96B22210T9_6IuLq_A1rD8n90DvWt6FnXwbt9tibH79Qer4P127D3d7cEqmnTQ9gBuuegi35r37_RGsl41P-0hp8r7R1hFdWbLsqFnJpxbNDgou-VqRj85XNPMi1ZAQlkDmIWzTkZ7R9Zzs-FBIXZKFp1X2u2yybOo1ZsOCj2F18u7z7DTu72uIDac-hE5R7WTpPXOOWsWpNEJpzoyg0klRJIlRmUoLxR0-ijRVRgqNFkFqNCwTx57AqKor9xSIdYX3_XDjRMapFooVWlijJ8rKTFsewevd7OWbjpYj7wiYae5HLg8jF8FbP7FDDk-lHV7UzXnea2ZOC2_ZGIIFnnEmdabKkpmMT0prC8QvERzuxCLv9ft7jjAUDR8u7UkEr4bPqJne3aIrV7ddHtz8MpZGcNCJ09AS3FVTwYSM4GiQr2s78ibIyzVZ8tl0zkPq2b_V-Rz2qb_LOMTLHcJo27TuBQKsbfGy16Hfplgigg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Grade+and+Patient+Survival+in+Renal+Cancer+Using+Machine+Learning+Analysis+of+Nucleolar+Prominence&rft.jtitle=Cancer+medicine+%28Malden%2C+MA%29&rft.au=Ivanova%2C+Elena&rft.au=Fayzullin%2C+Alexey&rft.au=Grinin%2C+Victor&rft.au=Zhavoronkov%2C+Dmitry&rft.date=2025-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2045-7634&rft.volume=14&rft.issue=17&rft_id=info:doi/10.1002%2Fcam4.71196&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7634&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7634&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7634&client=summon |