Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks

The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which in...

Full description

Saved in:
Bibliographic Details
Published inBioengineering (Basel) Vol. 5; no. 2; p. 35
Main Authors Savalia, Shalin, Emamian, Vahid
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 04.05.2018
MDPI
Subjects
Online AccessGet full text
ISSN2306-5354
2306-5354
DOI10.3390/bioengineering5020035

Cover

Abstract The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision.
AbstractList The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision.
The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision.The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision.
Author Emamian, Vahid
Savalia, Shalin
AuthorAffiliation 1 Department of Electrical Engineering, St. Mary’s University, 1 Camino Santa Maria, San Antonio, TX 78228, USA
2 School of Science, Engineering and Technology, St. Mary’s University, San Antonio, TX 78228, USA; vemamian@gmail.com
AuthorAffiliation_xml – name: 2 School of Science, Engineering and Technology, St. Mary’s University, San Antonio, TX 78228, USA; vemamian@gmail.com
– name: 1 Department of Electrical Engineering, St. Mary’s University, 1 Camino Santa Maria, San Antonio, TX 78228, USA
Author_xml – sequence: 1
  givenname: Shalin
  surname: Savalia
  fullname: Savalia, Shalin
– sequence: 2
  givenname: Vahid
  surname: Emamian
  fullname: Emamian, Vahid
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29734666$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxSNUREvpRwBF4sJlwbFjJxESUhVBqbT8OcCJgzW2J7tevPbWTlrtt6-7W6q2QoLTWJ73fpp59vPiwAePRfGyIm8Z68g7ZQP6hfWI0foFJ5QQxp8UR5QRMeOM1wf3zofFSUorQkjFKKeiflYc0q5htRDiqPjVQzQWdHka43I7LtcWyt5BSnawGkYbfKm25ZfJjXY2hy3G8jtGjZsx5g54U_bBXwY37ZRfcYrgchmvQvydXhRPB3AJT27rcfHz08cf_efZ_NvZeX86n-maEj4zwBkhxtScKyYEKt02YiDdwIwRDUOFwyCaCgBV11AzUCOg0a0gimtVD8iOi_M91wRYyU20a4hbGcDK3UWICwlxtNqhVAI7RWta0Y7WoBCqqjUdGN5iRsENS-xZk9_A9gqcuwNWRN6EL_8afjZ-2Bs3k1qj0ejHnMWDaR52vF3KRbiUgtAmQzLgzS0ghosJ0yjXNml0DjyGKUlKmKi6tmpJlr5-JF2FKfqcscyb1aLmOZ2senV_ortR_jx-FvC9QMeQUsThv1d9_8in7bj7K3kx6_7hvgbWOOBa
CitedBy_id crossref_primary_10_1007_s13748_021_00243_5
crossref_primary_10_1016_j_irbm_2021_04_002
crossref_primary_10_1155_2022_8064844
crossref_primary_10_1007_s10614_021_10172_z
crossref_primary_10_1016_j_aej_2021_08_014
crossref_primary_10_3390_bioengineering9010008
crossref_primary_10_3390_s20040969
crossref_primary_10_1007_s00521_023_08577_y
crossref_primary_10_1007_s10723_023_09717_3
crossref_primary_10_1007_s42452_021_04621_5
crossref_primary_10_1016_j_cmpb_2023_107345
crossref_primary_10_1007_s10586_022_03547_w
crossref_primary_10_1016_j_bspc_2020_102210
crossref_primary_10_1007_s11042_022_13894_w
crossref_primary_10_1016_j_jsv_2021_116205
crossref_primary_10_1109_ACCESS_2020_2974712
crossref_primary_10_1016_j_bspc_2021_102968
crossref_primary_10_1371_journal_pone_0313390
crossref_primary_10_3233_MGS_230022
crossref_primary_10_5369_JSST_2019_29_1_19
crossref_primary_10_1007_s13721_024_00487_w
crossref_primary_10_48175_IJARSCT_18308
crossref_primary_10_1007_s11042_023_16548_7
crossref_primary_10_1016_j_matpr_2020_10_579
crossref_primary_10_1155_2018_5278196
crossref_primary_10_3389_fgene_2024_1495657
crossref_primary_10_3390_s24206648
crossref_primary_10_1016_j_isatra_2019_08_054
crossref_primary_10_1109_TAI_2023_3324627
crossref_primary_10_1007_s11042_023_17997_w
crossref_primary_10_1007_s12553_023_00807_6
crossref_primary_10_1155_2022_3041811
crossref_primary_10_1007_s11071_022_07565_6
crossref_primary_10_1007_s13246_019_00805_x
crossref_primary_10_1016_j_bbe_2020_06_003
crossref_primary_10_32604_csse_2023_031943
crossref_primary_10_32604_iasc_2022_017622
crossref_primary_10_33396_1728_0869_2021_4_55_64
crossref_primary_10_1088_2057_1976_ada965
crossref_primary_10_1155_2021_7677568
crossref_primary_10_32604_cmc_2022_023278
crossref_primary_10_1016_j_eswax_2020_100033
crossref_primary_10_1016_j_neunet_2022_01_021
crossref_primary_10_1016_j_matcom_2021_10_002
crossref_primary_10_1155_2022_6493311
crossref_primary_10_1007_s40998_023_00633_6
crossref_primary_10_1007_s42452_020_3058_8
crossref_primary_10_1007_s44196_025_00772_0
crossref_primary_10_1016_j_bbe_2021_04_004
crossref_primary_10_1080_10255842_2022_2032682
crossref_primary_10_1051_itmconf_20246401023
crossref_primary_10_1109_ACCESS_2021_3128736
crossref_primary_10_1111_joor_13350
crossref_primary_10_3390_electronics9060951
crossref_primary_10_1007_s00500_022_06878_3
crossref_primary_10_1016_j_jksuci_2023_01_013
crossref_primary_10_1109_ACCESS_2021_3128134
crossref_primary_10_3390_s22228615
crossref_primary_10_1186_s40360_019_0339_1
crossref_primary_10_3390_electronics13010086
crossref_primary_10_1515_jisys_2022_0015
crossref_primary_10_1007_s10586_022_03708_x
crossref_primary_10_1016_j_cmpb_2021_106521
crossref_primary_10_1007_s00414_024_03210_6
crossref_primary_10_1016_j_bspc_2022_103493
crossref_primary_10_1007_s00500_023_08730_8
crossref_primary_10_1016_j_bspc_2022_104224
crossref_primary_10_1016_j_ibmed_2022_100080
crossref_primary_10_1080_10255842_2024_2310726
crossref_primary_10_17537_2020_15_40
crossref_primary_10_3390_jimaging8030070
crossref_primary_10_1007_s11760_022_02194_3
crossref_primary_10_1109_ACCESS_2022_3192390
crossref_primary_10_1186_s13054_019_2561_z
crossref_primary_10_3390_bioengineering9040152
crossref_primary_10_23736_S0031_0808_20_04188_9
crossref_primary_10_3390_ma15030724
crossref_primary_10_1109_ACCESS_2023_3335176
crossref_primary_10_1109_TBCAS_2023_3299084
Cites_doi 10.1016/j.cger.2012.07.003
10.1016/j.bspc.2013.08.008
10.1142/S0219519416400054
10.1109/51.932724
10.1109/ICETECH.2016.7569428
10.1109/ICASSP.2013.6639347
10.1109/TITB.2010.2094197
10.1109/ICCES.2009.5383295
10.1109/TMI.2016.2551324
10.1109/TMI.2016.2524985
10.1007/978-3-319-46493-0_38
10.1109/CVPR.2015.7298668
10.1109/CCECE.2016.7726762
10.1109/ICDAR.2011.229
10.1109/ICECCT.2015.7226130
10.1023/A:1009715923555
10.1109/TBME.2015.2468589
10.22489/CinC.2016.169-535
10.1109/ICITCS.2016.7740310
10.22489/CinC.2017.065-469
10.1016/j.knosys.2017.06.003
10.1109/10.942588
10.1109/SMC.2016.7844294
10.1016/j.bspc.2014.04.001
ContentType Journal Article
Copyright 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 by the authors. 2018
Copyright_xml – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/bioengineering5020035
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Journal Directory
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Publicly Available Content Database

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2306-5354
ExternalDocumentID oai_doaj_org_article_b6e9b24212924abea118d9ad58eb4fae
10.3390/bioengineering5020035
PMC6027502
29734666
10_3390_bioengineering5020035
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 53G
5VS
8FE
8FG
8FH
AAFWJ
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
KQ8
L6V
LK8
M7P
M7S
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RPM
NPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
AFFHD
IHR
INH
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c4205-da5300dd455b366ebc876f09f3dd673ebeff671aaeb972df2d6a7c860b5cb4fe3
IEDL.DBID UNPAY
ISSN 2306-5354
IngestDate Fri Oct 03 12:52:58 EDT 2025
Wed Oct 29 12:18:48 EDT 2025
Tue Sep 30 16:50:02 EDT 2025
Fri Sep 05 06:17:45 EDT 2025
Fri Jul 25 11:58:39 EDT 2025
Wed Feb 19 02:44:38 EST 2025
Thu Oct 16 04:31:25 EDT 2025
Thu Apr 24 23:06:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords deep learning
electrocardiogram (ECG)
kaggle
python
arrhythmia
PhysioBank
machine learning
deep neural network
TensorFlow
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4205-da5300dd455b366ebc876f09f3dd673ebeff671aaeb972df2d6a7c860b5cb4fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2306-5354/5/2/35/pdf
PMID 29734666
PQID 2124645860
PQPubID 2055440
ParticipantIDs doaj_primary_oai_doaj_org_article_b6e9b24212924abea118d9ad58eb4fae
unpaywall_primary_10_3390_bioengineering5020035
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6027502
proquest_miscellaneous_2036198180
proquest_journals_2124645860
pubmed_primary_29734666
crossref_primary_10_3390_bioengineering5020035
crossref_citationtrail_10_3390_bioengineering5020035
PublicationCentury 2000
PublicationDate 20180504
PublicationDateYYYYMMDD 2018-05-04
PublicationDate_xml – month: 5
  year: 2018
  text: 20180504
  day: 4
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Bioengineering (Basel)
PublicationTitleAlternate Bioengineering (Basel)
PublicationYear 2018
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Moody (ref_3) 2001; 20
ref_14
ref_13
ref_35
ref_12
ref_33
ref_32
Martis (ref_27) 2014; 13
ref_31
Burges (ref_34) 1998; 2
ref_19
ref_18
ref_17
Debbal (ref_5) 2014; 3
Acharya (ref_11) 2017; 132
Yan (ref_30) 2016; 35
ref_15
Fahim (ref_23) 2011; 15
Golkov (ref_26) 2016; 35
ref_25
ref_24
Wang (ref_29) 2001; 48
ref_21
ref_20
Kiranyaz (ref_22) 2016; 63
ref_1
Martis (ref_28) 2013; 8
ref_2
Zebardast (ref_10) 2013; 4
ref_9
ref_8
Chow (ref_16) 2012; 28
ref_4
ref_7
ref_6
References_xml – ident: ref_7
– volume: 28
  start-page: 539
  year: 2012
  ident: ref_16
  article-title: Epidemiology of arrhythmias and conduction disorders in older adults
  publication-title: Clin. Geriatr. Med.
  doi: 10.1016/j.cger.2012.07.003
– volume: 8
  start-page: 888
  year: 2013
  ident: ref_28
  article-title: Application of higher order statistics for atrial arrhythmia classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.08.008
– ident: ref_18
  doi: 10.1142/S0219519416400054
– volume: 20
  start-page: 45
  year: 2001
  ident: ref_3
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– ident: ref_9
  doi: 10.1109/ICETECH.2016.7569428
– ident: ref_25
  doi: 10.1109/ICASSP.2013.6639347
– volume: 15
  start-page: 33
  year: 2011
  ident: ref_23
  article-title: Diagnosis of cardiovascular abnormalities from compressed ECG: A datamining-based approach
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2094197
– ident: ref_8
  doi: 10.1109/ICCES.2009.5383295
– volume: 35
  start-page: 1344
  year: 2016
  ident: ref_26
  article-title: q-Space deep learning: Twelve-fold shorter and model-free diffusion MRI scans
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2551324
– volume: 35
  start-page: 1332
  year: 2016
  ident: ref_30
  article-title: Multi-instance deep learning: Discover discriminative local anatomies for body part recognition
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2524985
– ident: ref_32
  doi: 10.1007/978-3-319-46493-0_38
– ident: ref_20
  doi: 10.1109/CVPR.2015.7298668
– ident: ref_6
  doi: 10.1109/CCECE.2016.7726762
– volume: 3
  start-page: 5
  year: 2014
  ident: ref_5
  article-title: Model of differentiation between normal and abnormal heart sounds in using the discrete wavelet transform
  publication-title: J. Med. Bioeng.
– ident: ref_14
– ident: ref_24
  doi: 10.1109/ICDAR.2011.229
– ident: ref_1
– ident: ref_35
– ident: ref_4
  doi: 10.1109/ICECCT.2015.7226130
– ident: ref_21
– volume: 2
  start-page: 121
  year: 1998
  ident: ref_34
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min Knowl Discov.
  doi: 10.1023/A:1009715923555
– volume: 63
  start-page: 664
  year: 2016
  ident: ref_22
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural network
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
– volume: 4
  start-page: 679
  year: 2013
  ident: ref_10
  article-title: A new generalized regression artificial neural networks approach for diagnosing heart disease
  publication-title: Int. J. Innov. Appl. Stud.
– ident: ref_12
  doi: 10.22489/CinC.2016.169-535
– ident: ref_31
– ident: ref_2
– ident: ref_19
  doi: 10.1109/ICITCS.2016.7740310
– ident: ref_33
  doi: 10.22489/CinC.2017.065-469
– ident: ref_15
– volume: 132
  start-page: 62
  year: 2017
  ident: ref_11
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.06.003
– ident: ref_13
– volume: 48
  start-page: 989
  year: 2001
  ident: ref_29
  article-title: A short-time multifractal approach for arrhythmia detection based on fuzzy neural network
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.942588
– ident: ref_17
  doi: 10.1109/SMC.2016.7844294
– volume: 13
  start-page: 295
  year: 2014
  ident: ref_27
  article-title: Computer-aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2014.04.001
SSID ssj0001325264
Score 2.3995
Snippet The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 35
SubjectTerms Accuracy
Algorithms
Arrhythmia
Artificial intelligence
Artificial neural networks
Bioengineering
Bradycardia
Cardiac arrhythmia
Cardiology
Cardiovascular disease
Cardiovascular diseases
Classification
Convolution
Datasets
deep learning
deep neural network
Echocardiography
EKG
electrocardiogram (ECG)
Electrocardiography
Fuzzy logic
Heart
Heart diseases
International conferences
kaggle
Learning algorithms
Machine learning
Multilayer perceptrons
Neural networks
PhysioBank
python
Signal processing
Tachycardia
TensorFlow
Ventricle
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Open Access Journal Directory
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGXrYdhnVPr-3gAbt6cayHrWMbrCiGrdhhBQrsYFASjQTInCJNOuTfj5JdL0ELdIddLRqWSUokReojwEdDZMZUYoa-4ABFsRqjczozwhOi9CXF845v5_rsQn65VJdbrb5CTVgHD9wxbmQ1GRvzlhwpoCVkj9gb9KoiKxuksPvmldkKpuLpiigUm_ruyo7guH5kZwv6i_Cn8ogEumOMImb_fY7m3XrJx-v2Cje_cT7fMkanz-FZ70Wmx93s9-ERtS_g6Ra24Ev4OYmyd0y0nG5W018zTGMHzFAbFMWR2k0a799mX5Ed7_R7V-Oy5BFsfTpZtDe9XqYBwoO_d97VjF-_govTzz8mZ1nfSSFzsshV5lGJPPdeKmWF1mQdb4JNbhrhvS4FC7JpdDlGJGvKwjeF11i6SudWOeYyidew1y5aegupdl5UyljLewPbMouVpLGtHNt5bbApEpC3LK1dDzMeul3Maw43giTqeyWRwKfhtasOZ-OhF06CvAbiAJMdH7Dy1L3y1A8pTwKHt9Ku-7V7XTN1SPfy3yfwYRjmVRdSKdjSYs00bPjHJtyTT-BNpxzDTEI3MMlRYQLljtrsTHV3pJ1NI7K3DknknHk4GhTs37jx7n9w4wCesDtYxXJOeQh7q-WajtjlWtn3cXX9Ad3CMco
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gF4QHwTGChIvIamcezEDwixatOEoJoQkybxEJ0_slYqSde1Q_3vOTsfXcUEvMa2YvvO5zvf3e8A3klr5chmGKFJyEDhxMaotYgkMxYxNZn17x1fJ-LkLP18zs_3YNLlwriwyk4mekFtau3eyIckYp0TLhfxx8Vl5KpGOe9qV0ID29IK5oOHGLsD-4lDxhrA_uHR5PTb9tWFJZxUgCaVh5G9P1Sz2m6R_3jsEUJ3LimP5X-bAvpnHOXddbXAzS-cz29cUscP4UGrXYafGnZ4BHu2egz3b2AOPoEfY88Tmjotp5vV9OcMQ18Z08UMeTKFahP6vNzoC5JCHp42sS9LasHKhOO6um75NXTQHvS_SRNLfvUUzo6Pvo9PorbCQqTTJOaRQc7i2JiUc8WEsEqTcCxjWTJjRMaIwGUpshGiVTJLTJkYgZkmGiiuVVpa9gwGVV3ZFxAKbVjOpVIkM-iOU5indqRyTfe_kFgmAaTdlha6hR93VTDmBZkhjhLFrZQI4H0_bNHgb_xrwKGjV9_ZwWf7D_XyomhPY6GElco7w8n8RGWRzCwj0fDc0rLQBnDQUbtoz_RVseXAAN72zXQanYsFK1uvqQ8pBCPp8ucDeN4wRz8TVyUsJWsxgGyHbXamuttSzaYe8Vs453JMezjsGez_duPl3xfyCu6RApj7AM70AAar5dq-JiVrpd60J-c3i3UumQ
  priority: 102
  providerName: ProQuest
Title Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/29734666
https://www.proquest.com/docview/2124645860
https://www.proquest.com/docview/2036198180
https://pubmed.ncbi.nlm.nih.gov/PMC6027502
https://www.mdpi.com/2306-5354/5/2/35/pdf
https://doaj.org/article/b6e9b24212924abea118d9ad58eb4fae
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: ABDBF
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: BENPR
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2306-5354
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001325264
  issn: 2306-5354
  databaseCode: 8FG
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6x7QH2wPsRWKogcU2TJrGTHNuyZYWgqhCVFnGIxo_Qim5S9QEqv56xky1bWInlFCkeK7Hnsz1jj78BeJ1pnfV0gh6qkBwURjBGKbmXRUojxirRdr_jw5ifTeN35-y8IYteN2GV5IrP7SRtzGOPRSz2mR_6EfOXqjiCNmdkdregPR1P-p9t8rhGrL6hE5Eb74t5pX8T-rHAEn8erD2Wov86u_Lv8Mjb23KJux-4WFxZe0b36qittaUsNCEn37rbjejKn38QOt6oWffhbmOBuv0aMg_gli4fwvEVXsJH8GVocSNJaDXbbWYXc3Rt9kwTV2RV6Yqda-_ueu-RjHZ3UsfHrKgES-UOq_J7g2nX0H_Q98Z1vPn6MUxHp5-GZ16ThcGTcRgwTyGLgkCpmDERca6FpAm0CLIiUoonEYGgKHjSQ9QiS0JVhIpjIlMeCCZFXOjoCbTKqtTPwOVSRSnLhKB5hdZBgWmseyKVZCPwDIvQgfhSP7lsKMpNpoxFTq6KUWt-rVod6O6rLWuOjn9VGBjl74UNxbZ9Ua2-5s2IzQXXmbAH5uSiotBIrpjKULFUU7NQO3ByCZ28GffrnKTNUTG13oFX-2IaseYYBktdbUmGjIZeZu7YO_C0Rtr-T0wmsZg8SgeSAwwe_OphSTmfWVZwbg6gA-pDf4_Wm_XG8_-u8QLukN2Y2rjP-ARam9VWvyTbbCM6cJSO3nag3R-8GYzoOTgdTz527E5HpxmxvwAtRkLV
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFTaQ-GA2DEUMBIcTR3PYs-hQjS0SmkaVaiVKnEwbxaTSMEOWajyc3wbb8ZO0ogKuPTqGdszb5v35m2EvJHWypZNIQKToIHCkYxBaxFJaiwAM6n19x0nPdE5Z58u-MUG-bXIhXFhlQuZ6AW1qbS7I99FEeuccJmI349-RK5rlPOuLlpoQNNawez5EmNNYsexnV-iCTfZO_qI-H6bJIcHZ-1O1HQZiDRLYh4Z4DSOjWGcKyqEVRoFRBHLghojUoqbLAqRtgCskmliisQISDWuQ3GtWGEpfvcW2WKUSTT-tvYPeqefV7c8NOGoctSpQ5TKeFcNKruqNMhjX5F07VD0vQOuU3j_jNvcnpUjmF_CcHjlUDy8R-422mz4oSa_-2TDlg_InSs1Dh-SL21Pgxonjfvzaf_7AELfidPFKHmyCNU89HnAURfQAAhP61ibMY5AacJ2Vf5s-CN0pUTwf706dn3yiJzfCKwfk82yKu1TEgptaMalUiij8ExVkDHbUplGfUNIKJKAsAVIc92UO3ddN4Y5mj0OE_m1mAjIu-Vro7rex79e2Hf4Wk525br9g2r8LW-4P1fCSuWd72jugrKAZp2RYHhmcVtgA7KzwHbeyJBJvqL4gLxeDiP3O5cOlLaa4RxUQFrS5esH5ElNHMuVuK5kDK3TgKRrZLO21PWRctD3FcaFc2bHCMPdJYH9HzSe_X0jr8h25-ykm3ePesfPyW1UPjMfPMp2yOZ0PLMvUMGbqpcNF4Xk600z7m-_vG1_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFSKxOOAeGMoYCQ4mji2d-09IAQpoaUl6oFKlTi4sw-TSMEOeVDl1_g6ZteO04gKuPTqXdu789qZnRfAS2GM6JoUA9QRGSiMyBiV4oGItUFMdGrcfcfnAd87Tj6dsJMt-LXKhbFhlSuZ6AS1rpS9I--QiLVOuIyHnaIJizja7b-d_AhsBynraV2106hJ5MAsz8h8m73Z3yVcv4qi_ocvvb2g6TAQqCQKWaCRxWGodcKYjDk3UpFwKEJRxFrzNKYNFgVPu4hGijTSRaQ5porWIJmSSWFi-u4VuJraKu42S73_cX2_E0eMlI06aSiORdiRo8qsawyy0NUi3TgOXdeAi1TdPyM2ry_KCS7PcDw-dxz2b8OtRo_139WEdwe2THkXbp6rbngPvvYc9SmaNB0u58PvI_RdD04bneQIwpdL32UAB4dIqr9_VEfZTGkES-33qvJnwxm-LSJC_xvUUeuz-3B8KZB-ANtlVZpH4HOl44wJKUk60WkqMUtMV2aKNA0usIg8SFYgzVVT6Nz22xjnZPBYTOQXYsKD1-1rk7rSx79eeG_x1U62hbrdg2r6LW_4PpfcCOnc7mToojRIBp0WqFlmaFtoPNhZYTtvpMcsX9O6By_aYeJ768zB0lQLmkOqR1fYTH0PHtbE0a7E9iNLyC71IN0gm42lbo6Uo6GrLc6tGzskGHZaAvs_aDz--0aewzVi1_xwf3DwBG6Q1pm5qNFkB7bn04V5SprdXD5zLOTD6WXz7G_orWsZ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagewAOvB-BBQWJa5o0fiQ-LhWrFYJqD1RaxCEaP7KtKEnVB6j8esaON2xhJZZrPVbjzGf7m3j8DSFvpLVyZAtIwOQYoHCEMWgtEkmNBWCmsP57x8eJOJmy92f8LIhFr0NaJYbic79IO3qccMpZytM8pTxdmvomORAcafeAHEwnp0efffG4YNbd0KEYxqdq3trfgn4888Kfe3uPl-i_ilf-nR55a9ssYfcDFotLe8_xvS5ra-0lC13KydfhdqOG-ucfgo7XGtZ9cjcw0Piog8wDcsM2D8mdS7qEj8iXsceNRqPVbLeZfZtD7Ktnurwi78pY7WJ_dzf5AEja49MuP2aFLdCYeNw23wOmYyf_gf836fLN14_J9Pjdp_FJEqowJJrlGU8McJplxjDOFRXCKo0LaJ3JmhojCoogqGtRjACskkVu6twIKHQpMsW1YrWlT8igaRv7jMRCG1pyqRSuK7gPKiiZHalSI0cQEuo8IuzCP5UOEuWuUsaiwlDFubW60q0RGfbdlp1Gx786vHXO742dxLb_oV2dV2HGVkpYqfyBOYaooCxgKGYkGF5aHBbYiBxeQKcK835dobU7KsbRR-R134wz1h3DQGPbLdogaRhJd8c-Ik87pPVP4iqJMYwoI1LsYXDvUfdbmvnMq4ILdwCd4TtMe7Re7208_-8eL8ht5I2lz_tkh2SwWW3tS-RmG_UqzMpfLmI97g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac+Arrhythmia+Classification+by+Multi-Layer+Perceptron+and+Convolution+Neural+Networks&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Savalia%2C+Shalin&rft.au=Emamian%2C+Vahid&rft.date=2018-05-04&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=5&rft.issue=2&rft_id=info:doi/10.3390%2Fbioengineering5020035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon