Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm

We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor ne...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 138; no. 13; p. 134113
Main Authors Nakatani, Naoki, Chan, Garnet Kin-Lic
Format Journal Article
LanguageEnglish
Published United States 07.04.2013
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1520-9032
1089-7690
DOI10.1063/1.4798639

Cover

Abstract We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.
AbstractList We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and pi -conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.
We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.
We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.
Author Nakatani, Naoki
Chan, Garnet Kin-Lic
Author_xml – sequence: 1
  givenname: Naoki
  surname: Nakatani
  fullname: Nakatani, Naoki
– sequence: 2
  givenname: Garnet Kin-Lic
  surname: Chan
  fullname: Chan, Garnet Kin-Lic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23574214$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1O3DAQB3CroioL7YEXqHyESoHxVxJzQ4jSSqg9dHuOvM6ENST2YjuC7RP0sQndLQeE2pMP8_OM5-89suODR0IOGBwzKMUJO5aVrkuh35AZg1oXValhh8wAOCt0CeUu2UvpBgBYxeU7ssuFqiRnckZ-X3Sdsw59pjki0ow-hUg95vsQb2nKJmOih_P5tx9HtJsqd6PxeRyoXeLgUo7rU3qJHqPp3S-TXfCJho7mJdJ2auXymg4mR_dAI_oQh2dGr2MYV9T01yG6vBzek7ed6RN-2J775Ofni_n5l-Lq--XX87Orwkqmc9FqVK2wrBXK1ihlKZVFq5REIznAYlEr1JorjdZAWzMwSlS11rqWUqhFJ_bJp03f0a_M-t70fbOKbjBx3TBonuJsWLONc8KHG7yK4W7ElJtpZ4t9bzyGMTVMcl2rEir2fyp4WQkBnE_045aOiwHb5_l_f2UCRxtgY0gpYvfPJ568sNblPwnnaFz_yo1Hd5esbw
CitedBy_id crossref_primary_10_1021_acs_jctc_1c00121
crossref_primary_10_3175_molsci_8_A0069
crossref_primary_10_1038_s41467_023_37587_6
crossref_primary_10_1063_5_0218773
crossref_primary_10_1021_acs_jctc_6b00898
crossref_primary_10_1063_5_0228731
crossref_primary_10_1039_D2CS00203E
crossref_primary_10_1007_s42452_025_06638_6
crossref_primary_10_1103_PhysRevX_4_041024
crossref_primary_10_1063_1_5130390
crossref_primary_10_21468_SciPostPhysCore_7_2_036
crossref_primary_10_1080_00268976_2013_843730
crossref_primary_10_1080_00268976_2017_1288937
crossref_primary_10_1002_qua_24732
crossref_primary_10_1021_acs_jctc_0c00141
crossref_primary_10_1016_j_jcp_2018_10_026
crossref_primary_10_21468_SciPostPhys_8_1_005
crossref_primary_10_1021_acs_jctc_4c01184
crossref_primary_10_1111_1365_2478_13374
crossref_primary_10_1109_TQE_2024_3383050
crossref_primary_10_1140_epjb_e2014_50502_9
crossref_primary_10_1021_acs_jctc_8b00382
crossref_primary_10_1016_j_comptc_2021_113187
crossref_primary_10_1088_1367_2630_18_11_113001
crossref_primary_10_1021_acs_jctc_6b00407
crossref_primary_10_1063_1_4955108
crossref_primary_10_1063_5_0047090
crossref_primary_10_1103_PhysRevLett_117_210402
crossref_primary_10_1007_s42514_019_00012_w
crossref_primary_10_1063_1_5093497
crossref_primary_10_1103_PhysRevB_105_214201
crossref_primary_10_1016_j_comptc_2018_08_011
crossref_primary_10_1109_ACCESS_2024_3519676
crossref_primary_10_1103_PhysRevResearch_3_023054
crossref_primary_10_1103_PRXQuantum_4_030333
crossref_primary_10_1109_TPAMI_2024_3396386
crossref_primary_10_1080_00268976_2024_2306881
crossref_primary_10_7566_JPSJ_91_062001
crossref_primary_10_1063_1_4813827
crossref_primary_10_1063_5_0153870
crossref_primary_10_1103_PhysRevB_99_205132
crossref_primary_10_1063_1_5007066
crossref_primary_10_1103_PhysRevLett_133_260404
crossref_primary_10_1021_acs_jctc_6b00639
crossref_primary_10_1088_2632_2153_ab94c5
crossref_primary_10_1103_PhysRevC_92_051303
crossref_primary_10_1103_PhysRevResearch_2_023385
crossref_primary_10_22331_q_2024_12_11_1560
crossref_primary_10_1063_1_4926833
crossref_primary_10_1063_5_0014928
crossref_primary_10_1063_5_0057752
crossref_primary_10_21468_SciPostPhys_9_5_070
crossref_primary_10_1016_j_aop_2014_06_013
crossref_primary_10_1140_epjd_e2014_50500_1
crossref_primary_10_1103_PhysRevA_109_022420
crossref_primary_10_1103_PhysRevB_103_235155
crossref_primary_10_1103_PhysRevB_96_155120
crossref_primary_10_1021_acs_jctc_8b00960
crossref_primary_10_1103_PhysRevE_100_043309
crossref_primary_10_1063_1_4942174
crossref_primary_10_1103_PhysRevA_97_012301
crossref_primary_10_1021_acs_jctc_6b00696
crossref_primary_10_1103_PhysRevResearch_5_013031
crossref_primary_10_21468_SciPostChem_1_1_001
crossref_primary_10_1103_PhysRevB_109_195148
crossref_primary_10_1103_PhysRevA_97_022505
crossref_primary_10_1103_PhysRevResearch_6_023110
crossref_primary_10_1063_1_5004693
crossref_primary_10_1140_epjb_e2018_90197_2
crossref_primary_10_1063_1_5125945
crossref_primary_10_1063_5_0050720
crossref_primary_10_1021_acs_jctc_9b01132
crossref_primary_10_1088_2516_1075_abe192
crossref_primary_10_1021_acs_jctc_7b00439
crossref_primary_10_1002_qua_24898
crossref_primary_10_1021_acs_jctc_8b00628
crossref_primary_10_1103_PhysRevA_111_012630
crossref_primary_10_1021_acs_jctc_1c00957
crossref_primary_10_1021_ct501187j
crossref_primary_10_1209_0295_5075_110_20011
crossref_primary_10_1002_wcms_1614
crossref_primary_10_1371_journal_pone_0206704
crossref_primary_10_1063_1_4963168
crossref_primary_10_1021_acs_jctc_7b01248
crossref_primary_10_1063_1_4922295
crossref_primary_10_1103_PhysRevB_96_195123
crossref_primary_10_1103_PhysRevApplied_18_064051
crossref_primary_10_1103_PhysRevB_88_195102
crossref_primary_10_1021_acs_chemrev_8b00803
crossref_primary_10_1103_PhysRevB_98_085155
crossref_primary_10_1103_PhysRevB_95_195127
crossref_primary_10_3389_fams_2022_838601
crossref_primary_10_1016_j_cpc_2014_01_019
crossref_primary_10_22331_q_2024_12_27_1580
crossref_primary_10_1016_j_ccr_2014_10_015
crossref_primary_10_1063_1_4905329
crossref_primary_10_1103_PhysRevB_102_155108
crossref_primary_10_1021_acs_jcim_4c01212
crossref_primary_10_1021_acs_jctc_8b00098
crossref_primary_10_1103_PhysRevE_97_013301
crossref_primary_10_1103_PhysRevResearch_6_033259
crossref_primary_10_1007_s10910_022_01379_y
crossref_primary_10_1093_ptep_ptad018
crossref_primary_10_1063_5_0127621
crossref_primary_10_1103_PhysRevB_93_075107
crossref_primary_10_1088_1361_648X_ac640e
crossref_primary_10_1063_5_0018149
crossref_primary_10_1103_PRXQuantum_2_010352
crossref_primary_10_1007_s40687_023_00381_3
crossref_primary_10_1021_acs_jctc_6b01118
crossref_primary_10_21468_SciPostPhys_9_3_042
crossref_primary_10_21468_SciPostPhysLectNotes_8
crossref_primary_10_1103_PhysRevB_92_125140
crossref_primary_10_1088_1367_2630_ab9d9f
crossref_primary_10_21468_SciPostPhys_15_6_222
crossref_primary_10_1103_PhysRevB_99_195125
crossref_primary_10_1021_acs_jctc_9b00071
crossref_primary_10_1063_5_0219010
Cites_doi 10.1016/j.aop.2010.09.012
10.1063/1.3152576
10.1063/1.1311294
10.1103/PhysRevB.72.180403
10.1021/jp8012078
10.1039/c0cp01883j
10.1103/PhysRevA.78.012356
10.1007/s100510050053
10.1103/PhysRevB.65.155116
10.1063/1.2345196
10.1088/1367-2630/12/2/025012
10.1063/1.478295
10.1103/PhysRevA.81.062337
10.1103/PhysRevB.67.125114
10.1103/PhysRevB.60.1643
10.1103/PhysRevB.53.R10445
10.1080/14789940801912366
10.1063/1.3695642
10.1103/PhysRevB.82.205105
10.1103/PhysRevB.48.10345
10.1103/RevModPhys.77.259
10.1146/annurev-physchem-032210-103338
10.1103/PhysRevB.68.195116
10.1103/PhysRevB.53.14004
10.1103/PhysRevB.85.134415
10.1002/(SICI)1521-3773(19980316)37:5<643::AID-ANIE643>3.0.CO;2-4
10.1088/0953-8984/9/42/016
10.1103/PhysRevLett.93.207204
10.1103/PhysRevLett.99.220405
10.1002/wcms.1095
10.1103/PhysRevB.86.195137
10.1088/1742-5468/2007/10/P10014
10.1063/1.2741527
10.1103/PhysRevB.87.085107
10.1103/PhysRevLett.69.2863
10.1103/PhysRevA.83.012508
10.1103/PhysRevB.80.235127
10.1063/1.2883976
10.1103/PhysRevA.74.022320
10.1063/1.1449459
10.1524/zpch.2010.6125
10.1016/j.chemphys.2005.10.018
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
H8D
L7M
ADTOC
UNPAY
DOI 10.1063/1.4798639
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 10.1063/1.4798639
23574214
10_1063_1_4798639
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
WH7
YQT
YZZ
~02
NPM
7X8
7U5
8FD
H8D
L7M
.GJ
0ZJ
186
2WC
3O-
41~
6TJ
9M8
AAYJJ
ABDPE
ABUFD
ACBNA
ADTOC
ADXHL
AETEA
AFFNX
AI.
H~9
MVM
NEUPN
NHB
OHT
QZG
RDFOP
T9H
UBC
UNPAY
UQL
VH1
VOH
X7L
XJT
XOL
ZCG
ZGI
ZXP
ID FETCH-LOGICAL-c419t-d9e5d3c1d35c8e44645cec554ea4200bb85e99259eca0d810a537899984435bf3
IEDL.DBID UNPAY
ISSN 0021-9606
1089-7690
1520-9032
IngestDate Sun Oct 26 04:16:10 EDT 2025
Wed Oct 01 13:47:08 EDT 2025
Thu Jul 10 23:21:33 EDT 2025
Mon Jul 21 06:05:33 EDT 2025
Thu Apr 24 23:08:20 EDT 2025
Tue Jul 01 00:44:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-d9e5d3c1d35c8e44645cec554ea4200bb85e99259eca0d810a537899984435bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4798639/13962610/134113_1_online.pdf
PMID 23574214
PQID 1326733022
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1063_1_4798639
proquest_miscellaneous_1429856071
proquest_miscellaneous_1326733022
pubmed_primary_23574214
crossref_primary_10_1063_1_4798639
crossref_citationtrail_10_1063_1_4798639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-07
PublicationDateYYYYMMDD 2013-04-07
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2013
References (2023061917164170800_c4) 2002; 116
(2023061917164170800_c12) 2006; 74
2023061917164170800_c45
(2023061917164170800_c43) 1998; 37
(2023061917164170800_c41) 2000; 113
(2023061917164170800_c15) 2011; 13
(2023061917164170800_c27) 2012; 85
(2023061917164170800_c7) 2007; 126
(2023061917164170800_c32); 2007
(2023061917164170800_c35) 2010; 81
(2023061917164170800_c9) 2009; 130
(2023061917164170800_c26) 2002; 65
(2023061917164170800_c3) 1999; 110
(2023061917164170800_c39) 2011; 83
(2023061917164170800_c10) 2006; 125
(2023061917164170800_c31) 2004; 93
(2023061917164170800_c37) 2003; 68
(2023061917164170800_c17) 2012; 2
(2023061917164170800_c11) 2008; 128
(2023061917164170800_c33) 2008; 78
(2023061917164170800_c38) 2006; 323
(2023061917164170800_c42) 2012; 136
(2023061917164170800_c18) 2009; 80
(2023061917164170800_c2) 1993; 48
(2023061917164170800_c6) 2003; 67
(2023061917164170800_c44) 2008; 112
(2023061917164170800_c29) 2011; 326
(2023061917164170800_c8) 2010; 224
(2023061917164170800_c14) 2008; 57
(2023061917164170800_c19) 2010; 82
(2023061917164170800_c22) 1996; 53
(2023061917164170800_c23) 1997; 9
Engquist (2023061917164170800_c16) 2012
(2023061917164170800_c28) 2005; 77
(2023061917164170800_c36) 2005; 72
(2023061917164170800_c34) 2010; 12
(2023061917164170800_c30) 1996; 53
(2023061917164170800_c20) 2012; 86
(2023061917164170800_c25) 2000; 13
(2023061917164170800_c40) 2010
(2023061917164170800_c24) 1999; 60
(2023061917164170800_c5) 2011; 62
(2023061917164170800_c1) 1992; 69
(2023061917164170800_c21) 2013; 87
(2023061917164170800_c13) 2007; 99
References_xml – volume: 326
  start-page: 96
  year: 2011
  ident: 2023061917164170800_c29
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2010.09.012
– volume-title: Introduction to Genetic Algorithm
  year: 2010
  ident: 2023061917164170800_c40
– volume: 130
  start-page: 234114
  year: 2009
  ident: 2023061917164170800_c9
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3152576
– volume: 113
  start-page: 6677
  year: 2000
  ident: 2023061917164170800_c41
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1311294
– volume: 72
  start-page: 180403
  year: 2005
  ident: 2023061917164170800_c36
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.180403
– ident: 2023061917164170800_c45
– volume: 112
  start-page: 7271
  year: 2008
  ident: 2023061917164170800_c44
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp8012078
– volume: 13
  start-page: 6750
  year: 2011
  ident: 2023061917164170800_c15
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp01883j
– volume: 78
  start-page: 012356
  year: 2008
  ident: 2023061917164170800_c33
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.012356
– volume: 13
  start-page: 421
  year: 2000
  ident: 2023061917164170800_c25
  publication-title: Eur. Phys. J. B
  doi: 10.1007/s100510050053
– volume: 65
  start-page: 155116
  year: 2002
  ident: 2023061917164170800_c26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.155116
– volume: 125
  start-page: 144101
  year: 2006
  ident: 2023061917164170800_c10
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2345196
– volume: 12
  start-page: 025012
  year: 2010
  ident: 2023061917164170800_c34
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/2/025012
– volume: 110
  start-page: 4127
  year: 1999
  ident: 2023061917164170800_c3
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478295
– volume: 81
  start-page: 062337
  year: 2010
  ident: 2023061917164170800_c35
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.81.062337
– volume: 67
  start-page: 125114
  year: 2003
  ident: 2023061917164170800_c6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.67.125114
– volume: 60
  start-page: 1643
  year: 1999
  ident: 2023061917164170800_c24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.1643
– volume: 53
  start-page: 10445
  year: 1996
  ident: 2023061917164170800_c30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.R10445
– volume: 57
  start-page: 143
  year: 2008
  ident: 2023061917164170800_c14
  publication-title: Adv. Phys.
  doi: 10.1080/14789940801912366
– volume: 136
  start-page: 124121
  year: 2012
  ident: 2023061917164170800_c42
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3695642
– volume: 82
  start-page: 205105
  year: 2010
  ident: 2023061917164170800_c19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.205105
– volume: 48
  start-page: 10345
  year: 1993
  ident: 2023061917164170800_c2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.10345
– volume: 77
  start-page: 259
  year: 2005
  ident: 2023061917164170800_c28
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.77.259
– volume: 62
  start-page: 465
  year: 2011
  ident: 2023061917164170800_c5
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-032210-103338
– volume: 68
  start-page: 195116
  year: 2003
  ident: 2023061917164170800_c37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.68.195116
– volume: 53
  start-page: 14004
  year: 1996
  ident: 2023061917164170800_c22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.14004
– volume: 85
  start-page: 134415
  year: 2012
  ident: 2023061917164170800_c27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.134415
– volume: 37
  start-page: 643
  year: 1998
  ident: 2023061917164170800_c43
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/(SICI)1521-3773(19980316)37:5<643::AID-ANIE643>3.0.CO;2-4
– volume: 9
  start-page: 9021
  year: 1997
  ident: 2023061917164170800_c23
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/9/42/016
– volume: 93
  start-page: 207204
  year: 2004
  ident: 2023061917164170800_c31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.207204
– volume: 99
  start-page: 220405
  year: 2007
  ident: 2023061917164170800_c13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.220405
– volume: 2
  start-page: 907
  year: 2012
  ident: 2023061917164170800_c17
  publication-title: Comput. Mol. Sci.
  doi: 10.1002/wcms.1095
– volume: 86
  start-page: 195137
  year: 2012
  ident: 2023061917164170800_c20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.195137
– volume: 2007
  start-page: P10014
  ident: 2023061917164170800_c32
  publication-title: J. Stat. Mech.: Theory Exp.
  doi: 10.1088/1742-5468/2007/10/P10014
– volume: 126
  start-page: 244109
  year: 2007
  ident: 2023061917164170800_c7
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2741527
– volume-title: Encyclopedia of Applied and Computational Mathematics
  year: 2012
  ident: 2023061917164170800_c16
  article-title: Numerical approaches for high-dimensional PDE’s for quantum chemistry
– volume: 87
  start-page: 085107
  year: 2013
  ident: 2023061917164170800_c21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.87.085107
– volume: 69
  start-page: 2863
  year: 1992
  ident: 2023061917164170800_c1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2863
– volume: 83
  start-page: 012508
  year: 2011
  ident: 2023061917164170800_c39
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.83.012508
– volume: 80
  start-page: 235127
  year: 2009
  ident: 2023061917164170800_c18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.235127
– volume: 128
  start-page: 144117
  year: 2008
  ident: 2023061917164170800_c11
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2883976
– volume: 74
  start-page: 022320
  year: 2006
  ident: 2023061917164170800_c12
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.022320
– volume: 116
  start-page: 4462
  year: 2002
  ident: 2023061917164170800_c4
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1449459
– volume: 224
  start-page: 583
  year: 2010
  ident: 2023061917164170800_c8
  publication-title: Z. Phys. Chem.
  doi: 10.1524/zpch.2010.6125
– volume: 323
  start-page: 519
  year: 2006
  ident: 2023061917164170800_c38
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.10.018
SSID ssj0001724
Score 2.5349402
Snippet We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 134113
SubjectTerms Algorithms
Chromium
Density
Mathematical analysis
Networks
Quantum chemistry
Tensors
Trees
Title Efficient tree tensor network states (TTNS) for quantum chemistry: Generalizations of the density matrix renormalization group algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/23574214
https://www.proquest.com/docview/1326733022
https://www.proquest.com/docview/1429856071
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4798639/13962610/134113_1_online.pdf
UnpaywallVersion publishedVersion
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 1520-9032
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VRKjwwFGucFTL8dA--Fjv2vHyFpVWFaIRUhOpiAdrvV7TlMQ2iS0o4gfws5n1EcopXngfe69ZzzeemW8AnjHpi1CKwJJoXQ2ptrRC5Qn0eRQqVCJUIkyh8NE4OJzylyf-yQa87WphcBIrW86KhiJ4VjhnqnDaTbSKJP3OOBAwh9p8KEK0sQ7iGETm1HUMPxllEY0aogkbH7kE_cBHoN6D_nT8evSmSfqglsHuTfq9sIZB_TcGjZlrCZd5HQfRxUF-tFy_wNGrsFllhTz_KOfzCybq4Dp8WS-uzkx5b1dlbKvPP_E-_qfV34BrLbQlo-ZFN2FDZ1uwudd1lNuCy3W6qVrdgq_7NXMFGjxiouLEpNHnS5I1OemkrnJakZ3JZHy8SxBWkw8VakC1IKp723PSEmZ3daQkTwmCWZKYjPzynCxM74FPZKkzg8o7MVJXsRA5f5cvZ-Xp4jZMD_Yne4dW2xPCUpyK0kLV8ROmaMJ8FWpu4rJKK8REWnK88HEc-loI9Om0km4SUlf6bIg-pQg5AsM4ZXegl-WZvgck8HjMgjgNPMV4GkopudJJLPGblhq_bQA73XlHqiVMN3075lEduA_MPrcnMIAna9GiYQn5ndDjTmki3CoTmJGZzqtVRBFDDxlDOPUXGQQOoW_YAAdwt9G49VCGsoh7lA_g6VoF_zyP-_8k9QCueHXnD265w4fQK5eVfoT4q4y3oT96cfTqeLu9T98ANJQoYA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrVDhgaNcyyVzPJQHJ3HsHOatqlpVSKyQ2JWKeIgcx4GF3STsJoIifgA_m3GOpZzihfdJfI0z32RmvgF4zFUgYyVDqtC6WlJtRWPtS_R5NCpUJnUmbaHw80l4PBPPToKTLXg91MLgJNaOmlcdRfC8ct_pyu03kVZZ_p1xIOQuc0QkY7SxLuIYRObMcy0_GeMJSzqiCQcfOQfbYYBAfQTbs8mL_Vdd0gejFrt36feSRmH7NwaNmUelx_2Bg-jsID9arl_g6EXYaYpKnX5Ui8UZE3V0Gb5sFtdmprx3mjp19OefeB__0-qvwKUe2pL97kVXYcsUu7BzMHSU24XzbbqpXl-Dr4ctcwUaPGKj4sSm0ZcrUnQ56aStclqTvel08vIJQVhNPjSoAc2S6OFtT0lPmD3UkZIyJwhmSWYz8utTsrS9Bz6RlSksKh_ESFvFQtTiTbma12-X12F2dDg9OKZ9TwiqBZM1RdUJMq5ZxgMdG2HjstpoxERGCbzwaRoHRkr06YxWXhYzTwU8Qp9SxgKBYZrzGzAqysLcAhL6IuVhmoe-5iKPlVJCmyxV-E3Lrd82hr3hvBPdE6bbvh2LpA3ch3af-xMYw8ONaNWxhPxO6MGgNAlulQ3MqMKUzTphiKEjzhFO_UUGgUMcWDbAMdzsNG4zlKUsEj4TY3i0UcE_z-P2P0ndgQt-2_lDUC-6C6N61Zh7iL_q9H5_j74B-cEmzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+tree+tensor+network+states+%28TTNS%29+for+quantum+chemistry%3A+Generalizations+of+the+density+matrix+renormalization+group+algorithm&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Nakatani%2C+Naoki&rft.au=Chan%2C+Garnet+Kin-Lic&rft.date=2013-04-07&rft.issn=0021-9606&rft.eissn=1089-7690&rft.volume=138&rft.issue=13&rft_id=info:doi/10.1063%2F1.4798639&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4798639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon