Post-translational polymodification of β1-tubulin regulates motor protein localization in platelet production and function

In specialized cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviors. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet...

Full description

Saved in:
Bibliographic Details
Published inHaematologica (Roma) Vol. 107; no. 1; pp. 243 - 259
Main Authors Khan, Abdullah O., Slater, Alexandre, Maclachlan, Annabel, Nicolson, Phillip L.R., Pike, Jeremy A., Reyat, Jasmeet S., Yule, Jack, Stapley, Rachel, Rayes, Julie, Thomas, Steven G., Morgan, Neil V.
Format Journal Article
LanguageEnglish
Published Italy Ferrata Storti Foundation 01.01.2022
Subjects
Online AccessGet full text
ISSN0390-6078
1592-8721
1592-8721
DOI10.3324/haematol.2020.270793

Cover

Abstract In specialized cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviors. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell derived MK, and healthy human donor platelets. We find distinct patterns of polymodification in MK and platelets, mediated by the antagonistic activities of the cell specific expression of tubulin tyrosine ligase like enzymes and cytosolic carboxypeptidase enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganization required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.
AbstractList In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviours. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell (iPSC) derived MKs, and healthy human donor platelets. We find distinct patterns of polymodification in MKs and platelets, mediated by the antagonistic activities of the cell specific expression of Tubulin Tyrosine Ligase Like (TTLLs) and Cytosolic Carboxypeptidase (CCP) enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganisation required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.
In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviours. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell (iPSC) derived MKs, and healthy human donor platelets. We find distinct patterns of polymodification in MKs and platelets, mediated by the antagonistic activities of the cell specific expression of Tubulin Tyrosine Ligase Like (TTLLs) and Cytosolic Carboxypeptidase (CCP) enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganisation required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviours. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell (iPSC) derived MKs, and healthy human donor platelets. We find distinct patterns of polymodification in MKs and platelets, mediated by the antagonistic activities of the cell specific expression of Tubulin Tyrosine Ligase Like (TTLLs) and Cytosolic Carboxypeptidase (CCP) enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganisation required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.
In specialized cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviors. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell derived MK, and healthy human donor platelets. We find distinct patterns of polymodification in MK and platelets, mediated by the antagonistic activities of the cell specific expression of tubulin tyrosine ligase like enzymes and cytosolic carboxypeptidase enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganization required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.
Author Slater, Alexandre
Reyat, Jasmeet S.
Stapley, Rachel
Rayes, Julie
Morgan, Neil V.
Yule, Jack
Nicolson, Phillip L.R.
Pike, Jeremy A.
Khan, Abdullah O.
Maclachlan, Annabel
Thomas, Steven G.
Author_xml – sequence: 1
  givenname: Abdullah O.
  surname: Khan
  fullname: Khan, Abdullah O.
– sequence: 2
  givenname: Alexandre
  surname: Slater
  fullname: Slater, Alexandre
– sequence: 3
  givenname: Annabel
  surname: Maclachlan
  fullname: Maclachlan, Annabel
– sequence: 4
  givenname: Phillip L.R.
  surname: Nicolson
  fullname: Nicolson, Phillip L.R.
– sequence: 5
  givenname: Jeremy A.
  surname: Pike
  fullname: Pike, Jeremy A.
– sequence: 6
  givenname: Jasmeet S.
  surname: Reyat
  fullname: Reyat, Jasmeet S.
– sequence: 7
  givenname: Jack
  surname: Yule
  fullname: Yule, Jack
– sequence: 8
  givenname: Rachel
  surname: Stapley
  fullname: Stapley, Rachel
– sequence: 9
  givenname: Julie
  surname: Rayes
  fullname: Rayes, Julie
– sequence: 10
  givenname: Steven G.
  surname: Thomas
  fullname: Thomas, Steven G.
– sequence: 11
  givenname: Neil V.
  surname: Morgan
  fullname: Morgan, Neil V.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33327716$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1TAQhS1URG8Lb4BQlmxy8W-csEMVtJUqwaJ7y7HHxZUTX2xnUXgrHoRnwjdpu2DBypqj7xxr5pyhkznOgNBbgveMUf7hu4ZJlxj2FFO8pxLLgb1AOyIG2vaSkhO0w2zAbYdlf4rOcr7HFRwG-QqdspogJel26Ne3mEtbkp5z0MXHWYfmEMPDFK133qxSE13z5zdpyzIuwc9NgrulwpCbKZaYmkOKBaoeotHB_9w8dT4coQDlCNjFrLKebeOWeR1eo5dOhwxvHt9zdPvl8-3FVXvz9fL64tNNazgZSmskYIGZNo6MsqNYcisH22NOhXMSeg2MEgEgje4BBBjb2050zDrRj2xk5-h6i7VR36tD8pNODypqr1YhpjulU_EmgOLD0JMa4gQlnDirqRi10Jr3nBhncM16v2XVlX4skIuafDYQgp4hLllRLvGASSdYRd89oss4gX3--On2FeAbYFLMOYF7RghWx4rVU8XqWLHaKq62j__YjC_rzWuLPvzf_Ben87Nu
CitedBy_id crossref_primary_10_1021_acsmaterialslett_2c00832
crossref_primary_10_3324_haematol_2021_279636
crossref_primary_10_1055_a_1788_5322
crossref_primary_10_1080_10409238_2023_2224532
crossref_primary_10_1182_blood_2021013113
crossref_primary_10_1016_j_semcdb_2022_01_010
crossref_primary_10_1182_blood_2021015018
crossref_primary_10_1158_2159_8290_CD_22_0199
crossref_primary_10_1182_blood_2020009302
crossref_primary_10_1093_cvr_cvac097
crossref_primary_10_1146_annurev_cellbio_030123_032748
crossref_primary_10_1126_sciadv_adl6153
crossref_primary_10_1182_bloodadvances_2021006545
crossref_primary_10_1080_09537104_2021_2007869
Cites_doi 10.1002/elps.200900140
10.1083/jcb.201612050
10.1111/jmi.12093
10.1002/humu.24114
10.1101/cshperspect.a028159
10.3324/haematol.2016.146316
10.1177/0300985810363485
10.1111/jth.15119
10.1111/jth.12819
10.1073/pnas.1618041114
10.1016/j.devcel.2016.03.003
10.1109/ISBI.2011.5872394
10.1182/blood-2008-06-162610
10.1182/bloodadvances.2018017756
10.1007/s12033-009-9193-5
10.1016/j.biocel.2015.07.008
10.1074/jbc.M603984200
10.1182/blood-2014-09-600858
10.1093/nar/gky427
10.1083/jcb.201306085
10.1038/nmeth.1319
10.3324/haematol.2019.225912
10.1016/S0960-9822(01)00153-1
10.1016/j.stemcr.2014.09.010
10.1161/ATVBAHA.117.310373
10.1128/EC.00176-09
10.1038/s41598-017-08493-x
10.1083/jcb.147.6.1299
10.1242/jcs.199471
10.1111/ejh.12252
10.1186/s12915-018-0584-6
10.1080/09537104.2020.1748588
10.1083/jcb.201304054
10.1038/ncb2920
10.1038/s41598-019-50733-9
10.1182/blood-2005-06-2204
10.1073/pnas.1002128107
10.1242/jcs.199091
10.1093/bioinformatics/btq662
10.1016/j.cub.2017.09.066
10.1093/nar/gkw1132
10.1111/cge.12879
10.1145/1656274.1656280
10.15252/embr.201643751
10.1038/gim.2015.30
10.1038/srep41428
10.1016/j.cell.2018.05.032
10.1038/nrm.2017.60
10.1016/B978-0-12-407699-0.00002-9
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.3324/haematol.2020.270793
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1592-8721
EndPage 259
ExternalDocumentID oai_doaj_org_article_499818eef52141fda25ba5aa4841cfc0
33327716
10_3324_haematol_2020_270793
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: British Heart Foundation
  grantid: PG/16/103/32650
– fundername: British Heart Foundation
  grantid: FS/15/18/31317
– fundername: British Heart Foundation
  grantid: FS/13/70/30521
– fundername: British Heart Foundation
  grantid: PG/13/36/30275
GroupedDBID ---
29I
2WC
53G
5GY
5RE
5VS
AAFWJ
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GROUPED_DOAJ
H13
HYE
KQ8
OK1
OVT
P2P
RHI
RNS
RPM
SJN
TFS
TR2
W8F
WOQ
WOW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c419t-c7e0503acf1b762074d79d80425ff7e8ae3215ee7ca8ee5ecd8d6563df58b3b3
IEDL.DBID DOA
ISSN 0390-6078
1592-8721
IngestDate Wed Aug 27 01:21:51 EDT 2025
Fri Jul 11 05:54:02 EDT 2025
Mon Jul 21 05:35:01 EDT 2025
Thu Apr 24 23:01:39 EDT 2025
Tue Jul 01 04:22:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-c7e0503acf1b762074d79d80425ff7e8ae3215ee7ca8ee5ecd8d6563df58b3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/499818eef52141fda25ba5aa4841cfc0
PMID 33327716
PQID 2470901653
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_499818eef52141fda25ba5aa4841cfc0
proquest_miscellaneous_2470901653
pubmed_primary_33327716
crossref_primary_10_3324_haematol_2020_270793
crossref_citationtrail_10_3324_haematol_2020_270793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Italy
PublicationPlace_xml – name: Italy
PublicationTitle Haematologica (Roma)
PublicationTitleAlternate Haematologica
PublicationYear 2022
Publisher Ferrata Storti Foundation
Publisher_xml – name: Ferrata Storti Foundation
References 16873
16872
16871
16870
16877
16910
16876
16875
16874
16879
16878
16911
16880
16884
16883
16882
16881
16888
16887
16886
16885
16889
16891
16890
16895
16894
16893
16892
16899
16898
16897
16896
16907
16906
16905
16904
16909
16908
16866
16865
16864
16863
16903
16869
16902
16868
16901
16867
16900
References_xml – ident: 16888
  doi: 10.1002/elps.200900140
– ident: 16864
  doi: 10.1083/jcb.201612050
– ident: 16911
  doi: 10.1111/jmi.12093
– ident: 16891
  doi: 10.1002/humu.24114
– ident: 16868
  doi: 10.1101/cshperspect.a028159
– ident: 16892
  doi: 10.3324/haematol.2016.146316
– ident: 16873
  doi: 10.1177/0300985810363485
– ident: 16893
  doi: 10.1111/jth.15119
– ident: 16876
  doi: 10.1111/jth.12819
– ident: 16874
  doi: 10.1073/pnas.1618041114
– ident: 16890
  doi: 10.1016/j.devcel.2016.03.003
– ident: 16909
  doi: 10.1109/ISBI.2011.5872394
– ident: 16880
  doi: 10.1182/blood-2008-06-162610
– ident: 16906
  doi: 10.1182/bloodadvances.2018017756
– ident: 16863
  doi: 10.1007/s12033-009-9193-5
– ident: 16877
  doi: 10.1016/j.biocel.2015.07.008
– ident: 16897
  doi: 10.1074/jbc.M603984200
– ident: 16895
  doi: 10.1182/blood-2014-09-600858
– ident: 16886
  doi: 10.1093/nar/gky427
– ident: 16875
  doi: 10.1083/jcb.201306085
– ident: 16903
  doi: 10.1038/nmeth.1319
– ident: 16910
  doi: 10.3324/haematol.2019.225912
– ident: 16879
  doi: 10.1016/S0960-9822(01)00153-1
– ident: 16885
  doi: 10.1016/j.stemcr.2014.09.010
– ident: 16896
  doi: 10.1161/ATVBAHA.117.310373
– ident: 16900
  doi: 10.1128/EC.00176-09
– ident: 16904
  doi: 10.1038/s41598-017-08493-x
– ident: 16902
  doi: 10.1083/jcb.147.6.1299
– ident: 16867
  doi: 10.1242/jcs.199471
– ident: 16881
  doi: 10.1111/ejh.12252
– ident: 16884
  doi: 10.1186/s12915-018-0584-6
– ident: 16907
  doi: 10.1080/09537104.2020.1748588
– ident: 16878
  doi: 10.1083/jcb.201304054
– ident: 16898
  doi: 10.1038/ncb2920
– ident: 16905
  doi: 10.1038/s41598-019-50733-9
– ident: 16901
  doi: 10.1182/blood-2005-06-2204
– ident: 16871
  doi: 10.1073/pnas.1002128107
– ident: 16870
  doi: 10.1242/jcs.199091
– ident: 16889
  doi: 10.1093/bioinformatics/btq662
– ident: 16899
  doi: 10.1016/j.cub.2017.09.066
– ident: 16887
  doi: 10.1093/nar/gkw1132
– ident: 16882
  doi: 10.1111/cge.12879
– ident: 16908
  doi: 10.1145/1656274.1656280
– ident: 16883
  doi: 10.15252/embr.201643751
– ident: 16894
  doi: 10.1038/gim.2015.30
– ident: 16872
  doi: 10.1038/srep41428
– ident: 16866
  doi: 10.1016/j.cell.2018.05.032
– ident: 16869
  doi: 10.1038/nrm.2017.60
– ident: 16865
  doi: 10.1016/B978-0-12-407699-0.00002-9
SSID ssj0020997
Score 2.444296
Snippet In specialized cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique...
In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 243
SubjectTerms Blood Platelets - metabolism
Humans
Induced Pluripotent Stem Cells - metabolism
Megakaryocytes - metabolism
Protein Processing, Post-Translational
Thrombopoiesis
Tubulin - genetics
Tubulin - metabolism
Title Post-translational polymodification of β1-tubulin regulates motor protein localization in platelet production and function
URI https://www.ncbi.nlm.nih.gov/pubmed/33327716
https://www.proquest.com/docview/2470901653
https://doaj.org/article/499818eef52141fda25ba5aa4841cfc0
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELbQHhCXqmWh3ZYiV0LcDOvEjpMjRSCEtD0tEjfLv-KwJKsle6j6Vn0QnokZO7uih4oLx1iT2PKMM9947G8IOVGOV40zgRUAxpmoC8NsxWsWqyh5NbVRJi692a_q5k7c3sv7V6W-8ExYpgfOE3cOiBx8SggR_Izg0ZtCWiONEbXgLroUrU-b6SaYGkItvA-a8gcNBEfgBfOluRLQw_mDQTLUDtMOxfSsSAxx_zilxN3_f8CZHM_1R_JhQIz0Io_0E9kJ7T4ZX7Tw9cff9JSmM5xpc3yf7M6GVPmY_MEyvKxHV7QYNvzosltAqO_xdFBqol2kz38569cWD6TTVS5MH54oKLBb0UTiAO3J4Q0XNik8L1EIFI4CPtPPUtN6ik4SHw7I_PpqfnnDhkoLzAne9MypgLwwxkVu4e8IsMKrxte4oGNUoTahBGgQgnIGVCGD87UHIFj6KGtb2vKQjNquDV8IBclSFaFyGHSL6GsIVxrbSKmE9JVxE1JuZlq7gYUci2EsNEQjqB-90Y9G_eisnwlh27eWmYXjDfmfqMStLHJopwawLD1Yln7Lsibkx8YENKw5TKSYNnTrJ10IBSbHKwkdfc62se2qhEEpsPuv7zGEb2SvwOsWacvniIz61Tp8BxDU2-Nk7y-u0QcE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-translational+polymodification+of+%CE%B21-tubulin+regulates+motor+protein+localization+in+platelet+production+and+function&rft.jtitle=Haematologica+%28Roma%29&rft.au=Abdullah+O.+Khan&rft.au=Alexandre+Slater&rft.au=Annabel+Maclachlan&rft.au=Phillip+L.R.+Nicolson&rft.date=2022-01-01&rft.pub=Ferrata+Storti+Foundation&rft.issn=0390-6078&rft.eissn=1592-8721&rft.volume=107&rft.issue=1&rft_id=info:doi/10.3324%2Fhaematol.2020.270793&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_499818eef52141fda25ba5aa4841cfc0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0390-6078&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0390-6078&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0390-6078&client=summon