Particulate Matters Affecting lncRNA Dysregulation and Glioblastoma Invasiveness: In Silico Applications and Current Insights
With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation wit...
Saved in:
Published in | Journal of molecular neuroscience Vol. 72; no. 11; pp. 2188 - 2206 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.11.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0895-8696 1559-1166 1559-1166 |
DOI | 10.1007/s12031-022-02069-9 |
Cover
Abstract | With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation—a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression—in the case of GBM—can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression. |
---|---|
AbstractList | With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation—a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression—in the case of GBM—can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression. With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation-a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression-in the case of GBM-can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation-a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression-in the case of GBM-can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression. |
Author | Mukherjee, Swagatama Desai, Dhwani Kundu, Uma Pillai, Prakash P. |
Author_xml | – sequence: 1 givenname: Swagatama surname: Mukherjee fullname: Mukherjee, Swagatama organization: Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda – sequence: 2 givenname: Uma surname: Kundu fullname: Kundu, Uma organization: Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda – sequence: 3 givenname: Dhwani surname: Desai fullname: Desai, Dhwani organization: Integrated Microbiome Resource, Department of Pharmacology and Marine Microbial Genomics and Biogeochemistry lab, Department of Biology, Dalhousie University – sequence: 4 givenname: Prakash P. orcidid: 0000-0003-3755-6427 surname: Pillai fullname: Pillai, Prakash P. email: prakash.pillai-zoo@msubaroda.ac.in organization: Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36370303$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rXCEUhqWkNJO0f6CLInTTzW09evVeuxumTRpIP-jHWrxenRru6ES9gSz63-PMJBSyyEIOwvMcDu97go5CDBah10DeAyHdhwyUMGgIpfURIRv5DC2Ac9kACHGEFqSXvOmFFMfoJOcrQii00L9Ax0ywjjDCFujfD52KN_Oki8VfdSk2Zbx0zpriwxpPwfz8tsSfbnOy6x3kY8A6jPh88nGYdC5xo_FFuNHZ39hgc_5Yf_iXn7yJeLnd1rmX8t5azSnZUCqS_fpvyS_Rc6enbF_dz1P05-zz79WX5vL7-cVqedmYFmRpBgGUS0s5yIF1QEZKBR0cmG5sBXeOaDCcdr21I3SuBzM4TSyXrOWcjYNmp-jdYe82xevZ5qI2Phs7TTrYOGdFO8Z7wTlpK_r2EXoV5xTqdZVqO2CEyB315p6ah40d1Tb5jU636iHYCvQHwKSYa3hOGV_2SZSk_aSAqF2H6tChqh2qfYdKVpU-Uh-2Pymxg5QrHNY2_T_7CesO5BCukQ |
CitedBy_id | crossref_primary_10_1039_D3LC00204G crossref_primary_10_1016_j_cca_2023_117618 crossref_primary_10_3390_ijms24055045 |
Cites_doi | 10.18632/aging.104073 10.1097/MCP.0000000000000463 10.1111/cas.14002 10.1016/j.biopha.2018.03.116 10.18632/oncotarget.9569 10.1186/1743-8977-10-63 10.4149/neo_2019_190121N61 10.1007/s11033-020-05371-0 10.3390/ijerph17218193 10.1158/0008-5472.CAN-18-0532 10.1080/15592294.2017.1356555 10.1007/s10863-021-09879-3 10.1016/J.IJHEH.2013.03.002 10.1002/med.21408 10.1002/jcb.29313 10.1038/s41467-019-10025-2 10.1007/s10637-019-00884-3 10.1007/s10565-013-9242-5 10.3390/CELLS8080863 10.3390/CANCERS12092505 10.1158/0008-5472.CAN-19-0680 10.3390/cancers12030603.[accessed2021May22].www.mdpi.com/journal/cancers 10.1002/cam4.1718 10.1093/neuonc/noaa127 10.4149/neo_2018_180829N656 10.1038/s41598-020-65785-5 10.18632/aging.101845 10.3390/cancers11040469 10.2147/OTT.S188396 10.1002/jcb.28819 10.3727/096504018X15228909735079 10.1007/s11869-008-0008-9 10.1073/pnas.1424220112 10.1016/j.redox.2020.101580 10.1111/jcmm.15788 10.1093/jb/mvz097 10.1016/j.bbagen.2021.130065 10.1186/s12989-018-0281-1 10.1186/s12989-018-0281-1 10.1016/j.rser.2015.04.019 10.1093/nar/gkn617 10.1016/j.ecoenv.2019.03.086 10.3390/ijms21010136.[accessed2021May21].www.mdpi.com/journal/ijms 10.1073/pnas.97.24.13286.[accessed2021Jun30].www.pnas.org 10.1038/s41419-020-2267-9 10.3390/cancers11050610 10.3389/fmolb.2020.562798.[accessed2021Jun24].www.frontiersin.org 10.3389/fpubh.2020.00014 10.1016/j.yexmp.2019.104359 10.1007/s13181-011-0203-1 10.1016/j.canlet.2009.01.010 10.1002/wsbm.75 10.1002/wsbm.75 10.2147/CMAR.S227496 10.1016/J.ENVRES.2020.110506 10.7150/jca.41942 10.1186/s13046-018-0941-x 10.1016/j.canlet.2014.12.051 10.1016/j.envpol.2017.11.093 10.4103/aihb.aihb_51_20 10.1007/s11356-020-12051-w 10.3390/atmos11101094 10.3892/mmr.2017.6877 10.1093/neuonc/nox163 10.18632/oncotarget.4290 10.1093/jnci/djx166 10.1038/mt.2016.71 10.1038/s41598-017-09818-6 10.1007/s12094-020-02363-1 10.2147/OTT.S213345 10.1186/s13039-014-0098-z 10.1089/cbr.2019.2830 10.1186/s12935-020-01690-1 10.5194/acp-18-15003-2018 10.1111/jcmm.15280 10.1111/jcmm.13338 10.1186/s12943-020-01210-9 10.1111/jcmm.15189 10.1038/s41598-018-23885-3 10.1016/j.celrep.2016.05.018 10.1016/j.abb.2017.01.013 10.1016/j.gpb.2015.01.005 10.1038/s41612-020-0124-2 10.1038/s41612-020-0124-2 10.1038/s41419-019-2055-6 10.3892/ijo.2018.4621 10.5114/wo.2014.40559 10.1016/j.semcancer.2018.09.002 10.1016/j.cell.2013.09.034 10.1016/S0048-9697(99)00513-6 10.1007/s11414-013-9386-3 10.1158/1078-0432.CCR-19-0747 10.1186/s13046-019-1371-0 10.1158/1078-0432.CCR-18-1656 10.1183/09031936.06.00025006 10.1097/MCP.0000000000000642 10.1186/s12943-017-0737-1 10.1186/s12943-018-0849-2 10.1056/nejmoa1414123 10.1016/j.prp.2019.152476 10.3389/fphys.2019.01404 10.1158/1078-0432.CCR-17-0605 10.1002/mc.20398 10.1039/c3em00719g.[accessed2021Jul4]./pmc/articles/PMC4191923/ 10.1093/database/bax084/4565823 10.1016/j.envint.2020.106046 10.1038/nrclinonc.2017.122.[accessed2021Jun24].www.nature.com/nrclinonc 10.1002/jcb.28777 10.1093/JNCICS/PKZ107 10.1038/s41419-019-1477-5 10.1007/s00401-016-1545-1 10.1186/s13046-019-1139-6 10.3892/ijo.2018.4644 10.1177/0963689720906777 10.1111/apm.12480 10.1042/BSR20171577 10.1016/j.canlet.2015.03.027 10.1016/j.pharmthera.2019.107395 10.1186/s12940-020-00631-9 10.1016/s1476-5586(04)80047-2 10.1007/s00795-018-0209-8 10.4149/neo_2018_180606N377 10.1007/978-981-15-7241-8_30 10.1101/gad.1800909 10.1089/cbr.2019.3484 10.1016/j.bbrc.2018.04.133 10.3892/MMR.2017.7304 10.2147/OTT.S232848 10.18632/oncotarget.3229 10.1056/nejmoa043330 10.1016/j.bbrc.2018.04.217 10.1146/annurev.energy.25.1.629.[accessed2021Jun30].www.annualreviews.org 10.1038/nm.3981 10.1038/s41419-018-1183-8 10.1089/cbr.2019.3054 10.22159/ijpps.2017v9i1.15440 10.18632/oncotarget.15991 10.2147/OTT.S130365 10.1161/CIRCULATIONAHA.116.026991 10.1007/s11060-019-03185-0 10.3390/ph14070618 10.1093/nar/gky1031 10.1007/s00204-005-0001-0 10.3390/ijms21010136 10.1042/BSR20190994 10.1007/s13277-015-3843-y 10.3389/fonc.2018.00503 10.1016/j.envint.2017.01.010 10.1016/J.ENVINT.2021.106424 10.3389/fmolb.2020.562798 10.3390/cancers11010017 10.1007/s00280-018-3522-y 10.3390/cells9112369 10.1007/s13273-020-00095-5 10.1093/eurpub/ckaa165.841 10.1016/j.ijbiomac.2019.03.005 10.1089/cbr.2019.2779 10.1007/s10571-020-00833-2 10.1158/1535-7163.MCT-16-0320 10.3892/etm.2019.7564 10.1016/j.bbagrm.2015.06.015 10.21037/atm.2019.11.36 10.3389/fcell.2019.00217 10.3892/ol.2016.4743 10.1016/J.SEMCANCER.2020.12.015 10.18632/oncotarget.9699 10.1016/j.scitotenv.2019.06.102 10.1093/database/bau093 10.1016/j.ecoenv.2020.111327 10.1186/s13045-018-0619-z 10.1097/WNR.0000000000001469 10.1002/jcb.29572 10.1016/j.jes.2017.05.002 10.1111/jcmm.13932 10.2147/OTT.S257050 10.1186/s12943-020-1137-5 10.1016/j.bbrc.2018.01.109 10.3322/caac.21632 10.1093/nar/gkv1252.[accessed2021Jul4]./pmc/articles/PMC4702886/ |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
DBID | AAYXX CITATION NPM 3V. 7QL 7QR 7T7 7TK 7U9 7X7 7XB 88E 88G 8AO 8FD 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 K9. M0S M1P M2M M7N P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 |
DOI | 10.1007/s12031-022-02069-9 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database Psychology Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1559-1166 |
EndPage | 2206 |
ExternalDocumentID | 36370303 10_1007_s12031_022_02069_9 |
Genre | Journal Article Review |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VX 0VY 1N0 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3SX 3V. 4.4 406 408 40D 40E 44B 53G 5GY 5RE 5VS 67N 6NX 78A 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBXY ACCUX ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 H13 HF~ HG6 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ ITM IWAJR I~X I~Z J-C J0Z JBSCW JZLTJ KOV LLZTM M1P M2M M4Y MA- MVM N2Q N9A NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P2P PF0 PQQKQ PROAC PSQYO PSYQQ PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK6 WK8 YLTOR Z7U Z82 Z83 Z87 Z8O Z8V Z91 ZMTXR ZOVNA ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QL 7QR 7T7 7TK 7U9 7XB 8FD 8FK ABRTQ C1K FR3 H94 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQUKI PRINS Q9U 7X8 PUEGO |
ID | FETCH-LOGICAL-c419t-b61259e2519b3710d2262bf1c7d465ff0a1c5278eed17f81cbfa0e5934553dba3 |
IEDL.DBID | U2A |
ISSN | 0895-8696 1559-1166 |
IngestDate | Fri Sep 05 07:55:43 EDT 2025 Fri Jul 25 20:56:21 EDT 2025 Wed Feb 19 02:26:21 EST 2025 Tue Jul 01 03:06:33 EDT 2025 Thu Apr 24 22:50:00 EDT 2025 Fri Feb 21 02:44:02 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | In silico studies Long noncoding RNA Glioblastoma multiforme Particulate matter |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-b61259e2519b3710d2262bf1c7d465ff0a1c5278eed17f81cbfa0e5934553dba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3755-6427 |
OpenAccessLink | https://doi.org/10.1007/s12031-022-02069-9 |
PMID | 36370303 |
PQID | 2747130094 |
PQPubID | 326248 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2735865504 proquest_journals_2747130094 pubmed_primary_36370303 crossref_citationtrail_10_1007_s12031_022_02069_9 crossref_primary_10_1007_s12031_022_02069_9 springer_journals_10_1007_s12031_022_02069_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221100 2022-11-00 2022-Nov 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Totowa |
PublicationSubtitle | MN |
PublicationTitle | Journal of molecular neuroscience |
PublicationTitleAbbrev | J Mol Neurosci |
PublicationTitleAlternate | J Mol Neurosci |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Santibáñez-AndradeMChirinoYIGonzález-RamírezISánchez-PérezYGarcía-CuellarCMDeciphering the code between air pollution and disease: The effect of particulate matter on cancer hallmarksInt J Mol Sci202021113610.3390/ijms21010136.[accessed2021May21].www.mdpi.com/journal/ijms Todorova PK, Fletcher-Sananikone E, Mukherjee B, Kollipara R, Vemireddy V, Xie X-J, Guida PM, Story MD, Hatanpaa K, Habib AA et al (2019) Radiation-induced DNA damage cooperates with heterozygosity of TP53 and PTEN to generate high grade gliomas. https://doi.org/10.1158/0008-5472.CAN-19-0680 Liu X, Chen R, Liu L (2019) Bioscience reports, and undefined SP1–DLEU1–MiR-4429 feedback loop promotes cell proliferative and anti-apoptotic abilities in human glioblastoma. Portlandpress Com Accessed 23 May 2021. https://portlandpress.com/bioscirep/article-abstract/39/12/BSR20190994/221115 Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA, Prada D, Samet J, Thurston G, Cohen A (2020) Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: Cancer J Clin 70(6):460–479. https://doi.org/10.3322/caac.21632 Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y (2019b) Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res 38 (1). https://doi.org/10.1186/s13046-019-1139-6 Brodie S, Lee HK, Jiang W, Cazacu S, Xiang C, Poisson LM, Datta I, Kalkanis S, Ginsberg D, Brodie C (2017) The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells. Oncotarget 8(19):31785–801. https://doi.org/10.18632/oncotarget.15991 ShangCTangWPanCXuanhaoHuHongYLong Non-Coding RNA TUSC7 Inhibits Temozolomide Resistance by Targeting MiR-10a in GlioblastomaCancer Chemother Pharmacol201881467167810.1007/s00280-018-3522-y VougasKSakellaropoulosTKotsinasAFoukasGRPNtargarasAKoinisFPolyzosAMyrianthopoulosVZhouHNarangSMachine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule miningPharmacol Ther201920310.1016/j.pharmthera.2019.107395 Chen X, Li LQ, Qiu X, Wu H (2019d) Long non-coding RNA HOXB-AS1 promotes proliferation, migration and invasion of glioblastoma cells via HOXB-AS1/MiR-885–3p/HOXB2 Axis. Europepmc Org Accessed 23 May 2021. https://europepmc.org/article/med/30784279 Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H et al (2018) Novel role of FBXW7 circular rna in repressing glioma tumorigenesis. J Natl Cancer Inst 110(3). https://doi.org/10.1093/jnci/djx166. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28903484 WangGLiZTianNHanLFuYGuoZTianYMiR-148b-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expressionOncol Lett201612287988610.3892/ol.2016.4743 Sánchez-PérezYChirinoYIOsornio-VargasÁRMorales-BárcenasRGutiérrez-RuízCVázquez-LópezIGarcía-CuellarCMDNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutantsCancer Lett2009278219220010.1016/j.canlet.2009.01.010 Bian EB, Chen EF, Xu YD, Yang ZH, Tang F, Ma CC, Wang HL, Zhao B (2019) Exosomal LncRNA-ATB Activates astrocytes that promote glioma cell invasion. LongSLiGComprehensive analysis of a long non-coding RNA-mediated competitive endogenous RNA network in glioblastoma multiformeExp Ther Med201918210811090 WangXiSunYiTuoyeXuQianKHuangBZhangKSongZQianTShiJLiLHOXB13 Promotes Proliferation, Migration, and Invasion of Glioblastoma through Transcriptional Upregulation of LncRNA HOXC-AS3J Cell Biochem20191209155271553710.1002/jcb.28819 Ma K, Li C, Xu J, Ren F, Xu X, Liu C, Niu B, Li F (2020) LncRNA Gm16410 regulates PM2.5-induced lung endothelial-mesenchymal transition via the TGF-β1/Smad3/p-Smad3 pathway. Ecotoxicol Environ Safety 205. https://doi.org/10.1016/j.ecoenv.2020.111327. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/32961493 LeisegangMSForkCJosipovicIRichterFMPreussnerJJiongHuMillerMJLong noncoding RNA MANTIS facilitates endothelial angiogenic functionCirculation20171361657910.1161/CIRCULATIONAHA.116.026991 Deng X, Rui W, Zhang F, Ding W, Deng X, Rui W, Zhang F, Ding W (2013) PM 2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol Toxicol 29(3):143–157. https://doi.org/10.1007/s10565-013-9242-5. [Accessed 21 May 2021]. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf Jindal SK, Aggarwal AN, Jindal A (2020) Household air pollution in India and respiratory diseases: Current status and future directions. Curr Opin Pulm Med 26(2):128–134. https://doi.org/10.1097/MCP.0000000000000642. [Accessed 22 May 2021]. https://journals.lww.com/co-pulmonarymedicine/Fulltext/2020/03000/Household_air_pollution_in_India_and_respiratory.5.aspx LiOYiWYangPGuoCPengCLong non-coding RNA UCA1 promotes proliferation and invasion of intrahepatic cholangiocarcinoma cells through targeting microRNA-122Exp Ther Med20191812510.3892/etm.2019.7564 ZhangYJiangXWuZHuDJiaJGuoJTangTYaoJLiuHTangHLong noncoding RNA LINC00467 promotes glioma progression through inhibiting p53 expression via binding to DNMT1J Cancer202011102935294410.7150/jca.41942 Ke J, Yao YL, Zheng J, Wang P, Liu YH, Ma J, Li Z, Liu XB, Li ZQ, Wang ZH et al (2015) Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326. Oncotarget 6(26):21934–21949. https://doi.org/10.18632/oncotarget.4290. [Accessed 4 Jul 2021]. https://europepmc.org/articles/PMC4673137 Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y, Liang H (2018a) Genome and epigenome circNT5E Acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. AACR https://doi.org/10.1158/0008-5472.CAN-18-0532. [Accessed 22 May 2021]. http://cancerres.aacrjournals.org Santibáñez-Andrade M, Chirino YI, González-Ramírez I, Sánchez-Pérez Y, García-Cuellar CM (2019) Molecular sciences deciphering the code between air pollution and disease: the effect of particulate matter on cancer hallmarks. mdpi.com. https://doi.org/10.3390/ijms21010136 Li X, Zheng M, Pu J, Zhou Y, Hong W, Fu X, Peng Y, Zhou W, Pan H, Li B et al (2018c) Identification of abnormally expressed lncRNAs induced by PM2.5 in human bronchial epithelial cells. Biosci Rep 38(5):20171577. https://doi.org/10.1042/BSR20171577 Wang H, Li L, Yin L (2018b) Biochemical and biophysical research, and undefined Silencing LncRNA LOXL1-AS1 attenuates mesenchymal characteristics of glioblastoma via NF-ΚB pathway. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S0006291X18309148 Chen HH, Zong J, Wang SJ (2019) GAPLINC Sponging MiR-331–3p in Glioblastoma Eur Rev Med Pharmacol Sci. Europeanreview.Org. Accessed 23 May 2021. https://www.europeanreview.org/wp/wp-content/uploads/262-270.pdf Mazor G, Levin L, Picard D, Ahmadov U, … Carén H - Cell death &, and undefined (2019) n.d. The LncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Nature Com Accessed 23 May 2021. https://www.nature.com/articles/s41419-019-1477-5 Ou J, Pirozzi CS, Horne BD, Hanson HA, Kirchhoff AC, Mitchell LE, Coleman NC, Arden C (2020) Atmosphere historic and modern air pollution studies conducted in Utah.mdpi.com. https://doi.org/10.3390/atmos11101094 SidawayPCNS cancer: Glioblastoma subtypes revisitedNat Rev Clin Oncol2017141058710.1038/nrclinonc.2017.122.[accessed2021Jun24].www.nature.com/nrclinonc Chen S, Wu X, Hu J, Dai G, Rong A, Guo G (2017) PM2.5 exposure decreases viability, migration and angiogenesis in human umbilical vein endothelial cells and human microvascular endothelial cells. Mol Med Rep 16(3):2425–2430. https://doi.org/10.3892/mmr.2017.6877. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/28677750 Su R, Cao S, Ma J, Liu Y, Liu X, Zheng J, Chen J et al (2017) Knockdown of SOX2OT inhibits the malignant biological behaviors of glioblastoma stem cells via up-regulating the expression of MiR-194–5p and MiR-122. Mol Cancer 16 (1). https://doi.org/10.1186/s12943-017-0737-1 Huarte M (2015) The emerging role of lncRNAs in cancer. Nature Med 21(11):1253–1261. https://doi.org/10.1038/nm.3981. [Accessed 22 May 2021]. https://www.nature.com/articles/nm.3981 Urbańska K, Sokołowska J, Szmidt M, Sysa P (2014) Glioblastoma multiforme – an overview. Contemp Oncol 18(5):307–312. https://doi.org/10.5114/wo.2014.40559. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248049 Zhou KE, Zhang C, Yao H, Zhang X, Zhou Y, Che Y, Huang Y (2018a) Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 Targeted by MiR-132. Mol Cancer 17 (1). https://doi.org/10.1186/s12943-018-0849-2 Li C, Hu G, Wei B, Wang L, Liu N (2019b) OncoTargets and therapy, and undefined LncRNA LINC01494 Promotes Proliferation, Migration and Invasion in Glioma through MiR-122–5p/CCNG1 Axis. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756415 D’AlessioAProiettiGSicaGScicchitanoBMPathological and molecular features of glioblastoma and Its peritumoral tissueCancers201911446910.3390/cancers11040469 WiluszJESunwooHSpectorDLLong noncoding RNAs: Functional surprises from the RNA worldGenes Dev200923131494150410.1101/gad.1800909 Lungu G, Covaleda L, Mendes O, Martini-Stoica H, Stoica G (2008) FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-kappa;B and activating protein-1. Mol Carcinogenesis 47(6):424–435. https://doi.org/10.1002/mc.20398. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/18041768 WuXHouPQiuYWangQXiaojieLuLarge-Scale Analysis Reveals the Specific Clinical and Immune Features of DGCR5 in GliomaOnco Targets Ther2020137531754310.2147/OTT.S257050 GaoXCaoYLiJWangCHeHLncRNA TPT1-AS1 spong 2069_CR184 MS Leisegang (2069_CR73) 2017; 136 2069_CR188 A Bountali (2069_CR6) 2019; 130 2069_CR10 2069_CR13 X Dai (2069_CR28) 2019; 54 2069_CR12 P Deshors (2069_CR32) 2019; 10 T Shi (2069_CR128) 2020; 47 2069_CR19 2069_CR15 2069_CR14 H Omidvarborna (2069_CR112) 2015; 48 P Wu (2069_CR162) 2019; 10 X Wu (2069_CR163) 2020; 13 2069_CR193 2069_CR194 2069_CR191 2069_CR192 2069_CR176 2069_CR173 2069_CR174 2069_CR22 2069_CR21 2069_CR24 JE Wilusz (2069_CR160) 2009; 23 2069_CR23 M Santibáñez-Andrade (2069_CR122) 2020; 21 2069_CR20 M Chen (2069_CR18) 2020; 35 2069_CR29 2069_CR26 2069_CR25 2069_CR183 2069_CR164 2069_CR166 W Zhu (2069_CR197) 2020; 12 B Steinfeld (2069_CR134) 2015; 42 Z Yao (2069_CR177) 2020 A Santovito (2069_CR124) 2020; 10 X Dai (2069_CR27) 2019; 54 2069_CR171 2069_CR172 2069_CR153 2069_CR151 2069_CR157 2069_CR158 2069_CR156 Xi Wang (2069_CR155) 2019; 120 H Xu (2069_CR168) 2020; 24 X Gao (2069_CR39) 2020 2069_CR161 Y Zhang (2069_CR187) 2020; 11 2069_CR142 2069_CR143 2069_CR140 2069_CR141 2069_CR147 2069_CR145 A D’Alessio (2069_CR30) 2019; 11 2069_CR149 G Li (2069_CR75) 2019; 143 C Zhao (2069_CR189) 2020; 38 IC Iser (2069_CR59) 2017; 37 P Sidaway (2069_CR130) 2017; 14 2069_CR150 2069_CR131 2069_CR136 2069_CR133 2069_CR139 M Kandlikar (2069_CR65) 2000; 25 2069_CR137 2069_CR138 I Manisalidis (2069_CR104) 2020; 8 U Vattanasit (2069_CR144) 2014; 217 L Liu (2069_CR88) 2017; 101 S Candido (2069_CR11) 2019; 42 S Long (2069_CR96) 2019; 18 2069_CR120 Y Wang (2069_CR154) 2019; 178 2069_CR125 2069_CR123 2069_CR129 2069_CR127 JE Araújo (2069_CR3) 2019; 687 M Stella (2069_CR135) 2021; 14 V Miguel (2069_CR107) 2020; 37 2069_CR110 RM Harrison (2069_CR47) 2000; 249 2069_CR114 Y Yang (2069_CR175) 2015; 13 2069_CR117 2069_CR118 2069_CR115 2069_CR116 GC Khilnani (2069_CR68) 2018; 24 A Harbo Poulsen (2069_CR46) 2020; 144 G Wang (2069_CR148) 2016; 12 C Wilks (2069_CR159) 2014 Z Dong (2069_CR34) 2019; 57 C Xu (2069_CR167) 2021; 53 2069_CR91 2069_CR90 2069_CR92 2069_CR102 2069_CR103 2069_CR100 2069_CR101 2069_CR99 2069_CR106 J Feng (2069_CR37) 2021; 27 2069_CR98 2069_CR105 ZZ Liu (2069_CR93) 2020; 67 2069_CR95 2069_CR97 2069_CR108 2069_CR109 O Li (2069_CR78) 2019; 18 P Zhang (2069_CR182) 2020 A Bhargava (2069_CR5) 2018; 234 Z Li (2069_CR83) 2021; 193 Y Zhang (2069_CR185) 2020; 57 N Xu (2069_CR170) 2018; 9 S Kundu (2069_CR71) 2014; 16 Y Yao (2069_CR178) 2014 P Zhang (2069_CR180) 2019; 52 Y Sánchez-Pérez (2069_CR121) 2009; 278 J Liz (2069_CR94) 2016; 1859 WJ Gauderman (2069_CR41) 2015; 372 2069_CR77 2069_CR76 2069_CR79 2069_CR72 2069_CR74 J Xue (2069_CR169) 2018 H Ni (2069_CR111) 2021; 41 2069_CR80 2069_CR82 2069_CR81 B Hui (2069_CR57) 2019; 12 2069_CR87 R Wang (2069_CR152) 2018 2069_CR84 2069_CR86 2069_CR8 2069_CR7 2069_CR9 2069_CR4 2069_CR2 2069_CR1 KR Smith (2069_CR132) 2000; 97 2069_CR55 2069_CR54 2069_CR56 2069_CR51 2069_CR50 2069_CR53 2069_CR52 Y Zhao (2069_CR190) 2016; 44 2069_CR58 R Rynkeviciene (2069_CR119) 2018; 11 Y Gao (2069_CR40) 2019; 27 H Xin (2069_CR165) 2019; 120 L Chen (2069_CR17) 2019; 34 2069_CR66 2069_CR67 2069_CR62 H Liu (2069_CR89) 2018; 22 2069_CR61 2069_CR64 2069_CR63 2069_CR69 M Krzyzanowski (2069_CR70) 2008; 1 Y Liao (2069_CR85) 2019; 34 P Zhang (2069_CR181) 2020; 7 J Orach (2069_CR113) 2021; 150 2069_CR33 L Zhang (2069_CR179) 2020; 121 2069_CR35 2069_CR31 L Falzone (2069_CR36) 2019; 11 2069_CR38 2069_CR195 2069_CR196 JH Chen (2069_CR16) 2005; 79 2069_CR44 2069_CR43 J Ji (2069_CR60) 2019 2069_CR45 2069_CR42 2069_CR48 2069_CR49 Y Zhang (2069_CR186) 2018; 18 C Shang (2069_CR126) 2018; 81 K Vougas (2069_CR146) 2019; 203 |
References_xml | – reference: Li X, Zheng M, Pu J, Zhou Y, Hong W, Fu X, Peng Y, Zhou W, Pan H, Li B et al (2018a) Identification of abnormally expressed lncRNAs induced by PM2.5 in human bronchial epithelial cells. Biosci Rep 38(5). https://doi.org/10.1042/BSR20171577 – reference: Heßelbach K, Kim G-J, Flemming S, Häupl T, Bonin M, Dornhof R, Günther S, Merfort I, Humar M, H€ T et al (2017) Disease relevant modifications of the methylome and transcriptome by particulate matter (PM 2.5) from biomass combustion. Taylor & Francis 12(9):779–792. https://doi.org/10.1080/15592294.2017.1356555. [Accessed 21 May 2021] – reference: Krishnatreya M, Kataki A (2020) Environmental pollution and cancers in India. Adv in Hum Biol 10(3):95. https://doi.org/10.4103/aihb.aihb_51_20. [Accessed 22 May 2021]. https://www.aihbonline.com/article.asp?issn=2321-8568;year=2020;volume=10;issue=3;spage=95;epage=98;aulast=Krishnatreya – reference: Mineo M, Ricklefs F, Rooj AK, Lyons SM, Ivanov P - Cell reports, and undefined (2016) n.d. The Long Non-Coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S2211124716305861 – reference: ZhangYLinXGengXShiLLiQLiuFFangCWangHAdvances in circular RNAs and their role in gliomaInt J Oncol20205716779 – reference: Chen X, Xie R, Gu P, Huang M, Han J, Dong W, Xie W, Wang B, He W, Zhong G et al (2019c) Long noncoding RNA LBCs inhibits self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of SOX2. Clin Cancer Res 25(4):1389–1403. https://doi.org/10.1158/1078-0432.CCR-18-1656. [Accessed 1 Jul 2021]. http://www.clincancerres.aacrjournals.org – reference: RynkevicieneRSimieneJStrainieneEStankeviciusVUsinskieneJMiseikyte KaubrieneEMeskinyteICicenasJSuziedelisKNon-coding RNAs in gliomaCancers20181111710.3390/cancers11010017 – reference: Santibáñez-Andrade M, Chirino YI, González-Ramírez I, Sánchez-Pérez Y, García-Cuellar CM (2019) Molecular sciences deciphering the code between air pollution and disease: the effect of particulate matter on cancer hallmarks. mdpi.com. https://doi.org/10.3390/ijms21010136 – reference: Xu Z, Ding W, Deng X (2019b) PM2.5, fine particulate matter: a novel player in the epithelial-mesenchymal transition? Front Physiol 10:1404. https://doi.org/10.3389/fphys.2019.01404. – reference: ZhangYJiangXWuZHuDJiaJGuoJTangTYaoJLiuHTangHLong noncoding RNA LINC00467 promotes glioma progression through inhibiting p53 expression via binding to DNMT1J Cancer202011102935294410.7150/jca.41942 – reference: NiHWangKXiePZuoJLiuWLiuCLncRNA SAMMSON Knockdown Inhibits the Malignancy of Glioblastoma Cells by Inactivation of the PI3K/Akt PathwayCell Mol Neurobiol2021411799010.1007/s10571-020-00833-2 – reference: Sun Y, Zhang D, Ming Z, Li J, Database XC (2017) undefined. DLREFD: a database providing associations of long non-coding RNAs, environmental factors and phenotypes. Acad Oup Com [Accessed 22 May 2021]. https://academic.oup.com/database/article-abstract https://doi.org/10.1093/database/bax084/4565823 – reference: Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y (2019b) Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res 38 (1). https://doi.org/10.1186/s13046-019-1139-6 – reference: Lu C, Yutian Wei, WangX, Zhang Z, Yin J, Li W, Chen L et al (2020) DNA-Methylation-Mediated activating of LncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer 19 (1). https://doi.org/10.1186/s12943-020-1137-5 – reference: Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS (2009) NRED: A database of long noncoding RNA expression. Nucleic Acids Res 37(SUPPL. 1):D122–D126. https://doi.org/10.1093/nar/gkn617. [Accessed 20 May 2021]. http://nar.oxfordjournals.org/content/37/suppl_1/D122.full – reference: Han N, Yang L, Zhang X, Zhou Y, Chen R, Yu Y, Dong Z, Zhang M (2019) LncRNA MATN1-AS1 prevents glioblastoma cell from proliferation and invasion via RELA regulation and MAPK signaling pathway. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990012 – reference: Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M, Gualtieri M (2013) Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: Characterization of the process and possible mechanisms involved. Part Fibre Toxicol 10(1):63. https://doi.org/10.1186/1743-8977-10-63. – reference: AraújoJEJorgeSSantosHMChiechiAGalstyanALodeiroCDinizMKleinmanMTLjubimovaJYCapeloJLProteomic changes driven by urban pollution suggest particulate matter as a deregulator of energy metabolism, mitochondrial activity, and oxidative pathways in the rat brainSci Total Environ201968783984810.1016/j.scitotenv.2019.06.102 – reference: Lungu G, Covaleda L, Mendes O, Martini-Stoica H, Stoica G (2008) FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-kappa;B and activating protein-1. Mol Carcinogenesis 47(6):424–435. https://doi.org/10.1002/mc.20398. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/18041768 – reference: ShiT GuoDXu HSuGChenJZhaoZShiJHOTAIRM1, an enhancer LncRNA, promotes glioma proliferation by regulating long-range chromatin interactions within HOXA cluster genesSpringer2020472723273310.1007/s11033-020-05371-0 – reference: Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1. [Accessed 24 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/27157931 – reference: Zhou Y, Dai W, Wang H, Pan H, Wang Q (2018b) Long non-coding RNA CASP5 promotes the malignant phenotypes of human glioblastoma multiforme. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S0006291X18310143 – reference: Hu YW, Kang CM, Zhao JJ, Nie Y, Zheng L, Li HX, Li X, Wang Q, Qiu YR (2018) LncRNA PLAC2 down-regulates RPL36 expression and blocks cell cycle progression in glioma through a mechanism involving STAT1. J Cell Mol Med 22(1):497–510. https://doi.org/10.1111/jcmm.13338. [Accessed 1 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28922548 – reference: Liu Y, Xu N, Liu B, Huang Y, Zeng H, Yang Z, He Z (2016b) Oncotarget, and undefined Long Noncoding RNA RP11–838N2. 4 enhances the cytotoxic effects of temozolomide by inhibiting the functions of MiR-10a in glioblastoma cell lines. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5190063 – reference: Zhen L, Yun-hui L, Hong-yu D, Jun M, Yi-long Y (2016) Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumor Biol 37(1):673–683. https://doi.org/10.1007/s13277-015-3843-y. – reference: Ke J, Yao YL, Zheng J, Wang P, Liu YH, Ma J, Li Z, Liu XB, Li ZQ, Wang ZH et al (2015) Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326. Oncotarget 6(26):21934–21949. https://doi.org/10.18632/oncotarget.4290. [Accessed 4 Jul 2021]. https://europepmc.org/articles/PMC4673137 – reference: KrzyzanowskiMCohenAUpdate of WHO air quality guidelinesAir Qual Atmos Health20081171310.1007/s11869-008-0008-9 – reference: ZhangYWestJJMarthurRXingJHongrefeCRoselleSJBashJOPleimJEGanCMWongDCLong-term trends in the ambient PM2.5- and O3-related mortality burdens in the United States under emission reductions from (1990) to 2010Atmos Chem Phys20181820150031501610.5194/acp-18-15003-2018 – reference: Ljubimova JY, Braubach O, Patil R, Chiechi A, Tang J, Galstyan A, Shatalova ES, Kleinman MT, Black KL, Holler E (2018) Coarse particulate matter (PM2.5–10) in Los Angeles Basin air induces expression of inflammation and cancer biomarkers in rat brains. Scientific Rep 8(1):1–11. https://doi.org/10.1038/s41598-018-23885-3 – reference: Mudu P, Pérez Velasco R, Zastenskaya I, Jarosinska D (2020) The importance and challenge of carcinogenic air pollutants for health risk and impact assessment. Eur J Public Health. 30(Supplement_5). https://doi.org/10.1093/eurpub/ckaa165.841. [Accessed 21 May 2021]. https://academic.oup.com/eurpub/article/30/Supplement_5/ckaa165.841/5914590 – reference: Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: A review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175. https://doi.org/10.1007/s13181-011-0203-1. [Accessed 4 Jul 2021]. https://www.pmc/articles/PMC3550231 – reference: Chu L, Yu L, Liu J, Song S, Yang H, Han F, Liu F, Hu Y (2019) Long intergenic non-coding LINC00657 regulates tumorigenesis of glioblastoma by acting as a molecular sponge of MiR-190a-3p. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428093 – reference: Lu X, Li R, Yan X (2021) Airway hyperresponsiveness development and the toxicity of PM2.5. Environ Sci Pollut Res 28(6):6374–6391. https://doi.org/10.1007/s11356-020-12051-w. [Accessed 30 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/33394441 – reference: LeisegangMSForkCJosipovicIRichterFMPreussnerJJiongHuMillerMJLong noncoding RNA MANTIS facilitates endothelial angiogenic functionCirculation20171361657910.1161/CIRCULATIONAHA.116.026991 – reference: ChenJHChouFPLinHHWangCJGaseous nitrogen oxide repressed benzo[a]pyrene-induced human lung fibroblast cell apoptosis via inhibiting JNK1 signalsArch Toxicol2005791269470410.1007/s00204-005-0001-0 – reference: Andersen ZJ, Pedersen M, Weinmayr G, Stafoggia M, Galassi C, Jørgensen JT, Sommar JN, Forsberg B, Olsson D, Oftedal B et al (2018) Long-term exposure to ambient air pollution and incidence of brain tumor: The european study of cohorts for air pollution Effects (ESCAPE). Neuro-Oncology 20(3):420–432. https://doi.org/10.1093/neuonc/nox163. [Accessed 2021 Jun 23]. https://www.pmc/articles/PMC5817954/ – reference: Stackhouse CT, Gillespie GY, Willey CD (2020) Exploring the roles of lncRNAs in GBM pathophysiology and their therapeutic potential. Cells. 9(11). https://doi.org/10.3390/cells9112369. – reference: Dashti S, Ghafouri-Fard S, Esfandi F, Oskooei VK, Arsang-Jang S, Taheri M (2020) Expression analysis of NF-κB interacting long noncoding RNAs in breast cancer. Exp Mol Pathol 112. https://doi.org/10.1016/j.yexmp.2019.104359. [Accessed Ju 1 2021]. https://pubmed.ncbi.nlm.nih.gov/31837323 – reference: LiuHLiCYangJSunYZhangSYangJYangLWangYJiaoBLong noncoding RNA CASC9/MiR-519d/STAT3 positive feedback loop facilitate the glioma tumourigenesisWiley Online Library201822126338634410.1111/jcmm.13932 – reference: Uddin MS, Al Mamun A, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM (2020) Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semi Cancer Biol https://doi.org/10.1016/J.SEMCANCER.2020.12.015. [Accessed 26 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/33370605 – reference: Wu AH, Wu J, Tseng C, Yang J, Shariff-Marco S, Fruin S, Larson T, Setiawan VW, Masri S, Porcel J et al (2020a) Association between outdoor air pollution and risk of malignant and benign brain tumors: The multiethnic cohort study. JNCI Cancer Spectrum 4(2). https://doi.org/10.1093/JNCICS/PKZ107. [Accessed 30 Jun 2021]. https://academic.oup.com/jncics/article/4/2/pkz107/5695714 – reference: LiZLiangDYeDChangHHZieglerTRJonesDPEbeltSTApplication of high-resolution metabolomics to identify biological pathways perturbed by traffic-related air pollutionEnviron Res202119310.1016/J.ENVRES.2020.110506 – reference: Li N, Nel AE (2006) The cellular impacts of diesel exhaust particles: Beyond inflammation and death. Eur Respir J 27(4):667–668. https://doi.org/10.1183/09031936.06.00025006. [Accessed 23 Jun 2021]. https://erj.ersjournals.com/content/27/4/667 – reference: Zhou X, Ren Y, Zhang Jing, Zhang C, Zhang K, Han L, Kong L, Wei J, Chen L, Yang J et al (2015) HOTAIR is a therapeutic target in glioblastoma. Oncotarget 6(10):8353–8365. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480757/ – reference: FengJGaoYXuYWangJYangXWenLlncRNA MNX1-AS1 promotes glioblastoma progression through inhibition of miR-4443Oncol Res20212734134710.3727/096504018X15228909735079 – reference: Hanif F, Muzaffar K, Perveen K, … SM-AP journal of, (2017) undefined. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Ncbi Nlm Nih Gov Accessed 22 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563115 – reference: Li X, Zheng M, Pu J, Zhou Y, Hong W, Fu X, Peng Y, Zhou W, Pan H, Li B et al (2018c) Identification of abnormally expressed lncRNAs induced by PM2.5 in human bronchial epithelial cells. Biosci Rep 38(5):20171577. https://doi.org/10.1042/BSR20171577 – reference: Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, Dong S (2017a) Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-09818-6. [Accessed 23 Jun 2021]. /pmc/articles/PMC5570922 – reference: LiGCaiYWangCHuangMChenJLncRNA GAS5 regulates the proliferation, migration, invasion and apoptosis of brain glioma cells through targeting GSTM3 expression. The Effect of LncRNA GAS5 on Glioma CellsJ Neurooncol2019143352553610.1007/s11060-019-03185-0 – reference: Deng X, Rui W, Zhang F, Ding W, Deng X, Rui W, Zhang F, Ding W (2013) PM 2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol Toxicol 29(3):143–157. https://doi.org/10.1007/s10565-013-9242-5. [Accessed 21 May 2021]. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf – reference: Liu J, Wang WM, Zhang XL, Du QH, Li HG, Zhang Y (2018b) Effect of downregulated LncRNA NBAT1 on the biological behavior of glioblastoma cells. Eur Rev Med Pharmacol Sci Accessed 23 May 2021. https://www.europeanreview.org/wp/wp-content/uploads/2715-2722.pdf – reference: GaoYXuYWangJYangXWenLFengJlncRNA MNX1-AS1 promotes glioblastoma progression through inhibition of miR-4443Oncol Res201927334110.3727/096504018X15228909735079 – reference: ZhangPXiaQLiuLLiSDongLCurrent Opinion on Molecular Characterization for GBM Classification in Guiding Clinical Diagnosis, Prognosis, and TherapyFront Mol Biosci202010.3389/fmolb.2020.562798 – reference: Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, Dong S (2017b) Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-09818-6. [Accessed 4 Jul 2021]. https://www.nature.com/scientificreports – reference: BhargavaATamrakarSAglaweALadHSrivastavaRKMishraDKTiwariRChaudhuryKGoryachevaIYMishraPKUltrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytesEnviron Pollut201823440641910.1016/j.envpol.2017.11.093 – reference: YaoYWangZMaJXueYWangPLiZLiuJKnockdown of Long Non-Coding RNA XIST Exerts Tumor-Suppressive Functions in Human Glioblastoma Stem Cells by up-Regulating MiR-152 Microenvironmental Modifications on Chemoresistance of GBM View Project Drug Delivery View Project Original Articles Knockdown of Long Non-Coding RNA XIST Exerts Tumor-Suppressive Functions in Human Glioblastoma Stem Cells by up-Regulating MiR-152Elsevier201410.1016/j.canlet.2014.12.051 – reference: Yang B, Tian H, Xiao C (2020) lncRNA NONHSAT021963, which upregulates VEGF in A549 cells, mediates PM2.5 exposure-induced angiogenesis in Shenyang, China. Mol Cell Toxicol https://doi.org/10.1007/s13273-020-00095-5 – reference: Edelman LB, Eddy JA, Price ND (2010) In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med 2(4):438–459. https://doi.org/10.1002/wsbm.75. [Accessed 22 May 2021]. https://onlinelibrary.wiley.com/doi/full https://doi.org/10.1002/wsbm.75 – reference: Huarte M (2015) The emerging role of lncRNAs in cancer. Nature Med 21(11):1253–1261. https://doi.org/10.1038/nm.3981. [Accessed 22 May 2021]. https://www.nature.com/articles/nm.3981 – reference: KhilnaniGCTiwariPAir pollution in India and related adverse respiratory health effects: Past, present, and future directionsCurr Opin Pulm Med201824210811610.1097/MCP.0000000000000463 – reference: ChenLGongXHuangMYY1-Activated long noncoding RNA SNHG5 promotes glioblastoma cell proliferation through p38/MAPK Signaling PathwayCancer Biother Radiopharm201934958959610.1089/cbr.2019.2779 – reference: GaoXCaoYLiJWangCHeHLncRNA TPT1-AS1 sponges MiR-23a-5p in glioblastoma to promote cancer cell proliferationCancer Biotherapy and Radiopharmaceuticals202010.1089/cbr.2019.3484 – reference: LongSLiGComprehensive analysis of a long non-coding RNA-mediated competitive endogenous RNA network in glioblastoma multiformeExp Ther Med201918210811090 – reference: Ren S, Xu Y - Cancer science, and undefined (2019) n.d. AC016405. 3, a Novel long noncoding RNA, Acts as a tumor suppressor through modulation of TET2 by MicroRNA‐19a‐5p sponging in glioblastoma. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500966 – reference: Iourov IY, Vorsanova SG, Yurov YB (2014) In silico molecular cytogenetics: A bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol Cytogenet 7(1):98. https://doi.org/10.1186/s13039-014-0098-z. [Accessed 22 May 2021]. http://www.molecularcytogenetics.org/content/7/1/98 – reference: Ou J, Pirozzi CS, Horne BD, Hanson HA, Kirchhoff AC, Mitchell LE, Coleman NC, Arden C (2020) Atmosphere historic and modern air pollution studies conducted in Utah.mdpi.com. https://doi.org/10.3390/atmos11101094 – reference: Buccarelli M, Lulli V, Giuliani A, Signore M, Martini M, D’Alessandris QG, Giannetti S, Novelli A, Ilari R, Giurato G, Boe A (2020) Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: tumor suppressor role of LncRNA MEG3. Academic Oup Com Accessed 23 May 2021. https://academic.oup.com/neuro-oncology/article-abstract/22/12/1771/5847771 – reference: Zhou KE, Zhang C, Yao H, Zhang X, Zhou Y, Che Y, Huang Y (2018a) Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 Targeted by MiR-132. Mol Cancer 17 (1). https://doi.org/10.1186/s12943-018-0849-2 – reference: Li X, Zheng M, Pu J, Zhou Y, Hong W, Fu X, Peng Y, Zhou W, Pan H, Li B et al (2018b) Identification of abnormally expressed lncRNAs induced by PM2.5 in human bronchial epithelial cells. Biosci Rep 38(5):20171577. https://doi.org/10.1042/BSR20171577 – reference: Brodie S, Lee HK, Jiang W, Cazacu S, Xiang C, Poisson LM, Datta I, Kalkanis S, Ginsberg D, Brodie C (2017) The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells. Oncotarget 8(19):31785–801. https://doi.org/10.18632/oncotarget.15991 – reference: SteinfeldBScottJVilanderGMarxLQuirkMLindbergJKoernerKThe Role of Lean Process Improvement in Implementation of Evidence-Based Practices in Behavioral Health CareJ Behav Heal Serv Res201542450451810.1007/s11414-013-9386-3 – reference: Su R, Ma J, Zheng J, Liu X, Liu Y, Ruan X, … Shen S (2020) PABPC1-induced stabilization of BDNF-AS inhibits malignant progression of glioblastoma cells through STAU1-mediated decay. Cell Death and Disease. Nature.Com. Accessed 23 May 2021. https://www.nature.com/articles/s41419-020-2267-9 – reference: SidawayPCNS cancer: Glioblastoma subtypes revisitedNat Rev Clin Oncol2017141058710.1038/nrclinonc.2017.122.[accessed2021Jun24].www.nature.com/nrclinonc – reference: Luo N, Zhang K, Li X, Hu Y (2020) ZEB1 induced-upregulation of long noncoding RNA ZEB1-AS1 facilitates the progression of triple negative breast cancer by binding with ELAVL1 to maintain the stability of ZEB1 mRNA. J Cell Biochem 121(10):4176–4187. https://doi.org/10.1002/jcb.29572. [Accessed 1 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/31922280 – reference: WangXiSunYiTuoyeXuQianKHuangBZhangKSongZQianTShiJLiLHOXB13 Promotes Proliferation, Migration, and Invasion of Glioblastoma through Transcriptional Upregulation of LncRNA HOXC-AS3J Cell Biochem20191209155271553710.1002/jcb.28819 – reference: Mukherjee S, Pillai PP (2021) Current insights on extracellular vesicle-mediated glioblastoma progression: Implications in drug resistance and epithelial-mesenchymal transition. Biochimica et Biophysica Acta (BBA)-General Subjects 130065 – reference: XueJRenJYangYXiZHuLPanS-JSunQLong Noncoding RNA SNHG7 Promotes the Progression and Growth of Glioblastoma via Inhibition of MiR-5095Biochemi Biophys Res Commun201810.1016/j.bbrc.2018.01.109 – reference: Gupta R, Shah N, Wang K, Kim J, Nature HH (2010) undefined. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature Com [Accessed 22 May 2021]. https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/nature08975&casa_token=AAE6ursVWKAAAAAA:0L0SaGzsErnCvZPtpNbkKpiLs_zt2GV3Y6v-2l3Qdtbt_k7vscRRNmsa69W-xp__R7bZkKdlDZKywQ – reference: ManisalidisIStavropoulouEStavropoulosABezirtzoglouEEnvironmental and Health Impacts of Air Pollution: A ReviewFront Public Health202081410.3389/fpubh.2020.00014 – reference: Cao S, Wang Y, Li J, Lv M, Niu H, Tian Y (2016a) Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function. Am J Cancer Res 6(11):2561–2574. – reference: CandidoSLupoGPennisiMBasileMSAnfusoCDPetraliaMCGattusoGVivarelliSSpandidosDALibraMFalzoneLThe analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer’s diseaseOncol Rep2019423911922 – reference: KunduSStoneEAComposition and sources of fine particulate matter across urban and rural sites in the Midwestern United StatesEnviron Sci Process Impacts20141661360137010.1039/c3em00719g.[accessed2021Jul4]./pmc/articles/PMC4191923/ – reference: VougasKSakellaropoulosTKotsinasAFoukasGRPNtargarasAKoinisFPolyzosAMyrianthopoulosVZhouHNarangSMachine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule miningPharmacol Ther201920310.1016/j.pharmthera.2019.107395 – reference: Wang X, Tian W, Wu L, Wei Z, Li W, Xu Y, Li Y (2020c) NeuroReport, and undefined LncRNA SNHG4 regulates MiR-138/c-Met axis to promote the proliferation of glioblastoma cells. Journals Lww Com Accessed 23 May 2021. https://journals.lww.com/neuroreport/Fulltext/2020c/06020/LncRNA_SNHG4_regulates_miR_138_c_Met_axis_to.5.aspx?context=LatestArticles – reference: SantovitoAGendusaCCervellaPTraversiDIn vitro genomic damage induced by urban fine particulate matter on human lymphocytesSci Rep20201011710.1038/s41598-020-65785-5 – reference: Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y, Liang H (2018a) Genome and epigenome circNT5E Acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. AACR https://doi.org/10.1158/0008-5472.CAN-18-0532. [Accessed 22 May 2021]. http://cancerres.aacrjournals.org – reference: Shaddick G, Thomas ML, Mudu P, Ruggeri G, Gumy S (2020) Half the world’s population are exposed to increasing air pollution. NPJ Clim Atmos Sci 3(1):1–5. https://doi.org/10.1038/s41612-020-0124-2. [Accessed 20 May 2021]. https://doi.org/10.1038/s41612-020-0124-2 – reference: Gupta K, Burns TC (2018) Radiation-induced alterations in the recurrent glioblastoma microenvironment: Therapeutic implications. Front Oncol 8(NOV):503. https://doi.org/10.3389/fonc.2018.00503. – reference: Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462. https://doi.org/10.1016/j.cell.2013.09.034. [Accessed 4 Jun 2021]. https://www.pubmed.ncbi.nlm.nih.gov/24120142 – reference: ZhangPXiaQLiuLLiSDongLCurrent Opinion on Molecular Characterization for GBM Classification in Guiding Clinical Diagnosis, Prognosis, and TherapyFront Mol Biosci2020724110.3389/fmolb.2020.562798.[accessed2021Jun24].www.frontiersin.org – reference: ZhangPLiuYChangyuFuWangCeDuanXZouWZhaoTKnockdown of Long Non-Coding RNA PCAT1 in Glioma Stem Cells Promotes Radiation SensitivityMed Mol Morphol201952211412210.1007/s00795-018-0209-8 – reference: ChenMChengYYuanZWangFYangLZhaoHNCK1-AS1 Increases drug resistance of glioma cells to temozolomide by modulating MiR-137/TRIM24Liebertpub Com202035210110810.1089/cbr.2019.3054 – reference: YaoZZhangQGuoFGuoSYangBoLiuBLiPLiJGuanSLiuXLong Noncoding RNA PCED1B-AS1 Promotes the Warburg Effect and Tumorigenesis by Upregulating HIF-1α in GlioblastomaCell Transplant202010.1177/0963689720906777 – reference: Wang H, Li L, Yin L (2018b) Biochemical and biophysical research, and undefined Silencing LncRNA LOXL1-AS1 attenuates mesenchymal characteristics of glioblastoma via NF-ΚB pathway. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S0006291X18309148 – reference: BountaliATongeDPMourtada-MaarabouniMRNA sequencing reveals a key role for the long non-coding RNA MIAT in regulating neuroblastoma and glioblastoma cell fateInt J Biol Macromol201913087889110.1016/j.ijbiomac.2019.03.005 – reference: ShangCTangWPanCXuanhaoHuHongYLong Non-Coding RNA TUSC7 Inhibits Temozolomide Resistance by Targeting MiR-10a in GlioblastomaCancer Chemother Pharmacol201881467167810.1007/s00280-018-3522-y – reference: Li Qi, Chengya Dong, Jiayue Cui, Yubo Wang, Xinyu Hong (2018e) “Over-Expressed LncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme.” J Exp Clin Cancer Res 37 (1). https://doi.org/10.1186/s13046-018-0941-x – reference: Wang S, Lin Y, Zhong Y, Zhao M, Yao W, Ren X, Wang Q, Guo X, Zhang QQ, Dai J (2020b) The long noncoding RNA HCG18 participates in PM2. 5-mediated vascular endothelial barrier dysfunction. – reference: Urbańska K, Sokołowska J, Szmidt M, Sysa P (2014) Glioblastoma multiforme – an overview. Contemp Oncol 18(5):307–312. https://doi.org/10.5114/wo.2014.40559. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248049 – reference: Wang J, Liu X, Yan C, Liu J, Wang S (2017) OncoTargets and undefined LEF1-AS1, a Long-Noncoding RNA, Promotes Malignancy in Glioblastoma. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584905 – reference: Shou J, Gao H, Cheng S, Wang B, Guan H (2021) LncRNA HOXA-AS2 Promotes glioblastoma carcinogenesis by targeting MiR-885–5p/RBBP4 Axis. Cancer Cell Intl 21 (1). https://doi.org/10.1186/s12935-020-01690-1 – reference: XinHLiuNXiaoshengXuJinwu ZhangYuLiYMLiGLiangJKnockdown of LncRNA-UCA1 Inhibits Cell Viability and Migration of Human Glioma Cells by MiR-193a-Mediated Downregulation of CDK6J Cell Biochem20191209151571516910.1002/jcb.28777 – reference: Liu X, Chen R, Liu L (2019) Bioscience reports, and undefined SP1–DLEU1–MiR-4429 feedback loop promotes cell proliferative and anti-apoptotic abilities in human glioblastoma. Portlandpress Com Accessed 23 May 2021. https://portlandpress.com/bioscirep/article-abstract/39/12/BSR20190994/221115 – reference: Chen X, Li LQ, Qiu X, Wu H (2019d) Long non-coding RNA HOXB-AS1 promotes proliferation, migration and invasion of glioblastoma cells via HOXB-AS1/MiR-885–3p/HOXB2 Axis. Europepmc Org Accessed 23 May 2021. https://europepmc.org/article/med/30784279 – reference: Sai Charan NV, Krithiga S, Subudhi PS (2021) Review of particulate matter filters. In: lecture notes in electrical engineering. Springer Science and Business Media Deutschland GmbH. 688:419–432. [Accessed 21 May 2021]. https://link.springer.com/chapterhttps://doi.org/10.1007/978-981-15-7241-8_30 – reference: WiluszJESunwooHSpectorDLLong noncoding RNAs: Functional surprises from the RNA worldGenes Dev200923131494150410.1101/gad.1800909 – reference: Cai H, Yu Y, Ni X, Li C, Hu Y, Wang J, Chen F (2020) LncRNA LINC00998 inhibits the malignant glioma phenotype via the CBX3-Mediated c-Met/Akt/MTOR Axis. Nature Com Accessed 23 May 2021. https://www.nature.com/articles/s41419-020-03247-6?elqTrackId=6582a165a107467caad4d30ced7231c5 – reference: Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H et al (2018) Novel role of FBXW7 circular rna in repressing glioma tumorigenesis. J Natl Cancer Inst 110(3). https://doi.org/10.1093/jnci/djx166. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28903484 – reference: Sánchez-PérezYChirinoYIOsornio-VargasÁRMorales-BárcenasRGutiérrez-RuízCVázquez-LópezIGarcía-CuellarCMDNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutantsCancer Lett2009278219220010.1016/j.canlet.2009.01.010 – reference: Xiong Y, Kuang W, Lu S, Guo H, Wu M, Ye M, Wu L (2018) Long noncoding RNA HOXB 13-AS 1 regulates HOXB 13 gene methylation by interacting with EZH 2 in Glioma Wiley Online Library 7(9):4718 4728. https://doi.org/10.1002/cam4.1718 – reference: Chen H, Hou G, Yang J, Chen W, LG-J (2020a) SOX9‐activated PXN‐AS1 promotes the tumorigenesis of glioblastoma by EZH2‐mediated methylation of DKK1. Wiley Online Library 24(11):6070–6082. https://doi.org/10.1111/jcmm.15189. [Accessed 22 May 2021]. https://onlinelibrary.wiley.com/doi/abs – reference: Jin X, Ge LP, Li DQ, Shao ZM, Di GH, Xu XE, Jiang YZ (2020a) LncRNA TROJAN promotes proliferation and resistance to CDK4/6 inhibitor via CDK2 transcriptional activation in ER+ breast cancer. Mol Cancer 19(1). https://doi.org/10.1186/s12943-020-01210-9. [Accessed 1 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/32393270 – reference: Mazor G, Levin L, Picard D, Ahmadov U, … Carén H - Cell death &, and undefined (2019) n.d. The LncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Nature Com Accessed 23 May 2021. https://www.nature.com/articles/s41419-019-1477-5 – reference: GaudermanWJUrmanRAvolEBerhaneKMcConnellRRappaportEChangRLurmannFGillilandFAssociation of improved air quality with lung development in childrenN Engl J Med20153721090591310.1056/nejmoa1414123 – reference: He Z, Wang Y, Huang G, Wang Q, Zhao D, Chen L (2017) The lncRNA UCA1 interacts with miR-182 to modulate glioma proliferation and migration by targeting iASPP. Arch Biochem Biophys 623–624:1–8. https://doi.org/10.1016/j.abb.2017.01.013. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28137422 – reference: ZhuWXieLHanJGuoXThe application of deep learning in cancer prognosis predictionCancers202012360310.3390/cancers12030603.[accessed2021May22].www.mdpi.com/journal/cancers – reference: Liu C, Zhang Y, She X, Fan L, Li P, Feng J, Fu H et al (2018) A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. J Hematol Oncol 11 (1). https://doi.org/10.1186/s13045-018-0619-z – reference: Merk R, Heßelbach K, Osipova A, Popadić D, Schmidt-Heck W, Kim GJ, Günther S, Piñeres AG, Merfort I, Humar M (2020) Particulate matter (Pm2.5) from biomass combustion induces an anti-oxidative response and cancer drug resistance in human bronchial epithelial beas-2b cells. Intl J Environ Res Public Health 17(21):1–22. https://doi.org/10.3390/ijerph17218193 – reference: Lee C-W, Vo TTT, Wu C-Z, Chi M-C, Lin C-M, Fang M-L, Lee I-T (2020) The inducible role of ambient particulate matter in cancer progression via oxidative stress-mediated reactive oxygen species pathways: a recent perception. Cancers 2020 12(9):2505. https://doi.org/10.3390/CANCERS12092505. – reference: LiuZZTianYFWuHOuyangSYKuangWLLncRNA H19 Promotes Glioma Angiogenesis through MiR-138/HIF-1α/VEGF AxisNeoplasma202067111111810.4149/neo_2019_190121N61 – reference: MiguelVLamasSEspinosa-DiezCRole of non-coding-RNAs in response to environmental stressors and consequences on human healthRedox Biol20203710.1016/j.redox.2020.101580 – reference: XuHZhangBYangYLiZZhaoPWeiqingWuZhangHMaoJMaoCJLncRNA MIR4435-2HG Potentiates the Proliferation and Invasion of Glioblastoma Cells via Modulating MiR-1224-5p/ TGFBR2 AxisWiley Online Library202024116362637210.1111/jcmm.15280 – reference: Li Z, Zhang J, Zheng H, Li C, Xiong J, Wang W, Bao H, Jin H, Liang P (2019) Modulating LncRNA SNHG15/CDK6/MiR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces m2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res 38 (1). https://doi.org/10.1186/s13046-019-1371-0 – reference: Cao Y, Wang P, Ning S, Xiao W, Xiao B, Li X (2016b) Identification of prognostic biomarkers in glioblastoma using a long non-coding RNA-mediated, competitive endogenous RNA network. Oncotarget 7(27):41737–41747. https://doi.org/10.18632/oncotarget.9569. [Accessed 4 Jul 2021]. https://www.pmc/articles/PMC5173092 – reference: Zhou Y, Yang H, Xia W, Cui L, Xu R, Lu H, Xue D, Tian Z, DIng T, Cao Y et al (2020) LncRNA MEG3 inhibits the progression of prostate cancer by facilitating H3K27 trimethylation of EN2 through binding to EZH2. J Biochem 167(3):295–301. https://doi.org/10.1093/jb/mvz097. [Accessed 1 Jul 2021]. https://academic.oup.com/jb/article/167/3/295/5650411 – reference: Jin Z, Piao L, Sun G, Lv C, Jing Y, therapy RJ-O (2020b) undefined. Long non-coding RNA PART1 exerts tumor suppressive functions in glioma via sponging miR-190a-3p and inactivation of PTEN/AKT pathway. Ncbi Nlm Nnih Gov [Accessed 22 May 2021]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007780 – reference: Su R, Cao S, Ma J, Liu Y, Liu X, Zheng J, Chen J et al (2017) Knockdown of SOX2OT inhibits the malignant biological behaviors of glioblastoma stem cells via up-regulating the expression of MiR-194–5p and MiR-122. Mol Cancer 16 (1). https://doi.org/10.1186/s12943-017-0737-1 – reference: LiOYiWYangPGuoCPengCLong non-coding RNA UCA1 promotes proliferation and invasion of intrahepatic cholangiocarcinoma cells through targeting microRNA-122Exp Ther Med20191812510.3892/etm.2019.7564 – reference: XuCShaoYLiuJYaoXQuanFZhaoQZhaoRLong Non-coding RNA AGAP2-AS1 Promotes Proliferation and Metastasis in Papillary Thyroid Cancer by MiR-628-5p/KLF12 AxisJ Bioenerg Biomembr202153223524510.1007/s10863-021-09879-3 – reference: Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang C (2018a) Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/b-catenin pathway by scaffolding EZH2. Clin Cancer Res 24(3):684–695. https://doi.org/10.1158/1078-0432.CCR-17-0605. [Accessed 1 Jul 2021]. http://clincancerres.aacrjournals.org – reference: WuPCaiJChenQHanBoMengXLiYLiZLnc-TALC Promotes O 6 -Methylguanine-DNA Methyltransferase Expression via Regulating the c-Met Pathway by Competitively Binding with MiR-20b-3pNat Commun201910111510.1038/s41467-019-10025-2 – reference: Harbo PoulsenAArthur HvidtfeldtUSørensenMPuettRKetzelMBrandtJChristensenJHGeelsCRaaschou-NielsenOComponents of particulate matter air-pollution and brain tumorsEnviron Int202014410.1016/j.envint.2020.106046 – reference: Kaur S, Katnoria JK (2016) Role of suspended particulate matter in angiogenesis employing crown gall tumor assay. Int J Pharm Pharm Sci 9(1):34. https://doi.org/10.22159/ijpps.2017v9i1.15440. [Accessed 23 Jun 2021]. http://creativecommons.org/licenses/by/4.0 – reference: DeshorsPToulasCArnauducFMalricLSiegfriedANicaiseYLemariéALarrieuDTosoliniMCohen-Jonathan MoyalEIonizing radiation induces endothelial transdifferentiation of glioblastoma stem-like cells through the Tie2 signaling pathwayCell Death Dis2019101111510.1038/s41419-019-2055-6 – reference: JiJRanXuDingKBaoGZhangXHuangBWangXTranslational cancer mechanisms and therapy long noncoding RNA SChLAP1 forms a growth-promoting complex with HNRNPL in human glioblastoma through stabilization of ACTN4 and activation of NF-KB signalingAACR201910.1158/1078-0432.CCR-19-0747 – reference: YangYDongXXieBDingNChenJLiYZhangQQuHFangXDatabases and web tools for cancer genomics studyGenom Proteom Bioinform2015131465010.1016/j.gpb.2015.01.005 – reference: WuXHouPQiuYWangQXiaojieLuLarge-Scale Analysis Reveals the Specific Clinical and Immune Features of DGCR5 in GliomaOnco Targets Ther2020137531754310.2147/OTT.S257050 – reference: Silantyev AS, Falzone L, Libra M, Gurina OI, Kardashova KS, Nikolouzakis TK, Nosyrev AE, Sutton CW, Mitsias PD, Tsatsakis A (2019) Current and future trends on diagnosis and prognosis of glioblastoma: from molecular biology to proteomics. Cells 8(8). https://doi.org/10.3390/CELLS8080863. [Accessed 26 Jul 2021]. https://www.pubmed.ncbi.nlm.nih.gov/31405017 – reference: Zheng J, Liu X, Wang P, Xue Y, Ma J, Qu C, Liu Y (2016) CRNDE promotes malignant progression of Glioma by attenuating miR-384/PIWIL4/STAT3 axis. Mol Ther 24(7):1199–1215. https://doi.org/10.1038/mt.2016.71. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/27058823 – reference: LizJEstellerMlncRNAs and microRNAs with a role in cancer developmentBiochim Biophys Acta Gene Regul Mech20161859116917610.1016/j.bbagrm.2015.06.015 – reference: StellaMFalzoneLCaponnettoAGattusoGBarbagalloCBattagliaRMirabellaFBroggiGAltieriRCertoFCaltabianoRSerum extracellular vesicle-derived circHIPK3 and circSMARCA5 are two novel diagnostic biomarkers for glioblastoma multiformePharmaceuticals202114761810.3390/ph14070618 – reference: Volders PJ, Anckaert J, Verheggen K, Nuytens J, Martens L, Mestdagh P, Vandesompele J (2019) Lncipedia 5: Towards a reference set of human long non-coding rnas. Nucleic Acids Res47(D1):D135–D139. https://doi.org/10.1093/nar/gky1031. [Accessed 10 May 2021]. https://pubmed.ncbi.nlm.nih.gov/30371849 – reference: HarrisonRMYinJParticulate matter in the atmosphere: Which particle properties are important for its effects on health?Sci Total Environ20002491–38510110.1016/S0048-9697(99)00513-6 – reference: KandlikarMThe causes and consequences of particulate air pollution in urban India: A synthesis of the scienceAnnu Rev Energy Env20002562968410.1146/annurev.energy.25.1.629.[accessed2021Jun30].www.annualreviews.org – reference: WilksCClineMSWeilerEDiehkansMCraftBMartinCMurphyDPierceHBlackJNelsonDThe Cancer Genomics Hub (CGHub): overcoming cancer through the power of torrential dataDatabase : the Journal of Biological Databases and Curation201410.1093/database/bau093 – reference: XuNLiuBLianCDoychevaDMZhaoFuLiuYZhouJLong Noncoding RNA AC003092.1 Promotes Temozolomide Chemosensitivity through MiR-195/TFPI-2 Signaling Modulation in GlioblastomaCell Death Dis201891211610.1038/s41419-018-1183-8 – reference: DaiXLiaoKZhuangZChenBZhouZZhouSLinGAHIF promotes glioblastoma progression and radioresistance via exosomesInt J Oncol201954126127010.3892/ijo.2018.4621 – reference: LiuLUrchBSzyszkowiczMSpeckMLeingartnerKShuttRPelletierGGoldDRScottJABrookJRInfluence of exposure to coarse, fine and ultrafine urban particulate matter and their biological constituents on neural biomarkers in a randomized controlled crossover studyEnviron Int2017101899510.1016/j.envint.2017.01.010 – reference: Li C, Hu G, Wei B, Wang L, Liu N (2019b) OncoTargets and therapy, and undefined LncRNA LINC01494 Promotes Proliferation, Migration and Invasion in Glioma through MiR-122–5p/CCNG1 Axis. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756415 – reference: Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA, Prada D, Samet J, Thurston G, Cohen A (2020) Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: Cancer J Clin 70(6):460–479. https://doi.org/10.3322/caac.21632 – reference: Chen W, Li Q, Zhang G, Wang H, Zhu Z, Chen L (2020b) LncRNA HOXA‐AS3 promotes the malignancy of glioblastoma through regulating miR‐455‐5p/USP3 axis. Wiley Online Library 24(20):11755–11767. https://doi.org/10.1111/jcmm.15788. [Accessed 22 May 2021]. https://onlinelibrary.wiley.com/doi/abs – reference: VattanasitUNavasumritPKhadkaMBKanitwithayanunJPromvijitJAutrupHRuchirawatMOxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particlesInt J Hyg Environ Health20142171233310.1016/J.IJHEH.2013.03.002 – reference: FalzoneLLupoGLa RosaGRMCrimiSAnfusoCDSalemiRRapisardaELibraMCandidoSIdentification of novel MicroRNAs and their diagnostic and prognostic significance in oral cancerCancers201911561010.3390/cancers11050610 – reference: Wang Y, Wang Y, Li J, Zhang Y, Yin H, Han B (2015) CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett 367(2):122–128. https://doi.org/10.1016/j.canlet.2015.03.027. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/25813405 – reference: Chi Y, Huang Q, Lin Y, Ye G, Zhu H, Dong S (2018) Epithelial-mesenchymal transition effect of fine particulate matter from the Yangtze River Delta region in China on human bronchial epithelial cells. J Environ Sci (China) 66:155–164. https://doi.org/10.1016/j.jes.2017.05.002. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/29628082 – reference: Liu, Shuang, Ramkrishna Mitra, Ming-Ming Zhao, Wenhong Fan, Christine M Eischen, Feng Yin, and Zhongming Zhao (2016a) The potential roles of long noncoding RNAs (LncRNA) in glioblastoma development. Mol Cancer Ther 15 (12). https://doi.org/10.1158/1535-7163.MCT-16-0320 – reference: WangYZhongYHouTLiaoJZhangCSunCWangGPM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitroEcotoxicol Environ Saf201917815916710.1016/j.ecoenv.2019.03.086 – reference: Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/nejmoa043330. [Accessed 24 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/15758009 – reference: Chen S, Wu X, Hu J, Dai G, Rong A, Guo G (2017) PM2.5 exposure decreases viability, migration and angiogenesis in human umbilical vein endothelial cells and human microvascular endothelial cells. Mol Med Rep 16(3):2425–2430. https://doi.org/10.3892/mmr.2017.6877. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/28677750 – reference: Li J, Zhou L (2018d) Biomedicine and Pharmacotherapy, and undefined Overexpression of LncRNA DANCR Positively Affects Progression of Glioma via Activating Wnt/β-Catenin Signaling. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S0753332217369275 – reference: OmidvarbornaHKumarAKimDSRecent studies on soot modeling for diesel combustionRenew Sustain Energy Rev20154863564710.1016/j.rser.2015.04.019 – reference: Wang SJ, Wang H, Zhao CD, Li R (2018d) Long noncoding RNA LINC01426 promotes glioma progression through PI3K/AKT signaling pathway and serves as a prognostic biomarker. Eur Rev Med Pharmacol Sci Accessed 23 May 2021. https://www.europeanreview.org/wp/wp-content/uploads/6358-6368.pdf – reference: ZhaoCGaoYGuoRLiHYangBMicroarray expression profiles and bioinformatics analysis of mRNAs, lncRNAs, and circRNAs in the secondary temozolomide-resistant glioblastomaInvest New Drugs20203851227123510.1007/s10637-019-00884-3 – reference: Zhang Y, Cruickshanks N, Pahuski M, Yuan F, Dutta A, Schiff D, Purow B, Abounader R (2017a) Noncoding RNAs in glioblastoma. Exonpublications.Com. [Accessed 23 May 2021]. https://www.exonpublications.com/index.php/exon/article/view/128 – reference: Gao XF, He HQ, Zhu XB, Xie SL, Cao Y (2019a) LncRNA SNHG20 promotes tumorigenesis and cancer stemness in glioblastoma via activating PI3K/Akt/MTOR signaling pathway. Europepmc Org Accessed 23 May 2021. https://europepmc.org/article/med/30943748 – reference: WangRZhangSChenXLiNLiJJiaRPanYLiangHGenome and Epigenome CircNT5E Acts as a Sponge of MiR-422a to Promote Glioblastoma TumorigenesisAACR201810.1158/0008-5472.CAN-18-0532 – reference: Xu Z, Ding W, Deng X (2019a) PM2.5, fine particulate matter: a novel player in the epithelial-mesenchymal transition? Front Physiol https://doi.org/10.3389/fphys.2019.01404 – reference: LiaoYZhangBZhangTZhangYWangFLncRNA GATA6-AS promotes cancer cell proliferation and inhibits apoptosis in glioma by downregulating LncRNA TUG1Liebertpub Com2019341066066510.1089/cbr.2019.2830 – reference: WangGLiZTianNHanLFuYGuoZTianYMiR-148b-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expressionOncol Lett201612287988610.3892/ol.2016.4743 – reference: Xie H, Shi S, Chen Q, Chen Z (2019) LncRNA TRG-AS1 promotes glioblastoma cell proliferation by competitively binding with MiR-877–5p to regulate SUZ12 expression. Pathol Res Pract 215 (8). https://doi.org/10.1016/j.prp.2019.152476 – reference: Jindal SK, Aggarwal AN, Jindal A (2020) Household air pollution in India and respiratory diseases: Current status and future directions. Curr Opin Pulm Med 26(2):128–134. https://doi.org/10.1097/MCP.0000000000000642. [Accessed 22 May 2021]. https://journals.lww.com/co-pulmonarymedicine/Fulltext/2020/03000/Household_air_pollution_in_India_and_respiratory.5.aspx – reference: Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, Dong S (2017c) Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-09818-6. [Accessed 21 May 2021]. /pmc/articles/PMC5570922 – reference: ZhaoYLiHFangSKangYWuWHaoYLiZBuDSunNZhangMQNONCODE 2016: An informative and valuable data source of long non-coding RNAsNucleic Acids Res201644D1D203D20810.1093/nar/gkv1252.[accessed2021Jul4]./pmc/articles/PMC4702886/ – reference: D’AlessioAProiettiGSicaGScicchitanoBMPathological and molecular features of glioblastoma and Its peritumoral tissueCancers201911446910.3390/cancers11040469 – reference: Santibáñez-AndradeMChirinoYIGonzález-RamírezISánchez-PérezYGarcía-CuellarCMDeciphering the code between air pollution and disease: The effect of particulate matter on cancer hallmarksInt J Mol Sci202021113610.3390/ijms21010136.[accessed2021May21].www.mdpi.com/journal/ijms – reference: ZhangLWangHMeijieXuChenFLiWHaotianHuYuanQLong Noncoding RNA HAS2-AS1 Promotes Tumor Progression in Glioblastoma via Functioning as a Competing Endogenous RNAJ Cell Biochem2020121166167110.1002/jcb.29313 – reference: SmithKRNational burden of disease in India from indoor air pollutionProc Natl Acad Sci USA20009724132861329310.1073/pnas.97.24.13286.[accessed2021Jun30].www.pnas.org – reference: Zhang Y, Li Y, Wang Q, Zhang X, Wang D, Tang HC, Meng X, Ding X (2017b) Identification of an lncRNA-miRNA-mRNA interaction mechanism in breast cancer based on bioinformatic analysis. Mol Med Rep 16(4):5113–5120. https://doi.org/10.3892/MMR.2017.7304. [Accessed 26 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28849135 – reference: Hu S, Yao Y, Hu X, Zhu Y (2094) LncRNA DCST1-AS1 Downregulates MiR-29b through methylation in glioblastoma (GBM) to promote cancer cell proliferation. Clin Transl Oncol 22: 2230–35. https://doi.org/10.1007/s12094-020-02363-1 – reference: HuiBXuYZhaoBJiHMaZXuSHeZWangKLuJOverexpressed long noncoding RNA TUG1 affects the cell cycle, proliferation, and apoptosis of pancreatic cancer partly through suppressing RND3 and MT2AOnco Targets Ther2019121043105710.2147/OTT.S188396 – reference: Poulsen AH, Hvidtfeldt UA, Sørensen M, Puett R, Ketzel M, Brandt J, Geels C, Christensen JH, Raaschou-Nielsen O (2020) Intracranial tumors of the central nervous system and air pollution - A nationwide case-control study from Denmark. Environ Health: A Glob Access Sci Source 19(1). https://doi.org/10.1186/s12940-020-00631-9 – reference: IserICPereiraMBLenzGWinkMRThe epithelial-to-mesenchymal transition-like process in glioblastoma: an updated systematic review and in silico investigationMed Res Rev201737227131310.1002/med.21408 – reference: Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang C. (2018b) Biology of human tumors long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/b-Catenin pathway by scaffolding EZH2. AACR https://doi.org/10.1158/1078-0432.CCR-17-0605. [Accessed 22 May 2021]. http://clincancerres.aacrjournals.org – reference: Yan Y, Xu Z, Chen X, Wang X, Zeng S, Zhao Z, Qian L et al (2019) Novel function of LncRNA ADAMTS9-AS2 in promoting temozolomide resistance in glioblastoma via upregulating the FUS/MDM2 ubiquitination axis. Front Cell Dev Biol 7 (October). https://doi.org/10.3389/fcell.2019.00217 – reference: Jin Z, Piao L, Sun G, Lv C, Jing Y, Jin R - OncoTargets and therapy, and undefined (2020c) n.d. Long non-coding RNA PART1 exerts tumor suppressive functions in glioma via sponging MiR-190a-3p and inactivation of PTEN/AKT pathway. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007780 – reference: Pastori C, Kapranov P, Penas C, Peschansky V, Volmar CH, Sarkaria JN, Bregy A, Komotar R, Laurent GS, Ayad NG et al (2015) The bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation. Proc Natl Acad Sci USA 112(27):8326–8331. https://doi.org/10.1073/pnas.1424220112. [Accessed 4 Jul 2021]. https://europepmc.org/articles/PMC4500283 – reference: Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6. https://doi.org/10.1016/s1476-5586(04)80047-2. [Accessed 20 May 2021]. https://pubmed.ncbi.nlm.nih.gov/15068665 – reference: Ma K, Li C, Xu J, Ren F, Xu X, Liu C, Niu B, Li F (2020) LncRNA Gm16410 regulates PM2.5-induced lung endothelial-mesenchymal transition via the TGF-β1/Smad3/p-Smad3 pathway. Ecotoxicol Environ Safety 205. https://doi.org/10.1016/j.ecoenv.2020.111327. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/32961493 – reference: OrachJRiderCFCarlstenCConcentration-dependent health effects of air pollution in controlled human exposuresEnviron Int202115010.1016/J.ENVINT.2021.106424 – reference: Todorova PK, Fletcher-Sananikone E, Mukherjee B, Kollipara R, Vemireddy V, Xie X-J, Guida PM, Story MD, Hatanpaa K, Habib AA et al (2019) Radiation-induced DNA damage cooperates with heterozygosity of TP53 and PTEN to generate high grade gliomas. https://doi.org/10.1158/0008-5472.CAN-19-0680 – reference: Shih C-H, Chen J-K, Kuo L-W, Cho K-H, Hsiao T-C, Lin Z-W, Lin Y-S, Kang J-H, Lo Y-C, Chuang K-J et al (2018) Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. PTCL Fibre Toxicol 15(1):44. https://doi.org/10.1186/s12989-018-0281-1. [Accessed 4 Jul 2021]. https://particleandfibretoxicology.biomedcentral.com/articles https://doi.org/10.1186/s12989-018-0281-1 – reference: DongZCuiHEpigenetic modulation of metabolism in glioblastomaSemin Cancer Biol201957455110.1016/j.semcancer.2018.09.002 – reference: DaiXLiaoKZhuangZChenBZhouZZhouSLinGZhangFLinYMiaoYAHIF promotes glioblastoma progression and radioresistance via exosomesInt J Oncol201954126127010.3892/ijo.2018.4621 – reference: He C, Jiang B, Ma J, Li Q (2016) Aberrant NEAT1 expression is associated with clinical outcome in high grade glioma patients. APMIS 124(3):169–174. https://doi.org/10.1111/apm.12480. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/26582084 – reference: Chen HH, Zong J, Wang SJ (2019) GAPLINC Sponging MiR-331–3p in Glioblastoma Eur Rev Med Pharmacol Sci. Europeanreview.Org. Accessed 23 May 2021. https://www.europeanreview.org/wp/wp-content/uploads/262-270.pdf – reference: Bian EB, Chen EF, Xu YD, Yang ZH, Tang F, Ma CC, Wang HL, Zhao B (2019) Exosomal LncRNA-ATB Activates astrocytes that promote glioma cell invasion. – reference: Wang S, Guo X, Lv W, Li Y (2020a) LZ-C management undefined. LncRNA RPSAP52 upregulates TGF-β1 to increase cancer cell stemness and predict postoperative survival in glioblastoma. Ncbi Nlm Nih Gov [Accessed 23 May 2021]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170709 – ident: 2069_CR157 doi: 10.18632/aging.104073 – volume: 24 start-page: 108 issue: 2 year: 2018 ident: 2069_CR68 publication-title: Curr Opin Pulm Med doi: 10.1097/MCP.0000000000000463 – ident: 2069_CR117 doi: 10.1111/cas.14002 – ident: 2069_CR76 doi: 10.1016/j.biopha.2018.03.116 – ident: 2069_CR13 doi: 10.18632/oncotarget.9569 – ident: 2069_CR97 doi: 10.1186/1743-8977-10-63 – volume: 67 start-page: 111 issue: 1 year: 2020 ident: 2069_CR93 publication-title: Neoplasma doi: 10.4149/neo_2019_190121N61 – volume: 47 start-page: 2723 year: 2020 ident: 2069_CR128 publication-title: Springer doi: 10.1007/s11033-020-05371-0 – ident: 2069_CR106 doi: 10.3390/ijerph17218193 – ident: 2069_CR150 doi: 10.1158/0008-5472.CAN-18-0532 – volume: 57 start-page: 67 issue: 1 year: 2020 ident: 2069_CR185 publication-title: Int J Oncol – ident: 2069_CR50 doi: 10.1080/15592294.2017.1356555 – volume: 53 start-page: 235 issue: 2 year: 2021 ident: 2069_CR167 publication-title: J Bioenerg Biomembr doi: 10.1007/s10863-021-09879-3 – volume: 217 start-page: 23 issue: 1 year: 2014 ident: 2069_CR144 publication-title: Int J Hyg Environ Health doi: 10.1016/J.IJHEH.2013.03.002 – volume: 37 start-page: 271 issue: 2 year: 2017 ident: 2069_CR59 publication-title: Med Res Rev doi: 10.1002/med.21408 – volume: 121 start-page: 661 issue: 1 year: 2020 ident: 2069_CR179 publication-title: J Cell Biochem doi: 10.1002/jcb.29313 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: 2069_CR162 publication-title: Nat Commun doi: 10.1038/s41467-019-10025-2 – volume: 38 start-page: 1227 issue: 5 year: 2020 ident: 2069_CR189 publication-title: Invest New Drugs doi: 10.1007/s10637-019-00884-3 – ident: 2069_CR31 doi: 10.1007/s10565-013-9242-5 – ident: 2069_CR131 doi: 10.3390/CELLS8080863 – ident: 2069_CR72 doi: 10.3390/CANCERS12092505 – ident: 2069_CR153 – ident: 2069_CR140 doi: 10.1158/0008-5472.CAN-19-0680 – volume: 12 start-page: 603 issue: 3 year: 2020 ident: 2069_CR197 publication-title: Cancers doi: 10.3390/cancers12030603.[accessed2021May22].www.mdpi.com/journal/cancers – ident: 2069_CR166 doi: 10.1002/cam4.1718 – ident: 2069_CR9 doi: 10.1093/neuonc/noaa127 – ident: 2069_CR38 doi: 10.4149/neo_2018_180829N656 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 2069_CR124 publication-title: Sci Rep doi: 10.1038/s41598-020-65785-5 – ident: 2069_CR26 doi: 10.18632/aging.101845 – volume: 11 start-page: 469 issue: 4 year: 2019 ident: 2069_CR30 publication-title: Cancers doi: 10.3390/cancers11040469 – volume: 12 start-page: 1043 year: 2019 ident: 2069_CR57 publication-title: Onco Targets Ther doi: 10.2147/OTT.S188396 – volume: 120 start-page: 15527 issue: 9 year: 2019 ident: 2069_CR155 publication-title: J Cell Biochem doi: 10.1002/jcb.28819 – volume: 27 start-page: 341 issue: 3 year: 2019 ident: 2069_CR40 publication-title: Oncol Res doi: 10.3727/096504018X15228909735079 – volume: 1 start-page: 7 issue: 1 year: 2008 ident: 2069_CR70 publication-title: Air Qual Atmos Health doi: 10.1007/s11869-008-0008-9 – ident: 2069_CR115 doi: 10.1073/pnas.1424220112 – volume: 37 year: 2020 ident: 2069_CR107 publication-title: Redox Biol doi: 10.1016/j.redox.2020.101580 – ident: 2069_CR22 doi: 10.1111/jcmm.15788 – ident: 2069_CR195 doi: 10.1093/jb/mvz097 – ident: 2069_CR110 doi: 10.1016/j.bbagen.2021.130065 – ident: 2069_CR127 doi: 10.1186/s12989-018-0281-1 10.1186/s12989-018-0281-1 – volume: 48 start-page: 635 year: 2015 ident: 2069_CR112 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.04.019 – ident: 2069_CR33 doi: 10.1093/nar/gkn617 – volume: 178 start-page: 159 year: 2019 ident: 2069_CR154 publication-title: Ecotoxicol Environ Saf doi: 10.1016/j.ecoenv.2019.03.086 – volume: 21 start-page: 136 issue: 1 year: 2020 ident: 2069_CR122 publication-title: Int J Mol Sci doi: 10.3390/ijms21010136.[accessed2021May21].www.mdpi.com/journal/ijms – volume: 97 start-page: 13286 issue: 24 year: 2000 ident: 2069_CR132 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.24.13286.[accessed2021Jun30].www.pnas.org – ident: 2069_CR139 doi: 10.1038/s41419-020-2267-9 – volume: 11 start-page: 610 issue: 5 year: 2019 ident: 2069_CR36 publication-title: Cancers doi: 10.3390/cancers11050610 – volume: 7 start-page: 241 year: 2020 ident: 2069_CR181 publication-title: Front Mol Biosci doi: 10.3389/fmolb.2020.562798.[accessed2021Jun24].www.frontiersin.org – volume: 8 start-page: 14 year: 2020 ident: 2069_CR104 publication-title: Front Public Health doi: 10.3389/fpubh.2020.00014 – ident: 2069_CR29 doi: 10.1016/j.yexmp.2019.104359 – ident: 2069_CR2 doi: 10.1007/s13181-011-0203-1 – volume: 278 start-page: 192 issue: 2 year: 2009 ident: 2069_CR121 publication-title: Cancer Lett doi: 10.1016/j.canlet.2009.01.010 – ident: 2069_CR35 doi: 10.1002/wsbm.75 10.1002/wsbm.75 – ident: 2069_CR183 – ident: 2069_CR156 doi: 10.2147/CMAR.S227496 – volume: 193 year: 2021 ident: 2069_CR83 publication-title: Environ Res doi: 10.1016/J.ENVRES.2020.110506 – volume: 11 start-page: 2935 issue: 10 year: 2020 ident: 2069_CR187 publication-title: J Cancer doi: 10.7150/jca.41942 – ident: 2069_CR79 doi: 10.1186/s13046-018-0941-x – year: 2014 ident: 2069_CR178 publication-title: Elsevier doi: 10.1016/j.canlet.2014.12.051 – volume: 234 start-page: 406 year: 2018 ident: 2069_CR5 publication-title: Environ Pollut doi: 10.1016/j.envpol.2017.11.093 – ident: 2069_CR69 doi: 10.4103/aihb.aihb_51_20 – ident: 2069_CR100 doi: 10.1007/s11356-020-12051-w – ident: 2069_CR114 doi: 10.3390/atmos11101094 – ident: 2069_CR19 doi: 10.3892/mmr.2017.6877 – ident: 2069_CR1 doi: 10.1093/neuonc/nox163 – ident: 2069_CR67 doi: 10.18632/oncotarget.4290 – ident: 2069_CR174 doi: 10.1093/jnci/djx166 – ident: 2069_CR192 doi: 10.1038/mt.2016.71 – ident: 2069_CR54 doi: 10.1038/s41598-017-09818-6 – ident: 2069_CR52 doi: 10.1007/s12094-020-02363-1 – ident: 2069_CR74 doi: 10.2147/OTT.S213345 – ident: 2069_CR58 doi: 10.1186/s13039-014-0098-z – volume: 34 start-page: 660 issue: 10 year: 2019 ident: 2069_CR85 publication-title: Liebertpub Com doi: 10.1089/cbr.2019.2830 – ident: 2069_CR129 doi: 10.1186/s12935-020-01690-1 – volume: 18 start-page: 15003 issue: 20 year: 2018 ident: 2069_CR186 publication-title: Atmos Chem Phys doi: 10.5194/acp-18-15003-2018 – volume: 24 start-page: 6362 issue: 11 year: 2020 ident: 2069_CR168 publication-title: Wiley Online Library doi: 10.1111/jcmm.15280 – ident: 2069_CR51 doi: 10.1111/jcmm.13338 – ident: 2069_CR61 doi: 10.1186/s12943-020-01210-9 – ident: 2069_CR14 doi: 10.1111/jcmm.15189 – ident: 2069_CR95 doi: 10.1038/s41598-018-23885-3 – ident: 2069_CR108 doi: 10.1016/j.celrep.2016.05.018 – ident: 2069_CR49 doi: 10.1016/j.abb.2017.01.013 – ident: 2069_CR42 – volume: 13 start-page: 46 issue: 1 year: 2015 ident: 2069_CR175 publication-title: Genom Proteom Bioinform doi: 10.1016/j.gpb.2015.01.005 – ident: 2069_CR125 doi: 10.1038/s41612-020-0124-2 10.1038/s41612-020-0124-2 – volume: 10 start-page: 1 issue: 11 year: 2019 ident: 2069_CR32 publication-title: Cell Death Dis doi: 10.1038/s41419-019-2055-6 – volume: 54 start-page: 261 issue: 1 year: 2019 ident: 2069_CR28 publication-title: Int J Oncol doi: 10.3892/ijo.2018.4621 – ident: 2069_CR143 doi: 10.5114/wo.2014.40559 – volume: 57 start-page: 45 year: 2019 ident: 2069_CR34 publication-title: Semin Cancer Biol doi: 10.1016/j.semcancer.2018.09.002 – ident: 2069_CR7 doi: 10.1016/j.cell.2013.09.034 – ident: 2069_CR45 – volume: 249 start-page: 85 issue: 1–3 year: 2000 ident: 2069_CR47 publication-title: Sci Total Environ doi: 10.1016/S0048-9697(99)00513-6 – volume: 42 start-page: 504 issue: 4 year: 2015 ident: 2069_CR134 publication-title: J Behav Heal Serv Res doi: 10.1007/s11414-013-9386-3 – year: 2019 ident: 2069_CR60 publication-title: AACR doi: 10.1158/1078-0432.CCR-19-0747 – ident: 2069_CR84 doi: 10.1186/s13046-019-1371-0 – ident: 2069_CR23 doi: 10.1158/1078-0432.CCR-18-1656 – ident: 2069_CR77 doi: 10.1183/09031936.06.00025006 – ident: 2069_CR64 doi: 10.1097/MCP.0000000000000642 – ident: 2069_CR138 doi: 10.1186/s12943-017-0737-1 – ident: 2069_CR193 doi: 10.1186/s12943-018-0849-2 – volume: 372 start-page: 905 issue: 10 year: 2015 ident: 2069_CR41 publication-title: N Engl J Med doi: 10.1056/nejmoa1414123 – ident: 2069_CR164 doi: 10.1016/j.prp.2019.152476 – ident: 2069_CR171 doi: 10.3389/fphys.2019.01404 – ident: 2069_CR20 doi: 10.1158/1078-0432.CCR-17-0605 – ident: 2069_CR101 doi: 10.1002/mc.20398 – volume: 16 start-page: 1360 issue: 6 year: 2014 ident: 2069_CR71 publication-title: Environ Sci Process Impacts doi: 10.1039/c3em00719g.[accessed2021Jul4]./pmc/articles/PMC4191923/ – ident: 2069_CR137 doi: 10.1093/database/bax084/4565823 – volume: 144 year: 2020 ident: 2069_CR46 publication-title: Environ Int doi: 10.1016/j.envint.2020.106046 – volume: 14 start-page: 587 issue: 10 year: 2017 ident: 2069_CR130 publication-title: Nat Rev Clin Oncol doi: 10.1038/nrclinonc.2017.122.[accessed2021Jun24].www.nature.com/nrclinonc – volume: 120 start-page: 15157 issue: 9 year: 2019 ident: 2069_CR165 publication-title: J Cell Biochem doi: 10.1002/jcb.28777 – ident: 2069_CR161 doi: 10.1093/JNCICS/PKZ107 – ident: 2069_CR105 doi: 10.1038/s41419-019-1477-5 – ident: 2069_CR98 doi: 10.1007/s00401-016-1545-1 – ident: 2069_CR188 doi: 10.1186/s13046-019-1139-6 – ident: 2069_CR4 doi: 10.3892/ijo.2018.4644 – year: 2020 ident: 2069_CR177 publication-title: Cell Transplant doi: 10.1177/0963689720906777 – ident: 2069_CR48 doi: 10.1111/apm.12480 – ident: 2069_CR82 doi: 10.1042/BSR20171577 – ident: 2069_CR147 doi: 10.1016/j.canlet.2015.03.027 – volume: 203 year: 2019 ident: 2069_CR146 publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2019.107395 – ident: 2069_CR116 doi: 10.1186/s12940-020-00631-9 – ident: 2069_CR118 doi: 10.1016/s1476-5586(04)80047-2 – volume: 52 start-page: 114 issue: 2 year: 2019 ident: 2069_CR180 publication-title: Med Mol Morphol doi: 10.1007/s00795-018-0209-8 – ident: 2069_CR24 doi: 10.4149/neo_2018_180606N377 – ident: 2069_CR80 doi: 10.1042/BSR20171577 – ident: 2069_CR120 doi: 10.1007/978-981-15-7241-8_30 – ident: 2069_CR15 – volume: 23 start-page: 1494 issue: 13 year: 2009 ident: 2069_CR160 publication-title: Genes Dev doi: 10.1101/gad.1800909 – year: 2020 ident: 2069_CR39 publication-title: Cancer Biotherapy and Radiopharmaceuticals doi: 10.1089/cbr.2019.3484 – ident: 2069_CR91 – ident: 2069_CR151 doi: 10.1016/j.bbrc.2018.04.133 – ident: 2069_CR21 doi: 10.1158/1078-0432.CCR-17-0605 – ident: 2069_CR184 doi: 10.3892/MMR.2017.7304 – volume: 18 start-page: 1081 issue: 2 year: 2019 ident: 2069_CR96 publication-title: Exp Ther Med – ident: 2069_CR62 doi: 10.2147/OTT.S232848 – ident: 2069_CR196 doi: 10.18632/oncotarget.3229 – ident: 2069_CR136 doi: 10.1056/nejmoa043330 – ident: 2069_CR194 doi: 10.1016/j.bbrc.2018.04.217 – volume: 25 start-page: 629 year: 2000 ident: 2069_CR65 publication-title: Annu Rev Energy Env doi: 10.1146/annurev.energy.25.1.629.[accessed2021Jun30].www.annualreviews.org – ident: 2069_CR56 doi: 10.1038/nm.3981 – ident: 2069_CR10 – volume: 9 start-page: 1 issue: 12 year: 2018 ident: 2069_CR170 publication-title: Cell Death Dis doi: 10.1038/s41419-018-1183-8 – volume: 35 start-page: 101 issue: 2 year: 2020 ident: 2069_CR18 publication-title: Liebertpub Com doi: 10.1089/cbr.2019.3054 – ident: 2069_CR66 doi: 10.22159/ijpps.2017v9i1.15440 – ident: 2069_CR8 doi: 10.18632/oncotarget.15991 – ident: 2069_CR149 doi: 10.2147/OTT.S130365 – volume: 136 start-page: 65 issue: 1 year: 2017 ident: 2069_CR73 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.026991 – volume: 143 start-page: 525 issue: 3 year: 2019 ident: 2069_CR75 publication-title: J Neurooncol doi: 10.1007/s11060-019-03185-0 – volume: 14 start-page: 618 issue: 7 year: 2021 ident: 2069_CR135 publication-title: Pharmaceuticals doi: 10.3390/ph14070618 – ident: 2069_CR145 doi: 10.1093/nar/gky1031 – volume: 79 start-page: 694 issue: 12 year: 2005 ident: 2069_CR16 publication-title: Arch Toxicol doi: 10.1007/s00204-005-0001-0 – ident: 2069_CR123 doi: 10.3390/ijms21010136 – ident: 2069_CR92 doi: 10.1042/BSR20190994 – ident: 2069_CR191 doi: 10.1007/s13277-015-3843-y – ident: 2069_CR43 doi: 10.3389/fonc.2018.00503 – volume: 101 start-page: 89 year: 2017 ident: 2069_CR88 publication-title: Environ Int doi: 10.1016/j.envint.2017.01.010 – volume: 150 year: 2021 ident: 2069_CR113 publication-title: Environ Int doi: 10.1016/J.ENVINT.2021.106424 – year: 2020 ident: 2069_CR182 publication-title: Front Mol Biosci doi: 10.3389/fmolb.2020.562798 – volume: 11 start-page: 17 issue: 1 year: 2018 ident: 2069_CR119 publication-title: Cancers doi: 10.3390/cancers11010017 – volume: 81 start-page: 671 issue: 4 year: 2018 ident: 2069_CR126 publication-title: Cancer Chemother Pharmacol doi: 10.1007/s00280-018-3522-y – ident: 2069_CR133 doi: 10.3390/cells9112369 – ident: 2069_CR176 doi: 10.1007/s13273-020-00095-5 – ident: 2069_CR109 doi: 10.1093/eurpub/ckaa165.841 – ident: 2069_CR63 doi: 10.2147/OTT.S232848 – ident: 2069_CR53 doi: 10.1038/s41598-017-09818-6 – volume: 130 start-page: 878 year: 2019 ident: 2069_CR6 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.03.005 – volume: 34 start-page: 589 issue: 9 year: 2019 ident: 2069_CR17 publication-title: Cancer Biother Radiopharm doi: 10.1089/cbr.2019.2779 – volume: 27 start-page: 341 year: 2021 ident: 2069_CR37 publication-title: Oncol Res doi: 10.3727/096504018X15228909735079 – ident: 2069_CR12 – volume: 41 start-page: 79 issue: 1 year: 2021 ident: 2069_CR111 publication-title: Cell Mol Neurobiol doi: 10.1007/s10571-020-00833-2 – ident: 2069_CR86 doi: 10.1158/1535-7163.MCT-16-0320 – volume: 18 start-page: 25 issue: 1 year: 2019 ident: 2069_CR78 publication-title: Exp Ther Med doi: 10.3892/etm.2019.7564 – volume: 1859 start-page: 169 issue: 1 year: 2016 ident: 2069_CR94 publication-title: Biochim Biophys Acta Gene Regul Mech doi: 10.1016/j.bbagrm.2015.06.015 – ident: 2069_CR44 doi: 10.21037/atm.2019.11.36 – ident: 2069_CR173 doi: 10.3389/fcell.2019.00217 – volume: 12 start-page: 879 issue: 2 year: 2016 ident: 2069_CR148 publication-title: Oncol Lett doi: 10.3892/ol.2016.4743 – ident: 2069_CR142 doi: 10.1016/J.SEMCANCER.2020.12.015 – volume: 42 start-page: 911 issue: 3 year: 2019 ident: 2069_CR11 publication-title: Oncol Rep – ident: 2069_CR87 doi: 10.18632/oncotarget.9699 – volume: 687 start-page: 839 year: 2019 ident: 2069_CR3 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.06.102 – year: 2014 ident: 2069_CR159 publication-title: Database : the Journal of Biological Databases and Curation doi: 10.1093/database/bau093 – ident: 2069_CR172 doi: 10.3389/fphys.2019.01404 – ident: 2069_CR103 doi: 10.1016/j.ecoenv.2020.111327 – ident: 2069_CR90 doi: 10.1186/s13045-018-0619-z – ident: 2069_CR158 doi: 10.1097/WNR.0000000000001469 – volume: 54 start-page: 261 issue: 1 year: 2019 ident: 2069_CR27 publication-title: Int J Oncol doi: 10.3892/ijo.2018.4621 – ident: 2069_CR55 doi: 10.1038/s41598-017-09818-6 – ident: 2069_CR81 doi: 10.1042/BSR20171577 – ident: 2069_CR102 doi: 10.1002/jcb.29572 – ident: 2069_CR25 doi: 10.1016/j.jes.2017.05.002 – volume: 22 start-page: 6338 issue: 12 year: 2018 ident: 2069_CR89 publication-title: Wiley Online Library doi: 10.1111/jcmm.13932 – year: 2018 ident: 2069_CR152 publication-title: AACR doi: 10.1158/0008-5472.CAN-18-0532 – volume: 13 start-page: 7531 year: 2020 ident: 2069_CR163 publication-title: Onco Targets Ther doi: 10.2147/OTT.S257050 – ident: 2069_CR99 doi: 10.1186/s12943-020-1137-5 – year: 2018 ident: 2069_CR169 publication-title: Biochemi Biophys Res Commun doi: 10.1016/j.bbrc.2018.01.109 – ident: 2069_CR141 doi: 10.3322/caac.21632 – volume: 44 start-page: D203 issue: D1 year: 2016 ident: 2069_CR190 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1252.[accessed2021Jul4]./pmc/articles/PMC4702886/ |
SSID | ssj0021418 |
Score | 2.3642154 |
SecondaryResourceType | review_article |
Snippet | With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs).... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2188 |
SubjectTerms | Air pollution Anthropogenic factors Biomedical and Life Sciences Biomedicine Brain cancer Cancer Carcinogens Cell Biology Correlation Glioblastoma Global air pollution Health hazards Human influences Invasiveness Neurochemistry Neurology Neurosciences Non-coding RNA Pollutants Proteomics |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXLhUpUC7LVRGqriARRzHTsIFRS2vSiDEQ9pb5PhRIW2ztFkqceh_74zj3QUhOEaxHcszGX_zJuQrN41yPlMsUxkoKEZ4pp32zBap51Zan2g06J-dq5Ob7MdQDqPBrYthlVOZGAS1HRu0ke8F7UlgINzB3W-GXaPQuxpbaLwhSxyQCLZuyIdzhYtnwb6XFKVkhSpVTJrpU-dSYGeGsewAmFTJyqcX0zO0-cxTGi6go3fkbUSOtOpJvUIWXPuerFYtaM2_Hug2DbGcwUi-Sv5dBI7A1lyOnvUlNGkVQjdgbTpqzeV5Rb8_wDZ-xv5dVLeWHo9uxw3gaVhS09P2r-6iMNyHJ3p1OwK-odUjn3eYFWs8wZAOVf1ujdwcHV5_O2Gx0QIzGS8nrEGYUzpMYm0EQA4LmCxtPDe5zZT0QC9uZJoXcJ_y3BdAX68TJ0uRSSlso8U6WWzHrftIaAJT0jS3cLoe6-IA-mqwXo3Jc2mt1QPCp6dcm1iFHJthjOp5_WSkTA2UqQNl6nJAdmZz7voaHK-O3pgSr47_Y1fPuWdAtmav4U9C94hu3fgexwiJaboJjPnQE332OaEEikYxILtTLpgv_vJePr2-l89kOUUODKmNG2Rx8ufebQLGmTRfAiP_B_0J9sU priority: 102 providerName: ProQuest |
Title | Particulate Matters Affecting lncRNA Dysregulation and Glioblastoma Invasiveness: In Silico Applications and Current Insights |
URI | https://link.springer.com/article/10.1007/s12031-022-02069-9 https://www.ncbi.nlm.nih.gov/pubmed/36370303 https://www.proquest.com/docview/2747130094 https://www.proquest.com/docview/2735865504 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7YUXBGxAYas8Ce1lWEri2El4C6PbYFo1DSqVp8iJ7WlSSRHpkPbA_86d67SgwSSeoihnx_Kd7d_5vgBex02trEsVT1WKCkojHNdWO27yxMVGGhdputA_H6vTSfpxKqchKKzrvd17k6TfqdfBbgkKICfvc4Q4quDFBmxJyieFUjxJypWaFaf-Vi_KC8lzVagQKvP3Pv48ju5gzDv2UX_sHD-GRwEvsnLJ4CfwwLZPYbtsUVf-essOmPfg9Ffj2_DzwssBFeSy7HyZOJOV3mED-2aztrkcl-z9LQ7jKlTtYro17GR2Pa8RRWOXmn1of-gubIFv8Y19up6htLDyN0u3bxUyOyFJRwp-twOT49Hno1MeyivwJo2LBa8J3BSWQldrgUDDIBJLahc3mUmVdMiluJFJluMpGmcuR646HVlZiFRKYWotnsFmO2_tC2ARNkmSzODsOsqGg5irpiw1TZZJY4weQNzPctWE3ONUAmNWrbMmE2cq5EzlOVMVAzhctfm2zLxxL_Vuz7wqrMKu8hq3IOfJAeyvPuP6IaOIbu38hmiEpODcCGmeL5m--p1QgjZEMYA3vRSsO__3WF7-H_kreJiQRPoAx13YXHy_sXuIdBb1EDayaTaErfLky9kIn-9G44vLoRf3X1Jy984 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2B7ggoDy2FDAScAGrSZwnUoUCbdml3VVVWqm34MQ2qrTNFrIF7YFf49uYcZxdUEVvPUaxHccznvcD4IVflbE2YczDOEQFpRKGSy0NV2lgfBUp40ky6I_G8eA4_HQSnazA7y4XhsIqO5poCbWaVmQj37Tak6BAuHfn3zh1jSLvatdCQ7rWCmrLlhhziR17ev4TVbhma7iN8H4ZBLs7Rx8G3HUZ4FXoZzNeEo_PNGVwlgL5rUKBJCiNXyUqjCODm_WrKEhSZCZ-YlL8OSM9HWUijCKhSilw3RuwGpIBpQer73fGB4cLlc8PrYXRS7OIp3EWu7SdNnkvwAvFKZoeRbY449m_rPGSvHvJV2tZ4O4duO1kV5a3yHYXVnR9D9byGvX2szl7xWw0qTXTr8GvA4uT1BxMs1FbxJPlNngE12aTujoc52x7jtv46jqIMVkr9nFyOi1RosclJRvWP2TjyPFbfGKfTyeIuSz_y-tuZ7kqUzikIWNDcx-OrwUID6BXT2v9CJiHU4IgUXi6hirzoPxXUsWcKkkipZTsg9-dclG5OujUjmNSLCs4E2QKhExhIVNkfXi9mHPeVgG5cvRGB7zCUYSmWOJvH54vXuNdJgeNrPX0gsaIiBKFPRzzsAX64nMiFkScRR_edFiwXPz_e1m_ei_P4ObgaLRf7A_He4_hVkDYaBMtN6A3-36hn6DENSufOrRm8OW6b9Ifx446AA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw9GlsEuKCgPFRGGAk4ALWkjhOGqQJBbqyMlZVg0m7BSe20aSSDtKBeuAP8qt4z3Fa0MRuO0axHcfv-X1_ADwNqzIxNk54nMSooFTCcmWU5bof2VBLbQNFBv2DcbJ3FL8_lsdr8LvLhaGwyo4mOkKtZxXZyLed9iQoEG7b-rCIyWD4-vQbpw5S5Gnt2mko32ZB77hyYz7JY98sfqI61-yMBgj7Z1E03P30do_7jgO8isNszkvi95mhbM5SIO_VKJxEpQ2rVMeJtLjxsJJR2kfGEqa2jz9qVWBkJmIphS6VwHWvwEaKXB8VwY03u-PJ4VL9C2NnbQz6meT9JEt8Ck-byBfh5eIUWY_iW5Lx7F82eU72Pee3dexweAOuezmW5S3i3YQ1U9-CzbxGHf7rgj1nLrLUmew34dfE4Sc1CjPsoC3oyXIXSIJrs2ldHY5zNljgNr74bmJM1Zq9m57MSpTucUnFRvUP1XjS_Aqf2MeTKWIxy__ywLtZvuIUDmnI8NDchqNLAcIdWK9ntbkHLMApUZRqPF1LVXpQFiypek6VplJrrXoQdqdcVL4mOrXmmBaras4EmQIhUzjIFFkPXiznnLYVQS4cvdUBr_DUoSlWuNyDJ8vXeK_JWaNqMzujMUJS0nCAY-62QF9-TiSCCLXowcsOC1aL_38v9y_ey2O4ijeq-DAa7z-AaxEho8u53IL1-fcz8xCFr3n5yGM1g8-XfZH-AMSBPkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particulate+Matters+Affecting+lncRNA+Dysregulation+and+Glioblastoma+Invasiveness%3A+In+Silico+Applications+and+Current+Insights&rft.jtitle=Journal+of+molecular+neuroscience&rft.au=Mukherjee%2C+Swagatama&rft.au=Kundu%2C+Uma&rft.au=Desai%2C+Dhwani&rft.au=Pillai%2C+Prakash+P.&rft.date=2022-11-01&rft.pub=Springer+US&rft.issn=0895-8696&rft.eissn=1559-1166&rft.volume=72&rft.issue=11&rft.spage=2188&rft.epage=2206&rft_id=info:doi/10.1007%2Fs12031-022-02069-9&rft.externalDocID=10_1007_s12031_022_02069_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-8696&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-8696&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-8696&client=summon |