An improved Talbot method for numerical Laplace transform inversion

The classical Talbot method for the computation of the inverse Laplace transform is improved for the case where the transform is analytic in the complex plane except for the negative real axis. First, by using a truncated Talbot contour rather than the classical contour that goes to infinity in the...

Full description

Saved in:
Bibliographic Details
Published inNumerical algorithms Vol. 68; no. 1; pp. 167 - 183
Main Authors Dingfelder, Benedict, Weideman, J. A. C.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.01.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1017-1398
1572-9265
DOI10.1007/s11075-014-9895-z

Cover

Abstract The classical Talbot method for the computation of the inverse Laplace transform is improved for the case where the transform is analytic in the complex plane except for the negative real axis. First, by using a truncated Talbot contour rather than the classical contour that goes to infinity in the left half-plane, faster convergence is achieved. Second, a control mechanism for improving numerical stability is introduced.
AbstractList The classical Talbot method for the computation of the inverse Laplace transform is improved for the case where the transform is analytic in the complex plane except for the negative real axis. First, by using a truncated Talbot contour rather than the classical contour that goes to infinity in the left half-plane, faster convergence is achieved. Second, a control mechanism for improving numerical stability is introduced.
Author Dingfelder, Benedict
Weideman, J. A. C.
Author_xml – sequence: 1
  givenname: Benedict
  surname: Dingfelder
  fullname: Dingfelder, Benedict
  organization: Zentrum Mathematik, M3, Technische Universität München
– sequence: 2
  givenname: J. A. C.
  surname: Weideman
  fullname: Weideman, J. A. C.
  email: weideman@sun.ac.za
  organization: Department of Mathematical Sciences, Stellenbosch University
BookMark eNp9kF1LwzAUhoNMcJv-AO8C3nhTTdKmaS7H8AsG3szrcJammtEmM2kH7tebUUEY6FUOnPc5eXlmaOK8MwhdU3JHCRH3kVIieEZokclK8uxwhqaUC5ZJVvJJmgkVGc1ldYFmMW4JSRQTU7RcOGy7XfB7U-M1tBvf4870H77GjQ_YDZ0JVkOLV7BrQRvcB3AxrTps3d6EaL27ROcNtNFc_bxz9Pb4sF4-Z6vXp5flYpXpgso-M3WjOS805CAkrSXTJas5z6HQREoGUJuyrgomuUx7kKVhrCKbgmhghDebfI5ux7up7udgYq86G7VpW3DGD1FRIUheklKwFL05iW79EFxqp5ikVSEpkyKl6JjSwccYTKN2wXYQvhQl6qhVjVpV0qqOWtUhMeKE0baHPmlIZmz7L8lGMqZf3LsJv53-hr4BGi2OMg
CitedBy_id crossref_primary_10_1007_s40819_022_01338_w
crossref_primary_10_1016_j_apm_2020_06_069
crossref_primary_10_1080_01495739_2017_1318038
crossref_primary_10_1016_j_jelechem_2021_115565
crossref_primary_10_3390_math8111972
crossref_primary_10_1155_2023_7210126
crossref_primary_10_1016_j_apm_2018_09_024
crossref_primary_10_1137_140971191
crossref_primary_10_46298_jtcam_10304
crossref_primary_10_3390_fractalfract7100762
crossref_primary_10_1117_1_JBO_20_11_110502
crossref_primary_10_1140_epjp_s13360_019_00037_8
crossref_primary_10_1007_s10444_021_09902_6
crossref_primary_10_1016_j_advwatres_2014_11_001
crossref_primary_10_1016_j_cjph_2019_10_006
crossref_primary_10_3390_e20110876
crossref_primary_10_1016_j_cjph_2018_10_009
crossref_primary_10_1051_matecconf_201815708008
crossref_primary_10_1515_spma_2024_0013
crossref_primary_10_1093_imamat_hxad002
crossref_primary_10_1137_18M1196273
crossref_primary_10_1016_j_electacta_2024_145175
crossref_primary_10_3390_fractalfract6080445
crossref_primary_10_1002_cphc_201901113
crossref_primary_10_1007_s41745_022_00300_5
crossref_primary_10_1016_j_padiff_2025_101129
crossref_primary_10_3390_electronics8091010
crossref_primary_10_1038_s41598_020_63982_w
crossref_primary_10_1039_C6SM00769D
crossref_primary_10_1016_j_electacta_2021_139006
crossref_primary_10_3934_math_2020373
crossref_primary_10_1080_01495739_2019_1666694
crossref_primary_10_1515_jnma_2016_1014
crossref_primary_10_1039_C9CP00548J
crossref_primary_10_1155_2021_4640467
crossref_primary_10_1016_j_ijthermalsci_2020_106531
crossref_primary_10_1016_j_camwa_2023_09_037
crossref_primary_10_1016_j_rinp_2023_106468
crossref_primary_10_1007_s40948_022_00368_4
crossref_primary_10_1016_j_heliyon_2024_e34061
crossref_primary_10_1155_2021_5572823
crossref_primary_10_1103_PhysRevE_94_033301
crossref_primary_10_1115_1_4064052
crossref_primary_10_1007_s42452_020_03489_1
crossref_primary_10_3390_fractalfract8110639
crossref_primary_10_1007_s11075_022_01368_x
crossref_primary_10_1155_2023_6542787
crossref_primary_10_1109_TEMC_2019_2914177
crossref_primary_10_1098_rspa_2015_0179
crossref_primary_10_32604_cmes_2023_023705
crossref_primary_10_3390_fractalfract8120683
crossref_primary_10_1080_15397734_2021_1987261
crossref_primary_10_1016_j_tws_2022_109480
crossref_primary_10_1051_m2an_2022069
crossref_primary_10_3390_fractalfract7020143
crossref_primary_10_1088_1742_5468_ab39d7
crossref_primary_10_1016_j_electacta_2020_136487
crossref_primary_10_1016_j_jcp_2022_110995
crossref_primary_10_1007_s11075_017_0369_y
crossref_primary_10_1002_celc_202001380
crossref_primary_10_1109_ACCESS_2023_3237853
crossref_primary_10_1007_s10915_021_01601_0
crossref_primary_10_1016_j_apm_2015_09_035
crossref_primary_10_1137_21M1398616
crossref_primary_10_1016_j_apm_2017_12_034
crossref_primary_10_1063_5_0012874
crossref_primary_10_1088_1751_8113_48_22_225201
crossref_primary_10_3934_nhm_2024003
crossref_primary_10_1088_1402_4896_ad4d28
Cites_doi 10.1137/050625837
10.1016/j.apnum.2004.06.015
10.1002/nme.995
10.1145/78928.78932
10.1007/s10543-006-0077-9
10.1145/212066.212068
10.1093/imanum/drn074
10.1145/155743.155788
10.1093/imanum/23.2.269
10.1090/S0025-5718-07-01945-X
10.1007/978-1-4612-0599-9
10.1137/050629653
10.1137/040611045
10.1093/imamat/23.1.97
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
Springer Science+Business Media New York 2014.
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: Springer Science+Business Media New York 2014.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SC
7TB
8FD
FR3
KR7
L7M
L~C
L~D
DOI 10.1007/s11075-014-9895-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer Science Database
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISSN 1572-9265
EndPage 183
ExternalDocumentID 10_1007_s11075_014_9895_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29N
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VOH
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SC
7TB
8FD
FR3
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c419t-edfc554ca3a791d92c62d553a4c0992aade6d842959791a96e2280b40ca205fb3
IEDL.DBID U2A
ISSN 1017-1398
IngestDate Thu Sep 04 18:53:50 EDT 2025
Fri Jul 25 11:14:47 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Wed Oct 01 00:38:40 EDT 2025
Fri Feb 21 02:32:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 65R10
Trapezoidal rule
Midpoint rule
65Z05
Talbot’s method
Inverse Laplace transform
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-edfc554ca3a791d92c62d553a4c0992aade6d842959791a96e2280b40ca205fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2918491297
PQPubID 2043837
PageCount 17
ParticipantIDs proquest_miscellaneous_1770360672
proquest_journals_2918491297
crossref_primary_10_1007_s11075_014_9895_z
crossref_citationtrail_10_1007_s11075_014_9895_z
springer_journals_10_1007_s11075_014_9895_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationTitle Numerical algorithms
PublicationTitleAbbrev Numer Algor
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References DuffyDGOn the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applicationsACM Trans. Math. Software199319333335910.1145/155743.1557880892.650791340860
AbateJValkóPPMulti-precision laplace transform inversionInt. J. Numer. Methods Fluids200460597999310.1002/nme.9951059.65118
WeidemanJACImproved contour integral methods for parabolic PDEsIMA J. Numer. Anal.201030133435010.1093/imanum/drn0741186.651252580562
GavrilyukIPMakarovVLExponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spacesSIAM J. Numer. Ana.l20054352144217110.1137/0406110451116.650632192335
Dingfelder, B., Weideman, J.A.C.: ModifiedTalbot (2014). http://arxiv.org/e-print/1304.2505v3
Dingfelder, B.: Raten- und stabilitätsoptimierte Algorithmen zur Berechnung eines Integrals mit Hankelintegrationsweg. Bachelor’s thesis, Technische Universität München,Germany (2012)
SheenDSloanIHThoméeVA parallel method for time discretization of parabolic equations based on Laplace transformation and quadratureIMA J. Numer. Anal.200323226929910.1093/imanum/23.2.2691022.651081975267
López-FernándezMPalenciaCSchädleAA spectral order method for inverting sectorial Laplace transformsSIAM J. Numer. Anal20064431332135010.1137/0506296531124.651202231867
TalbotAThe accurate numerical inversion of Laplace transformsJ. Inst. Math. Appl19792319712010.1093/imamat/23.1.970406.65054526286
WeidemanJACTrefethenLNParabolic and hyperbolic contours for computing the Bromwich integralMath. Comp.2007762591341135610.1090/S0025-5718-07-01945-X1113.651192299777
Trefethen, L.N.: Private communication (2006)
MurliARizzardiMAlgorithm 682: Talbot’s method for the Laplace inversion problemACM Trans. Math. Software199016215816810.1145/78928.789320900.65374
RizzardiMA modification of Talbot’s method for the simultaneous approximation of several values of the inverse Laplace transformACM Trans. Math. Software199521434737110.1145/212066.2120680887.651331364695
Butcher, J.C.: On the numerical inversion of Laplace and Mellin transforms. Conference on Data Processing and Automatic Computing Machines,Salisbury,Australia (1957)
StrangGComputational science and engineering2007WellesleyWellesley-Cambridge Press1194.65001
López-FernándezMPalenciaCOn the numerical inversion of the Laplace transform of certain holomorphic mappingsAppl. Numer. Math.2004512-328930310.1016/j.apnum.2004.06.0151059.651202091405
KressRNumerical analysis1998New YorkSpringer-Verlag10.1007/978-1-4612-0599-90913.65001
WeidemanJACOptimizing Talbot’s contours for the inversion of the Laplace transformSIAM J. Numer. Anal20064462342236210.1137/0506258371131.651052272597
Abate, J., Valkó, P.P.: NumericalLaplaceInversion (2002). http://library.wolfram.com/infocenter/MathSource/4738
McClure, T. talbot_inversion (2013). http://www.mathworks.com/matlabcentral/fileexchange/39035-numerical-inverse-laplace-transform
TrefethenLNWeidemanJACSchmelzerTTalbot quadratures and rational approximationsBIT200646365367010.1007/s10543-006-0077-91103.650302265580
R Kress (9895_CR8) 1998
J Abate (9895_CR2) 2004; 60
9895_CR1
G Strang (9895_CR15) 2007
M López-Fernández (9895_CR9) 2004; 51
DG Duffy (9895_CR6) 1993; 19
JAC Weideman (9895_CR19) 2006; 44
M Rizzardi (9895_CR13) 1995; 21
JAC Weideman (9895_CR20) 2010; 30
JAC Weideman (9895_CR21) 2007; 76
9895_CR17
A Murli (9895_CR12) 1990; 16
D Sheen (9895_CR14) 2003; 23
9895_CR5
9895_CR4
M López-Fernández (9895_CR10) 2006; 44
LN Trefethen (9895_CR18) 2006; 46
9895_CR3
A Talbot (9895_CR16) 1979; 23
IP Gavrilyuk (9895_CR7) 2005; 43
9895_CR11
References_xml – reference: KressRNumerical analysis1998New YorkSpringer-Verlag10.1007/978-1-4612-0599-90913.65001
– reference: Abate, J., Valkó, P.P.: NumericalLaplaceInversion (2002). http://library.wolfram.com/infocenter/MathSource/4738/
– reference: WeidemanJACOptimizing Talbot’s contours for the inversion of the Laplace transformSIAM J. Numer. Anal20064462342236210.1137/0506258371131.651052272597
– reference: SheenDSloanIHThoméeVA parallel method for time discretization of parabolic equations based on Laplace transformation and quadratureIMA J. Numer. Anal.200323226929910.1093/imanum/23.2.2691022.651081975267
– reference: Butcher, J.C.: On the numerical inversion of Laplace and Mellin transforms. Conference on Data Processing and Automatic Computing Machines,Salisbury,Australia (1957)
– reference: López-FernándezMPalenciaCOn the numerical inversion of the Laplace transform of certain holomorphic mappingsAppl. Numer. Math.2004512-328930310.1016/j.apnum.2004.06.0151059.651202091405
– reference: DuffyDGOn the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applicationsACM Trans. Math. Software199319333335910.1145/155743.1557880892.650791340860
– reference: López-FernándezMPalenciaCSchädleAA spectral order method for inverting sectorial Laplace transformsSIAM J. Numer. Anal20064431332135010.1137/0506296531124.651202231867
– reference: GavrilyukIPMakarovVLExponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spacesSIAM J. Numer. Ana.l20054352144217110.1137/0406110451116.650632192335
– reference: Dingfelder, B.: Raten- und stabilitätsoptimierte Algorithmen zur Berechnung eines Integrals mit Hankelintegrationsweg. Bachelor’s thesis, Technische Universität München,Germany (2012)
– reference: AbateJValkóPPMulti-precision laplace transform inversionInt. J. Numer. Methods Fluids200460597999310.1002/nme.9951059.65118
– reference: RizzardiMA modification of Talbot’s method for the simultaneous approximation of several values of the inverse Laplace transformACM Trans. Math. Software199521434737110.1145/212066.2120680887.651331364695
– reference: StrangGComputational science and engineering2007WellesleyWellesley-Cambridge Press1194.65001
– reference: TrefethenLNWeidemanJACSchmelzerTTalbot quadratures and rational approximationsBIT200646365367010.1007/s10543-006-0077-91103.650302265580
– reference: McClure, T. talbot_inversion (2013). http://www.mathworks.com/matlabcentral/fileexchange/39035-numerical-inverse-laplace-transform/
– reference: Dingfelder, B., Weideman, J.A.C.: ModifiedTalbot (2014). http://arxiv.org/e-print/1304.2505v3
– reference: MurliARizzardiMAlgorithm 682: Talbot’s method for the Laplace inversion problemACM Trans. Math. Software199016215816810.1145/78928.789320900.65374
– reference: WeidemanJACImproved contour integral methods for parabolic PDEsIMA J. Numer. Anal.201030133435010.1093/imanum/drn0741186.651252580562
– reference: WeidemanJACTrefethenLNParabolic and hyperbolic contours for computing the Bromwich integralMath. Comp.2007762591341135610.1090/S0025-5718-07-01945-X1113.651192299777
– reference: TalbotAThe accurate numerical inversion of Laplace transformsJ. Inst. Math. Appl19792319712010.1093/imamat/23.1.970406.65054526286
– reference: Trefethen, L.N.: Private communication (2006)
– volume: 44
  start-page: 2342
  issue: 6
  year: 2006
  ident: 9895_CR19
  publication-title: SIAM J. Numer. Anal
  doi: 10.1137/050625837
– volume: 51
  start-page: 289
  issue: 2-3
  year: 2004
  ident: 9895_CR9
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.06.015
– volume: 60
  start-page: 979
  issue: 5
  year: 2004
  ident: 9895_CR2
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/nme.995
– volume: 16
  start-page: 158
  issue: 2
  year: 1990
  ident: 9895_CR12
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/78928.78932
– ident: 9895_CR11
– volume: 46
  start-page: 653
  issue: 3
  year: 2006
  ident: 9895_CR18
  publication-title: BIT
  doi: 10.1007/s10543-006-0077-9
– volume: 21
  start-page: 347
  issue: 4
  year: 1995
  ident: 9895_CR13
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/212066.212068
– volume: 30
  start-page: 334
  issue: 1
  year: 2010
  ident: 9895_CR20
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drn074
– volume: 19
  start-page: 333
  issue: 3
  year: 1993
  ident: 9895_CR6
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/155743.155788
– ident: 9895_CR5
– volume-title: Computational science and engineering
  year: 2007
  ident: 9895_CR15
– volume: 23
  start-page: 269
  issue: 2
  year: 2003
  ident: 9895_CR14
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/23.2.269
– ident: 9895_CR3
– volume: 76
  start-page: 1341
  issue: 259
  year: 2007
  ident: 9895_CR21
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-07-01945-X
– ident: 9895_CR1
– ident: 9895_CR4
– volume-title: Numerical analysis
  year: 1998
  ident: 9895_CR8
  doi: 10.1007/978-1-4612-0599-9
– ident: 9895_CR17
– volume: 44
  start-page: 1332
  issue: 3
  year: 2006
  ident: 9895_CR10
  publication-title: SIAM J. Numer. Anal
  doi: 10.1137/050629653
– volume: 43
  start-page: 2144
  issue: 5
  year: 2005
  ident: 9895_CR7
  publication-title: SIAM J. Numer. Ana.l
  doi: 10.1137/040611045
– volume: 23
  start-page: 97
  issue: 1
  year: 1979
  ident: 9895_CR16
  publication-title: J. Inst. Math. Appl
  doi: 10.1093/imamat/23.1.97
SSID ssj0010027
Score 2.3767393
Snippet The classical Talbot method for the computation of the inverse Laplace transform is improved for the case where the transform is analytic in the complex plane...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 167
SubjectTerms Algebra
Algorithms
Computer Science
Contours
Convergence
Half planes
Infinity
Inverse
Laplace transforms
Mathematical analysis
Mathematical models
Numeric Computing
Numerical Analysis
Numerical stability
Original Paper
Shape
Theory of Computation
Transforms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vejBR1WsVlnBkxJsNtkkexCppSKiRUSht7CPBAolVZt68Nc7k0eLgj1nk8DMzsw3M7vfAJz7kSCnZ50wNRYTFI0mJQnIGWlS7Xcj69Hd4adhcP_mP4zEaA2G9V0YOlZZ-8TCUdupoRr5FZeYi0iMTuHN-4dDU6Oou1qP0FDVaAV7XVCMrUOTEzNWA5q3g-Hzy6KvQFlY0f9E34zYJ6r7nMVlOsyE6CCb78hICuf7d6Raws8_HdMiEN3twFaFIFmvVPkurCVZC7YrNMkqW521YPNpwcg624N-L2PjooCAi17VRE9zVk6PZghbWTYvOzcT9qiKY1osrxEtG2dfZVFtH97uBq_9e6caoOAY35W5k9jUIFwwylOhdK3kJuBWCE_5BoEhV8omgY0wImFWIV0lg4TIcVBDRvGuSLV3AI1smiWHwELtRTx1FRdK-Nqkyga4RKSJxviuuW1DtxZWbCp2cRpyMYmXvMgk3xjlG5N84-82XCxeeS-pNVYt7tQaiCsrm8XLPdGGs8VjtA9qeqgsmc5nsRsSxRg1nNtwWWtu-Yl_f3i0-ofHsIHQSZTFmA408s95coLwJNen1Z77Aee14RU
  priority: 102
  providerName: ProQuest
Title An improved Talbot method for numerical Laplace transform inversion
URI https://link.springer.com/article/10.1007/s11075-014-9895-z
https://www.proquest.com/docview/2918491297
https://www.proquest.com/docview/1770360672
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: AFBBN
  dateStart: 19910201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9265
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010027
  issn: 1017-1398
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90e9EHv8X5MSL4pBTWtGmbx002hx9DxIE-lXy0MBid2M6H_fVe2mZDUcGnQJqkcJfL_S6_5AJw4UfMLHraCVOlMUCRaFLcADnFVSr9TqQ9c3f4YRQMx_7tC3up73Hn9rS7pSTLlXp12Q0jFXPQzHd4xJmzWIcmM9m8cBKPaXdJHZhAq6Q4cflFeBNZKvOnIb46oxXC_EaKlr5msANbNUgk3Uqru7CWZHuwXQNGUptjjlX2TQZbtwebD8s8rPk-XHczMim3DbDfs5jKWUGqN6MJglWSzSu-ZkruRXk4ixQWx5JJ9lFtpR3AeNB_vh469bMJjvJdXjiJThWCBCU8EXJXc6oCqhnzhK8QDlIhdBLoCP0QxhLcFTxITEoc1IsStMNS6R1CI5tlyRGQUHoRTV1BmWC-VKnQATZhaSLRq0uqW9Cx8otVnVPcPG0xjVfZkI3IYxR5bEQeL1pwuezyViXU-KvxqVVKXNtWHlOOUSlHnBK24Hz5Ga3CUB0iS2bzPHZDk1jM0MwtuLLKXA3x6w-P_9X6BDYQP7FqR-YUGsX7PDlDjFLINqxHg5s2NLuDXm9kypvXuz6Wvf7o8aldzthPnkPjfQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gA98ChU3VKoK5ULKGLj2El8qFDpQ1u6u0JoK_Vm_IpUaZVtmyyI_jh-G-PE2RVI9NZzHEcZj2e-mc-eAdhnOfdGz0ZZYSwGKBq3lPBAzghTaNbPbeLvDo_G6eCCfbnklyvwu7sL449VdjaxMdR2ZnyO_CMVGIsI9E7Zp-ubyHeN8uxq10JDhdYK9qApMRYudpy7Xz8xhKsOzo5xvd9RenoyORpEoctAZFgs6sjZwqBPNSpRmYitoCallvNEMYPoiSplXWpzNNsIvUWsROp8BRn8DaNonxc6wXkfwRpLmMDgb-3zyfjrtwWP4aO-hm9FX4BYK-941ebyHkZe_uAci0QueHT3t2dcwt1_GNrG8Z0-h6cBsZLDVsVewIorN-BZQK8k2IZqA9ZHiwqw1Us4OizJVZOwwEETNdWzmrTdqgnCZFLOW6ZoSoaqORZG6g5Bk6vyR5vEewUXDyLKTVgtZ6XbApLpJKdFrChXnGlTKJviEF44jXhCU9uDficsaUI1c99UYyqXdZi9fCXKV3r5yrsevF-8ct2W8rhv8E63AjLs6koudbAHe4vHuB89yaJKN5tXMs58STNPcPfgQ7dyyyn--8Ht-z-4C48Hk9FQDs_G56_hCcI23iaCdmC1vp27NwiNav026B-B7w-t8n8AduUd5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58gOjBx6q4umoET0rZbdq0zXFZXXzjwQVvIY8WhKUrtuvBX--kbXZRVPCaJinMZDLf5EtmAE7DhNlNz3hxpg0GKApNilsgp7nOVNhLTGDfDt8_RFej8OaZPTd1Tgt3291RkvWbBpulKS-7rybrzh--YdRiL52FHk848z4WYTm0eRJwQY9of0Yj2KCrojtxK0aokzha86cpvjqmOdr8RpBWfme4CesNYCT9WsNbsJDmLdhowCNpTLPAJlefwbW1YO1-lpO12IZBPycv1RECjnuSYzUpSV0_miBwJfm05m7G5E5WF7VI6TAtecnf62O1HRgNL58GV15TQsHToc9LLzWZRsCgZSBj7htOdUQNY4EMNUJDKqVJI5OgT8K4gvuSR6lNj4M60pL2WKaCXVjKJ3m6ByRWQUIzX1ImWah0Jk2EXViWKvTwipo29Jz8hG7yi9syF2Mxz4xsRS5Q5MKKXHy04Ww25LVOrvFX545TimjsrBCUY4TKEbPEbTiZfUYLsbSHzNPJtBB-bJOMWcq5DedOmfMpfv3h_r96H8PK48VQ3F0_3B7AKsIqVh_UdGCpfJumhwhdSnVULc9P3TPlFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+Talbot+method+for+numerical+Laplace+transform+inversion&rft.jtitle=Numerical+algorithms&rft.au=Dingfelder%2C+Benedict&rft.au=Weideman%2C+JAC&rft.date=2015-01-01&rft.issn=1017-1398&rft.eissn=1572-9265&rft.volume=68&rft.issue=1&rft.spage=167&rft.epage=183&rft_id=info:doi/10.1007%2Fs11075-014-9895-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-1398&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-1398&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-1398&client=summon