Predicting Grade and Patient Survival in Renal Cancer Using Machine Learning Analysis of Nucleolar Prominence

ABSTRACT Background Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability. Methods We develop...

Full description

Saved in:
Bibliographic Details
Published inCancer medicine (Malden, MA) Vol. 14; no. 17; pp. e71196 - n/a
Main Authors Ivanova, Elena, Fayzullin, Alexey, Grinin, Victor, Zhavoronkov, Dmitry, Ermilov, Dmitry, Balyasin, Maxim, Timakova, Anna, Bakulina, Alesia, Osmanov, Yusif, Rudenko, Ekaterina, Arutyunyan, Alexander, Parchiev, Ruslan, Shved, Nina, Astaeva, Marina, Lychagin, Aleksey, Demura, Tatiana, Timashev, Peter
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.09.2025
Wiley
Subjects
Online AccessGet full text
ISSN2045-7634
2045-7634
DOI10.1002/cam4.71196

Cover

Abstract ABSTRACT Background Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability. Methods We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli. Results The model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival. Conclusion These findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions.
AbstractList ABSTRACT Background Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability. Methods We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli. Results The model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival. Conclusion These findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions.
ABSTRACT Background Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability. Methods We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli. Results The model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival. Conclusion These findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions.
Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability.BACKGROUNDPatients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability.We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli.METHODSWe developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli.The model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival.RESULTSThe model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival.These findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions.CONCLUSIONThese findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions.
Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic potential assessments rely on the WHO/ISUP grading system, which is subject to interobserver variability. We developed an artificial intelligence (AI) model to classify cells according to contemporary grading rules and evaluated the prognostic significance of tumor cell profiles, particularly focusing on cells with prominent nucleoli. The model accurately distinguished low (G1/G2) and high (G3/G4) grades, achieving an area under the ROC curve of 0.79. Survival analysis identified four tissue patterns defined by total cell density and the proportion of cells with prominent nucleoli. The relative abundance of such cells had greater prognostic value than their mere presence, correlating with survival times ranging from 2.2 to over 6 years. Additionally, we confirmed that dystrophic changes and focal necrosis are linked to shorter survival. These findings suggest that incorporating refined criteria into the WHO/ISUP system could enhance its prognostic accuracy in future revisions.
Author Zhavoronkov, Dmitry
Arutyunyan, Alexander
Ivanova, Elena
Parchiev, Ruslan
Grinin, Victor
Timakova, Anna
Shved, Nina
Bakulina, Alesia
Osmanov, Yusif
Rudenko, Ekaterina
Astaeva, Marina
Balyasin, Maxim
Fayzullin, Alexey
Timashev, Peter
Demura, Tatiana
Ermilov, Dmitry
Lychagin, Aleksey
Author_xml – sequence: 1
  givenname: Elena
  surname: Ivanova
  fullname: Ivanova, Elena
  organization: B.V.Petrovsky Russian Research Center of Surgery
– sequence: 2
  givenname: Alexey
  orcidid: 0000-0003-4137-8993
  surname: Fayzullin
  fullname: Fayzullin, Alexey
