Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks
The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which in...
Saved in:
| Published in | Bioengineering (Basel) Vol. 5; no. 2; p. 35 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
04.05.2018
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2306-5354 2306-5354 |
| DOI | 10.3390/bioengineering5020035 |
Cover
| Abstract | The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision. |
|---|---|
| AbstractList | The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision. The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision.The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular diseases. If a documented ECG signal has a certain irregularity in its predefined features, this is called arrhythmia, the types of which include tachycardia, bradycardia, supraventricular arrhythmias, and ventricular, etc. This has encouraged us to do research that consists of distinguishing between several arrhythmias by using deep neural network algorithms such as multi-layer perceptron (MLP) and convolution neural network (CNN). The TensorFlow library that was established by Google for deep learning and machine learning is used in python to acquire the algorithms proposed here. The ECG databases accessible at PhysioBank.com and kaggle.com were used for training, testing, and validation of the MLP and CNN algorithms. The proposed algorithm consists of four hidden layers with weights, biases in MLP, and four-layer convolution neural networks which map ECG samples to the different classes of arrhythmia. The accuracy of the algorithm surpasses the performance of the current algorithms that have been developed by other cardiologists in both sensitivity and precision. |
| Author | Emamian, Vahid Savalia, Shalin |
| AuthorAffiliation | 1 Department of Electrical Engineering, St. Mary’s University, 1 Camino Santa Maria, San Antonio, TX 78228, USA 2 School of Science, Engineering and Technology, St. Mary’s University, San Antonio, TX 78228, USA; vemamian@gmail.com |
| AuthorAffiliation_xml | – name: 2 School of Science, Engineering and Technology, St. Mary’s University, San Antonio, TX 78228, USA; vemamian@gmail.com – name: 1 Department of Electrical Engineering, St. Mary’s University, 1 Camino Santa Maria, San Antonio, TX 78228, USA |
| Author_xml | – sequence: 1 givenname: Shalin surname: Savalia fullname: Savalia, Shalin – sequence: 2 givenname: Vahid surname: Emamian fullname: Emamian, Vahid |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29734666$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkk9v1DAQxSNUREvpRwBF4sJlwbFjJxESUhVBqbT8OcCJgzW2J7tevPbWTlrtt6-7W6q2QoLTWJ73fpp59vPiwAePRfGyIm8Z68g7ZQP6hfWI0foFJ5QQxp8UR5QRMeOM1wf3zofFSUorQkjFKKeiflYc0q5htRDiqPjVQzQWdHka43I7LtcWyt5BSnawGkYbfKm25ZfJjXY2hy3G8jtGjZsx5g54U_bBXwY37ZRfcYrgchmvQvydXhRPB3AJT27rcfHz08cf_efZ_NvZeX86n-maEj4zwBkhxtScKyYEKt02YiDdwIwRDUOFwyCaCgBV11AzUCOg0a0gimtVD8iOi_M91wRYyU20a4hbGcDK3UWICwlxtNqhVAI7RWta0Y7WoBCqqjUdGN5iRsENS-xZk9_A9gqcuwNWRN6EL_8afjZ-2Bs3k1qj0ejHnMWDaR52vF3KRbiUgtAmQzLgzS0ghosJ0yjXNml0DjyGKUlKmKi6tmpJlr5-JF2FKfqcscyb1aLmOZ2senV_ortR_jx-FvC9QMeQUsThv1d9_8in7bj7K3kx6_7hvgbWOOBa |
| CitedBy_id | crossref_primary_10_1007_s13748_021_00243_5 crossref_primary_10_1016_j_irbm_2021_04_002 crossref_primary_10_1155_2022_8064844 crossref_primary_10_1007_s10614_021_10172_z crossref_primary_10_1016_j_aej_2021_08_014 crossref_primary_10_3390_bioengineering9010008 crossref_primary_10_3390_s20040969 crossref_primary_10_1007_s00521_023_08577_y crossref_primary_10_1007_s10723_023_09717_3 crossref_primary_10_1007_s42452_021_04621_5 crossref_primary_10_1016_j_cmpb_2023_107345 crossref_primary_10_1007_s10586_022_03547_w crossref_primary_10_1016_j_bspc_2020_102210 crossref_primary_10_1007_s11042_022_13894_w crossref_primary_10_1016_j_jsv_2021_116205 crossref_primary_10_1109_ACCESS_2020_2974712 crossref_primary_10_1016_j_bspc_2021_102968 crossref_primary_10_1371_journal_pone_0313390 crossref_primary_10_3233_MGS_230022 crossref_primary_10_5369_JSST_2019_29_1_19 crossref_primary_10_1007_s13721_024_00487_w crossref_primary_10_48175_IJARSCT_18308 crossref_primary_10_1007_s11042_023_16548_7 crossref_primary_10_1016_j_matpr_2020_10_579 crossref_primary_10_1155_2018_5278196 crossref_primary_10_3389_fgene_2024_1495657 crossref_primary_10_3390_s24206648 crossref_primary_10_1016_j_isatra_2019_08_054 crossref_primary_10_1109_TAI_2023_3324627 crossref_primary_10_1007_s11042_023_17997_w crossref_primary_10_1007_s12553_023_00807_6 crossref_primary_10_1155_2022_3041811 crossref_primary_10_1007_s11071_022_07565_6 crossref_primary_10_1007_s13246_019_00805_x crossref_primary_10_1016_j_bbe_2020_06_003 crossref_primary_10_32604_csse_2023_031943 crossref_primary_10_32604_iasc_2022_017622 crossref_primary_10_33396_1728_0869_2021_4_55_64 crossref_primary_10_1088_2057_1976_ada965 crossref_primary_10_1155_2021_7677568 crossref_primary_10_32604_cmc_2022_023278 crossref_primary_10_1016_j_eswax_2020_100033 crossref_primary_10_1016_j_neunet_2022_01_021 crossref_primary_10_1016_j_matcom_2021_10_002 crossref_primary_10_1155_2022_6493311 crossref_primary_10_1007_s40998_023_00633_6 crossref_primary_10_1007_s42452_020_3058_8 crossref_primary_10_1007_s44196_025_00772_0 crossref_primary_10_1016_j_bbe_2021_04_004 crossref_primary_10_1080_10255842_2022_2032682 crossref_primary_10_1051_itmconf_20246401023 crossref_primary_10_1109_ACCESS_2021_3128736 crossref_primary_10_1111_joor_13350 crossref_primary_10_3390_electronics9060951 crossref_primary_10_1007_s00500_022_06878_3 crossref_primary_10_1016_j_jksuci_2023_01_013 crossref_primary_10_1109_ACCESS_2021_3128134 crossref_primary_10_3390_s22228615 crossref_primary_10_1186_s40360_019_0339_1 crossref_primary_10_3390_electronics13010086 crossref_primary_10_1515_jisys_2022_0015 crossref_primary_10_1007_s10586_022_03708_x crossref_primary_10_1016_j_cmpb_2021_106521 crossref_primary_10_1007_s00414_024_03210_6 crossref_primary_10_1016_j_bspc_2022_103493 crossref_primary_10_1007_s00500_023_08730_8 crossref_primary_10_1016_j_bspc_2022_104224 crossref_primary_10_1016_j_ibmed_2022_100080 crossref_primary_10_1080_10255842_2024_2310726 crossref_primary_10_17537_2020_15_40 crossref_primary_10_3390_jimaging8030070 crossref_primary_10_1007_s11760_022_02194_3 crossref_primary_10_1109_ACCESS_2022_3192390 crossref_primary_10_1186_s13054_019_2561_z crossref_primary_10_3390_bioengineering9040152 crossref_primary_10_23736_S0031_0808_20_04188_9 crossref_primary_10_3390_ma15030724 crossref_primary_10_1109_ACCESS_2023_3335176 crossref_primary_10_1109_TBCAS_2023_3299084 |
| Cites_doi | 10.1016/j.cger.2012.07.003 10.1016/j.bspc.2013.08.008 10.1142/S0219519416400054 10.1109/51.932724 10.1109/ICETECH.2016.7569428 10.1109/ICASSP.2013.6639347 10.1109/TITB.2010.2094197 10.1109/ICCES.2009.5383295 10.1109/TMI.2016.2551324 10.1109/TMI.2016.2524985 10.1007/978-3-319-46493-0_38 10.1109/CVPR.2015.7298668 10.1109/CCECE.2016.7726762 10.1109/ICDAR.2011.229 10.1109/ICECCT.2015.7226130 10.1023/A:1009715923555 10.1109/TBME.2015.2468589 10.22489/CinC.2016.169-535 10.1109/ICITCS.2016.7740310 10.22489/CinC.2017.065-469 10.1016/j.knosys.2017.06.003 10.1109/10.942588 10.1109/SMC.2016.7844294 10.1016/j.bspc.2014.04.001 |
| ContentType | Journal Article |
| Copyright | 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 by the authors. 2018 |
| Copyright_xml | – notice: 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 by the authors. 2018 |
| DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/bioengineering5020035 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Journal Directory |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2306-5354 |
| ExternalDocumentID | oai_doaj_org_article_b6e9b24212924abea118d9ad58eb4fae 10.3390/bioengineering5020035 PMC6027502 29734666 10_3390_bioengineering5020035 |
| Genre | Journal Article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC AFFHD IHR INH IPNFZ ITC RIG UNPAY |
| ID | FETCH-LOGICAL-c4205-da5300dd455b366ebc876f09f3dd673ebeff671aaeb972df2d6a7c860b5cb4fe3 |
| IEDL.DBID | UNPAY |
| ISSN | 2306-5354 |
| IngestDate | Fri Oct 03 12:52:58 EDT 2025 Wed Oct 29 12:18:48 EDT 2025 Tue Sep 30 16:50:02 EDT 2025 Fri Sep 05 06:17:45 EDT 2025 Fri Jul 25 11:58:39 EDT 2025 Wed Feb 19 02:44:38 EST 2025 Thu Oct 16 04:31:25 EDT 2025 Thu Apr 24 23:06:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | deep learning electrocardiogram (ECG) kaggle python arrhythmia PhysioBank machine learning deep neural network TensorFlow |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4205-da5300dd455b366ebc876f09f3dd673ebeff671aaeb972df2d6a7c860b5cb4fe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2306-5354/5/2/35/pdf |
| PMID | 29734666 |
| PQID | 2124645860 |
| PQPubID | 2055440 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b6e9b24212924abea118d9ad58eb4fae unpaywall_primary_10_3390_bioengineering5020035 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6027502 proquest_miscellaneous_2036198180 proquest_journals_2124645860 pubmed_primary_29734666 crossref_primary_10_3390_bioengineering5020035 crossref_citationtrail_10_3390_bioengineering5020035 |
| PublicationCentury | 2000 |
| PublicationDate | 20180504 |
| PublicationDateYYYYMMDD | 2018-05-04 |
| PublicationDate_xml | – month: 5 year: 2018 text: 20180504 day: 4 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Bioengineering (Basel) |
| PublicationTitleAlternate | Bioengineering (Basel) |
| PublicationYear | 2018 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Moody (ref_3) 2001; 20 ref_14 ref_13 ref_35 ref_12 ref_33 ref_32 Martis (ref_27) 2014; 13 ref_31 Burges (ref_34) 1998; 2 ref_19 ref_18 ref_17 Debbal (ref_5) 2014; 3 Acharya (ref_11) 2017; 132 Yan (ref_30) 2016; 35 ref_15 Fahim (ref_23) 2011; 15 Golkov (ref_26) 2016; 35 ref_25 ref_24 Wang (ref_29) 2001; 48 ref_21 ref_20 Kiranyaz (ref_22) 2016; 63 ref_1 Martis (ref_28) 2013; 8 ref_2 Zebardast (ref_10) 2013; 4 ref_9 ref_8 Chow (ref_16) 2012; 28 ref_4 ref_7 ref_6 |
| References_xml | – ident: ref_7 – volume: 28 start-page: 539 year: 2012 ident: ref_16 article-title: Epidemiology of arrhythmias and conduction disorders in older adults publication-title: Clin. Geriatr. Med. doi: 10.1016/j.cger.2012.07.003 – volume: 8 start-page: 888 year: 2013 ident: ref_28 article-title: Application of higher order statistics for atrial arrhythmia classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.08.008 – ident: ref_18 doi: 10.1142/S0219519416400054 – volume: 20 start-page: 45 year: 2001 ident: ref_3 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.932724 – ident: ref_9 doi: 10.1109/ICETECH.2016.7569428 – ident: ref_25 doi: 10.1109/ICASSP.2013.6639347 – volume: 15 start-page: 33 year: 2011 ident: ref_23 article-title: Diagnosis of cardiovascular abnormalities from compressed ECG: A datamining-based approach publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2094197 – ident: ref_8 doi: 10.1109/ICCES.2009.5383295 – volume: 35 start-page: 1344 year: 2016 ident: ref_26 article-title: q-Space deep learning: Twelve-fold shorter and model-free diffusion MRI scans publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2551324 – volume: 35 start-page: 1332 year: 2016 ident: ref_30 article-title: Multi-instance deep learning: Discover discriminative local anatomies for body part recognition publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2524985 – ident: ref_32 doi: 10.1007/978-3-319-46493-0_38 – ident: ref_20 doi: 10.1109/CVPR.2015.7298668 – ident: ref_6 doi: 10.1109/CCECE.2016.7726762 – volume: 3 start-page: 5 year: 2014 ident: ref_5 article-title: Model of differentiation between normal and abnormal heart sounds in using the discrete wavelet transform publication-title: J. Med. Bioeng. – ident: ref_14 – ident: ref_24 doi: 10.1109/ICDAR.2011.229 – ident: ref_1 – ident: ref_35 – ident: ref_4 doi: 10.1109/ICECCT.2015.7226130 – ident: ref_21 – volume: 2 start-page: 121 year: 1998 ident: ref_34 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min Knowl Discov. doi: 10.1023/A:1009715923555 – volume: 63 start-page: 664 year: 2016 ident: ref_22 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural network publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 – volume: 4 start-page: 679 year: 2013 ident: ref_10 article-title: A new generalized regression artificial neural networks approach for diagnosing heart disease publication-title: Int. J. Innov. Appl. Stud. – ident: ref_12 doi: 10.22489/CinC.2016.169-535 – ident: ref_31 – ident: ref_2 – ident: ref_19 doi: 10.1109/ICITCS.2016.7740310 – ident: ref_33 doi: 10.22489/CinC.2017.065-469 – ident: ref_15 – volume: 132 start-page: 62 year: 2017 ident: ref_11 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.06.003 – ident: ref_13 – volume: 48 start-page: 989 year: 2001 ident: ref_29 article-title: A short-time multifractal approach for arrhythmia detection based on fuzzy neural network publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.942588 – ident: ref_17 doi: 10.1109/SMC.2016.7844294 – volume: 13 start-page: 295 year: 2014 ident: ref_27 article-title: Computer-aided diagnosis of atrial arrhythmia using dimensionality reduction methods on transform domain representation publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2014.04.001 |
| SSID | ssj0001325264 |
| Score | 2.3995 |
| Snippet | The electrocardiogram (ECG) plays an imperative role in the medical field, as it records heart signal over time and is used to discover numerous cardiovascular... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 35 |
| SubjectTerms | Accuracy Algorithms Arrhythmia Artificial intelligence Artificial neural networks Bioengineering Bradycardia Cardiac arrhythmia Cardiology Cardiovascular disease Cardiovascular diseases Classification Convolution Datasets deep learning deep neural network Echocardiography EKG electrocardiogram (ECG) Electrocardiography Fuzzy logic Heart Heart diseases International conferences kaggle Learning algorithms Machine learning Multilayer perceptrons Neural networks PhysioBank python Signal processing Tachycardia TensorFlow Ventricle Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Journal Directory dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDCaGXrYdhnVPr-3gAbt6cayHrWMbrCiGrdhhBQrsYFASjQTInCJNOuTfj5JdL0ELdIddLRqWSUokReojwEdDZMZUYoa-4ABFsRqjczozwhOi9CXF845v5_rsQn65VJdbrb5CTVgHD9wxbmQ1GRvzlhwpoCVkj9gb9KoiKxuksPvmldkKpuLpiigUm_ruyo7guH5kZwv6i_Cn8ogEumOMImb_fY7m3XrJx-v2Cje_cT7fMkanz-FZ70Wmx93s9-ERtS_g6Ra24Ev4OYmyd0y0nG5W018zTGMHzFAbFMWR2k0a799mX5Ed7_R7V-Oy5BFsfTpZtDe9XqYBwoO_d97VjF-_govTzz8mZ1nfSSFzsshV5lGJPPdeKmWF1mQdb4JNbhrhvS4FC7JpdDlGJGvKwjeF11i6SudWOeYyidew1y5aegupdl5UyljLewPbMouVpLGtHNt5bbApEpC3LK1dDzMeul3Maw43giTqeyWRwKfhtasOZ-OhF06CvAbiAJMdH7Dy1L3y1A8pTwKHt9Ku-7V7XTN1SPfy3yfwYRjmVRdSKdjSYs00bPjHJtyTT-BNpxzDTEI3MMlRYQLljtrsTHV3pJ1NI7K3DknknHk4GhTs37jx7n9w4wCesDtYxXJOeQh7q-WajtjlWtn3cXX9Ad3CMco priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gF4QHwTGChIvIamcezEDwixatOEoJoQkybxEJ0_slYqSde1Q_3vOTsfXcUEvMa2YvvO5zvf3e8A3klr5chmGKFJyEDhxMaotYgkMxYxNZn17x1fJ-LkLP18zs_3YNLlwriwyk4mekFtau3eyIckYp0TLhfxx8Vl5KpGOe9qV0ID29IK5oOHGLsD-4lDxhrA_uHR5PTb9tWFJZxUgCaVh5G9P1Sz2m6R_3jsEUJ3LimP5X-bAvpnHOXddbXAzS-cz29cUscP4UGrXYafGnZ4BHu2egz3b2AOPoEfY88Tmjotp5vV9OcMQ18Z08UMeTKFahP6vNzoC5JCHp42sS9LasHKhOO6um75NXTQHvS_SRNLfvUUzo6Pvo9PorbCQqTTJOaRQc7i2JiUc8WEsEqTcCxjWTJjRMaIwGUpshGiVTJLTJkYgZkmGiiuVVpa9gwGVV3ZFxAKbVjOpVIkM-iOU5indqRyTfe_kFgmAaTdlha6hR93VTDmBZkhjhLFrZQI4H0_bNHgb_xrwKGjV9_ZwWf7D_XyomhPY6GElco7w8n8RGWRzCwj0fDc0rLQBnDQUbtoz_RVseXAAN72zXQanYsFK1uvqQ8pBCPp8ucDeN4wRz8TVyUsJWsxgGyHbXamuttSzaYe8Vs453JMezjsGez_duPl3xfyCu6RApj7AM70AAar5dq-JiVrpd60J-c3i3UumQ priority: 102 providerName: ProQuest |
| Title | Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29734666 https://www.proquest.com/docview/2124645860 https://www.proquest.com/docview/2036198180 https://pubmed.ncbi.nlm.nih.gov/PMC6027502 https://www.mdpi.com/2306-5354/5/2/35/pdf https://doaj.org/article/b6e9b24212924abea118d9ad58eb4fae |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: ABDBF dateStart: 20180301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: RPM dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: BENPR dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2306-5354 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001325264 issn: 2306-5354 databaseCode: 8FG dateStart: 20140301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6x7QH2wPsRWKogcU2TJrGTHNuyZYWgqhCVFnGIxo_Qim5S9QEqv56xky1bWInlFCkeK7Hnsz1jj78BeJ1pnfV0gh6qkBwURjBGKbmXRUojxirRdr_jw5ifTeN35-y8IYteN2GV5IrP7SRtzGOPRSz2mR_6EfOXqjiCNmdkdregPR1P-p9t8rhGrL6hE5Eb74t5pX8T-rHAEn8erD2Wov86u_Lv8Mjb23KJux-4WFxZe0b36qittaUsNCEn37rbjejKn38QOt6oWffhbmOBuv0aMg_gli4fwvEVXsJH8GVocSNJaDXbbWYXc3Rt9kwTV2RV6Yqda-_ueu-RjHZ3UsfHrKgES-UOq_J7g2nX0H_Q98Z1vPn6MUxHp5-GZ16ThcGTcRgwTyGLgkCpmDERca6FpAm0CLIiUoonEYGgKHjSQ9QiS0JVhIpjIlMeCCZFXOjoCbTKqtTPwOVSRSnLhKB5hdZBgWmseyKVZCPwDIvQgfhSP7lsKMpNpoxFTq6KUWt-rVod6O6rLWuOjn9VGBjl74UNxbZ9Ua2-5s2IzQXXmbAH5uSiotBIrpjKULFUU7NQO3ByCZ28GffrnKTNUTG13oFX-2IaseYYBktdbUmGjIZeZu7YO_C0Rtr-T0wmsZg8SgeSAwwe_OphSTmfWVZwbg6gA-pDf4_Wm_XG8_-u8QLukN2Y2rjP-ARam9VWvyTbbCM6cJSO3nag3R-8GYzoOTgdTz527E5HpxmxvwAtRkLV |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtNAdFTaQ-GA2DEUMBIcTR3PYs-hQjS0SmkaVaiVKnEwbxaTSMEOWajyc3wbb8ZO0ogKuPTqGdszb5v35m2EvJHWypZNIQKToIHCkYxBaxFJaiwAM6n19x0nPdE5Z58u-MUG-bXIhXFhlQuZ6AW1qbS7I99FEeuccJmI349-RK5rlPOuLlpoQNNawez5EmNNYsexnV-iCTfZO_qI-H6bJIcHZ-1O1HQZiDRLYh4Z4DSOjWGcKyqEVRoFRBHLghojUoqbLAqRtgCskmliisQISDWuQ3GtWGEpfvcW2WKUSTT-tvYPeqefV7c8NOGoctSpQ5TKeFcNKruqNMhjX5F07VD0vQOuU3j_jNvcnpUjmF_CcHjlUDy8R-422mz4oSa_-2TDlg_InSs1Dh-SL21Pgxonjfvzaf_7AELfidPFKHmyCNU89HnAURfQAAhP61ibMY5AacJ2Vf5s-CN0pUTwf706dn3yiJzfCKwfk82yKu1TEgptaMalUiij8ExVkDHbUplGfUNIKJKAsAVIc92UO3ddN4Y5mj0OE_m1mAjIu-Vro7rex79e2Hf4Wk525br9g2r8LW-4P1fCSuWd72jugrKAZp2RYHhmcVtgA7KzwHbeyJBJvqL4gLxeDiP3O5cOlLaa4RxUQFrS5esH5ElNHMuVuK5kDK3TgKRrZLO21PWRctD3FcaFc2bHCMPdJYH9HzSe_X0jr8h25-ykm3ePesfPyW1UPjMfPMp2yOZ0PLMvUMGbqpcNF4Xk600z7m-_vG1_ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFSKxOOAeGMoYCQ4mji2d-09IAQpoaUl6oFKlTi4sw-TSMEOeVDl1_g6ZteO04gKuPTqXdu789qZnRfAS2GM6JoUA9QRGSiMyBiV4oGItUFMdGrcfcfnAd87Tj6dsJMt-LXKhbFhlSuZ6AS1rpS9I--QiLVOuIyHnaIJizja7b-d_AhsBynraV2106hJ5MAsz8h8m73Z3yVcv4qi_ocvvb2g6TAQqCQKWaCRxWGodcKYjDk3UpFwKEJRxFrzNKYNFgVPu4hGijTSRaQ5porWIJmSSWFi-u4VuJraKu42S73_cX2_E0eMlI06aSiORdiRo8qsawyy0NUi3TgOXdeAi1TdPyM2ry_KCS7PcDw-dxz2b8OtRo_139WEdwe2THkXbp6rbngPvvYc9SmaNB0u58PvI_RdD04bneQIwpdL32UAB4dIqr9_VEfZTGkES-33qvJnwxm-LSJC_xvUUeuz-3B8KZB-ANtlVZpH4HOl44wJKUk60WkqMUtMV2aKNA0usIg8SFYgzVVT6Nz22xjnZPBYTOQXYsKD1-1rk7rSx79eeG_x1U62hbrdg2r6LW_4PpfcCOnc7mToojRIBp0WqFlmaFtoPNhZYTtvpMcsX9O6By_aYeJ768zB0lQLmkOqR1fYTH0PHtbE0a7E9iNLyC71IN0gm42lbo6Uo6GrLc6tGzskGHZaAvs_aDz--0aewzVi1_xwf3DwBG6Q1pm5qNFkB7bn04V5SprdXD5zLOTD6WXz7G_orWsZ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELagewAOvB-BBQWJa5o0fiQ-LhWrFYJqD1RaxCEaP7KtKEnVB6j8esaON2xhJZZrPVbjzGf7m3j8DSFvpLVyZAtIwOQYoHCEMWgtEkmNBWCmsP57x8eJOJmy92f8LIhFr0NaJYbic79IO3qccMpZytM8pTxdmvomORAcafeAHEwnp0efffG4YNbd0KEYxqdq3trfgn4888Kfe3uPl-i_ilf-nR55a9ssYfcDFotLe8_xvS5ra-0lC13KydfhdqOG-ucfgo7XGtZ9cjcw0Piog8wDcsM2D8mdS7qEj8iXsceNRqPVbLeZfZtD7Ktnurwi78pY7WJ_dzf5AEja49MuP2aFLdCYeNw23wOmYyf_gf836fLN14_J9Pjdp_FJEqowJJrlGU8McJplxjDOFRXCKo0LaJ3JmhojCoogqGtRjACskkVu6twIKHQpMsW1YrWlT8igaRv7jMRCG1pyqRSuK7gPKiiZHalSI0cQEuo8IuzCP5UOEuWuUsaiwlDFubW60q0RGfbdlp1Gx786vHXO742dxLb_oV2dV2HGVkpYqfyBOYaooCxgKGYkGF5aHBbYiBxeQKcK835dobU7KsbRR-R134wz1h3DQGPbLdogaRhJd8c-Ik87pPVP4iqJMYwoI1LsYXDvUfdbmvnMq4ILdwCd4TtMe7Re7208_-8eL8ht5I2lz_tkh2SwWW3tS-RmG_UqzMpfLmI97g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cardiac+Arrhythmia+Classification+by+Multi-Layer+Perceptron+and+Convolution+Neural+Networks&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Savalia%2C+Shalin&rft.au=Emamian%2C+Vahid&rft.date=2018-05-04&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=5&rft.issue=2&rft_id=info:doi/10.3390%2Fbioengineering5020035&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |