Post-translational polymodification of β1-tubulin regulates motor protein localization in platelet production and function
In specialized cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviors. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet...
Saved in:
Published in | Haematologica (Roma) Vol. 107; no. 1; pp. 243 - 259 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Italy
Ferrata Storti Foundation
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0390-6078 1592-8721 1592-8721 |
DOI | 10.3324/haematol.2020.270793 |
Cover
Abstract | In specialized cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviors. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell derived MK, and healthy human donor platelets. We find distinct patterns of polymodification in MK and platelets, mediated by the antagonistic activities of the cell specific expression of tubulin tyrosine ligase like enzymes and cytosolic carboxypeptidase enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganization required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved. |
---|---|
AbstractList | In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviours. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell (iPSC) derived MKs, and healthy human donor platelets. We find distinct patterns of polymodification in MKs and platelets, mediated by the antagonistic activities of the cell specific expression of Tubulin Tyrosine Ligase Like (TTLLs) and Cytosolic Carboxypeptidase (CCP) enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganisation required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved. In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviours. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell (iPSC) derived MKs, and healthy human donor platelets. We find distinct patterns of polymodification in MKs and platelets, mediated by the antagonistic activities of the cell specific expression of Tubulin Tyrosine Ligase Like (TTLLs) and Cytosolic Carboxypeptidase (CCP) enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganisation required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviours. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell (iPSC) derived MKs, and healthy human donor platelets. We find distinct patterns of polymodification in MKs and platelets, mediated by the antagonistic activities of the cell specific expression of Tubulin Tyrosine Ligase Like (TTLLs) and Cytosolic Carboxypeptidase (CCP) enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganisation required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved. In specialized cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviors. The mechanisms by which β1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell derived MK, and healthy human donor platelets. We find distinct patterns of polymodification in MK and platelets, mediated by the antagonistic activities of the cell specific expression of tubulin tyrosine ligase like enzymes and cytosolic carboxypeptidase enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganization required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved. |
Author | Slater, Alexandre Reyat, Jasmeet S. Stapley, Rachel Rayes, Julie Morgan, Neil V. Yule, Jack Nicolson, Phillip L.R. Pike, Jeremy A. Khan, Abdullah O. Maclachlan, Annabel Thomas, Steven G. |
Author_xml | – sequence: 1 givenname: Abdullah O. surname: Khan fullname: Khan, Abdullah O. – sequence: 2 givenname: Alexandre surname: Slater fullname: Slater, Alexandre – sequence: 3 givenname: Annabel surname: Maclachlan fullname: Maclachlan, Annabel – sequence: 4 givenname: Phillip L.R. surname: Nicolson fullname: Nicolson, Phillip L.R. – sequence: 5 givenname: Jeremy A. surname: Pike fullname: Pike, Jeremy A. – sequence: 6 givenname: Jasmeet S. surname: Reyat fullname: Reyat, Jasmeet S. – sequence: 7 givenname: Jack surname: Yule fullname: Yule, Jack – sequence: 8 givenname: Rachel surname: Stapley fullname: Stapley, Rachel – sequence: 9 givenname: Julie surname: Rayes fullname: Rayes, Julie – sequence: 10 givenname: Steven G. surname: Thomas fullname: Thomas, Steven G. – sequence: 11 givenname: Neil V. surname: Morgan fullname: Morgan, Neil V. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33327716$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1u1TAQhS1URG8Lb4BQlmxy8W-csEMVtJUqwaJ7y7HHxZUTX2xnUXgrHoRnwjdpu2DBypqj7xxr5pyhkznOgNBbgveMUf7hu4ZJlxj2FFO8pxLLgb1AOyIG2vaSkhO0w2zAbYdlf4rOcr7HFRwG-QqdspogJel26Ne3mEtbkp5z0MXHWYfmEMPDFK133qxSE13z5zdpyzIuwc9NgrulwpCbKZaYmkOKBaoeotHB_9w8dT4coQDlCNjFrLKebeOWeR1eo5dOhwxvHt9zdPvl8-3FVXvz9fL64tNNazgZSmskYIGZNo6MsqNYcisH22NOhXMSeg2MEgEgje4BBBjb2050zDrRj2xk5-h6i7VR36tD8pNODypqr1YhpjulU_EmgOLD0JMa4gQlnDirqRi10Jr3nBhncM16v2XVlX4skIuafDYQgp4hLllRLvGASSdYRd89oss4gX3--On2FeAbYFLMOYF7RghWx4rVU8XqWLHaKq62j__YjC_rzWuLPvzf_Ben87Nu |
CitedBy_id | crossref_primary_10_1021_acsmaterialslett_2c00832 crossref_primary_10_3324_haematol_2021_279636 crossref_primary_10_1055_a_1788_5322 crossref_primary_10_1080_10409238_2023_2224532 crossref_primary_10_1182_blood_2021013113 crossref_primary_10_1016_j_semcdb_2022_01_010 crossref_primary_10_1182_blood_2021015018 crossref_primary_10_1158_2159_8290_CD_22_0199 crossref_primary_10_1182_blood_2020009302 crossref_primary_10_1093_cvr_cvac097 crossref_primary_10_1146_annurev_cellbio_030123_032748 crossref_primary_10_1126_sciadv_adl6153 crossref_primary_10_1182_bloodadvances_2021006545 crossref_primary_10_1080_09537104_2021_2007869 |
Cites_doi | 10.1002/elps.200900140 10.1083/jcb.201612050 10.1111/jmi.12093 10.1002/humu.24114 10.1101/cshperspect.a028159 10.3324/haematol.2016.146316 10.1177/0300985810363485 10.1111/jth.15119 10.1111/jth.12819 10.1073/pnas.1618041114 10.1016/j.devcel.2016.03.003 10.1109/ISBI.2011.5872394 10.1182/blood-2008-06-162610 10.1182/bloodadvances.2018017756 10.1007/s12033-009-9193-5 10.1016/j.biocel.2015.07.008 10.1074/jbc.M603984200 10.1182/blood-2014-09-600858 10.1093/nar/gky427 10.1083/jcb.201306085 10.1038/nmeth.1319 10.3324/haematol.2019.225912 10.1016/S0960-9822(01)00153-1 10.1016/j.stemcr.2014.09.010 10.1161/ATVBAHA.117.310373 10.1128/EC.00176-09 10.1038/s41598-017-08493-x 10.1083/jcb.147.6.1299 10.1242/jcs.199471 10.1111/ejh.12252 10.1186/s12915-018-0584-6 10.1080/09537104.2020.1748588 10.1083/jcb.201304054 10.1038/ncb2920 10.1038/s41598-019-50733-9 10.1182/blood-2005-06-2204 10.1073/pnas.1002128107 10.1242/jcs.199091 10.1093/bioinformatics/btq662 10.1016/j.cub.2017.09.066 10.1093/nar/gkw1132 10.1111/cge.12879 10.1145/1656274.1656280 10.15252/embr.201643751 10.1038/gim.2015.30 10.1038/srep41428 10.1016/j.cell.2018.05.032 10.1038/nrm.2017.60 10.1016/B978-0-12-407699-0.00002-9 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.3324/haematol.2020.270793 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1592-8721 |
EndPage | 259 |
ExternalDocumentID | oai_doaj_org_article_499818eef52141fda25ba5aa4841cfc0 33327716 10_3324_haematol_2020_270793 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: British Heart Foundation grantid: PG/16/103/32650 – fundername: British Heart Foundation grantid: FS/15/18/31317 – fundername: British Heart Foundation grantid: FS/13/70/30521 – fundername: British Heart Foundation grantid: PG/13/36/30275 |
GroupedDBID | --- 29I 2WC 53G 5GY 5RE 5VS AAFWJ AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION CS3 DIK E3Z EBS EJD F5P FRP GROUPED_DOAJ H13 HYE KQ8 OK1 OVT P2P RHI RNS RPM SJN TFS TR2 W8F WOQ WOW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c419t-c7e0503acf1b762074d79d80425ff7e8ae3215ee7ca8ee5ecd8d6563df58b3b3 |
IEDL.DBID | DOA |
ISSN | 0390-6078 1592-8721 |
IngestDate | Wed Aug 27 01:21:51 EDT 2025 Fri Jul 11 05:54:02 EDT 2025 Mon Jul 21 05:35:01 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Tue Jul 01 04:22:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-c7e0503acf1b762074d79d80425ff7e8ae3215ee7ca8ee5ecd8d6563df58b3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/499818eef52141fda25ba5aa4841cfc0 |
PMID | 33327716 |
PQID | 2470901653 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_499818eef52141fda25ba5aa4841cfc0 proquest_miscellaneous_2470901653 pubmed_primary_33327716 crossref_primary_10_3324_haematol_2020_270793 crossref_citationtrail_10_3324_haematol_2020_270793 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Italy |
PublicationPlace_xml | – name: Italy |
PublicationTitle | Haematologica (Roma) |
PublicationTitleAlternate | Haematologica |
PublicationYear | 2022 |
Publisher | Ferrata Storti Foundation |
Publisher_xml | – name: Ferrata Storti Foundation |
References | 16873 16872 16871 16870 16877 16910 16876 16875 16874 16879 16878 16911 16880 16884 16883 16882 16881 16888 16887 16886 16885 16889 16891 16890 16895 16894 16893 16892 16899 16898 16897 16896 16907 16906 16905 16904 16909 16908 16866 16865 16864 16863 16903 16869 16902 16868 16901 16867 16900 |
References_xml | – ident: 16888 doi: 10.1002/elps.200900140 – ident: 16864 doi: 10.1083/jcb.201612050 – ident: 16911 doi: 10.1111/jmi.12093 – ident: 16891 doi: 10.1002/humu.24114 – ident: 16868 doi: 10.1101/cshperspect.a028159 – ident: 16892 doi: 10.3324/haematol.2016.146316 – ident: 16873 doi: 10.1177/0300985810363485 – ident: 16893 doi: 10.1111/jth.15119 – ident: 16876 doi: 10.1111/jth.12819 – ident: 16874 doi: 10.1073/pnas.1618041114 – ident: 16890 doi: 10.1016/j.devcel.2016.03.003 – ident: 16909 doi: 10.1109/ISBI.2011.5872394 – ident: 16880 doi: 10.1182/blood-2008-06-162610 – ident: 16906 doi: 10.1182/bloodadvances.2018017756 – ident: 16863 doi: 10.1007/s12033-009-9193-5 – ident: 16877 doi: 10.1016/j.biocel.2015.07.008 – ident: 16897 doi: 10.1074/jbc.M603984200 – ident: 16895 doi: 10.1182/blood-2014-09-600858 – ident: 16886 doi: 10.1093/nar/gky427 – ident: 16875 doi: 10.1083/jcb.201306085 – ident: 16903 doi: 10.1038/nmeth.1319 – ident: 16910 doi: 10.3324/haematol.2019.225912 – ident: 16879 doi: 10.1016/S0960-9822(01)00153-1 – ident: 16885 doi: 10.1016/j.stemcr.2014.09.010 – ident: 16896 doi: 10.1161/ATVBAHA.117.310373 – ident: 16900 doi: 10.1128/EC.00176-09 – ident: 16904 doi: 10.1038/s41598-017-08493-x – ident: 16902 doi: 10.1083/jcb.147.6.1299 – ident: 16867 doi: 10.1242/jcs.199471 – ident: 16881 doi: 10.1111/ejh.12252 – ident: 16884 doi: 10.1186/s12915-018-0584-6 – ident: 16907 doi: 10.1080/09537104.2020.1748588 – ident: 16878 doi: 10.1083/jcb.201304054 – ident: 16898 doi: 10.1038/ncb2920 – ident: 16905 doi: 10.1038/s41598-019-50733-9 – ident: 16901 doi: 10.1182/blood-2005-06-2204 – ident: 16871 doi: 10.1073/pnas.1002128107 – ident: 16870 doi: 10.1242/jcs.199091 – ident: 16889 doi: 10.1093/bioinformatics/btq662 – ident: 16899 doi: 10.1016/j.cub.2017.09.066 – ident: 16887 doi: 10.1093/nar/gkw1132 – ident: 16882 doi: 10.1111/cge.12879 – ident: 16908 doi: 10.1145/1656274.1656280 – ident: 16883 doi: 10.15252/embr.201643751 – ident: 16894 doi: 10.1038/gim.2015.30 – ident: 16872 doi: 10.1038/srep41428 – ident: 16866 doi: 10.1016/j.cell.2018.05.032 – ident: 16869 doi: 10.1038/nrm.2017.60 – ident: 16865 doi: 10.1016/B978-0-12-407699-0.00002-9 |
SSID | ssj0020997 |
Score | 2.444296 |
Snippet | In specialized cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique... In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 243 |
SubjectTerms | Blood Platelets - metabolism Humans Induced Pluripotent Stem Cells - metabolism Megakaryocytes - metabolism Protein Processing, Post-Translational Thrombopoiesis Tubulin - genetics Tubulin - metabolism |
Title | Post-translational polymodification of β1-tubulin regulates motor protein localization in platelet production and function |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33327716 https://www.proquest.com/docview/2470901653 https://doaj.org/article/499818eef52141fda25ba5aa4841cfc0 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELbQHhCXqmWh3ZYiV0LcDOvEjpMjRSCEtD0tEjfLv-KwJKsle6j6Vn0QnokZO7uih4oLx1iT2PKMM9947G8IOVGOV40zgRUAxpmoC8NsxWsWqyh5NbVRJi692a_q5k7c3sv7V6W-8ExYpgfOE3cOiBx8SggR_Izg0ZtCWiONEbXgLroUrU-b6SaYGkItvA-a8gcNBEfgBfOluRLQw_mDQTLUDtMOxfSsSAxx_zilxN3_f8CZHM_1R_JhQIz0Io_0E9kJ7T4ZX7Tw9cff9JSmM5xpc3yf7M6GVPmY_MEyvKxHV7QYNvzosltAqO_xdFBqol2kz38569cWD6TTVS5MH54oKLBb0UTiAO3J4Q0XNik8L1EIFI4CPtPPUtN6ik4SHw7I_PpqfnnDhkoLzAne9MypgLwwxkVu4e8IsMKrxte4oGNUoTahBGgQgnIGVCGD87UHIFj6KGtb2vKQjNquDV8IBclSFaFyGHSL6GsIVxrbSKmE9JVxE1JuZlq7gYUci2EsNEQjqB-90Y9G_eisnwlh27eWmYXjDfmfqMStLHJopwawLD1Yln7Lsibkx8YENKw5TKSYNnTrJ10IBSbHKwkdfc62se2qhEEpsPuv7zGEb2SvwOsWacvniIz61Tp8BxDU2-Nk7y-u0QcE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Post-translational+polymodification+of+%CE%B21-tubulin+regulates+motor+protein+localization+in+platelet+production+and+function&rft.jtitle=Haematologica+%28Roma%29&rft.au=Abdullah+O.+Khan&rft.au=Alexandre+Slater&rft.au=Annabel+Maclachlan&rft.au=Phillip+L.R.+Nicolson&rft.date=2022-01-01&rft.pub=Ferrata+Storti+Foundation&rft.issn=0390-6078&rft.eissn=1592-8721&rft.volume=107&rft.issue=1&rft_id=info:doi/10.3324%2Fhaematol.2020.270793&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_499818eef52141fda25ba5aa4841cfc0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0390-6078&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0390-6078&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0390-6078&client=summon |