  email: fayzullin_a_l@staff.sechenov.ru
  organization: World‐Class Research Center “Digital Biodesign and Personalized Healthcare, Sechenov First Moscow State Medical University (Sechenov University)
– sequence: 3
  givenname: Victor
  surname: Grinin
  fullname: Grinin, Victor
  organization: PJSC VimpelCom
– sequence: 4
  givenname: Dmitry
  surname: Zhavoronkov
  fullname: Zhavoronkov, Dmitry
  organization: PJSC VimpelCom
– sequence: 5
  givenname: Dmitry
  surname: Ermilov
  fullname: Ermilov, Dmitry
  organization: PJSC VimpelCom
– sequence: 6
  givenname: Maxim
  surname: Balyasin
  fullname: Balyasin, Maxim
  organization: Peoples' Friendship University of Russia
– sequence: 7
  givenname: Anna
  surname: Timakova
  fullname: Timakova, Anna
  organization: Sechenov First Moscow State Medical University (Sechenov University)
– sequence: 8
  givenname: Alesia
  surname: Bakulina
  fullname: Bakulina, Alesia
  organization: Sechenov First Moscow State Medical University (Sechenov University)
– sequence: 9
  givenname: Yusif
  surname: Osmanov
  fullname: Osmanov, Yusif
  organization: Institute of Clinical Morphology and Digital Pathology, Sechenov First Moscow State Medical University (Sechenov University)
– sequence: 10
  givenname: Ekaterina
  surname: Rudenko
  fullname: Rudenko, Ekaterina
  organization: Institute of Clinical Morphology and Digital Pathology, Sechenov First Moscow State Medical University (Sechenov University)
– sequence: 11
  givenname: Alexander
  surname: Arutyunyan
  fullname: Arutyunyan, Alexander
  organization: PJSC VimpelCom
– sequence: 12
  givenname: Ruslan
  surname: Parchiev
  fullname: Parchiev, Ruslan
  organization: Medical Neuronets
– sequence: 13
  givenname: Nina
  surname: Shved
  fullname: Shved, Nina
  organization: UNIM, Skolkovo Innovation Center
– sequence: 14
  givenname: Marina
  surname: Astaeva
  fullname: Astaeva, Marina
  organization: Sechenov First Moscow State Medical University (Sechenov University)
– sequence: 15
  givenname: Aleksey
  surname: Lychagin
  fullname: Lychagin, Aleksey
  organization: Sechenov First Moscow State Medical University (Sechenov University)
– sequence: 16
  givenname: Tatiana
  surname: Demura
  fullname: Demura, Tatiana
  organization: Institute of Clinical Morphology and Digital Pathology, Sechenov First Moscow State Medical University (Sechenov University)
– sequence: 17
  givenname: Peter
  surname: Timashev
  fullname: Timashev, Peter
  organization: World‐Class Research Center “Digital Biodesign and Personalized Healthcare, Sechenov First Moscow State Medical University (Sechenov University)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40926367$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URMvSCx8AWeKCQFv8L7FzXK2gVNq2K6Bna-JMileJvTibVvvt8TalQhzqgz0a_d7zaN5rchRiQELecnbGGROfHfTqTHNelS_IiWCqmOtSqqN_6mNyOgwblo9motT8FTlWrBKlLPUJ6dcJG-92PtzS8wQNUggNXcPOY9jRH2O683fQUR_odwy5WEJwmOjNcBBcgvvlA9IVQgqHxiIj-8EPNLb0anQdxg4SXafYZywL35CXLXQDnj6-M3Lz9cvP5bf56vr8YrlYzZ0SrJxLIwB1a3hVoGiMEtqVBpR0pdCoy5pzZypT1EZhvuqiME6XwHWlgRvJUM7IxeTbRNjYbfI9pL2N4O1DI6ZbC2nn84BW1DVjUjpEVSmpoTJtK12lWNs0tcpbmpFPk9cYtrC_h657MuTMHjKwhwzsQwaZ_jDR2xR_jzjsbO8Hh10HAeM4WCmUUcpIWWT0_X_oJo4pb3CiDBNG8Uy9e6TGusfm6e-_EWbg4wS4FIchYfv8eHyC732H-2dIu1xcqknzB5CWuQM
Cites_doi 10.1097/00000478‐198210000‐00007
10.1371/journal.pone.0161496
10.1016/j.csbj.2024.08.011
10.1016/j.jpi.2024.100395
10.1002/ijc.33288
10.3233/CBM‐2011‐0176
10.1016/j.bbe.2017.04.005
10.1111/his.13311
10.1007/s00345‐018‐2447‐8
10.1200/CCI.17.00100
10.1056/NEJMra043172
10.3390/biomedicines11112875
10.1155/2022/7693993
10.3390/biom13091327
10.4103/2153‐3539.137726
10.1016/j.eururo.2011.06.041
10.1038/s41591‐019‐0462‐y
10.1073/pnas.1717139115
10.1371/journal.pone.0222641
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd.
2025 The Author(s). Cancer Medicine published by John Wiley & Sons Ltd.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd.
– notice: 2025 The Author(s). Cancer Medicine published by John Wiley & Sons Ltd.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
ADTOC
UNPAY
DOA
DOI 10.1002/cam4.71196
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2045-7634
EndPage n/a
ExternalDocumentID oai_doaj_org_article_2bb0033cee49437a98ff3c940fddb426
10.1002/cam4.71196
40926367
10_1002_cam4_71196
CAM471196
Genre researchArticle
Journal Article
GeographicLocations Russia
GeographicLocations_xml – name: Russia
GrantInformation_xml – fundername: Ministry of Science and Higher Education of the Russian Federation
  funderid: 075‐15‐2024‐640
– fundername: Ministry of Science and Higher Education of the Russian Federation
  grantid: 075-15-2024-640
GroupedDBID 0R~
1OC
24P
31~
53G
5VS
7X7
8-0
8-1
8FE
8FH
8FI
8FJ
AAMMB
AAZKR
ABDBF
ABUWG
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADPDF
ADRAZ
ADZMN
AEFGJ
AENEX
AFKRA
AGXDD
AIDQK
AIDYY
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
D-8
D-9
DIK
EBS
EJD
FYUFA
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
HZ~
IHR
ITC
KQ8
LK8
M48
M7P
M~E
O9-
OK1
OVD
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RPM
TEORI
TUS
UKHRP
WIN
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c4206-382ae7f8195e2d8427c68a43c627e76b11c8985b84e5b8b558c76a1797a1830e3
IEDL.DBID BENPR
ISSN 2045-7634
IngestDate Fri Oct 03 12:39:59 EDT 2025
Sun Oct 26 04:05:55 EDT 2025
Thu Oct 02 21:28:59 EDT 2025
Sat Oct 25 03:51:14 EDT 2025
Sun Sep 14 01:40:36 EDT 2025
Wed Oct 29 21:24:03 EDT 2025
Fri Sep 12 09:20:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords renal cell carcinoma
computational pathology
digital pathology
artificial intelligence
computer vision
Language English
License Attribution
2025 The Author(s). Cancer Medicine published by John Wiley & Sons Ltd.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4206-382ae7f8195e2d8427c68a43c627e76b11c8985b84e5b8b558c76a1797a1830e3
Notes This work was supported by Ministry of Science and Higher Education of the Russian Federation (075‐15‐2024‐640).
Funding
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4137-8993
OpenAccessLink https://www.proquest.com/docview/3248802841?pq-origsite=%requestingapplication%&accountid=15518
PMID 40926367
PQID 3248802841
PQPubID 2032540
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_2bb0033cee49437a98ff3c940fddb426
unpaywall_primary_10_1002_cam4_71196
proquest_miscellaneous_3248448335
proquest_journals_3248802841
pubmed_primary_40926367
crossref_primary_10_1002_cam4_71196
wiley_primary_10_1002_cam4_71196_CAM471196
PublicationCentury 2000
PublicationDate September 2025
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bognor Regis
PublicationTitle Cancer medicine (Malden, MA)
PublicationTitleAlternate Cancer Med
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2023; 13
2014; 5
2018; 2
2017; 71
2023; 11
2022; 2022
2017; 37
2005; 353
2022
2021; 148
2011; 60
1982; 6
2018; 115
2019; 14
2019; 25
2018
2024
2024; 24
2024; 15
2010; 9
2018; 36
2016; 11
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_18_1
e_1_2_12_17_1
Schmidt U. (e_1_2_12_15_1) 2018
e_1_2_12_20_1
Weiger M. (e_1_2_12_16_1) 2022
e_1_2_12_21_1
American Cancer Society (e_1_2_12_2_1) 2024
e_1_2_12_22_1
e_1_2_12_23_1
e_1_2_12_14_1
e_1_2_12_13_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 15
  year: 2024
  article-title: LVI‐PathNet: Segmentation‐Classification Pipeline for Detection of Lymphovascular Invasion in Whole Slide Images of Lung Adenocarcinoma
  publication-title: Journal of Pathology Informatics
– volume: 148
  start-page: 780
  year: 2021
  end-page: 790
  article-title: Clinical Use of a Machine Learning Histopathological Image Signature in Diagnosis and Survival Prediction of Clear Cell Renal Cell Carcinoma
  publication-title: International Journal of Cancer
– volume: 36
  start-page: 1913
  year: 2018
  end-page: 1926
  article-title: WHO/ISUP Classification, Grading and Pathological Staging of Renal Cell Carcinoma: Standards and Controversies
  publication-title: World Journal of Urology
– volume: 13
  year: 2023
  article-title: Artificial Intelligence Assists in the Detection of Blood Vessels in Whole Slide Images: Practical Benefits for Oncological Pathology
  publication-title: Biomolecules
– volume: 2
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Automated Renal Cancer Grading Using Nuclear Pleomorphic Patterns
  publication-title: JCO Clinical Cancer Informatics
– volume: 14
  year: 2019
  article-title: Automated Clear Cell Renal Carcinoma Grade Classification With Prognostic Significance
  publication-title: PLoS One
– volume: 5
  start-page: 23
  year: 2014
  article-title: Automated Grading of Renal Cell Carcinoma Using Whole Slide Imaging
  publication-title: Journal of Pathology Informatics
– volume: 9
  start-page: 461
  year: 2010
  end-page: 473
  article-title: Renal Cell Carcinoma
  publication-title: Cancer Biomarkers
– volume: 2022
  year: 2022
  article-title: Predicting Clear Cell Renal Cell Carcinoma Survival Using Kurtosis of Cytoplasm in the Hematoxylin Channel From Histology Slides
  publication-title: Journal of Oncology
– year: 2024
– volume: 353
  start-page: 2477
  year: 2005
  end-page: 2490
  article-title: Renal‐Cell Carcinoma
  publication-title: New England Journal of Medicine
– volume: 71
  start-page: 918
  year: 2017
  end-page: 925
  article-title: Clear Cell Renal Cell Carcinoma: Validation of World Health Organization/International Society of Urological Pathology Grading
  publication-title: Histopathology
– volume: 25
  start-page: 1054
  year: 2019
  end-page: 1056
  article-title: Deep Learning Can Predict Microsatellite Instability Directly From Histology in Gastrointestinal Cancer
  publication-title: Nature Medicine
– volume: 11
  year: 2023
  article-title: Empowering Renal Cancer Management With AI and Digital Pathology: Pathology, Diagnostics and Prognosis
  publication-title: Biomedicine
– volume: 115
  start-page: E2970
  year: 2018
  end-page: E2979
  article-title: Predicting Cancer Outcomes From Histology and Genomics Using Convolutional Networks
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 37
  start-page: 357
  year: 2017
  end-page: 364
  article-title: Ensemble of Classifiers and Wavelet Transformation for Improved Recognition of Fuhrman Grading in Clear‐Cell Renal Carcinoma
  publication-title: Biocybernetics and Biomedical Engineering
– start-page: 1
  year: 2022
  end-page: 4
– volume: 11
  year: 2016
  article-title: Development and Validation of a Histological Method to Measure Microvessel Density in Whole‐Slide Images of Cancer Tissue
  publication-title: PLoS One
– volume: 60
  start-page: 644
  year: 2011
  end-page: 661
  article-title: Prognostic Factors and Predictive Models in Renal Cell Carcinoma: A Contemporary Review
  publication-title: European Urology
– start-page: 265
  year: 2018
  end-page: 273
– volume: 6
  start-page: 655
  year: 1982
  end-page: 663
  article-title: Prognostic Significance of Morphologic Parameters in Renal Cell Carcinoma
  publication-title: American Journal of Surgical Pathology
– volume: 24
  start-page: 571
  year: 2024
  end-page: 582
  article-title: Towards Accurate and Efficient Diagnoses in Nephropathology: An AI‐Based Approach for Assessing Kidney Transplant Rejection
  publication-title: Computational and Structural Biotechnology Journal
– ident: e_1_2_12_5_1
  doi: 10.1097/00000478‐198210000‐00007
– ident: e_1_2_12_11_1
  doi: 10.1371/journal.pone.0161496
– ident: e_1_2_12_8_1
  doi: 10.1016/j.csbj.2024.08.011
– ident: e_1_2_12_10_1
  doi: 10.1016/j.jpi.2024.100395
– ident: e_1_2_12_23_1
  doi: 10.1002/ijc.33288
– ident: e_1_2_12_3_1
  doi: 10.3233/CBM‐2011‐0176
– ident: e_1_2_12_21_1
  doi: 10.1016/j.bbe.2017.04.005
– volume-title: Key Statistics About Kidney Cancer
  year: 2024
  ident: e_1_2_12_2_1
– ident: e_1_2_12_6_1
  doi: 10.1111/his.13311
– ident: e_1_2_12_19_1
  doi: 10.1007/s00345‐018‐2447‐8
– ident: e_1_2_12_13_1
  doi: 10.1200/CCI.17.00100
– ident: e_1_2_12_4_1
  doi: 10.1056/NEJMra043172
– ident: e_1_2_12_7_1
  doi: 10.3390/biomedicines11112875
– ident: e_1_2_12_22_1
  doi: 10.1155/2022/7693993
– ident: e_1_2_12_9_1
  doi: 10.3390/biom13091327
– ident: e_1_2_12_14_1
  doi: 10.4103/2153‐3539.137726
– ident: e_1_2_12_20_1
  doi: 10.1016/j.eururo.2011.06.041
– ident: e_1_2_12_17_1
  doi: 10.1038/s41591‐019‐0462‐y
– ident: e_1_2_12_18_1
  doi: 10.1073/pnas.1717139115
– ident: e_1_2_12_12_1
  doi: 10.1371/journal.pone.0222641
– start-page: 265
  volume-title: Medical Image Computing and Computer‐Assisted Intervention—MICCAI 21
  year: 2018
  ident: e_1_2_12_15_1
– start-page: 1
  volume-title: IEEE International Symposium on Biomedical Imaging Challenges (ISBIC)
  year: 2022
  ident: e_1_2_12_16_1
SSID ssj0000702671
Score 2.3467243
Snippet ABSTRACT Background Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk....
Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk. Current metastatic...
ABSTRACT Background Patients with clear cell renal cell carcinoma (ccRCC) often undergo organ resection, with treatment strategies based on recurrence risk....
SourceID doaj
unpaywall
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e71196
SubjectTerms Accuracy
Aged
Annotations
Artificial intelligence
Automation
Carcinoma, Renal Cell - mortality
Carcinoma, Renal Cell - pathology
Cell density
Cell Nucleolus - pathology
Classification
Clear cell-type renal cell carcinoma
computational pathology
Computer vision
Datasets
digital pathology
Female
Humans
Kidney cancer
Kidney Neoplasms - mortality
Kidney Neoplasms - pathology
Machine Learning
Male
Metastases
Middle Aged
Morphology
Neoplasm Grading
Nucleoli
Pathology
Prognosis
renal cell carcinoma
ROC Curve
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KDml7KG2Ttm6TopKcAm6shyX5mCxNQ2HDkgfkJmRJDoWsN7hZSv99NbLXbCCkl16MsGUjzXvQ-BuAfW-dZ4UVuWsoz0XpeK6Fa3JZUU_Lxoky_QszPZOnV-LHdXm91uoLa8J6eOCecIesRsHj0ZaLSnBlK9003FWiaLyvo3tB61voai2ZSjZYYWclOuKRskNn5-KrohTR-dc8UALqfyy6fAnPl-2d_fPb3t4-DFyT5zl5Da-GkJEc9Ut9A89C-xY2p8Oh-BbMZx2OsX6ZfO-sD8S2nsx6wFRysYzGIIoT-dmS84AfmiCjO5KKBcg0FVMGMuCs3pAVSglZNOQMwY4x9yWzbjGP0-KL23B18u1ycpoPXRRyJxgWtmlmg2rwvCwwrwVTTmoruJNMBSVrSp2udFlrEeKlLkvtlLRRT5WN6l4E_g422kUbPgDxocYTGeGCrASzUvPaSu9sob2qrBcZ7K0oa-56sAzTwyIzg_Q3if4ZHCPRxxkIcJ1uRLabge3mX2zPYGfFMjNo3S8Tg8NojqLDpRl8GR9HfcFDENuGxbKfE1NSzssM3vesHlcSc10muVQZ7I-8f3IjB0ksnphiJkdTkUYf_8euP8ELhv2HU43bDmzcd8uwG4Oi-_pzkv-_mO0HBA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SFPo4hL7rJi0qDT0UnKwlWZIPoaRL01BwWNou5GZkSQ6FXXvjZmnz76ORHzQQ9mKEPRbyaF5ixt8A7FttLJ1oHpsqYTFPDYsVN1UsssQmaWV4Gv6Fyc_E6Zx_P0_Pt2AoYu8Z-OfOox32k5q3i4N_l9efvcIf9QCih0Yv-YFMvCx9XF3G2FAKE699d417cN87rQy7OuR95B-MtMTWS8kIWPr_LLdcVEDyvyv8fAwP1_VKX__Vi8XtyDa4ppMnsNPHlOS4E4KnsOXqZ_Ag77Pmz2E5a3GMBc7kW6utI7q2ZNYhqpKfa28tvLyR3zX54XCiKUpCS0I1AclDtaUjPRDrBRlgTEhTkTNEQ0YOklnbLD2Zf_EFzE--_pqexn2bhdhwipVvimonK0yoOWoVp9IIpTkzgkonRZkkRmUqLRV3_lKmqTJSaK_IUnt7MHHsJWzXTe1eA7GuxJQNN05knGqhWKmFNXqirMy05RF8GDhbrDo0jaLDTaYF8r8I_I_gCzJ9pEAE7HCjaS-KXqEKWqJBYt7H84wzqTNVVcxkfFJZW_qwI4K9YcuKQaoKHz16e-U9chLB-_GxVyjMkujaNeuOxp9ZGUsjeNVt9bgSL0hUMCEj2B_3fuOHfApisYGkmB7nPIzebF7wLjyi2Ho4lLftwfZVu3ZvfTx0Vb4Lkn0DBeIHdw
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB90D_R88NuzekrEexK6t03SJH1cF89D2GVRF86nkibpId62S90i-tc7SbvlTuQQfCmhTUI-Zia_dCa_ABxZbSydaB6bMmExTw2LFTdlLLLEJmlpeBrOwswX4nTFP5ylZ5dO8Xf8EMMPN68ZwV57Bd_YsrPzvXefHhu95mOZoBTdhD2RIhofwd5qsZx-8XfKIVqJUX34wEp6ucCVdSjQ9f8NY96B22210T9_6IuLq_A1rD8n90DvWt6FnXwbt9tibH79Qer4P127D3d7cEqmnTQ9gBuuegi35r37_RGsl41P-0hp8r7R1hFdWbLsqFnJpxbNDgou-VqRj85XNPMi1ZAQlkDmIWzTkZ7R9Zzs-FBIXZKFp1X2u2yybOo1ZsOCj2F18u7z7DTu72uIDac-hE5R7WTpPXOOWsWpNEJpzoyg0klRJIlRmUoLxR0-ijRVRgqNFkFqNCwTx57AqKor9xSIdYX3_XDjRMapFooVWlijJ8rKTFsewevd7OWbjpYj7wiYae5HLg8jF8FbP7FDDk-lHV7UzXnea2ZOC2_ZGIIFnnEmdabKkpmMT0prC8QvERzuxCLv9ft7jjAUDR8u7UkEr4bPqJne3aIrV7ddHtz8MpZGcNCJ09AS3FVTwYSM4GiQr2s78ibIyzVZ8tl0zkPq2b_V-Rz2qb_LOMTLHcJo27TuBQKsbfGy16Hfplgigg
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_MCX48iF_T6pSIexLqbpM0ScGXeXEO4Y6LOthbSJN0CLvt6HYR_3vPSXs7BjLwpYT2pLQ538nJLwB7wfnAZ07mvilELksvciN9k6uqCEXZeFmmvTCLY3V0Ir-dlqdb8GmzF2bAh5gm3Egzkr0mBXf15f41aKh3K_lRFyhBd-BugYEMyTeXy2mGBYWZq5RxEeR6jookJ3xSvn_d_YZHSsD9_4o2H8L9dXvh_vx25-c3A9nkiQ4fw6MxhGQHA8-fwFZsn8K9xbhI_gxWy57aVM_MvvYuRObawJYDgCr7sUbjgOLFfrXse6QXzYnxPUvFA2yRiisjG3FXz9gGtYR1DTsm8GPKhdmy71ZIhh2fw8nhl5_zo3w8VSH3klOhm-Eu6obWzyIPRnLtlXFSeMV11KouCm8qU9ZGRrzUZWm8Vg71VjtU_1kUO7Dddm18CSzEmlZopI-qktwpI2qngnczE3Tlgszg_WZk7cUAnmEHmGRuafxtGv8MPtOgTxQEeJ1udP2ZHfXH8prsj0CXLisptKtM0whfyVkTQo1RRga7G5bZUQsvLQaLaJ7QARcZvJseo_7QoohrY7ceaDBFFaLM4MXA6ulLMPflSiidwd7E-1t_5EMSi1tI7PxgIVPr1f8Qv4YHnM4dTrVtu7B91a_jGwyGruq3Seb_AuBJAHc
  priority: 102
  providerName: Wiley-Blackwell
Title Predicting Grade and Patient Survival in Renal Cancer Using Machine Learning Analysis of Nucleolar Prominence
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcam4.71196
https://www.ncbi.nlm.nih.gov/pubmed/40926367
https://www.proquest.com/docview/3248802841
https://www.proquest.com/docview/3248448335
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cam4.71196
https://doaj.org/article/2bb0033cee49437a98ff3c940fddb426
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: ABDBF
  dateStart: 20140401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: GX1
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: 7X7
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: BENPR
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: M48
  dateStart: 20120801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: AVUZU
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2045-7634
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000702671
  issn: 2045-7634
  databaseCode: 24P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6SDfRxKH3HbbqoNKeCm7UkS_KhlM2SBwUbk3ZhezKyJIdC1t64WUr_fSX50RbKXgZhyUaWRjMjzegbgGMtlcYzSUNVRSSksSKhoKoKWRLpKK4Ujf1dmDRjl0v6eRWv9iAb7sK4sMpBJnpBrRvlzshPrOK3rGaFafRpcxu6rFHOuzqk0JB9agX90UOM7cMBdshYEzg4Pcvyq_HUxTI4ZjwacUrxiZJr-oFHkUPt_0szeQD__1mdD-H-tt7IXz_lzc2_Bq3XSOeP4VFvSqJ5N_dPYM_UT-Fe2jvLn8E6b13ZxTWji1Zqg2StUd4BqaIvWyskLJuh7zW6Mu5DC8cALfJBBCj1QZYG9fir12hAL0FNhTIHguz2xChvm7VtZl98Dsvzs6-Ly7DPrhAqil3Am8DS8Mr50QzWgmKumJCUKIa54ayMIiUSEZeCGkvKOBaKM2nXL5dWDMwMeQGTuqnNISBtSuepocqwhGLJBCkl00rOhOaJ1DSAd8PIFpsORKPo4JJx4ca_8OMfwKkb9LGFA772D5r2uujXUYFLJ4eIVe00oYTLRFQVUQmdVVqX1toI4GiYsqJfjT-KP7wTwNux2q4j5xyRtWm2XRu7VSUkDuBlN9VjT-weGDPCeADH49zv_JH3ni12NCkW85T60qvdHX4ND7DLOOyj2o5gctduzRtrBt2VU9jHNLeUr_i05_OpP1Kw9GIVWZpSYWuWWT7_9hvGhAq5
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkEp7qPomLW1dlV4qBTa2YzsHVMEWuhSyWlGQuKWO7SAkNtkGVog_199W23m0laq9cYmsxImc8cx4xjP-BmBDS6XxQNJQFREJaaxIKKgqQpZEOooLRWN_FiYds9Ep_XYWny3Br-4sjEur7HSiV9S6Um6PfMsu_JbVrDKNPs9-hq5qlIuudiU0ZFtaQW97iLH2YMehub2xLtzV9sEXO98fMd7fOxmOwrbKQKgodolfAkvDCxdPMlgLirliQlKiGOaGszyKlEhEnAtq7CWPY6E4k5aPubTiMDDEfvcerFBCE-v8rezujSfH_S6PFSjMeNTjouItJad0k0eRqxLw10roCwb8z8p9CKvzciZvb-Tl5b8GtF8B9x_Do9Z0RTsNrz2BJVM-hftpG5x_BtNJ7doujxp9raU2SJYaTRrgVvR9bpWSZWt0UaJj4z40dAxXI5-0gFKf1GlQi_d6jjq0FFQVaOxAl50PjiZ1NbXd7IvP4fRO6PwClsuqNGuAtMldZIgqwxKKJRMkl0wrORCaJ1LTAD50lM1mDWhH1sAz48zRP_P0D2DXEb3v4YC2_Y2qPs9auc1w7vQesaYETSjhMhFFQVRCB4XWubVuAljvpixrpf8q-8OrAbzvH1u5dcEYWZpq3vSxrjEhcQAvm6nuR2J9bswI4wFs9HO_8Ec-ebZY0CUb7qTUt14tHvA7WB2dpEfZ0cH48DU8wK7asc-oW4fl63pu3lgT7Dp_2_I5gh93LVq_AaxjPys
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQ14QHwTGGDEeEEKbWzHdh4QGh1lY7SqYJP6ZhzbmZDWpGSrpv1r_HXYzgcgob7tJbISJ3LOvzvf-c53ADtGaYOHisa6SEhMU01iQXURsywxSVpomoazMJMp2z-mn-fpfAN-dWdhfFhlJxODoDaV9nvkA7fwO6g5YZoMijYsYrY3fr_8GfsKUt7T2pXTaCByaC8vnPl29u5gz831a4zHH49G-3FbYSDWFPugL4GV5YX3JVlsBMVcM6Eo0Qxzy1meJFpkIs0Fte6Sp6nQnCmHYa4cKwwtcd-9Btc5IZkPJ-Rz3u_vOFbCjCd9RlQ80GpB3_Ik8fUB_loDQ6mA_-m3t-DGqlyqywt1evqv6hzWvvEduN0qrWi3Qdld2LDlPdiatG75-7CY1b7tI6jRp1oZi1Rp0KxJ2Yq-rZw4coBGP0r01foPjTzUahTCFdAkhHNa1GZ6PUFdnhRUFWjq0y176xvN6mrhurkXH8DxlVD5IWyWVWkfAzI29z4hqi3LKFZMkFwxo9VQGJ4pQyN41VFWLpt0HbJJzIylp78M9I_ggyd638On2A43qvpEthwrce4lHnFKBM0o4SoTRUF0RoeFMbnTayLY7qZMtnx_Jv-gNIKX_WPHsd4No0pbrZo-zigmJI3gUTPV_UictY0ZYTyCnX7u1_7ImwCLNV3kaHdCQ-vJ-gG_gC3HUPLLwfTwKdzEvsxxCKXbhs3zemWfOd3rPH8eQI7g-1Vz1W_bhzzF
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB90D_R88NuzekrEexK6t03SJH1cF89D2GVRF86nkibpId62S90i-tc7SbvlTuQQfCmhTUI-Zia_dCa_ABxZbSydaB6bMmExTw2LFTdlLLLEJmlpeBrOwswX4nTFP5ylZ5dO8Xf8EMMPN68ZwV57Bd_YsrPzvXefHhu95mOZoBTdhD2RIhofwd5qsZx-8XfKIVqJUX34wEp6ucCVdSjQ9f8NY96B22210T9_6IuLq_A1rD8n90DvWt6FnXwbt9tibH79Qer4P127D3d7cEqmnTQ9gBuuegi35r37_RGsl41P-0hp8r7R1hFdWbLsqFnJpxbNDgou-VqRj85XNPMi1ZAQlkDmIWzTkZ7R9Zzs-FBIXZKFp1X2u2yybOo1ZsOCj2F18u7z7DTu72uIDac-hE5R7WTpPXOOWsWpNEJpzoyg0klRJIlRmUoLxR0-ijRVRgqNFkFqNCwTx57AqKor9xSIdYX3_XDjRMapFooVWlijJ8rKTFsewevd7OWbjpYj7wiYae5HLg8jF8FbP7FDDk-lHV7UzXnea2ZOC2_ZGIIFnnEmdabKkpmMT0prC8QvERzuxCLv9ft7jjAUDR8u7UkEr4bPqJne3aIrV7ddHtz8MpZGcNCJ09AS3FVTwYSM4GiQr2s78ibIyzVZ8tl0zkPq2b_V-Rz2qb_LOMTLHcJo27TuBQKsbfGy16Hfplgigg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Grade+and+Patient+Survival+in+Renal+Cancer+Using+Machine+Learning+Analysis+of+Nucleolar+Prominence&rft.jtitle=Cancer+medicine+%28Malden%2C+MA%29&rft.au=Ivanova%2C+Elena&rft.au=Fayzullin%2C+Alexey&rft.au=Grinin%2C+Victor&rft.au=Zhavoronkov%2C+Dmitry&rft.date=2025-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=2045-7634&rft.volume=14&rft.issue=17&rft_id=info:doi/10.1002%2Fcam4.71196&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-7634&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-7634&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-7634&client=summon