External validation of the International Risk Prediction Algorithm for the onset of generalized anxiety and/or panic syndromes (The Predict A) in the US general population

•Multivariable risk prediction algorithms are useful for making clinical decisions.•PredictA algorithm is an International algorithm developed in Europe to predict the risk of anxiety disorders.•The performance of PredictA algorithm is not known in North America.•PredictA algorithm has acceptable di...

Full description

Saved in:
Bibliographic Details
Published inJournal of anxiety disorders Vol. 64; pp. 40 - 44
Main Authors Nigatu, Yeshambel T., Wang, JianLi
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Ltd 01.05.2019
Subjects
Online AccessGet full text
ISSN0887-6185
1873-7897
1873-7897
DOI10.1016/j.janxdis.2019.03.004

Cover

Abstract •Multivariable risk prediction algorithms are useful for making clinical decisions.•PredictA algorithm is an International algorithm developed in Europe to predict the risk of anxiety disorders.•The performance of PredictA algorithm is not known in North America.•PredictA algorithm has acceptable discrimination, but the calibration capacity was poor.•The use of PredictA in the US general population for predicting individual risk of generalized anxiety and/or panic disorders is not encouraged. Multivariable risk prediction algorithms are useful for making clinical decisions and health planning. While prediction algorithms for new onset of anxiety disorders in Europe and elsewhere have been developed, the performance of these algorithms in the Americas is not known. The objective of this study was to validate the PredictA algorithm for new onset of anxiety and/or panic disorders in the US general population. Longitudinal study design was conducted with approximate 2-year follow-up data from a total of 24 626 individuals who participated in Wave 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) and who did not have generalized anxiety disorder (GAD) and panic disorder in the past year at Wave 1. The PredictA algorithm was directly applied to the selected participants. Among the participants, 5.4% developed GAD and/or panic disorder over two years. The PredictA algorithm had a discriminative power (C-statistics = 0.62, 95%CI: 0.61; 0.64), but poor calibration (p < 0.001) with the NESARC data. The observed and the mean predicted risk of GAD and/or panic disorders in the NESARC were 5.3% and 3.6%, respectively. Particularly, the observed and predicted risks of GAD and/or panic disorders in the highest decile of risk score in the NESARC participants were 13.3% and 10.4%, respectively. The PredictA algorithm has acceptable discrimination, but the calibration with the NESARC data was poor. The PredictA algorithm is likely to underestimate the risk of GAD/panic disorders in the US population. Therefore, the use of PredictA in the US general population for predicting individual risk of GAD and/or panic disorders is not encouraged.
AbstractList Multivariable risk prediction algorithms are useful for making clinical decisions and health planning. While prediction algorithms for new onset of anxiety disorders in Europe and elsewhere have been developed, the performance of these algorithms in the Americas is not known. The objective of this study was to validate the PredictA algorithm for new onset of anxiety and/or panic disorders in the US general population. Longitudinal study design was conducted with approximate 2-year follow-up data from a total of 24 626 individuals who participated in Wave 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) and who did not have generalized anxiety disorder (GAD) and panic disorder in the past year at Wave 1. The PredictA algorithm was directly applied to the selected participants. Among the participants, 5.4% developed GAD and/or panic disorder over two years. The PredictA algorithm had a discriminative power (C-statistics = 0.62, 95%CI: 0.61; 0.64), but poor calibration (p < 0.001) with the NESARC data. The observed and the mean predicted risk of GAD and/or panic disorders in the NESARC were 5.3% and 3.6%, respectively. Particularly, the observed and predicted risks of GAD and/or panic disorders in the highest decile of risk score in the NESARC participants were 13.3% and 10.4%, respectively. The PredictA algorithm has acceptable discrimination, but the calibration with the NESARC data was poor. The PredictA algorithm is likely to underestimate the risk of GAD/panic disorders in the US population. Therefore, the use of PredictA in the US general population for predicting individual risk of GAD and/or panic disorders is not encouraged.
•Multivariable risk prediction algorithms are useful for making clinical decisions.•PredictA algorithm is an International algorithm developed in Europe to predict the risk of anxiety disorders.•The performance of PredictA algorithm is not known in North America.•PredictA algorithm has acceptable discrimination, but the calibration capacity was poor.•The use of PredictA in the US general population for predicting individual risk of generalized anxiety and/or panic disorders is not encouraged. Multivariable risk prediction algorithms are useful for making clinical decisions and health planning. While prediction algorithms for new onset of anxiety disorders in Europe and elsewhere have been developed, the performance of these algorithms in the Americas is not known. The objective of this study was to validate the PredictA algorithm for new onset of anxiety and/or panic disorders in the US general population. Longitudinal study design was conducted with approximate 2-year follow-up data from a total of 24 626 individuals who participated in Wave 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) and who did not have generalized anxiety disorder (GAD) and panic disorder in the past year at Wave 1. The PredictA algorithm was directly applied to the selected participants. Among the participants, 5.4% developed GAD and/or panic disorder over two years. The PredictA algorithm had a discriminative power (C-statistics = 0.62, 95%CI: 0.61; 0.64), but poor calibration (p < 0.001) with the NESARC data. The observed and the mean predicted risk of GAD and/or panic disorders in the NESARC were 5.3% and 3.6%, respectively. Particularly, the observed and predicted risks of GAD and/or panic disorders in the highest decile of risk score in the NESARC participants were 13.3% and 10.4%, respectively. The PredictA algorithm has acceptable discrimination, but the calibration with the NESARC data was poor. The PredictA algorithm is likely to underestimate the risk of GAD/panic disorders in the US population. Therefore, the use of PredictA in the US general population for predicting individual risk of GAD and/or panic disorders is not encouraged.
Multivariable risk prediction algorithms are useful for making clinical decisions and health planning. While prediction algorithms for new onset of anxiety disorders in Europe and elsewhere have been developed, the performance of these algorithms in the Americas is not known. The objective of this study was to validate the PredictA algorithm for new onset of anxiety and/or panic disorders in the US general population.INTRODUCTIONMultivariable risk prediction algorithms are useful for making clinical decisions and health planning. While prediction algorithms for new onset of anxiety disorders in Europe and elsewhere have been developed, the performance of these algorithms in the Americas is not known. The objective of this study was to validate the PredictA algorithm for new onset of anxiety and/or panic disorders in the US general population.Longitudinal study design was conducted with approximate 2-year follow-up data from a total of 24 626 individuals who participated in Wave 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) and who did not have generalized anxiety disorder (GAD) and panic disorder in the past year at Wave 1. The PredictA algorithm was directly applied to the selected participants.METHODSLongitudinal study design was conducted with approximate 2-year follow-up data from a total of 24 626 individuals who participated in Wave 1 and 2 of the US National Epidemiologic Survey on Alcohol and Related Conditions (NESARC) and who did not have generalized anxiety disorder (GAD) and panic disorder in the past year at Wave 1. The PredictA algorithm was directly applied to the selected participants.Among the participants, 5.4% developed GAD and/or panic disorder over two years. The PredictA algorithm had a discriminative power (C-statistics = 0.62, 95%CI: 0.61; 0.64), but poor calibration (p < 0.001) with the NESARC data. The observed and the mean predicted risk of GAD and/or panic disorders in the NESARC were 5.3% and 3.6%, respectively. Particularly, the observed and predicted risks of GAD and/or panic disorders in the highest decile of risk score in the NESARC participants were 13.3% and 10.4%, respectively.RESULTSAmong the participants, 5.4% developed GAD and/or panic disorder over two years. The PredictA algorithm had a discriminative power (C-statistics = 0.62, 95%CI: 0.61; 0.64), but poor calibration (p < 0.001) with the NESARC data. The observed and the mean predicted risk of GAD and/or panic disorders in the NESARC were 5.3% and 3.6%, respectively. Particularly, the observed and predicted risks of GAD and/or panic disorders in the highest decile of risk score in the NESARC participants were 13.3% and 10.4%, respectively.The PredictA algorithm has acceptable discrimination, but the calibration with the NESARC data was poor. The PredictA algorithm is likely to underestimate the risk of GAD/panic disorders in the US population. Therefore, the use of PredictA in the US general population for predicting individual risk of GAD and/or panic disorders is not encouraged.CONCLUSIONThe PredictA algorithm has acceptable discrimination, but the calibration with the NESARC data was poor. The PredictA algorithm is likely to underestimate the risk of GAD/panic disorders in the US population. Therefore, the use of PredictA in the US general population for predicting individual risk of GAD and/or panic disorders is not encouraged.
Author Nigatu, Yeshambel T.
Wang, JianLi
Author_xml – sequence: 1
  givenname: Yeshambel T.
  surname: Nigatu
  fullname: Nigatu, Yeshambel T.
  organization: Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
– sequence: 2
  givenname: JianLi
  surname: Wang
  fullname: Wang, JianLi
  email: Jianli.Wang@theroyal.ca
  organization: Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30974236$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1OGzEUha2KqgTaR2jlJV3MYI_nV1VVRQhaJKRWLawtj30NDjN2sB1E-kp9SZxJsmFD5cWVfM_5fH3PETqwzgJCHynJKaH16SJfCPukTMgLQrucsJyQ8g2a0bZhWdN2zQGakbZtspq21SE6CmFBCG1I3bxDh4x0TVmweob-nT9F8FYM-FEMRolonMVO43gH-NJOrc1V6v824R7_8qCMnETz4dZ5E-9GrJ2f9M4GiBvzLVjwCfcXFE5DGojrVNVp0i2FNRKHtVXejRDwyXUy7qh4_hkbO6Fu_uwheOmWq2Ea4j16q8UQ4MOuHqObi_Prsx_Z1c_vl2fzq0yWtIuZbBrNdN_XNZNdp6tWd0xUUDaqZyqdsm11VVJa921bVaSvWFcKqqWudCmVAnaMTrbcpXcPKwiRjyZIGAZhwa0CLwrS1aRIiCT9tJOu-hEUX3ozCr_m-wUnwZetQHoXggfNpYnTb6IXZuCU8E2cfMF3cfJNnJwwnuJM7uqFe__Aa75vWx-kNT0a8DxIA1amNXuQkStnXiV8fUGQg0nRieEe1v_hfwZWd9UX
CitedBy_id crossref_primary_10_1002_wps_20869
crossref_primary_10_1080_10615806_2021_1932837
crossref_primary_10_3389_fpsyt_2024_1451703
crossref_primary_10_1093_schbul_sbaa120
crossref_primary_10_1016_j_jad_2021_10_135
Cites_doi 10.31887/DCNS.2015.17.3/bbandelow
10.1038/mp.2008.41
10.1371/journal.pone.0106370
10.1002/bimj.201300297
10.1001/archpsyc.62.10.1097
10.1017/S0033291710002400
10.1016/S0140-6736(16)31678-6
10.1093/oxfordjournals.pubmed.a024606
10.1017/S1461145711001660
10.1016/j.psyneuen.2013.01.002
10.1016/j.jclinepi.2015.04.005
10.1186/1471-244X-11-180
10.31887/DCNS.2003.5.3/pmartin
10.1186/1471-2288-12-82
10.1016/j.recesp.2011.04.017
10.1016/j.drugalcdep.2007.06.001
10.1097/01.jom.0000052967.43131.51
10.1016/j.jad.2010.09.006
10.3109/09638288.2013.833310
10.1002/da.20738
10.1136/bmj.39542.610000.3A
10.1001/jama.2015.12215
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.janxdis.2019.03.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1873-7897
EndPage 44
ExternalDocumentID 30974236
10_1016_j_janxdis_2019_03_004
S0887618518304626
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JO
AABNK
AADFP
AAEDT
AAEDW
AAGJA
AAGUQ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABOYX
ABWVN
ABXDB
ACDAQ
ACGFS
ACHQT
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ACXNI
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADXHL
AEBSH
AEIPS
AEKER
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEG
HMK
HMO
HMW
HVGLF
HZ~
IHE
J1W
KOM
M29
M39
M3V
M41
MO0
N9A
O-L
O9-
OAUVE
OH0
OHT
OKEIE
OU-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SPS
SSB
SSH
SSY
SSZ
T5K
TN5
VH1
WUQ
XPP
Z5R
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AFYLN
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c419t-c77f3fbb663c99f58f93a5e47db3d3d3488f54116b88550b5394a1fcf5f4cdde3
IEDL.DBID .~1
ISSN 0887-6185
1873-7897
IngestDate Wed Oct 01 14:55:47 EDT 2025
Wed Feb 19 02:31:18 EST 2025
Thu Oct 16 04:30:17 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Fri Feb 23 02:46:44 EST 2024
Tue Oct 14 19:30:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords PredictA
Risk prediction
NESARC
Generalized anxiety disorders
Panic disorder
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-c77f3fbb663c99f58f93a5e47db3d3d3488f54116b88550b5394a1fcf5f4cdde3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30974236
PQID 2209602411
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2209602411
pubmed_primary_30974236
crossref_citationtrail_10_1016_j_janxdis_2019_03_004
crossref_primary_10_1016_j_janxdis_2019_03_004
elsevier_sciencedirect_doi_10_1016_j_janxdis_2019_03_004
elsevier_clinicalkey_doi_10_1016_j_janxdis_2019_03_004
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of anxiety disorders
PublicationTitleAlternate J Anxiety Disord
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kessler, Barber, Beck, Berglund, Cleary, McKenas (bib0060) 2003; 45
King, Bottomley, Bellon-Saameno, Torres-Gonzalez, Svab, Rifel (bib0065) 2011; 41
Moreno-Peral, Luna, de, Marston, King, Nazareth (bib0075) 2014; 9
Duivis, Vogelzangs, Kupper, de Jonge, Penninx (bib0030) 2013; 39
Steyerberg, van der Ploeg, Van Calster (bib0105) 2014, July; 5
Grant, Goldstein, Chou, Huang, Stinson, Dawson (bib0040) 2009, November; 14
Steyerberg, Van Calster, Pencina (bib0100) 2011 Sep; 6
Hasin, Goodwin, Stinson, Grant (bib0045) 2005, October; 62
Steyerberg, Harrell (bib0090) 2016, January; 69
Bandelow, Michaelis (bib0010) 2015; 17
Steyerberg, Lingsma (bib0095) 2008, April; 336
Ruan, Goldstein, Chou, Smith, Saha, Pickering (bib0085) 2008, January; 92
Karsten, Nolen, Penninx, Hartman (bib0055) 2011; 129
Prins, Verhaak, Hilbink-Smolders, Spreeuwenberg, Laurant, van der Meer (bib0080) 2011; 11
Van Calster, Steyerberg, Harrell (bib0110) 2015 November; 314
Global Burden of Disease (GBD) 2015 Disease and Injury Incidence and Prevalence Collaborators (bib0035) 2016; 388
Cornelius, van der Klink, Brouwer, Groothoff (bib0020) 2014; 36
Jenkinson, Layte, Jenkinson, Lawrence, Petersen, Paice (bib0050) 1997, June; 19
Chan, Rush, Nierenberg, Trivedi, Wisniewski, Balasubramani (bib0015) 2012; 15
de Wit, Fokkema, van Straten, Lamers, Cuijpers, Penninx (bib0025) 2010; 27
Austin, Steyerberg (bib0005) 2012, January; 12
Martin (bib0070) 2003; 5
Hasin (10.1016/j.janxdis.2019.03.004_bib0045) 2005; 62
Steyerberg (10.1016/j.janxdis.2019.03.004_bib0105) 2014; 5
Moreno-Peral (10.1016/j.janxdis.2019.03.004_bib0075) 2014; 9
Chan (10.1016/j.janxdis.2019.03.004_bib0015) 2012; 15
Duivis (10.1016/j.janxdis.2019.03.004_bib0030) 2013; 39
Steyerberg (10.1016/j.janxdis.2019.03.004_bib0090) 2016; 69
Steyerberg (10.1016/j.janxdis.2019.03.004_bib0095) 2008; 336
Grant (10.1016/j.janxdis.2019.03.004_bib0040) 2009; 14
Steyerberg (10.1016/j.janxdis.2019.03.004_bib0100) 2011; 6
Global Burden of Disease (GBD) 2015 Disease and Injury Incidence and Prevalence Collaborators (10.1016/j.janxdis.2019.03.004_bib0035) 2016; 388
Karsten (10.1016/j.janxdis.2019.03.004_bib0055) 2011; 129
Prins (10.1016/j.janxdis.2019.03.004_bib0080) 2011; 11
Van Calster (10.1016/j.janxdis.2019.03.004_bib0110) 2015; 314
Jenkinson (10.1016/j.janxdis.2019.03.004_bib0050) 1997; 19
Cornelius (10.1016/j.janxdis.2019.03.004_bib0020) 2014; 36
Kessler (10.1016/j.janxdis.2019.03.004_bib0060) 2003; 45
Ruan (10.1016/j.janxdis.2019.03.004_bib0085) 2008; 92
Austin (10.1016/j.janxdis.2019.03.004_bib0005) 2012; 12
Martin (10.1016/j.janxdis.2019.03.004_bib0070) 2003; 5
King (10.1016/j.janxdis.2019.03.004_bib0065) 2011; 41
Bandelow (10.1016/j.janxdis.2019.03.004_bib0010) 2015; 17
de Wit (10.1016/j.janxdis.2019.03.004_bib0025) 2010; 27
References_xml – volume: 12
  start-page: 82
  year: 2012, January
  ident: bib0005
  article-title: Interpreting the concordance statistic of a logistic regression model: Relation to the variance and odds ratio of a continuous explanatory variable
  publication-title: BMC Medical Research Methodology
– volume: 15
  start-page: 1387
  year: 2012
  end-page: 1399
  ident: bib0015
  article-title: Correlates and outcomes of depressed out-patients with greater and fewer anxious symptoms: A CO-MED report
  publication-title: International Journal of Neuropsychopharmacology
– volume: 9
  start-page: e106370
  year: 2014
  ident: bib0075
  article-title: Predicting the onset of anxiety syndromes at 12 months in primary care attendees. The predictA-Spain study
  publication-title: PLOS ONE
– volume: 14
  start-page: 1051
  year: 2009, November
  end-page: 1066
  ident: bib0040
  article-title: Sociodemographic and psychopathologic predictors of first incidence of DSM-IV substance use, mood and anxiety disorders: Results from the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions
  publication-title: Molecular Psychiatry
– volume: 69
  start-page: 245
  year: 2016, January
  end-page: 247
  ident: bib0090
  article-title: Prediction models need appropriate internal, internal–external, and external validation
  publication-title: Journal of Clinical Epidemiology
– volume: 62
  start-page: 1097
  year: 2005, October
  end-page: 1106
  ident: bib0045
  article-title: Epidemiology of major depressive disorder: Results from the National Epidemiologic Survey on Alcoholism and Related Conditions
  publication-title: Archives of General Psychiatry
– volume: 129
  start-page: 236
  year: 2011
  end-page: 243
  ident: bib0055
  article-title: Subthreshold anxiety better defined by symptom self-report than by diagnostic interview
  publication-title: Journal of Affective Disorders
– volume: 6
  start-page: 788
  year: 2011 Sep
  end-page: 794
  ident: bib0100
  article-title: Performance measures for prediction models and markers: Evaluation of predictions and classifications
  publication-title: Revista Espanola de Cardiologia
– volume: 314
  start-page: 1875
  year: 2015 November
  ident: bib0110
  article-title: Risk prediction for individuals
  publication-title: JAMA
– volume: 45
  start-page: 156
  year: 2003
  end-page: 174
  ident: bib0060
  article-title: The World Health Organization Health and Work Performance Questionnaire (HPQ)
  publication-title: Journal of Occupational and Environmental Medicine American College of Occupation Environmental Medicine
– volume: 336
  start-page: 789
  year: 2008, April
  ident: bib0095
  article-title: Prediction citations: Validation predictions models
  publication-title: BMJ
– volume: 5
  start-page: 601
  year: 2014, July
  end-page: 606
  ident: bib0105
  article-title: Risk prediction with machine learning regression methods
  publication-title: Biometrical Journal Biometrische
– volume: 41
  start-page: 1625
  year: 2011
  end-page: 1639
  ident: bib0065
  article-title: An international risk prediction algorithm for the onset of generalized anxiety and panic syndromes in general practice attendees: PredictA
  publication-title: Psychological Medicine
– volume: 17
  start-page: 327
  year: 2015
  end-page: 335
  ident: bib0010
  article-title: Epidemiology of anxiety disorders in the 21st century
  publication-title: Dialogues in Clinical Neurosciences
– volume: 5
  start-page: 281
  year: 2003
  end-page: 298
  ident: bib0070
  article-title: The epidemiology of anxiety disorders: A review
  publication-title: Dialogues in Clinical Neurosciences
– volume: 11
  year: 2011
  ident: bib0080
  article-title: Outcomes for depression and anxiety in primary care and details of treatment: A naturalistic longitudinal study
  publication-title: BMC Psychiatry
– volume: 36
  start-page: 1161
  year: 2014
  end-page: 1168
  ident: bib0020
  article-title: Under-recognition and under-treatment of DSM-IV classified mood and anxiety disorders among disability claimants
  publication-title: Disability and Rehabilitation
– volume: 27
  start-page: 1057
  year: 2010
  end-page: 1065
  ident: bib0025
  article-title: Depressive and anxiety disorders and the association with obesity, physical, and social activities
  publication-title: Depression and Anxiety
– volume: 388
  start-page: 1545
  year: 2016
  end-page: 1602
  ident: bib0035
  article-title: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015
  publication-title: Lancet (London, England)
– volume: 19
  start-page: 179
  year: 1997, June
  end-page: 186
  ident: bib0050
  article-title: A shorter form health survey: Can the SF-12 replicate results from the SF-36 in longitudinal studies?
  publication-title: Journal of Public Health Medicine
– volume: 39
  start-page: 1573
  year: 2013
  end-page: 1585
  ident: bib0030
  article-title: Differential association of somatic and cognitive symptoms of depression and anxiety with inflammation: Findings from the Netherlands Study of Depression and Anxiety (NESDA)
  publication-title: Psychoneuroendocrinology
– volume: 92
  start-page: 27
  year: 2008, January
  end-page: 36
  ident: bib0085
  article-title: The alcohol use disorder and associated disabilities interview schedule-IV (AUDADIS-IV): Reliability of new psychiatric diagnostic modules and risk factors in a general population sample
  publication-title: Drug and Alcohol Dependence
– volume: 17
  start-page: 327
  issue: 3
  year: 2015
  ident: 10.1016/j.janxdis.2019.03.004_bib0010
  article-title: Epidemiology of anxiety disorders in the 21st century
  publication-title: Dialogues in Clinical Neurosciences
  doi: 10.31887/DCNS.2015.17.3/bbandelow
– volume: 14
  start-page: 1051
  issue: 11
  year: 2009
  ident: 10.1016/j.janxdis.2019.03.004_bib0040
  article-title: Sociodemographic and psychopathologic predictors of first incidence of DSM-IV substance use, mood and anxiety disorders: Results from the Wave 2 National Epidemiologic Survey on Alcohol and Related Conditions
  publication-title: Molecular Psychiatry
  doi: 10.1038/mp.2008.41
– volume: 9
  start-page: e106370
  issue: 9
  year: 2014
  ident: 10.1016/j.janxdis.2019.03.004_bib0075
  article-title: Predicting the onset of anxiety syndromes at 12 months in primary care attendees. The predictA-Spain study
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0106370
– volume: 5
  start-page: 601
  issue: 4
  year: 2014
  ident: 10.1016/j.janxdis.2019.03.004_bib0105
  article-title: Risk prediction with machine learning regression methods
  publication-title: Biometrical Journal Biometrische
  doi: 10.1002/bimj.201300297
– volume: 62
  start-page: 1097
  issue: 10
  year: 2005
  ident: 10.1016/j.janxdis.2019.03.004_bib0045
  article-title: Epidemiology of major depressive disorder: Results from the National Epidemiologic Survey on Alcoholism and Related Conditions
  publication-title: Archives of General Psychiatry
  doi: 10.1001/archpsyc.62.10.1097
– volume: 41
  start-page: 1625
  issue: 8
  year: 2011
  ident: 10.1016/j.janxdis.2019.03.004_bib0065
  article-title: An international risk prediction algorithm for the onset of generalized anxiety and panic syndromes in general practice attendees: PredictA
  publication-title: Psychological Medicine
  doi: 10.1017/S0033291710002400
– volume: 388
  start-page: 1545
  issue: 10053
  year: 2016
  ident: 10.1016/j.janxdis.2019.03.004_bib0035
  article-title: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015
  publication-title: Lancet (London, England)
  doi: 10.1016/S0140-6736(16)31678-6
– volume: 19
  start-page: 179
  issue: 2
  year: 1997
  ident: 10.1016/j.janxdis.2019.03.004_bib0050
  article-title: A shorter form health survey: Can the SF-12 replicate results from the SF-36 in longitudinal studies?
  publication-title: Journal of Public Health Medicine
  doi: 10.1093/oxfordjournals.pubmed.a024606
– volume: 15
  start-page: 1387
  issue: 10
  year: 2012
  ident: 10.1016/j.janxdis.2019.03.004_bib0015
  article-title: Correlates and outcomes of depressed out-patients with greater and fewer anxious symptoms: A CO-MED report
  publication-title: International Journal of Neuropsychopharmacology
  doi: 10.1017/S1461145711001660
– volume: 39
  start-page: 1573
  issue: 9
  year: 2013
  ident: 10.1016/j.janxdis.2019.03.004_bib0030
  article-title: Differential association of somatic and cognitive symptoms of depression and anxiety with inflammation: Findings from the Netherlands Study of Depression and Anxiety (NESDA)
  publication-title: Psychoneuroendocrinology
  doi: 10.1016/j.psyneuen.2013.01.002
– volume: 69
  start-page: 245
  year: 2016
  ident: 10.1016/j.janxdis.2019.03.004_bib0090
  article-title: Prediction models need appropriate internal, internal–external, and external validation
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/j.jclinepi.2015.04.005
– volume: 11
  year: 2011
  ident: 10.1016/j.janxdis.2019.03.004_bib0080
  article-title: Outcomes for depression and anxiety in primary care and details of treatment: A naturalistic longitudinal study
  publication-title: BMC Psychiatry
  doi: 10.1186/1471-244X-11-180
– volume: 5
  start-page: 281
  issue: 3
  year: 2003
  ident: 10.1016/j.janxdis.2019.03.004_bib0070
  article-title: The epidemiology of anxiety disorders: A review
  publication-title: Dialogues in Clinical Neurosciences
  doi: 10.31887/DCNS.2003.5.3/pmartin
– volume: 12
  start-page: 82
  year: 2012
  ident: 10.1016/j.janxdis.2019.03.004_bib0005
  article-title: Interpreting the concordance statistic of a logistic regression model: Relation to the variance and odds ratio of a continuous explanatory variable
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/1471-2288-12-82
– volume: 6
  start-page: 788
  issue: 9
  year: 2011
  ident: 10.1016/j.janxdis.2019.03.004_bib0100
  article-title: Performance measures for prediction models and markers: Evaluation of predictions and classifications
  publication-title: Revista Espanola de Cardiologia
  doi: 10.1016/j.recesp.2011.04.017
– volume: 92
  start-page: 27
  issue: 1–3
  year: 2008
  ident: 10.1016/j.janxdis.2019.03.004_bib0085
  article-title: The alcohol use disorder and associated disabilities interview schedule-IV (AUDADIS-IV): Reliability of new psychiatric diagnostic modules and risk factors in a general population sample
  publication-title: Drug and Alcohol Dependence
  doi: 10.1016/j.drugalcdep.2007.06.001
– volume: 45
  start-page: 156
  issue: 2
  year: 2003
  ident: 10.1016/j.janxdis.2019.03.004_bib0060
  article-title: The World Health Organization Health and Work Performance Questionnaire (HPQ)
  publication-title: Journal of Occupational and Environmental Medicine American College of Occupation Environmental Medicine
  doi: 10.1097/01.jom.0000052967.43131.51
– volume: 129
  start-page: 236
  issue: 1–3
  year: 2011
  ident: 10.1016/j.janxdis.2019.03.004_bib0055
  article-title: Subthreshold anxiety better defined by symptom self-report than by diagnostic interview
  publication-title: Journal of Affective Disorders
  doi: 10.1016/j.jad.2010.09.006
– volume: 36
  start-page: 1161
  issue: 14
  year: 2014
  ident: 10.1016/j.janxdis.2019.03.004_bib0020
  article-title: Under-recognition and under-treatment of DSM-IV classified mood and anxiety disorders among disability claimants
  publication-title: Disability and Rehabilitation
  doi: 10.3109/09638288.2013.833310
– volume: 27
  start-page: 1057
  issue: 11
  year: 2010
  ident: 10.1016/j.janxdis.2019.03.004_bib0025
  article-title: Depressive and anxiety disorders and the association with obesity, physical, and social activities
  publication-title: Depression and Anxiety
  doi: 10.1002/da.20738
– volume: 336
  start-page: 789
  issue: 7648
  year: 2008
  ident: 10.1016/j.janxdis.2019.03.004_bib0095
  article-title: Prediction citations: Validation predictions models
  publication-title: BMJ
  doi: 10.1136/bmj.39542.610000.3A
– volume: 314
  start-page: 1875
  issue: 17
  year: 2015
  ident: 10.1016/j.janxdis.2019.03.004_bib0110
  article-title: Risk prediction for individuals
  publication-title: JAMA
  doi: 10.1001/jama.2015.12215
SSID ssj0017067
Score 2.2727816
Snippet •Multivariable risk prediction algorithms are useful for making clinical decisions.•PredictA algorithm is an International algorithm developed in Europe to...
Multivariable risk prediction algorithms are useful for making clinical decisions and health planning. While prediction algorithms for new onset of anxiety...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 40
SubjectTerms Adolescent
Adult
Aged
Algorithms
Anxiety - epidemiology
Comorbidity
Female
Generalized anxiety disorders
Humans
Longitudinal Studies
Male
Middle Aged
NESARC
Panic disorder
Panic Disorder - epidemiology
PredictA
Risk prediction
Syndrome
United States - epidemiology
Young Adult
Title External validation of the International Risk Prediction Algorithm for the onset of generalized anxiety and/or panic syndromes (The Predict A) in the US general population
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0887618518304626
https://dx.doi.org/10.1016/j.janxdis.2019.03.004
https://www.ncbi.nlm.nih.gov/pubmed/30974236
https://www.proquest.com/docview/2209602411
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7897
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017067
  issn: 0887-6185
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7897
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017067
  issn: 0887-6185
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-7897
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017067
  issn: 0887-6185
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-7897
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017067
  issn: 0887-6185
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7897
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017067
  issn: 0887-6185
  databaseCode: AKRWK
  dateStart: 19870101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcuGCQLyWlspIHOCQTbJ2Hj6uqlYLiApRVurNcvwoXkp2tU0lxKF_qH-SmcQO6qEqQjlEiWach8czX-LxN4S8ZRYwhynLRLiqSrhVNqkVN4lSs6wW2jRZz67_-aRcLPnHs-JshxzGtTCYVhl8_-DTe28dzqThbaYb79NTHB8lhBswSlxhibTbnFdYxWB6PaZ5IDvMyPaJ0n9X8aSr6Uq1v4xH1u48cJ3yu-LTXfizj0PHj8mjACDpfLjHJ2THtk_JzVEgc6ZgOH4ok0TXjgK6o7f--dGv_vIH_bLF6ZleaH5xvt767vtPCui1l8f06g6VzwdGav_bGgpPgMmdsDcpyIEL8ZpGtoNL-g6sLbZK5--pb_umlqexEboZC4U9I8vjo2-HiySUYUg0z0WX6KpyzDUNYBMthCtqJ5gqLK9Mwwxs4AJcwfO8bGpkR2sKJrjKnXaF4xq8J3tOdtt1a18SCmALAiI3LFeKawFNlUbV2czZijvNZhPC48uXOnCUY6mMCxmT0VYy9JnEPpMZk9BnEzId1TYDScd9CmXsWRlXoILPlBBG7lOsR8VbZvovqm-iCUkYwjgvo1q7vgKhGX5HApTKJ-TFYFvjY7BM4Fx6-er_L7xHHuLRkKW5T3a77ZV9DUiqaw76oXJAHsw_fFqc_AGMGCFJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcClAvFaysNIHOCQzcOOEx9XVasF2grRrtSb5fhRvJTsaptKiAN_iD_JOLGDeqiKUA6Rkhknjsczn-PxZ4TeEgOYQzOWcFtVCTXSJLWkOpGyyGqudJP17PpHx2y-oB_PyrMttBfXwvi0yuD7B5_ee-twJQ1fM107l574_sEg3IBR-hWW7A66S8ui8iOw6a8xz8PTw4x0n1787zKedDldyvaHdp62Ow9kp_SmAHUTAO0D0cEDtBMQJJ4NL_kQbZn2Efq9H9icMViOG_ZJwiuLAd7haz_98Bd3-Q1_3vj5mV5odnG-2rju63cM8LWX9_nVnVc-Hyip3U-jMdTAZ3fCWacgBz7EKRzpDi7xOzC3WCqevceu7YtanMRC8HrcKewxWhzsn-7Nk7APQ6JozrtEVZUltmkAnCjObVlbTmRpaKUbouEAH2BLmuesqT09WlMSTmVulS0tVeA-yRO03a5a8wxhQFsQEakmuZRUcSiKaVlnhTUVtYoUE0TjxxcqkJT7vTIuRMxGW4rQZsK3mciIgDaboOmoth5YOm5TYLFlRVyCCk5TQBy5TbEeFa_Z6b-ovokmJKAP-4kZ2ZrVFQgVfiAJWCqfoKeDbY3VIBn3k-ns-f8_-DW6Nz89OhSHH44_7aL7_s6QsvkCbXebK_MSYFXXvOq7zR8DtiLe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=External+validation+of+the+International+Risk+Prediction+Algorithm+for+the+onset+of+generalized+anxiety+and%2For+panic+syndromes+%28The+Predict+A%29+in+the+US+general+population&rft.jtitle=Journal+of+anxiety+disorders&rft.au=Nigatu%2C+Yeshambel+T.&rft.au=Wang%2C+JianLi&rft.date=2019-05-01&rft.pub=Elsevier+Ltd&rft.issn=0887-6185&rft.volume=64&rft.spage=40&rft.epage=44&rft_id=info:doi/10.1016%2Fj.janxdis.2019.03.004&rft.externalDocID=S0887618518304626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6185&client=summon