Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm
We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor ne...
Saved in:
| Published in | The Journal of chemical physics Vol. 138; no. 13; p. 134113 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
07.04.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9606 1089-7690 1520-9032 1089-7690 |
| DOI | 10.1063/1.4798639 |
Cover
| Abstract | We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals. |
|---|---|
| AbstractList | We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and pi -conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals. We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals. We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals. |
| Author | Nakatani, Naoki Chan, Garnet Kin-Lic |
| Author_xml | – sequence: 1 givenname: Naoki surname: Nakatani fullname: Nakatani, Naoki – sequence: 2 givenname: Garnet Kin-Lic surname: Chan fullname: Chan, Garnet Kin-Lic |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23574214$$D View this record in MEDLINE/PubMed |
| BookMark | eNqF0c1O3DAQB3CroioL7YEXqHyESoHxVxJzQ4jSSqg9dHuOvM6ENST2YjuC7RP0sQndLQeE2pMP8_OM5-89suODR0IOGBwzKMUJO5aVrkuh35AZg1oXValhh8wAOCt0CeUu2UvpBgBYxeU7ssuFqiRnckZ-X3Sdsw59pjki0ow-hUg95vsQb2nKJmOih_P5tx9HtJsqd6PxeRyoXeLgUo7rU3qJHqPp3S-TXfCJho7mJdJ2auXymg4mR_dAI_oQh2dGr2MYV9T01yG6vBzek7ed6RN-2J775Ofni_n5l-Lq--XX87Orwkqmc9FqVK2wrBXK1ihlKZVFq5REIznAYlEr1JorjdZAWzMwSlS11rqWUqhFJ_bJp03f0a_M-t70fbOKbjBx3TBonuJsWLONc8KHG7yK4W7ElJtpZ4t9bzyGMTVMcl2rEir2fyp4WQkBnE_045aOiwHb5_l_f2UCRxtgY0gpYvfPJ568sNblPwnnaFz_yo1Hd5esbw |
| CitedBy_id | crossref_primary_10_1021_acs_jctc_1c00121 crossref_primary_10_3175_molsci_8_A0069 crossref_primary_10_1038_s41467_023_37587_6 crossref_primary_10_1063_5_0218773 crossref_primary_10_1021_acs_jctc_6b00898 crossref_primary_10_1063_5_0228731 crossref_primary_10_1039_D2CS00203E crossref_primary_10_1007_s42452_025_06638_6 crossref_primary_10_1103_PhysRevX_4_041024 crossref_primary_10_1063_1_5130390 crossref_primary_10_21468_SciPostPhysCore_7_2_036 crossref_primary_10_1080_00268976_2013_843730 crossref_primary_10_1080_00268976_2017_1288937 crossref_primary_10_1002_qua_24732 crossref_primary_10_1021_acs_jctc_0c00141 crossref_primary_10_1016_j_jcp_2018_10_026 crossref_primary_10_21468_SciPostPhys_8_1_005 crossref_primary_10_1021_acs_jctc_4c01184 crossref_primary_10_1111_1365_2478_13374 crossref_primary_10_1109_TQE_2024_3383050 crossref_primary_10_1140_epjb_e2014_50502_9 crossref_primary_10_1021_acs_jctc_8b00382 crossref_primary_10_1016_j_comptc_2021_113187 crossref_primary_10_1088_1367_2630_18_11_113001 crossref_primary_10_1021_acs_jctc_6b00407 crossref_primary_10_1063_1_4955108 crossref_primary_10_1063_5_0047090 crossref_primary_10_1103_PhysRevLett_117_210402 crossref_primary_10_1007_s42514_019_00012_w crossref_primary_10_1063_1_5093497 crossref_primary_10_1103_PhysRevB_105_214201 crossref_primary_10_1016_j_comptc_2018_08_011 crossref_primary_10_1109_ACCESS_2024_3519676 crossref_primary_10_1103_PhysRevResearch_3_023054 crossref_primary_10_1103_PRXQuantum_4_030333 crossref_primary_10_1109_TPAMI_2024_3396386 crossref_primary_10_1080_00268976_2024_2306881 crossref_primary_10_7566_JPSJ_91_062001 crossref_primary_10_1063_1_4813827 crossref_primary_10_1063_5_0153870 crossref_primary_10_1103_PhysRevB_99_205132 crossref_primary_10_1063_1_5007066 crossref_primary_10_1103_PhysRevLett_133_260404 crossref_primary_10_1021_acs_jctc_6b00639 crossref_primary_10_1088_2632_2153_ab94c5 crossref_primary_10_1103_PhysRevC_92_051303 crossref_primary_10_1103_PhysRevResearch_2_023385 crossref_primary_10_22331_q_2024_12_11_1560 crossref_primary_10_1063_1_4926833 crossref_primary_10_1063_5_0014928 crossref_primary_10_1063_5_0057752 crossref_primary_10_21468_SciPostPhys_9_5_070 crossref_primary_10_1016_j_aop_2014_06_013 crossref_primary_10_1140_epjd_e2014_50500_1 crossref_primary_10_1103_PhysRevA_109_022420 crossref_primary_10_1103_PhysRevB_103_235155 crossref_primary_10_1103_PhysRevB_96_155120 crossref_primary_10_1021_acs_jctc_8b00960 crossref_primary_10_1103_PhysRevE_100_043309 crossref_primary_10_1063_1_4942174 crossref_primary_10_1103_PhysRevA_97_012301 crossref_primary_10_1021_acs_jctc_6b00696 crossref_primary_10_1103_PhysRevResearch_5_013031 crossref_primary_10_21468_SciPostChem_1_1_001 crossref_primary_10_1103_PhysRevB_109_195148 crossref_primary_10_1103_PhysRevA_97_022505 crossref_primary_10_1103_PhysRevResearch_6_023110 crossref_primary_10_1063_1_5004693 crossref_primary_10_1140_epjb_e2018_90197_2 crossref_primary_10_1063_1_5125945 crossref_primary_10_1063_5_0050720 crossref_primary_10_1021_acs_jctc_9b01132 crossref_primary_10_1088_2516_1075_abe192 crossref_primary_10_1021_acs_jctc_7b00439 crossref_primary_10_1002_qua_24898 crossref_primary_10_1021_acs_jctc_8b00628 crossref_primary_10_1103_PhysRevA_111_012630 crossref_primary_10_1021_acs_jctc_1c00957 crossref_primary_10_1021_ct501187j crossref_primary_10_1209_0295_5075_110_20011 crossref_primary_10_1002_wcms_1614 crossref_primary_10_1371_journal_pone_0206704 crossref_primary_10_1063_1_4963168 crossref_primary_10_1021_acs_jctc_7b01248 crossref_primary_10_1063_1_4922295 crossref_primary_10_1103_PhysRevB_96_195123 crossref_primary_10_1103_PhysRevApplied_18_064051 crossref_primary_10_1103_PhysRevB_88_195102 crossref_primary_10_1021_acs_chemrev_8b00803 crossref_primary_10_1103_PhysRevB_98_085155 crossref_primary_10_1103_PhysRevB_95_195127 crossref_primary_10_3389_fams_2022_838601 crossref_primary_10_1016_j_cpc_2014_01_019 crossref_primary_10_22331_q_2024_12_27_1580 crossref_primary_10_1016_j_ccr_2014_10_015 crossref_primary_10_1063_1_4905329 crossref_primary_10_1103_PhysRevB_102_155108 crossref_primary_10_1021_acs_jcim_4c01212 crossref_primary_10_1021_acs_jctc_8b00098 crossref_primary_10_1103_PhysRevE_97_013301 crossref_primary_10_1103_PhysRevResearch_6_033259 crossref_primary_10_1007_s10910_022_01379_y crossref_primary_10_1093_ptep_ptad018 crossref_primary_10_1063_5_0127621 crossref_primary_10_1103_PhysRevB_93_075107 crossref_primary_10_1088_1361_648X_ac640e crossref_primary_10_1063_5_0018149 crossref_primary_10_1103_PRXQuantum_2_010352 crossref_primary_10_1007_s40687_023_00381_3 crossref_primary_10_1021_acs_jctc_6b01118 crossref_primary_10_21468_SciPostPhys_9_3_042 crossref_primary_10_21468_SciPostPhysLectNotes_8 crossref_primary_10_1103_PhysRevB_92_125140 crossref_primary_10_1088_1367_2630_ab9d9f crossref_primary_10_21468_SciPostPhys_15_6_222 crossref_primary_10_1103_PhysRevB_99_195125 crossref_primary_10_1021_acs_jctc_9b00071 crossref_primary_10_1063_5_0219010 |
| Cites_doi | 10.1016/j.aop.2010.09.012 10.1063/1.3152576 10.1063/1.1311294 10.1103/PhysRevB.72.180403 10.1021/jp8012078 10.1039/c0cp01883j 10.1103/PhysRevA.78.012356 10.1007/s100510050053 10.1103/PhysRevB.65.155116 10.1063/1.2345196 10.1088/1367-2630/12/2/025012 10.1063/1.478295 10.1103/PhysRevA.81.062337 10.1103/PhysRevB.67.125114 10.1103/PhysRevB.60.1643 10.1103/PhysRevB.53.R10445 10.1080/14789940801912366 10.1063/1.3695642 10.1103/PhysRevB.82.205105 10.1103/PhysRevB.48.10345 10.1103/RevModPhys.77.259 10.1146/annurev-physchem-032210-103338 10.1103/PhysRevB.68.195116 10.1103/PhysRevB.53.14004 10.1103/PhysRevB.85.134415 10.1002/(SICI)1521-3773(19980316)37:5<643::AID-ANIE643>3.0.CO;2-4 10.1088/0953-8984/9/42/016 10.1103/PhysRevLett.93.207204 10.1103/PhysRevLett.99.220405 10.1002/wcms.1095 10.1103/PhysRevB.86.195137 10.1088/1742-5468/2007/10/P10014 10.1063/1.2741527 10.1103/PhysRevB.87.085107 10.1103/PhysRevLett.69.2863 10.1103/PhysRevA.83.012508 10.1103/PhysRevB.80.235127 10.1063/1.2883976 10.1103/PhysRevA.74.022320 10.1063/1.1449459 10.1524/zpch.2010.6125 10.1016/j.chemphys.2005.10.018 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 7U5 8FD H8D L7M ADTOC UNPAY |
| DOI | 10.1063/1.4798639 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1089-7690 |
| ExternalDocumentID | 10.1063/1.4798639 23574214 10_1063_1_4798639 |
| Genre | Journal Article |
| GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT WH7 YQT YZZ ~02 NPM 7X8 7U5 8FD H8D L7M .GJ 0ZJ 186 2WC 3O- 41~ 6TJ 9M8 AAYJJ ABDPE ABUFD ACBNA ADTOC ADXHL AETEA AFFNX AI. H~9 MVM NEUPN NHB OHT QZG RDFOP T9H UBC UNPAY UQL VH1 VOH X7L XJT XOL ZCG ZGI ZXP |
| ID | FETCH-LOGICAL-c419t-d9e5d3c1d35c8e44645cec554ea4200bb85e99259eca0d810a537899984435bf3 |
| IEDL.DBID | UNPAY |
| ISSN | 0021-9606 1089-7690 1520-9032 |
| IngestDate | Sun Oct 26 04:16:10 EDT 2025 Wed Oct 01 13:47:08 EDT 2025 Thu Jul 10 23:21:33 EDT 2025 Mon Jul 21 06:05:33 EDT 2025 Thu Apr 24 23:08:20 EDT 2025 Tue Jul 01 00:44:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-d9e5d3c1d35c8e44645cec554ea4200bb85e99259eca0d810a537899984435bf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4798639/13962610/134113_1_online.pdf |
| PMID | 23574214 |
| PQID | 1326733022 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1063_1_4798639 proquest_miscellaneous_1429856071 proquest_miscellaneous_1326733022 pubmed_primary_23574214 crossref_primary_10_1063_1_4798639 crossref_citationtrail_10_1063_1_4798639 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-04-07 |
| PublicationDateYYYYMMDD | 2013-04-07 |
| PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-07 day: 07 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Journal of chemical physics |
| PublicationTitleAlternate | J Chem Phys |
| PublicationYear | 2013 |
| References | (2023061917164170800_c4) 2002; 116 (2023061917164170800_c12) 2006; 74 2023061917164170800_c45 (2023061917164170800_c43) 1998; 37 (2023061917164170800_c41) 2000; 113 (2023061917164170800_c15) 2011; 13 (2023061917164170800_c27) 2012; 85 (2023061917164170800_c7) 2007; 126 (2023061917164170800_c32); 2007 (2023061917164170800_c35) 2010; 81 (2023061917164170800_c9) 2009; 130 (2023061917164170800_c26) 2002; 65 (2023061917164170800_c3) 1999; 110 (2023061917164170800_c39) 2011; 83 (2023061917164170800_c10) 2006; 125 (2023061917164170800_c31) 2004; 93 (2023061917164170800_c37) 2003; 68 (2023061917164170800_c17) 2012; 2 (2023061917164170800_c11) 2008; 128 (2023061917164170800_c33) 2008; 78 (2023061917164170800_c38) 2006; 323 (2023061917164170800_c42) 2012; 136 (2023061917164170800_c18) 2009; 80 (2023061917164170800_c2) 1993; 48 (2023061917164170800_c6) 2003; 67 (2023061917164170800_c44) 2008; 112 (2023061917164170800_c29) 2011; 326 (2023061917164170800_c8) 2010; 224 (2023061917164170800_c14) 2008; 57 (2023061917164170800_c19) 2010; 82 (2023061917164170800_c22) 1996; 53 (2023061917164170800_c23) 1997; 9 Engquist (2023061917164170800_c16) 2012 (2023061917164170800_c28) 2005; 77 (2023061917164170800_c36) 2005; 72 (2023061917164170800_c34) 2010; 12 (2023061917164170800_c30) 1996; 53 (2023061917164170800_c20) 2012; 86 (2023061917164170800_c25) 2000; 13 (2023061917164170800_c40) 2010 (2023061917164170800_c24) 1999; 60 (2023061917164170800_c5) 2011; 62 (2023061917164170800_c1) 1992; 69 (2023061917164170800_c21) 2013; 87 (2023061917164170800_c13) 2007; 99 |
| References_xml | – volume: 326 start-page: 96 year: 2011 ident: 2023061917164170800_c29 publication-title: Ann. Phys. doi: 10.1016/j.aop.2010.09.012 – volume-title: Introduction to Genetic Algorithm year: 2010 ident: 2023061917164170800_c40 – volume: 130 start-page: 234114 year: 2009 ident: 2023061917164170800_c9 publication-title: J. Chem. Phys. doi: 10.1063/1.3152576 – volume: 113 start-page: 6677 year: 2000 ident: 2023061917164170800_c41 publication-title: J. Chem. Phys. doi: 10.1063/1.1311294 – volume: 72 start-page: 180403 year: 2005 ident: 2023061917164170800_c36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.180403 – ident: 2023061917164170800_c45 – volume: 112 start-page: 7271 year: 2008 ident: 2023061917164170800_c44 publication-title: J. Phys. Chem. A doi: 10.1021/jp8012078 – volume: 13 start-page: 6750 year: 2011 ident: 2023061917164170800_c15 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp01883j – volume: 78 start-page: 012356 year: 2008 ident: 2023061917164170800_c33 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.78.012356 – volume: 13 start-page: 421 year: 2000 ident: 2023061917164170800_c25 publication-title: Eur. Phys. J. B doi: 10.1007/s100510050053 – volume: 65 start-page: 155116 year: 2002 ident: 2023061917164170800_c26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.155116 – volume: 125 start-page: 144101 year: 2006 ident: 2023061917164170800_c10 publication-title: J. Chem. Phys. doi: 10.1063/1.2345196 – volume: 12 start-page: 025012 year: 2010 ident: 2023061917164170800_c34 publication-title: New J. Phys. doi: 10.1088/1367-2630/12/2/025012 – volume: 110 start-page: 4127 year: 1999 ident: 2023061917164170800_c3 publication-title: J. Chem. Phys. doi: 10.1063/1.478295 – volume: 81 start-page: 062337 year: 2010 ident: 2023061917164170800_c35 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.81.062337 – volume: 67 start-page: 125114 year: 2003 ident: 2023061917164170800_c6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.125114 – volume: 60 start-page: 1643 year: 1999 ident: 2023061917164170800_c24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.1643 – volume: 53 start-page: 10445 year: 1996 ident: 2023061917164170800_c30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.53.R10445 – volume: 57 start-page: 143 year: 2008 ident: 2023061917164170800_c14 publication-title: Adv. Phys. doi: 10.1080/14789940801912366 – volume: 136 start-page: 124121 year: 2012 ident: 2023061917164170800_c42 publication-title: J. Chem. Phys. doi: 10.1063/1.3695642 – volume: 82 start-page: 205105 year: 2010 ident: 2023061917164170800_c19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.205105 – volume: 48 start-page: 10345 year: 1993 ident: 2023061917164170800_c2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.10345 – volume: 77 start-page: 259 year: 2005 ident: 2023061917164170800_c28 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.259 – volume: 62 start-page: 465 year: 2011 ident: 2023061917164170800_c5 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-032210-103338 – volume: 68 start-page: 195116 year: 2003 ident: 2023061917164170800_c37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.68.195116 – volume: 53 start-page: 14004 year: 1996 ident: 2023061917164170800_c22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.53.14004 – volume: 85 start-page: 134415 year: 2012 ident: 2023061917164170800_c27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.134415 – volume: 37 start-page: 643 year: 1998 ident: 2023061917164170800_c43 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/(SICI)1521-3773(19980316)37:5<643::AID-ANIE643>3.0.CO;2-4 – volume: 9 start-page: 9021 year: 1997 ident: 2023061917164170800_c23 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/9/42/016 – volume: 93 start-page: 207204 year: 2004 ident: 2023061917164170800_c31 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.207204 – volume: 99 start-page: 220405 year: 2007 ident: 2023061917164170800_c13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.220405 – volume: 2 start-page: 907 year: 2012 ident: 2023061917164170800_c17 publication-title: Comput. Mol. Sci. doi: 10.1002/wcms.1095 – volume: 86 start-page: 195137 year: 2012 ident: 2023061917164170800_c20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.195137 – volume: 2007 start-page: P10014 ident: 2023061917164170800_c32 publication-title: J. Stat. Mech.: Theory Exp. doi: 10.1088/1742-5468/2007/10/P10014 – volume: 126 start-page: 244109 year: 2007 ident: 2023061917164170800_c7 publication-title: J. Chem. Phys. doi: 10.1063/1.2741527 – volume-title: Encyclopedia of Applied and Computational Mathematics year: 2012 ident: 2023061917164170800_c16 article-title: Numerical approaches for high-dimensional PDE’s for quantum chemistry – volume: 87 start-page: 085107 year: 2013 ident: 2023061917164170800_c21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.87.085107 – volume: 69 start-page: 2863 year: 1992 ident: 2023061917164170800_c1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.2863 – volume: 83 start-page: 012508 year: 2011 ident: 2023061917164170800_c39 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.83.012508 – volume: 80 start-page: 235127 year: 2009 ident: 2023061917164170800_c18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.235127 – volume: 128 start-page: 144117 year: 2008 ident: 2023061917164170800_c11 publication-title: J. Chem. Phys. doi: 10.1063/1.2883976 – volume: 74 start-page: 022320 year: 2006 ident: 2023061917164170800_c12 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.74.022320 – volume: 116 start-page: 4462 year: 2002 ident: 2023061917164170800_c4 publication-title: J. Chem. Phys. doi: 10.1063/1.1449459 – volume: 224 start-page: 583 year: 2010 ident: 2023061917164170800_c8 publication-title: Z. Phys. Chem. doi: 10.1524/zpch.2010.6125 – volume: 323 start-page: 519 year: 2006 ident: 2023061917164170800_c38 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.10.018 |
| SSID | ssj0001724 |
| Score | 2.5349402 |
| Snippet | We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product... |
| SourceID | unpaywall proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 134113 |
| SubjectTerms | Algorithms Chromium Density Mathematical analysis Networks Quantum chemistry Tensors Trees |
| Title | Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/23574214 https://www.proquest.com/docview/1326733022 https://www.proquest.com/docview/1429856071 https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4798639/13962610/134113_1_online.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 138 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0001724 issn: 1520-9032 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VRKjwwFGucFTL8dA--Fjv2vHyFpVWFaIRUhOpiAdrvV7TlMQ2iS0o4gfws5n1EcopXngfe69ZzzeemW8AnjHpi1CKwJJoXQ2ptrRC5Qn0eRQqVCJUIkyh8NE4OJzylyf-yQa87WphcBIrW86KhiJ4VjhnqnDaTbSKJP3OOBAwh9p8KEK0sQ7iGETm1HUMPxllEY0aogkbH7kE_cBHoN6D_nT8evSmSfqglsHuTfq9sIZB_TcGjZlrCZd5HQfRxUF-tFy_wNGrsFllhTz_KOfzCybq4Dp8WS-uzkx5b1dlbKvPP_E-_qfV34BrLbQlo-ZFN2FDZ1uwudd1lNuCy3W6qVrdgq_7NXMFGjxiouLEpNHnS5I1OemkrnJakZ3JZHy8SxBWkw8VakC1IKp723PSEmZ3daQkTwmCWZKYjPzynCxM74FPZKkzg8o7MVJXsRA5f5cvZ-Xp4jZMD_Yne4dW2xPCUpyK0kLV8ROmaMJ8FWpu4rJKK8REWnK88HEc-loI9Om0km4SUlf6bIg-pQg5AsM4ZXegl-WZvgck8HjMgjgNPMV4GkopudJJLPGblhq_bQA73XlHqiVMN3075lEduA_MPrcnMIAna9GiYQn5ndDjTmki3CoTmJGZzqtVRBFDDxlDOPUXGQQOoW_YAAdwt9G49VCGsoh7lA_g6VoF_zyP-_8k9QCueHXnD265w4fQK5eVfoT4q4y3oT96cfTqeLu9T98ANJQoYA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrVDhgaNcyyVzPJQHJ3HsHOatqlpVSKyQ2JWKeIgcx4GF3STsJoIifgA_m3GOpZzihfdJfI0z32RmvgF4zFUgYyVDqtC6WlJtRWPtS_R5NCpUJnUmbaHw80l4PBPPToKTLXg91MLgJNaOmlcdRfC8ct_pyu03kVZZ_p1xIOQuc0QkY7SxLuIYRObMcy0_GeMJSzqiCQcfOQfbYYBAfQTbs8mL_Vdd0gejFrt36feSRmH7NwaNmUelx_2Bg-jsID9arl_g6EXYaYpKnX5Ui8UZE3V0Gb5sFtdmprx3mjp19OefeB__0-qvwKUe2pL97kVXYcsUu7BzMHSU24XzbbqpXl-Dr4ctcwUaPGKj4sSm0ZcrUnQ56aStclqTvel08vIJQVhNPjSoAc2S6OFtT0lPmD3UkZIyJwhmSWYz8utTsrS9Bz6RlSksKh_ESFvFQtTiTbma12-X12F2dDg9OKZ9TwiqBZM1RdUJMq5ZxgMdG2HjstpoxERGCbzwaRoHRkr06YxWXhYzTwU8Qp9SxgKBYZrzGzAqysLcAhL6IuVhmoe-5iKPlVJCmyxV-E3Lrd82hr3hvBPdE6bbvh2LpA3ch3af-xMYw8ONaNWxhPxO6MGgNAlulQ3MqMKUzTphiKEjzhFO_UUGgUMcWDbAMdzsNG4zlKUsEj4TY3i0UcE_z-P2P0ndgQt-2_lDUC-6C6N61Zh7iL_q9H5_j74B-cEmzA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+tree+tensor+network+states+%28TTNS%29+for+quantum+chemistry%3A+Generalizations+of+the+density+matrix+renormalization+group+algorithm&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Nakatani%2C+Naoki&rft.au=Chan%2C+Garnet+Kin-Lic&rft.date=2013-04-07&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=138&rft.issue=13&rft_id=info:doi/10.1063%2F1.4798639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4798639 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |