Particulate Matters Affecting lncRNA Dysregulation and Glioblastoma Invasiveness: In Silico Applications and Current Insights

With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation wit...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular neuroscience Vol. 72; no. 11; pp. 2188 - 2206
Main Authors Mukherjee, Swagatama, Kundu, Uma, Desai, Dhwani, Pillai, Prakash P.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0895-8696
1559-1166
1559-1166
DOI10.1007/s12031-022-02069-9

Cover

Abstract With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation—a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression—in the case of GBM—can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.
AbstractList With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation—a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression—in the case of GBM—can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.
With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation-a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression-in the case of GBM-can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs). PMs, from various sources and of varying sizes, have a significant impact on health as long-time exposure to them has seen a correlation with various health hazards and have also been determined to be carcinogenic. In addition to disrupting known cellular pathways, PMs have also been associated with lncRNA dysregulation-a factor that increases predisposition towards the onset or progression of cancer. lncRNA dysregulation is further seen to mediate glioblastoma multiforme (GBM) progression. The vast array of information regarding cancer types including GBM and its various precursors can easily be obtained via innovative in silico approaches in the form of databases such as GEO and TCGA; however, a need to obtain selective and specific information correlating anthropogenic factors and disease progression-in the case of GBM-can serve as a critical tool to filter down and target specific PMs and lncRNAs responsible for regulating key cancer hallmarks in glioblastoma. The current review article proposes an in silico approach in the form of a database that reviews current updates on correlation of PMs with lncRNA dysregulation leading to GBM progression.
Author Mukherjee, Swagatama
Desai, Dhwani
Kundu, Uma
Pillai, Prakash P.
Author_xml – sequence: 1
  givenname: Swagatama
  surname: Mukherjee
  fullname: Mukherjee, Swagatama
  organization: Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda
– sequence: 2
  givenname: Uma
  surname: Kundu
  fullname: Kundu, Uma
  organization: Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda
– sequence: 3
  givenname: Dhwani
  surname: Desai
  fullname: Desai, Dhwani
  organization: Integrated Microbiome Resource, Department of Pharmacology and Marine Microbial Genomics and Biogeochemistry lab, Department of Biology, Dalhousie University
– sequence: 4
  givenname: Prakash P.
  orcidid: 0000-0003-3755-6427
  surname: Pillai
  fullname: Pillai, Prakash P.
  email: prakash.pillai-zoo@msubaroda.ac.in
  organization: Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36370303$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1rXCEUhqWkNJO0f6CLInTTzW09evVeuxumTRpIP-jHWrxenRru6ES9gSz63-PMJBSyyEIOwvMcDu97go5CDBah10DeAyHdhwyUMGgIpfURIRv5DC2Ac9kACHGEFqSXvOmFFMfoJOcrQii00L9Ax0ywjjDCFujfD52KN_Oki8VfdSk2Zbx0zpriwxpPwfz8tsSfbnOy6x3kY8A6jPh88nGYdC5xo_FFuNHZ39hgc_5Yf_iXn7yJeLnd1rmX8t5azSnZUCqS_fpvyS_Rc6enbF_dz1P05-zz79WX5vL7-cVqedmYFmRpBgGUS0s5yIF1QEZKBR0cmG5sBXeOaDCcdr21I3SuBzM4TSyXrOWcjYNmp-jdYe82xevZ5qI2Phs7TTrYOGdFO8Z7wTlpK_r2EXoV5xTqdZVqO2CEyB315p6ah40d1Tb5jU636iHYCvQHwKSYa3hOGV_2SZSk_aSAqF2H6tChqh2qfYdKVpU-Uh-2Pymxg5QrHNY2_T_7CesO5BCukQ
CitedBy_id crossref_primary_10_1039_D3LC00204G
crossref_primary_10_1016_j_cca_2023_117618
crossref_primary_10_3390_ijms24055045
Cites_doi 10.18632/aging.104073
10.1097/MCP.0000000000000463
10.1111/cas.14002
10.1016/j.biopha.2018.03.116
10.18632/oncotarget.9569
10.1186/1743-8977-10-63
10.4149/neo_2019_190121N61
10.1007/s11033-020-05371-0
10.3390/ijerph17218193
10.1158/0008-5472.CAN-18-0532
10.1080/15592294.2017.1356555
10.1007/s10863-021-09879-3
10.1016/J.IJHEH.2013.03.002
10.1002/med.21408
10.1002/jcb.29313
10.1038/s41467-019-10025-2
10.1007/s10637-019-00884-3
10.1007/s10565-013-9242-5
10.3390/CELLS8080863
10.3390/CANCERS12092505
10.1158/0008-5472.CAN-19-0680
10.3390/cancers12030603.[accessed2021May22].www.mdpi.com/journal/cancers
10.1002/cam4.1718
10.1093/neuonc/noaa127
10.4149/neo_2018_180829N656
10.1038/s41598-020-65785-5
10.18632/aging.101845
10.3390/cancers11040469
10.2147/OTT.S188396
10.1002/jcb.28819
10.3727/096504018X15228909735079
10.1007/s11869-008-0008-9
10.1073/pnas.1424220112
10.1016/j.redox.2020.101580
10.1111/jcmm.15788
10.1093/jb/mvz097
10.1016/j.bbagen.2021.130065
10.1186/s12989-018-0281-1 10.1186/s12989-018-0281-1
10.1016/j.rser.2015.04.019
10.1093/nar/gkn617
10.1016/j.ecoenv.2019.03.086
10.3390/ijms21010136.[accessed2021May21].www.mdpi.com/journal/ijms
10.1073/pnas.97.24.13286.[accessed2021Jun30].www.pnas.org
10.1038/s41419-020-2267-9
10.3390/cancers11050610
10.3389/fmolb.2020.562798.[accessed2021Jun24].www.frontiersin.org
10.3389/fpubh.2020.00014
10.1016/j.yexmp.2019.104359
10.1007/s13181-011-0203-1
10.1016/j.canlet.2009.01.010
10.1002/wsbm.75 10.1002/wsbm.75
10.2147/CMAR.S227496
10.1016/J.ENVRES.2020.110506
10.7150/jca.41942
10.1186/s13046-018-0941-x
10.1016/j.canlet.2014.12.051
10.1016/j.envpol.2017.11.093
10.4103/aihb.aihb_51_20
10.1007/s11356-020-12051-w
10.3390/atmos11101094
10.3892/mmr.2017.6877
10.1093/neuonc/nox163
10.18632/oncotarget.4290
10.1093/jnci/djx166
10.1038/mt.2016.71
10.1038/s41598-017-09818-6
10.1007/s12094-020-02363-1
10.2147/OTT.S213345
10.1186/s13039-014-0098-z
10.1089/cbr.2019.2830
10.1186/s12935-020-01690-1
10.5194/acp-18-15003-2018
10.1111/jcmm.15280
10.1111/jcmm.13338
10.1186/s12943-020-01210-9
10.1111/jcmm.15189
10.1038/s41598-018-23885-3
10.1016/j.celrep.2016.05.018
10.1016/j.abb.2017.01.013
10.1016/j.gpb.2015.01.005
10.1038/s41612-020-0124-2 10.1038/s41612-020-0124-2
10.1038/s41419-019-2055-6
10.3892/ijo.2018.4621
10.5114/wo.2014.40559
10.1016/j.semcancer.2018.09.002
10.1016/j.cell.2013.09.034
10.1016/S0048-9697(99)00513-6
10.1007/s11414-013-9386-3
10.1158/1078-0432.CCR-19-0747
10.1186/s13046-019-1371-0
10.1158/1078-0432.CCR-18-1656
10.1183/09031936.06.00025006
10.1097/MCP.0000000000000642
10.1186/s12943-017-0737-1
10.1186/s12943-018-0849-2
10.1056/nejmoa1414123
10.1016/j.prp.2019.152476
10.3389/fphys.2019.01404
10.1158/1078-0432.CCR-17-0605
10.1002/mc.20398
10.1039/c3em00719g.[accessed2021Jul4]./pmc/articles/PMC4191923/
10.1093/database/bax084/4565823
10.1016/j.envint.2020.106046
10.1038/nrclinonc.2017.122.[accessed2021Jun24].www.nature.com/nrclinonc
10.1002/jcb.28777
10.1093/JNCICS/PKZ107
10.1038/s41419-019-1477-5
10.1007/s00401-016-1545-1
10.1186/s13046-019-1139-6
10.3892/ijo.2018.4644
10.1177/0963689720906777
10.1111/apm.12480
10.1042/BSR20171577
10.1016/j.canlet.2015.03.027
10.1016/j.pharmthera.2019.107395
10.1186/s12940-020-00631-9
10.1016/s1476-5586(04)80047-2
10.1007/s00795-018-0209-8
10.4149/neo_2018_180606N377
10.1007/978-981-15-7241-8_30
10.1101/gad.1800909
10.1089/cbr.2019.3484
10.1016/j.bbrc.2018.04.133
10.3892/MMR.2017.7304
10.2147/OTT.S232848
10.18632/oncotarget.3229
10.1056/nejmoa043330
10.1016/j.bbrc.2018.04.217
10.1146/annurev.energy.25.1.629.[accessed2021Jun30].www.annualreviews.org
10.1038/nm.3981
10.1038/s41419-018-1183-8
10.1089/cbr.2019.3054
10.22159/ijpps.2017v9i1.15440
10.18632/oncotarget.15991
10.2147/OTT.S130365
10.1161/CIRCULATIONAHA.116.026991
10.1007/s11060-019-03185-0
10.3390/ph14070618
10.1093/nar/gky1031
10.1007/s00204-005-0001-0
10.3390/ijms21010136
10.1042/BSR20190994
10.1007/s13277-015-3843-y
10.3389/fonc.2018.00503
10.1016/j.envint.2017.01.010
10.1016/J.ENVINT.2021.106424
10.3389/fmolb.2020.562798
10.3390/cancers11010017
10.1007/s00280-018-3522-y
10.3390/cells9112369
10.1007/s13273-020-00095-5
10.1093/eurpub/ckaa165.841
10.1016/j.ijbiomac.2019.03.005
10.1089/cbr.2019.2779
10.1007/s10571-020-00833-2
10.1158/1535-7163.MCT-16-0320
10.3892/etm.2019.7564
10.1016/j.bbagrm.2015.06.015
10.21037/atm.2019.11.36
10.3389/fcell.2019.00217
10.3892/ol.2016.4743
10.1016/J.SEMCANCER.2020.12.015
10.18632/oncotarget.9699
10.1016/j.scitotenv.2019.06.102
10.1093/database/bau093
10.1016/j.ecoenv.2020.111327
10.1186/s13045-018-0619-z
10.1097/WNR.0000000000001469
10.1002/jcb.29572
10.1016/j.jes.2017.05.002
10.1111/jcmm.13932
10.2147/OTT.S257050
10.1186/s12943-020-1137-5
10.1016/j.bbrc.2018.01.109
10.3322/caac.21632
10.1093/nar/gkv1252.[accessed2021Jul4]./pmc/articles/PMC4702886/
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
DBID AAYXX
CITATION
NPM
3V.
7QL
7QR
7T7
7TK
7U9
7X7
7XB
88E
88G
8AO
8FD
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
K9.
M0S
M1P
M2M
M7N
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
DOI 10.1007/s12031-022-02069-9
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
ProQuest One Psychology
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1559-1166
EndPage 2206
ExternalDocumentID 36370303
10_1007_s12031_022_02069_9
Genre Journal Article
Review
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VX
0VY
1N0
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3SX
3V.
4.4
406
408
40D
40E
44B
53G
5GY
5RE
5VS
67N
6NX
78A
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACCUX
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
ITM
IWAJR
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M1P
M2M
M4Y
MA-
MVM
N2Q
N9A
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK6
WK8
YLTOR
Z7U
Z82
Z83
Z87
Z8O
Z8V
Z91
ZMTXR
ZOVNA
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QL
7QR
7T7
7TK
7U9
7XB
8FD
8FK
ABRTQ
C1K
FR3
H94
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c419t-b61259e2519b3710d2262bf1c7d465ff0a1c5278eed17f81cbfa0e5934553dba3
IEDL.DBID U2A
ISSN 0895-8696
1559-1166
IngestDate Fri Sep 05 07:55:43 EDT 2025
Fri Jul 25 20:56:21 EDT 2025
Wed Feb 19 02:26:21 EST 2025
Tue Jul 01 03:06:33 EDT 2025
Thu Apr 24 22:50:00 EDT 2025
Fri Feb 21 02:44:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords In silico studies
Long noncoding RNA
Glioblastoma multiforme
Particulate matter
Language English
License 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-b61259e2519b3710d2262bf1c7d465ff0a1c5278eed17f81cbfa0e5934553dba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3755-6427
OpenAccessLink https://doi.org/10.1007/s12031-022-02069-9
PMID 36370303
PQID 2747130094
PQPubID 326248
PageCount 19
ParticipantIDs proquest_miscellaneous_2735865504
proquest_journals_2747130094
pubmed_primary_36370303
crossref_citationtrail_10_1007_s12031_022_02069_9
crossref_primary_10_1007_s12031_022_02069_9
springer_journals_10_1007_s12031_022_02069_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221100
2022-11-00
2022-Nov
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 20221100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Totowa
PublicationSubtitle MN
PublicationTitle Journal of molecular neuroscience
PublicationTitleAbbrev J Mol Neurosci
PublicationTitleAlternate J Mol Neurosci
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Santibáñez-AndradeMChirinoYIGonzález-RamírezISánchez-PérezYGarcía-CuellarCMDeciphering the code between air pollution and disease: The effect of particulate matter on cancer hallmarksInt J Mol Sci202021113610.3390/ijms21010136.[accessed2021May21].www.mdpi.com/journal/ijms
Todorova PK, Fletcher-Sananikone E, Mukherjee B, Kollipara R, Vemireddy V, Xie X-J, Guida PM, Story MD, Hatanpaa K, Habib AA et al (2019) Radiation-induced DNA damage cooperates with heterozygosity of TP53 and PTEN to generate high grade gliomas. https://doi.org/10.1158/0008-5472.CAN-19-0680
Liu X, Chen R, Liu L (2019) Bioscience reports, and undefined SP1–DLEU1–MiR-4429 feedback loop promotes cell proliferative and anti-apoptotic abilities in human glioblastoma. Portlandpress Com Accessed 23 May 2021. https://portlandpress.com/bioscirep/article-abstract/39/12/BSR20190994/221115
Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA, Prada D, Samet J, Thurston G, Cohen A (2020) Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: Cancer J Clin 70(6):460–479. https://doi.org/10.3322/caac.21632
Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y (2019b) Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res 38 (1). https://doi.org/10.1186/s13046-019-1139-6
Brodie S, Lee HK, Jiang W, Cazacu S, Xiang C, Poisson LM, Datta I, Kalkanis S, Ginsberg D, Brodie C (2017) The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells. Oncotarget 8(19):31785–801. https://doi.org/10.18632/oncotarget.15991
ShangCTangWPanCXuanhaoHuHongYLong Non-Coding RNA TUSC7 Inhibits Temozolomide Resistance by Targeting MiR-10a in GlioblastomaCancer Chemother Pharmacol201881467167810.1007/s00280-018-3522-y
VougasKSakellaropoulosTKotsinasAFoukasGRPNtargarasAKoinisFPolyzosAMyrianthopoulosVZhouHNarangSMachine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule miningPharmacol Ther201920310.1016/j.pharmthera.2019.107395
Chen X, Li LQ, Qiu X, Wu H (2019d) Long non-coding RNA HOXB-AS1 promotes proliferation, migration and invasion of glioblastoma cells via HOXB-AS1/MiR-885–3p/HOXB2 Axis. Europepmc Org Accessed 23 May 2021. https://europepmc.org/article/med/30784279
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H et al (2018) Novel role of FBXW7 circular rna in repressing glioma tumorigenesis. J Natl Cancer Inst 110(3). https://doi.org/10.1093/jnci/djx166. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28903484
WangGLiZTianNHanLFuYGuoZTianYMiR-148b-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expressionOncol Lett201612287988610.3892/ol.2016.4743
Sánchez-PérezYChirinoYIOsornio-VargasÁRMorales-BárcenasRGutiérrez-RuízCVázquez-LópezIGarcía-CuellarCMDNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutantsCancer Lett2009278219220010.1016/j.canlet.2009.01.010
Bian EB, Chen EF, Xu YD, Yang ZH, Tang F, Ma CC, Wang HL, Zhao B (2019) Exosomal LncRNA-ATB Activates astrocytes that promote glioma cell invasion.
LongSLiGComprehensive analysis of a long non-coding RNA-mediated competitive endogenous RNA network in glioblastoma multiformeExp Ther Med201918210811090
WangXiSunYiTuoyeXuQianKHuangBZhangKSongZQianTShiJLiLHOXB13 Promotes Proliferation, Migration, and Invasion of Glioblastoma through Transcriptional Upregulation of LncRNA HOXC-AS3J Cell Biochem20191209155271553710.1002/jcb.28819
Ma K, Li C, Xu J, Ren F, Xu X, Liu C, Niu B, Li F (2020) LncRNA Gm16410 regulates PM2.5-induced lung endothelial-mesenchymal transition via the TGF-β1/Smad3/p-Smad3 pathway. Ecotoxicol Environ Safety 205. https://doi.org/10.1016/j.ecoenv.2020.111327. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/32961493
LeisegangMSForkCJosipovicIRichterFMPreussnerJJiongHuMillerMJLong noncoding RNA MANTIS facilitates endothelial angiogenic functionCirculation20171361657910.1161/CIRCULATIONAHA.116.026991
Deng X, Rui W, Zhang F, Ding W, Deng X, Rui W, Zhang F, Ding W (2013) PM 2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol Toxicol 29(3):143–157. https://doi.org/10.1007/s10565-013-9242-5. [Accessed 21 May 2021]. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf
Jindal SK, Aggarwal AN, Jindal A (2020) Household air pollution in India and respiratory diseases: Current status and future directions. Curr Opin Pulm Med 26(2):128–134. https://doi.org/10.1097/MCP.0000000000000642.  [Accessed 22 May 2021]. https://journals.lww.com/co-pulmonarymedicine/Fulltext/2020/03000/Household_air_pollution_in_India_and_respiratory.5.aspx
LiOYiWYangPGuoCPengCLong non-coding RNA UCA1 promotes proliferation and invasion of intrahepatic cholangiocarcinoma cells through targeting microRNA-122Exp Ther Med20191812510.3892/etm.2019.7564
ZhangYJiangXWuZHuDJiaJGuoJTangTYaoJLiuHTangHLong noncoding RNA LINC00467 promotes glioma progression through inhibiting p53 expression via binding to DNMT1J Cancer202011102935294410.7150/jca.41942
Ke J, Yao YL, Zheng J, Wang P, Liu YH, Ma J, Li Z, Liu XB, Li ZQ, Wang ZH et al (2015) Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326. Oncotarget 6(26):21934–21949. https://doi.org/10.18632/oncotarget.4290. [Accessed 4 Jul 2021]. https://europepmc.org/articles/PMC4673137
Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y, Liang H (2018a) Genome and epigenome circNT5E Acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. AACR https://doi.org/10.1158/0008-5472.CAN-18-0532. [Accessed 22 May 2021]. http://cancerres.aacrjournals.org
Santibáñez-Andrade M, Chirino YI, González-Ramírez I, Sánchez-Pérez Y, García-Cuellar CM (2019) Molecular sciences deciphering the code between air pollution and disease: the effect of particulate matter on cancer hallmarks. mdpi.com. https://doi.org/10.3390/ijms21010136
Li X, Zheng M, Pu J, Zhou Y, Hong W, Fu X, Peng Y, Zhou W, Pan H, Li B et al (2018c) Identification of abnormally expressed lncRNAs induced by PM2.5 in human bronchial epithelial cells. Biosci Rep 38(5):20171577. https://doi.org/10.1042/BSR20171577
Wang H, Li L, Yin L (2018b) Biochemical and biophysical research, and undefined Silencing LncRNA LOXL1-AS1 attenuates mesenchymal characteristics of glioblastoma via NF-ΚB pathway. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S0006291X18309148
Chen HH, Zong J, Wang SJ (2019) GAPLINC Sponging MiR-331–3p in Glioblastoma Eur Rev Med Pharmacol Sci. Europeanreview.Org. Accessed 23 May 2021. https://www.europeanreview.org/wp/wp-content/uploads/262-270.pdf
Mazor G, Levin L, Picard D, Ahmadov U, … Carén H - Cell death &, and undefined (2019) n.d. The LncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Nature Com Accessed 23 May 2021. https://www.nature.com/articles/s41419-019-1477-5
Ou J, Pirozzi CS, Horne BD, Hanson HA, Kirchhoff AC, Mitchell LE, Coleman NC, Arden C (2020) Atmosphere historic and modern air pollution studies conducted in Utah.mdpi.com. https://doi.org/10.3390/atmos11101094
SidawayPCNS cancer: Glioblastoma subtypes revisitedNat Rev Clin Oncol2017141058710.1038/nrclinonc.2017.122.[accessed2021Jun24].www.nature.com/nrclinonc
Chen S, Wu X, Hu J, Dai G, Rong A, Guo G (2017) PM2.5 exposure decreases viability, migration and angiogenesis in human umbilical vein endothelial cells and human microvascular endothelial cells. Mol Med Rep 16(3):2425–2430. https://doi.org/10.3892/mmr.2017.6877. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/28677750
Su R, Cao S, Ma J, Liu Y, Liu X, Zheng J, Chen J et al (2017) Knockdown of SOX2OT inhibits the malignant biological behaviors of glioblastoma stem cells via up-regulating the expression of MiR-194–5p and MiR-122. Mol Cancer 16 (1). https://doi.org/10.1186/s12943-017-0737-1
Huarte M (2015) The emerging role of lncRNAs in cancer. Nature Med 21(11):1253–1261. https://doi.org/10.1038/nm.3981. [Accessed 22 May 2021]. https://www.nature.com/articles/nm.3981
Urbańska K, Sokołowska J, Szmidt M, Sysa P (2014) Glioblastoma multiforme – an overview. Contemp Oncol 18(5):307–312. https://doi.org/10.5114/wo.2014.40559. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248049
Zhou KE, Zhang C, Yao H, Zhang X, Zhou Y, Che Y, Huang Y (2018a) Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 Targeted by MiR-132. Mol Cancer 17 (1). https://doi.org/10.1186/s12943-018-0849-2
Li C, Hu G, Wei B, Wang L, Liu N (2019b) OncoTargets and therapy, and undefined LncRNA LINC01494 Promotes Proliferation, Migration and Invasion in Glioma through MiR-122–5p/CCNG1 Axis. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756415
D’AlessioAProiettiGSicaGScicchitanoBMPathological and molecular features of glioblastoma and Its peritumoral tissueCancers201911446910.3390/cancers11040469
WiluszJESunwooHSpectorDLLong noncoding RNAs: Functional surprises from the RNA worldGenes Dev200923131494150410.1101/gad.1800909
Lungu G, Covaleda L, Mendes O, Martini-Stoica H, Stoica G (2008) FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-kappa;B and activating protein-1. Mol Carcinogenesis 47(6):424–435. https://doi.org/10.1002/mc.20398. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/18041768
WuXHouPQiuYWangQXiaojieLuLarge-Scale Analysis Reveals the Specific Clinical and Immune Features of DGCR5 in GliomaOnco Targets Ther2020137531754310.2147/OTT.S257050
GaoXCaoYLiJWangCHeHLncRNA TPT1-AS1 spong
2069_CR184
MS Leisegang (2069_CR73) 2017; 136
2069_CR188
A Bountali (2069_CR6) 2019; 130
2069_CR10
2069_CR13
X Dai (2069_CR28) 2019; 54
2069_CR12
P Deshors (2069_CR32) 2019; 10
T Shi (2069_CR128) 2020; 47
2069_CR19
2069_CR15
2069_CR14
H Omidvarborna (2069_CR112) 2015; 48
P Wu (2069_CR162) 2019; 10
X Wu (2069_CR163) 2020; 13
2069_CR193
2069_CR194
2069_CR191
2069_CR192
2069_CR176
2069_CR173
2069_CR174
2069_CR22
2069_CR21
2069_CR24
JE Wilusz (2069_CR160) 2009; 23
2069_CR23
M Santibáñez-Andrade (2069_CR122) 2020; 21
2069_CR20
M Chen (2069_CR18) 2020; 35
2069_CR29
2069_CR26
2069_CR25
2069_CR183
2069_CR164
2069_CR166
W Zhu (2069_CR197) 2020; 12
B Steinfeld (2069_CR134) 2015; 42
Z Yao (2069_CR177) 2020
A Santovito (2069_CR124) 2020; 10
X Dai (2069_CR27) 2019; 54
2069_CR171
2069_CR172
2069_CR153
2069_CR151
2069_CR157
2069_CR158
2069_CR156
Xi Wang (2069_CR155) 2019; 120
H Xu (2069_CR168) 2020; 24
X Gao (2069_CR39) 2020
2069_CR161
Y Zhang (2069_CR187) 2020; 11
2069_CR142
2069_CR143
2069_CR140
2069_CR141
2069_CR147
2069_CR145
A D’Alessio (2069_CR30) 2019; 11
2069_CR149
G Li (2069_CR75) 2019; 143
C Zhao (2069_CR189) 2020; 38
IC Iser (2069_CR59) 2017; 37
P Sidaway (2069_CR130) 2017; 14
2069_CR150
2069_CR131
2069_CR136
2069_CR133
2069_CR139
M Kandlikar (2069_CR65) 2000; 25
2069_CR137
2069_CR138
I Manisalidis (2069_CR104) 2020; 8
U Vattanasit (2069_CR144) 2014; 217
L Liu (2069_CR88) 2017; 101
S Candido (2069_CR11) 2019; 42
S Long (2069_CR96) 2019; 18
2069_CR120
Y Wang (2069_CR154) 2019; 178
2069_CR125
2069_CR123
2069_CR129
2069_CR127
JE Araújo (2069_CR3) 2019; 687
M Stella (2069_CR135) 2021; 14
V Miguel (2069_CR107) 2020; 37
2069_CR110
RM Harrison (2069_CR47) 2000; 249
2069_CR114
Y Yang (2069_CR175) 2015; 13
2069_CR117
2069_CR118
2069_CR115
2069_CR116
GC Khilnani (2069_CR68) 2018; 24
A Harbo Poulsen (2069_CR46) 2020; 144
G Wang (2069_CR148) 2016; 12
C Wilks (2069_CR159) 2014
Z Dong (2069_CR34) 2019; 57
C Xu (2069_CR167) 2021; 53
2069_CR91
2069_CR90
2069_CR92
2069_CR102
2069_CR103
2069_CR100
2069_CR101
2069_CR99
2069_CR106
J Feng (2069_CR37) 2021; 27
2069_CR98
2069_CR105
ZZ Liu (2069_CR93) 2020; 67
2069_CR95
2069_CR97
2069_CR108
2069_CR109
O Li (2069_CR78) 2019; 18
P Zhang (2069_CR182) 2020
A Bhargava (2069_CR5) 2018; 234
Z Li (2069_CR83) 2021; 193
Y Zhang (2069_CR185) 2020; 57
N Xu (2069_CR170) 2018; 9
S Kundu (2069_CR71) 2014; 16
Y Yao (2069_CR178) 2014
P Zhang (2069_CR180) 2019; 52
Y Sánchez-Pérez (2069_CR121) 2009; 278
J Liz (2069_CR94) 2016; 1859
WJ Gauderman (2069_CR41) 2015; 372
2069_CR77
2069_CR76
2069_CR79
2069_CR72
2069_CR74
J Xue (2069_CR169) 2018
H Ni (2069_CR111) 2021; 41
2069_CR80
2069_CR82
2069_CR81
B Hui (2069_CR57) 2019; 12
2069_CR87
R Wang (2069_CR152) 2018
2069_CR84
2069_CR86
2069_CR8
2069_CR7
2069_CR9
2069_CR4
2069_CR2
2069_CR1
KR Smith (2069_CR132) 2000; 97
2069_CR55
2069_CR54
2069_CR56
2069_CR51
2069_CR50
2069_CR53
2069_CR52
Y Zhao (2069_CR190) 2016; 44
2069_CR58
R Rynkeviciene (2069_CR119) 2018; 11
Y Gao (2069_CR40) 2019; 27
H Xin (2069_CR165) 2019; 120
L Chen (2069_CR17) 2019; 34
2069_CR66
2069_CR67
2069_CR62
H Liu (2069_CR89) 2018; 22
2069_CR61
2069_CR64
2069_CR63
2069_CR69
M Krzyzanowski (2069_CR70) 2008; 1
Y Liao (2069_CR85) 2019; 34
P Zhang (2069_CR181) 2020; 7
J Orach (2069_CR113) 2021; 150
2069_CR33
L Zhang (2069_CR179) 2020; 121
2069_CR35
2069_CR31
L Falzone (2069_CR36) 2019; 11
2069_CR38
2069_CR195
2069_CR196
JH Chen (2069_CR16) 2005; 79
2069_CR44
2069_CR43
J Ji (2069_CR60) 2019
2069_CR45
2069_CR42
2069_CR48
2069_CR49
Y Zhang (2069_CR186) 2018; 18
C Shang (2069_CR126) 2018; 81
K Vougas (2069_CR146) 2019; 203
References_xml – reference: Li X, Zheng M, Pu J, Zhou Y, Hong W, Fu X, Peng Y, Zhou W, Pan H, Li B et al (2018a) Identification of abnormally expressed lncRNAs induced by PM2.5 in human bronchial epithelial cells. Biosci Rep 38(5). https://doi.org/10.1042/BSR20171577
– reference: Heßelbach K, Kim G-J, Flemming S, Häupl T, Bonin M, Dornhof R, Günther S, Merfort I, Humar M, H€ T et al (2017) Disease relevant modifications of the methylome and transcriptome by particulate matter (PM 2.5) from biomass combustion. Taylor & Francis 12(9):779–792. https://doi.org/10.1080/15592294.2017.1356555. [Accessed 21 May 2021]
– reference: Krishnatreya M, Kataki A (2020) Environmental pollution and cancers in India. Adv in Hum Biol 10(3):95. https://doi.org/10.4103/aihb.aihb_51_20. [Accessed 22 May 2021]. https://www.aihbonline.com/article.asp?issn=2321-8568;year=2020;volume=10;issue=3;spage=95;epage=98;aulast=Krishnatreya
– reference: Mineo M, Ricklefs F, Rooj AK, Lyons SM, Ivanov P - Cell reports, and undefined (2016) n.d. The Long Non-Coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S2211124716305861
– reference: ZhangYLinXGengXShiLLiQLiuFFangCWangHAdvances in circular RNAs and their role in gliomaInt J Oncol20205716779
– reference: Chen X, Xie R, Gu P, Huang M, Han J, Dong W, Xie W, Wang B, He W, Zhong G et al (2019c) Long noncoding RNA LBCs inhibits self-renewal and chemoresistance of bladder cancer stem cells through epigenetic silencing of SOX2. Clin Cancer Res 25(4):1389–1403. https://doi.org/10.1158/1078-0432.CCR-18-1656. [Accessed 1 Jul 2021]. http://www.clincancerres.aacrjournals.org
– reference: RynkevicieneRSimieneJStrainieneEStankeviciusVUsinskieneJMiseikyte KaubrieneEMeskinyteICicenasJSuziedelisKNon-coding RNAs in gliomaCancers20181111710.3390/cancers11010017
– reference: Santibáñez-Andrade M, Chirino YI, González-Ramírez I, Sánchez-Pérez Y, García-Cuellar CM (2019) Molecular sciences deciphering the code between air pollution and disease: the effect of particulate matter on cancer hallmarks. mdpi.com. https://doi.org/10.3390/ijms21010136
– reference: Xu Z, Ding W, Deng X (2019b) PM2.5, fine particulate matter: a novel player in the epithelial-mesenchymal transition? Front Physiol 10:1404. https://doi.org/10.3389/fphys.2019.01404.
– reference: ZhangYJiangXWuZHuDJiaJGuoJTangTYaoJLiuHTangHLong noncoding RNA LINC00467 promotes glioma progression through inhibiting p53 expression via binding to DNMT1J Cancer202011102935294410.7150/jca.41942
– reference: NiHWangKXiePZuoJLiuWLiuCLncRNA SAMMSON Knockdown Inhibits the Malignancy of Glioblastoma Cells by Inactivation of the PI3K/Akt PathwayCell Mol Neurobiol2021411799010.1007/s10571-020-00833-2
– reference: Sun Y, Zhang D, Ming Z, Li J, Database XC (2017) undefined. DLREFD: a database providing associations of long non-coding RNAs, environmental factors and phenotypes. Acad Oup Com [Accessed 22 May 2021]. https://academic.oup.com/database/article-abstract https://doi.org/10.1093/database/bax084/4565823
– reference: Zhang Z, Yin J, Lu C, Wei Y, Zeng A, You Y (2019b) Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma. J Exp Clin Cancer Res 38 (1). https://doi.org/10.1186/s13046-019-1139-6
– reference: Lu C, Yutian Wei, WangX, Zhang Z, Yin J, Li W, Chen L et al (2020) DNA-Methylation-Mediated activating of LncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer 19 (1). https://doi.org/10.1186/s12943-020-1137-5
– reference: Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS (2009) NRED: A database of long noncoding RNA expression. Nucleic Acids Res 37(SUPPL. 1):D122–D126. https://doi.org/10.1093/nar/gkn617. [Accessed 20 May 2021]. http://nar.oxfordjournals.org/content/37/suppl_1/D122.full
– reference: Han N, Yang L, Zhang X, Zhou Y, Chen R, Yu Y, Dong Z, Zhang M (2019) LncRNA MATN1-AS1 prevents glioblastoma cell from proliferation and invasion via RELA regulation and MAPK signaling pathway. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6990012
– reference: Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M, Gualtieri M (2013) Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: Characterization of the process and possible mechanisms involved. Part Fibre Toxicol 10(1):63. https://doi.org/10.1186/1743-8977-10-63.
– reference: AraújoJEJorgeSSantosHMChiechiAGalstyanALodeiroCDinizMKleinmanMTLjubimovaJYCapeloJLProteomic changes driven by urban pollution suggest particulate matter as a deregulator of energy metabolism, mitochondrial activity, and oxidative pathways in the rat brainSci Total Environ201968783984810.1016/j.scitotenv.2019.06.102
– reference: Lungu G, Covaleda L, Mendes O, Martini-Stoica H, Stoica G (2008) FGF-1-induced matrix metalloproteinase-9 expression in breast cancer cells is mediated by increased activities of NF-kappa;B and activating protein-1. Mol Carcinogenesis 47(6):424–435. https://doi.org/10.1002/mc.20398. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/18041768
– reference: ShiT GuoDXu HSuGChenJZhaoZShiJHOTAIRM1, an enhancer LncRNA, promotes glioma proliferation by regulating long-range chromatin interactions within HOXA cluster genesSpringer2020472723273310.1007/s11033-020-05371-0
– reference: Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1. [Accessed 24 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/27157931
– reference: Zhou Y, Dai W, Wang H, Pan H, Wang Q (2018b) Long non-coding RNA CASP5 promotes the malignant phenotypes of human glioblastoma multiforme. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S0006291X18310143
– reference: Hu YW, Kang CM, Zhao JJ, Nie Y, Zheng L, Li HX, Li X, Wang Q, Qiu YR (2018) LncRNA PLAC2 down-regulates RPL36 expression and blocks cell cycle progression in glioma through a mechanism involving STAT1. J Cell Mol Med 22(1):497–510. https://doi.org/10.1111/jcmm.13338. [Accessed 1 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28922548
– reference: Liu Y, Xu N, Liu B, Huang Y, Zeng H, Yang Z, He Z (2016b) Oncotarget, and undefined Long Noncoding RNA RP11–838N2. 4 enhances the cytotoxic effects of temozolomide by inhibiting the functions of MiR-10a in glioblastoma cell lines. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5190063
– reference: Zhen L, Yun-hui L, Hong-yu D, Jun M, Yi-long Y (2016) Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumor Biol 37(1):673–683. https://doi.org/10.1007/s13277-015-3843-y.
– reference: Ke J, Yao YL, Zheng J, Wang P, Liu YH, Ma J, Li Z, Liu XB, Li ZQ, Wang ZH et al (2015) Knockdown of long non-coding RNA HOTAIR inhibits malignant biological behaviors of human glioma cells via modulation of miR-326. Oncotarget 6(26):21934–21949. https://doi.org/10.18632/oncotarget.4290. [Accessed 4 Jul 2021]. https://europepmc.org/articles/PMC4673137
– reference: KrzyzanowskiMCohenAUpdate of WHO air quality guidelinesAir Qual Atmos Health20081171310.1007/s11869-008-0008-9
– reference: ZhangYWestJJMarthurRXingJHongrefeCRoselleSJBashJOPleimJEGanCMWongDCLong-term trends in the ambient PM2.5- and O3-related mortality burdens in the United States under emission reductions from (1990) to 2010Atmos Chem Phys20181820150031501610.5194/acp-18-15003-2018
– reference: Ljubimova JY, Braubach O, Patil R, Chiechi A, Tang J, Galstyan A, Shatalova ES, Kleinman MT, Black KL, Holler E (2018) Coarse particulate matter (PM2.5–10) in Los Angeles Basin air induces expression of inflammation and cancer biomarkers in rat brains. Scientific Rep 8(1):1–11. https://doi.org/10.1038/s41598-018-23885-3
– reference: Mudu P, Pérez Velasco R, Zastenskaya I, Jarosinska D (2020) The importance and challenge of carcinogenic air pollutants for health risk and impact assessment. Eur J Public Health. 30(Supplement_5). https://doi.org/10.1093/eurpub/ckaa165.841. [Accessed 21 May 2021]. https://academic.oup.com/eurpub/article/30/Supplement_5/ckaa165.841/5914590
– reference: Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: A review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175. https://doi.org/10.1007/s13181-011-0203-1. [Accessed 4 Jul 2021]. https://www.pmc/articles/PMC3550231
– reference: Chu L, Yu L, Liu J, Song S, Yang H, Han F, Liu F, Hu Y (2019) Long intergenic non-coding LINC00657 regulates tumorigenesis of glioblastoma by acting as a molecular sponge of MiR-190a-3p. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428093
– reference: Lu X, Li R, Yan X (2021) Airway hyperresponsiveness development and the toxicity of PM2.5. Environ Sci Pollut Res 28(6):6374–6391. https://doi.org/10.1007/s11356-020-12051-w. [Accessed 30 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/33394441
– reference: LeisegangMSForkCJosipovicIRichterFMPreussnerJJiongHuMillerMJLong noncoding RNA MANTIS facilitates endothelial angiogenic functionCirculation20171361657910.1161/CIRCULATIONAHA.116.026991
– reference: ChenJHChouFPLinHHWangCJGaseous nitrogen oxide repressed benzo[a]pyrene-induced human lung fibroblast cell apoptosis via inhibiting JNK1 signalsArch Toxicol2005791269470410.1007/s00204-005-0001-0
– reference: Andersen ZJ, Pedersen M, Weinmayr G, Stafoggia M, Galassi C, Jørgensen JT, Sommar JN, Forsberg B, Olsson D, Oftedal B et al (2018) Long-term exposure to ambient air pollution and incidence of brain tumor: The european study of cohorts for air pollution Effects (ESCAPE). Neuro-Oncology 20(3):420–432. https://doi.org/10.1093/neuonc/nox163. [Accessed 2021 Jun 23]. https://www.pmc/articles/PMC5817954/
– reference: Stackhouse CT, Gillespie GY, Willey CD (2020) Exploring the roles of lncRNAs in GBM pathophysiology and their therapeutic potential. Cells. 9(11). https://doi.org/10.3390/cells9112369.
– reference: Dashti S, Ghafouri-Fard S, Esfandi F, Oskooei VK, Arsang-Jang S, Taheri M (2020) Expression analysis of NF-κB interacting long noncoding RNAs in breast cancer. Exp Mol Pathol 112. https://doi.org/10.1016/j.yexmp.2019.104359. [Accessed Ju 1 2021]. https://pubmed.ncbi.nlm.nih.gov/31837323
– reference: LiuHLiCYangJSunYZhangSYangJYangLWangYJiaoBLong noncoding RNA CASC9/MiR-519d/STAT3 positive feedback loop facilitate the glioma tumourigenesisWiley Online Library201822126338634410.1111/jcmm.13932
– reference: Uddin MS, Al Mamun A, Alghamdi BS, Tewari D, Jeandet P, Sarwar MS, Ashraf GM (2020) Epigenetics of glioblastoma multiforme: From molecular mechanisms to therapeutic approaches. Semi Cancer Biol https://doi.org/10.1016/J.SEMCANCER.2020.12.015. [Accessed 26 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/33370605
– reference: Wu AH, Wu J, Tseng C, Yang J, Shariff-Marco S, Fruin S, Larson T, Setiawan VW, Masri S, Porcel J et al (2020a) Association between outdoor air pollution and risk of malignant and benign brain tumors: The multiethnic cohort study. JNCI Cancer Spectrum 4(2). https://doi.org/10.1093/JNCICS/PKZ107. [Accessed 30 Jun 2021]. https://academic.oup.com/jncics/article/4/2/pkz107/5695714
– reference: LiZLiangDYeDChangHHZieglerTRJonesDPEbeltSTApplication of high-resolution metabolomics to identify biological pathways perturbed by traffic-related air pollutionEnviron Res202119310.1016/J.ENVRES.2020.110506
– reference: Li N, Nel AE (2006) The cellular impacts of diesel exhaust particles: Beyond inflammation and death. Eur Respir J 27(4):667–668. https://doi.org/10.1183/09031936.06.00025006. [Accessed 23 Jun 2021]. https://erj.ersjournals.com/content/27/4/667
– reference: Zhou X, Ren Y, Zhang Jing, Zhang C, Zhang K, Han L, Kong L, Wei J, Chen L, Yang J et al (2015) HOTAIR is a therapeutic target in glioblastoma. Oncotarget 6(10):8353–8365. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480757/
– reference: FengJGaoYXuYWangJYangXWenLlncRNA MNX1-AS1 promotes glioblastoma progression through inhibition of miR-4443Oncol Res20212734134710.3727/096504018X15228909735079
– reference: Hanif F, Muzaffar K, Perveen K, … SM-AP journal of, (2017) undefined. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Ncbi Nlm Nih Gov Accessed 22 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563115
– reference: Li X, Zheng M, Pu J, Zhou Y, Hong W, Fu X, Peng Y, Zhou W, Pan H, Li B et al (2018c) Identification of abnormally expressed lncRNAs induced by PM2.5 in human bronchial epithelial cells. Biosci Rep 38(5):20171577. https://doi.org/10.1042/BSR20171577
– reference: Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, Dong S (2017a) Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-09818-6. [Accessed 23 Jun 2021]. /pmc/articles/PMC5570922
– reference: LiGCaiYWangCHuangMChenJLncRNA GAS5 regulates the proliferation, migration, invasion and apoptosis of brain glioma cells through targeting GSTM3 expression. The Effect of LncRNA GAS5 on Glioma CellsJ Neurooncol2019143352553610.1007/s11060-019-03185-0
– reference: Deng X, Rui W, Zhang F, Ding W, Deng X, Rui W, Zhang F, Ding W (2013) PM 2.5 induces Nrf2-mediated defense mechanisms against oxidative stress by activating PIK3/AKT signaling pathway in human lung alveolar epithelial A549 cells. Cell Biol Toxicol 29(3):143–157. https://doi.org/10.1007/s10565-013-9242-5. [Accessed 21 May 2021]. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf
– reference: Liu J, Wang WM, Zhang XL, Du QH, Li HG, Zhang Y (2018b) Effect of downregulated LncRNA NBAT1 on the biological behavior of glioblastoma cells. Eur Rev Med Pharmacol Sci Accessed 23 May 2021. https://www.europeanreview.org/wp/wp-content/uploads/2715-2722.pdf
– reference: GaoYXuYWangJYangXWenLFengJlncRNA MNX1-AS1 promotes glioblastoma progression through inhibition of miR-4443Oncol Res201927334110.3727/096504018X15228909735079
– reference: ZhangPXiaQLiuLLiSDongLCurrent Opinion on Molecular Characterization for GBM Classification in Guiding Clinical Diagnosis, Prognosis, and TherapyFront Mol Biosci202010.3389/fmolb.2020.562798
– reference: Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, Dong S (2017b) Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep 7(1):1–9. https://doi.org/10.1038/s41598-017-09818-6. [Accessed 4 Jul 2021]. https://www.nature.com/scientificreports
– reference: BhargavaATamrakarSAglaweALadHSrivastavaRKMishraDKTiwariRChaudhuryKGoryachevaIYMishraPKUltrafine particulate matter impairs mitochondrial redox homeostasis and activates phosphatidylinositol 3-kinase mediated DNA damage responses in lymphocytesEnviron Pollut201823440641910.1016/j.envpol.2017.11.093
– reference: YaoYWangZMaJXueYWangPLiZLiuJKnockdown of Long Non-Coding RNA XIST Exerts Tumor-Suppressive Functions in Human Glioblastoma Stem Cells by up-Regulating MiR-152 Microenvironmental Modifications on Chemoresistance of GBM View Project Drug Delivery View Project Original Articles Knockdown of Long Non-Coding RNA XIST Exerts Tumor-Suppressive Functions in Human Glioblastoma Stem Cells by up-Regulating MiR-152Elsevier201410.1016/j.canlet.2014.12.051
– reference: Yang B, Tian H, Xiao C (2020) lncRNA NONHSAT021963, which upregulates VEGF in A549 cells, mediates PM2.5 exposure-induced angiogenesis in Shenyang, China. Mol Cell Toxicol https://doi.org/10.1007/s13273-020-00095-5
– reference: Edelman LB, Eddy JA, Price ND (2010) In silico models of cancer. Wiley Interdiscip Rev Syst Biol Med 2(4):438–459. https://doi.org/10.1002/wsbm.75. [Accessed 22 May 2021]. https://onlinelibrary.wiley.com/doi/full https://doi.org/10.1002/wsbm.75
– reference: Huarte M (2015) The emerging role of lncRNAs in cancer. Nature Med 21(11):1253–1261. https://doi.org/10.1038/nm.3981. [Accessed 22 May 2021]. https://www.nature.com/articles/nm.3981
– reference: KhilnaniGCTiwariPAir pollution in India and related adverse respiratory health effects: Past, present, and future directionsCurr Opin Pulm Med201824210811610.1097/MCP.0000000000000463
– reference: ChenLGongXHuangMYY1-Activated long noncoding RNA SNHG5 promotes glioblastoma cell proliferation through p38/MAPK Signaling PathwayCancer Biother Radiopharm201934958959610.1089/cbr.2019.2779
– reference: GaoXCaoYLiJWangCHeHLncRNA TPT1-AS1 sponges MiR-23a-5p in glioblastoma to promote cancer cell proliferationCancer Biotherapy and Radiopharmaceuticals202010.1089/cbr.2019.3484
– reference: LongSLiGComprehensive analysis of a long non-coding RNA-mediated competitive endogenous RNA network in glioblastoma multiformeExp Ther Med201918210811090
– reference: Ren S, Xu Y - Cancer science, and undefined (2019) n.d. AC016405. 3, a Novel long noncoding RNA, Acts as a tumor suppressor through modulation of TET2 by MicroRNA‐19a‐5p sponging in glioblastoma. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6500966
– reference: Iourov IY, Vorsanova SG, Yurov YB (2014) In silico molecular cytogenetics: A bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol Cytogenet 7(1):98. https://doi.org/10.1186/s13039-014-0098-z. [Accessed 22 May 2021]. http://www.molecularcytogenetics.org/content/7/1/98
– reference: Ou J, Pirozzi CS, Horne BD, Hanson HA, Kirchhoff AC, Mitchell LE, Coleman NC, Arden C (2020) Atmosphere historic and modern air pollution studies conducted in Utah.mdpi.com. https://doi.org/10.3390/atmos11101094
– reference: Buccarelli M, Lulli V, Giuliani A, Signore M, Martini M, D’Alessandris QG, Giannetti S, Novelli A, Ilari R, Giurato G, Boe A (2020) Deregulated expression of the imprinted DLK1-DIO3 region in glioblastoma stemlike cells: tumor suppressor role of LncRNA MEG3. Academic Oup Com Accessed 23 May 2021. https://academic.oup.com/neuro-oncology/article-abstract/22/12/1771/5847771
– reference: Zhou KE, Zhang C, Yao H, Zhang X, Zhou Y, Che Y, Huang Y (2018a) Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 Targeted by MiR-132. Mol Cancer 17 (1). https://doi.org/10.1186/s12943-018-0849-2
– reference: Li X, Zheng M, Pu J, Zhou Y, Hong W, Fu X, Peng Y, Zhou W, Pan H, Li B et al (2018b) Identification of abnormally expressed lncRNAs induced by PM2.5 in human bronchial epithelial cells. Biosci Rep 38(5):20171577. https://doi.org/10.1042/BSR20171577
– reference: Brodie S, Lee HK, Jiang W, Cazacu S, Xiang C, Poisson LM, Datta I, Kalkanis S, Ginsberg D, Brodie C (2017) The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells. Oncotarget 8(19):31785–801. https://doi.org/10.18632/oncotarget.15991
– reference: SteinfeldBScottJVilanderGMarxLQuirkMLindbergJKoernerKThe Role of Lean Process Improvement in Implementation of Evidence-Based Practices in Behavioral Health CareJ Behav Heal Serv Res201542450451810.1007/s11414-013-9386-3
– reference: Su R, Ma J, Zheng J, Liu X, Liu Y, Ruan X, … Shen S (2020) PABPC1-induced stabilization of BDNF-AS inhibits malignant progression of glioblastoma cells through STAU1-mediated decay. Cell Death and Disease. Nature.Com. Accessed 23 May 2021. https://www.nature.com/articles/s41419-020-2267-9
– reference: SidawayPCNS cancer: Glioblastoma subtypes revisitedNat Rev Clin Oncol2017141058710.1038/nrclinonc.2017.122.[accessed2021Jun24].www.nature.com/nrclinonc
– reference: Luo N, Zhang K, Li X, Hu Y (2020) ZEB1 induced-upregulation of long noncoding RNA ZEB1-AS1 facilitates the progression of triple negative breast cancer by binding with ELAVL1 to maintain the stability of ZEB1 mRNA. J Cell Biochem 121(10):4176–4187. https://doi.org/10.1002/jcb.29572. [Accessed 1 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/31922280
– reference: WangXiSunYiTuoyeXuQianKHuangBZhangKSongZQianTShiJLiLHOXB13 Promotes Proliferation, Migration, and Invasion of Glioblastoma through Transcriptional Upregulation of LncRNA HOXC-AS3J Cell Biochem20191209155271553710.1002/jcb.28819
– reference: Mukherjee S, Pillai PP (2021) Current insights on extracellular vesicle-mediated glioblastoma progression: Implications in drug resistance and epithelial-mesenchymal transition. Biochimica et Biophysica Acta (BBA)-General Subjects 130065
– reference: XueJRenJYangYXiZHuLPanS-JSunQLong Noncoding RNA SNHG7 Promotes the Progression and Growth of Glioblastoma via Inhibition of MiR-5095Biochemi Biophys Res Commun201810.1016/j.bbrc.2018.01.109
– reference: Gupta R, Shah N, Wang K, Kim J, Nature HH (2010) undefined. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature Com [Accessed 22 May 2021]. https://idp.nature.com/authorize/casa?redirect_uri=https://www.nature.com/articles/nature08975&casa_token=AAE6ursVWKAAAAAA:0L0SaGzsErnCvZPtpNbkKpiLs_zt2GV3Y6v-2l3Qdtbt_k7vscRRNmsa69W-xp__R7bZkKdlDZKywQ
– reference: ManisalidisIStavropoulouEStavropoulosABezirtzoglouEEnvironmental and Health Impacts of Air Pollution: A ReviewFront Public Health202081410.3389/fpubh.2020.00014
– reference: Cao S, Wang Y, Li J, Lv M, Niu H, Tian Y (2016a) Tumor-suppressive function of long noncoding RNA MALAT1 in glioma cells by suppressing miR-155 expression and activating FBXW7 function. Am J Cancer Res 6(11):2561–2574.
– reference: CandidoSLupoGPennisiMBasileMSAnfusoCDPetraliaMCGattusoGVivarelliSSpandidosDALibraMFalzoneLThe analysis of miRNA expression profiling datasets reveals inverse microRNA patterns in glioblastoma and Alzheimer’s diseaseOncol Rep2019423911922
– reference: KunduSStoneEAComposition and sources of fine particulate matter across urban and rural sites in the Midwestern United StatesEnviron Sci Process Impacts20141661360137010.1039/c3em00719g.[accessed2021Jul4]./pmc/articles/PMC4191923/
– reference: VougasKSakellaropoulosTKotsinasAFoukasGRPNtargarasAKoinisFPolyzosAMyrianthopoulosVZhouHNarangSMachine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule miningPharmacol Ther201920310.1016/j.pharmthera.2019.107395
– reference: Wang X, Tian W, Wu L, Wei Z, Li W, Xu Y, Li Y (2020c) NeuroReport, and undefined LncRNA SNHG4 regulates MiR-138/c-Met axis to promote the proliferation of glioblastoma cells. Journals Lww Com Accessed 23 May 2021. https://journals.lww.com/neuroreport/Fulltext/2020c/06020/LncRNA_SNHG4_regulates_miR_138_c_Met_axis_to.5.aspx?context=LatestArticles
– reference: SantovitoAGendusaCCervellaPTraversiDIn vitro genomic damage induced by urban fine particulate matter on human lymphocytesSci Rep20201011710.1038/s41598-020-65785-5
– reference: Wang R, Zhang S, Chen X, Li N, Li J, Jia R, Pan Y, Liang H (2018a) Genome and epigenome circNT5E Acts as a sponge of miR-422a to promote glioblastoma tumorigenesis. AACR https://doi.org/10.1158/0008-5472.CAN-18-0532. [Accessed 22 May 2021]. http://cancerres.aacrjournals.org
– reference: Shaddick G, Thomas ML, Mudu P, Ruggeri G, Gumy S (2020) Half the world’s population are exposed to increasing air pollution. NPJ Clim Atmos Sci 3(1):1–5. https://doi.org/10.1038/s41612-020-0124-2. [Accessed 20 May 2021]. https://doi.org/10.1038/s41612-020-0124-2
– reference: Gupta K, Burns TC (2018) Radiation-induced alterations in the recurrent glioblastoma microenvironment: Therapeutic implications. Front Oncol 8(NOV):503. https://doi.org/10.3389/fonc.2018.00503.
– reference: Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462. https://doi.org/10.1016/j.cell.2013.09.034. [Accessed 4 Jun 2021]. https://www.pubmed.ncbi.nlm.nih.gov/24120142
– reference: ZhangPXiaQLiuLLiSDongLCurrent Opinion on Molecular Characterization for GBM Classification in Guiding Clinical Diagnosis, Prognosis, and TherapyFront Mol Biosci2020724110.3389/fmolb.2020.562798.[accessed2021Jun24].www.frontiersin.org
– reference: ZhangPLiuYChangyuFuWangCeDuanXZouWZhaoTKnockdown of Long Non-Coding RNA PCAT1 in Glioma Stem Cells Promotes Radiation SensitivityMed Mol Morphol201952211412210.1007/s00795-018-0209-8
– reference: ChenMChengYYuanZWangFYangLZhaoHNCK1-AS1 Increases drug resistance of glioma cells to temozolomide by modulating MiR-137/TRIM24Liebertpub Com202035210110810.1089/cbr.2019.3054
– reference: YaoZZhangQGuoFGuoSYangBoLiuBLiPLiJGuanSLiuXLong Noncoding RNA PCED1B-AS1 Promotes the Warburg Effect and Tumorigenesis by Upregulating HIF-1α in GlioblastomaCell Transplant202010.1177/0963689720906777
– reference: Wang H, Li L, Yin L (2018b) Biochemical and biophysical research, and undefined Silencing LncRNA LOXL1-AS1 attenuates mesenchymal characteristics of glioblastoma via NF-ΚB pathway. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S0006291X18309148
– reference: BountaliATongeDPMourtada-MaarabouniMRNA sequencing reveals a key role for the long non-coding RNA MIAT in regulating neuroblastoma and glioblastoma cell fateInt J Biol Macromol201913087889110.1016/j.ijbiomac.2019.03.005
– reference: ShangCTangWPanCXuanhaoHuHongYLong Non-Coding RNA TUSC7 Inhibits Temozolomide Resistance by Targeting MiR-10a in GlioblastomaCancer Chemother Pharmacol201881467167810.1007/s00280-018-3522-y
– reference: Li Qi, Chengya Dong, Jiayue Cui, Yubo Wang, Xinyu Hong (2018e) “Over-Expressed LncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme.” J Exp Clin Cancer Res 37 (1). https://doi.org/10.1186/s13046-018-0941-x
– reference: Wang S, Lin Y, Zhong Y, Zhao M, Yao W, Ren X, Wang Q, Guo X, Zhang QQ, Dai J (2020b) The long noncoding RNA HCG18 participates in PM2. 5-mediated vascular endothelial barrier dysfunction.
– reference: Urbańska K, Sokołowska J, Szmidt M, Sysa P (2014) Glioblastoma multiforme – an overview. Contemp Oncol 18(5):307–312. https://doi.org/10.5114/wo.2014.40559. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248049
– reference: Wang J, Liu X, Yan C, Liu J, Wang S (2017) OncoTargets and undefined LEF1-AS1, a Long-Noncoding RNA, Promotes Malignancy in Glioblastoma. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5584905
– reference: Shou J, Gao H, Cheng S, Wang B, Guan H (2021) LncRNA HOXA-AS2 Promotes glioblastoma carcinogenesis by targeting MiR-885–5p/RBBP4 Axis. Cancer Cell Intl 21 (1). https://doi.org/10.1186/s12935-020-01690-1
– reference: XinHLiuNXiaoshengXuJinwu ZhangYuLiYMLiGLiangJKnockdown of LncRNA-UCA1 Inhibits Cell Viability and Migration of Human Glioma Cells by MiR-193a-Mediated Downregulation of CDK6J Cell Biochem20191209151571516910.1002/jcb.28777
– reference: Liu X, Chen R, Liu L (2019) Bioscience reports, and undefined SP1–DLEU1–MiR-4429 feedback loop promotes cell proliferative and anti-apoptotic abilities in human glioblastoma. Portlandpress Com Accessed 23 May 2021. https://portlandpress.com/bioscirep/article-abstract/39/12/BSR20190994/221115
– reference: Chen X, Li LQ, Qiu X, Wu H (2019d) Long non-coding RNA HOXB-AS1 promotes proliferation, migration and invasion of glioblastoma cells via HOXB-AS1/MiR-885–3p/HOXB2 Axis. Europepmc Org Accessed 23 May 2021. https://europepmc.org/article/med/30784279
– reference: Sai Charan NV, Krithiga S, Subudhi PS (2021) Review of particulate matter filters. In: lecture notes in electrical engineering. Springer Science and Business Media Deutschland GmbH.  688:419–432. [Accessed 21 May 2021]. https://link.springer.com/chapterhttps://doi.org/10.1007/978-981-15-7241-8_30
– reference: WiluszJESunwooHSpectorDLLong noncoding RNAs: Functional surprises from the RNA worldGenes Dev200923131494150410.1101/gad.1800909
– reference: Cai H, Yu Y, Ni X, Li C, Hu Y, Wang J, Chen F (2020) LncRNA LINC00998 inhibits the malignant glioma phenotype via the CBX3-Mediated c-Met/Akt/MTOR Axis. Nature Com Accessed 23 May 2021. https://www.nature.com/articles/s41419-020-03247-6?elqTrackId=6582a165a107467caad4d30ced7231c5
– reference: Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H et al (2018) Novel role of FBXW7 circular rna in repressing glioma tumorigenesis. J Natl Cancer Inst 110(3). https://doi.org/10.1093/jnci/djx166. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28903484
– reference: Sánchez-PérezYChirinoYIOsornio-VargasÁRMorales-BárcenasRGutiérrez-RuízCVázquez-LópezIGarcía-CuellarCMDNA damage response of A549 cells treated with particulate matter (PM10) of urban air pollutantsCancer Lett2009278219220010.1016/j.canlet.2009.01.010
– reference: Xiong Y, Kuang W, Lu S, Guo H, Wu M, Ye M, Wu L (2018) Long noncoding RNA HOXB 13-AS 1 regulates HOXB 13 gene methylation by interacting with EZH 2 in Glioma Wiley Online Library 7(9):4718 4728. https://doi.org/10.1002/cam4.1718
– reference: Chen H, Hou G, Yang J, Chen W,  LG-J (2020a) SOX9‐activated PXN‐AS1 promotes the tumorigenesis of glioblastoma by EZH2‐mediated methylation of DKK1. Wiley Online Library 24(11):6070–6082. https://doi.org/10.1111/jcmm.15189. [Accessed 22 May 2021]. https://onlinelibrary.wiley.com/doi/abs
– reference: Jin X, Ge LP, Li DQ, Shao ZM, Di GH, Xu XE, Jiang YZ (2020a) LncRNA TROJAN promotes proliferation and resistance to CDK4/6 inhibitor via CDK2 transcriptional activation in ER+ breast cancer. Mol Cancer 19(1). https://doi.org/10.1186/s12943-020-01210-9. [Accessed 1 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/32393270
– reference: Mazor G, Levin L, Picard D, Ahmadov U, … Carén H - Cell death &, and undefined (2019) n.d. The LncRNA TP73-AS1 is linked to aggressiveness in glioblastoma and promotes temozolomide resistance in glioblastoma cancer stem cells. Nature Com Accessed 23 May 2021. https://www.nature.com/articles/s41419-019-1477-5
– reference: GaudermanWJUrmanRAvolEBerhaneKMcConnellRRappaportEChangRLurmannFGillilandFAssociation of improved air quality with lung development in childrenN Engl J Med20153721090591310.1056/nejmoa1414123
– reference: He Z, Wang Y, Huang G, Wang Q, Zhao D, Chen L (2017) The lncRNA UCA1 interacts with miR-182 to modulate glioma proliferation and migration by targeting iASPP. Arch Biochem Biophys 623–624:1–8. https://doi.org/10.1016/j.abb.2017.01.013. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28137422
– reference: ZhuWXieLHanJGuoXThe application of deep learning in cancer prognosis predictionCancers202012360310.3390/cancers12030603.[accessed2021May22].www.mdpi.com/journal/cancers
– reference: Liu C, Zhang Y, She X, Fan L, Li P, Feng J, Fu H et al (2018) A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. J Hematol Oncol 11 (1). https://doi.org/10.1186/s13045-018-0619-z
– reference: Merk R, Heßelbach K, Osipova A, Popadić D, Schmidt-Heck W, Kim GJ, Günther S, Piñeres AG, Merfort I, Humar M (2020) Particulate matter (Pm2.5) from biomass combustion induces an anti-oxidative response and cancer drug resistance in human bronchial epithelial beas-2b cells. Intl J Environ Res Public Health 17(21):1–22. https://doi.org/10.3390/ijerph17218193
– reference: Lee C-W, Vo TTT, Wu C-Z, Chi M-C, Lin C-M, Fang M-L, Lee I-T (2020) The inducible role of ambient particulate matter in cancer progression via oxidative stress-mediated reactive oxygen species pathways: a recent perception. Cancers 2020 12(9):2505. https://doi.org/10.3390/CANCERS12092505.
– reference: LiuZZTianYFWuHOuyangSYKuangWLLncRNA H19 Promotes Glioma Angiogenesis through MiR-138/HIF-1α/VEGF AxisNeoplasma202067111111810.4149/neo_2019_190121N61
– reference: MiguelVLamasSEspinosa-DiezCRole of non-coding-RNAs in response to environmental stressors and consequences on human healthRedox Biol20203710.1016/j.redox.2020.101580
– reference: XuHZhangBYangYLiZZhaoPWeiqingWuZhangHMaoJMaoCJLncRNA MIR4435-2HG Potentiates the Proliferation and Invasion of Glioblastoma Cells via Modulating MiR-1224-5p/ TGFBR2 AxisWiley Online Library202024116362637210.1111/jcmm.15280
– reference: Li Z, Zhang J, Zheng H, Li C, Xiong J, Wang W, Bao H, Jin H, Liang P (2019) Modulating LncRNA SNHG15/CDK6/MiR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces m2-polarization of glioma associated microglia in glioblastoma multiforme. J Exp Clin Cancer Res 38 (1). https://doi.org/10.1186/s13046-019-1371-0
– reference: Cao Y, Wang P, Ning S, Xiao W, Xiao B, Li X (2016b) Identification of prognostic biomarkers in glioblastoma using a long non-coding RNA-mediated, competitive endogenous RNA network. Oncotarget 7(27):41737–41747. https://doi.org/10.18632/oncotarget.9569. [Accessed 4 Jul 2021]. https://www.pmc/articles/PMC5173092
– reference: Zhou Y, Yang H, Xia W, Cui L, Xu R, Lu H, Xue D, Tian Z, DIng T, Cao Y et al (2020) LncRNA MEG3 inhibits the progression of prostate cancer by facilitating H3K27 trimethylation of EN2 through binding to EZH2. J Biochem 167(3):295–301. https://doi.org/10.1093/jb/mvz097. [Accessed 1 Jul 2021]. https://academic.oup.com/jb/article/167/3/295/5650411
– reference: Jin Z, Piao L, Sun G, Lv C, Jing Y, therapy RJ-O (2020b) undefined. Long non-coding RNA PART1 exerts tumor suppressive functions in glioma via sponging miR-190a-3p and inactivation of PTEN/AKT pathway. Ncbi Nlm Nnih Gov [Accessed 22 May 2021]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007780
– reference: Su R, Cao S, Ma J, Liu Y, Liu X, Zheng J, Chen J et al (2017) Knockdown of SOX2OT inhibits the malignant biological behaviors of glioblastoma stem cells via up-regulating the expression of MiR-194–5p and MiR-122. Mol Cancer 16 (1). https://doi.org/10.1186/s12943-017-0737-1
– reference: LiOYiWYangPGuoCPengCLong non-coding RNA UCA1 promotes proliferation and invasion of intrahepatic cholangiocarcinoma cells through targeting microRNA-122Exp Ther Med20191812510.3892/etm.2019.7564
– reference: XuCShaoYLiuJYaoXQuanFZhaoQZhaoRLong Non-coding RNA AGAP2-AS1 Promotes Proliferation and Metastasis in Papillary Thyroid Cancer by MiR-628-5p/KLF12 AxisJ Bioenerg Biomembr202153223524510.1007/s10863-021-09879-3
– reference: Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang C (2018a) Long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/b-catenin pathway by scaffolding EZH2. Clin Cancer Res 24(3):684–695. https://doi.org/10.1158/1078-0432.CCR-17-0605. [Accessed 1 Jul 2021]. http://clincancerres.aacrjournals.org
– reference: WuPCaiJChenQHanBoMengXLiYLiZLnc-TALC Promotes O 6 -Methylguanine-DNA Methyltransferase Expression via Regulating the c-Met Pathway by Competitively Binding with MiR-20b-3pNat Commun201910111510.1038/s41467-019-10025-2
– reference: Harbo PoulsenAArthur HvidtfeldtUSørensenMPuettRKetzelMBrandtJChristensenJHGeelsCRaaschou-NielsenOComponents of particulate matter air-pollution and brain tumorsEnviron Int202014410.1016/j.envint.2020.106046
– reference: Kaur S, Katnoria JK (2016) Role of suspended particulate matter in angiogenesis employing crown gall tumor assay. Int J Pharm Pharm Sci 9(1):34. https://doi.org/10.22159/ijpps.2017v9i1.15440. [Accessed 23 Jun 2021]. http://creativecommons.org/licenses/by/4.0
– reference: DeshorsPToulasCArnauducFMalricLSiegfriedANicaiseYLemariéALarrieuDTosoliniMCohen-Jonathan MoyalEIonizing radiation induces endothelial transdifferentiation of glioblastoma stem-like cells through the Tie2 signaling pathwayCell Death Dis2019101111510.1038/s41419-019-2055-6
– reference: JiJRanXuDingKBaoGZhangXHuangBWangXTranslational cancer mechanisms and therapy long noncoding RNA SChLAP1 forms a growth-promoting complex with HNRNPL in human glioblastoma through stabilization of ACTN4 and activation of NF-KB signalingAACR201910.1158/1078-0432.CCR-19-0747
– reference: YangYDongXXieBDingNChenJLiYZhangQQuHFangXDatabases and web tools for cancer genomics studyGenom Proteom Bioinform2015131465010.1016/j.gpb.2015.01.005
– reference: WuXHouPQiuYWangQXiaojieLuLarge-Scale Analysis Reveals the Specific Clinical and Immune Features of DGCR5 in GliomaOnco Targets Ther2020137531754310.2147/OTT.S257050
– reference: Silantyev AS, Falzone L, Libra M, Gurina OI, Kardashova KS, Nikolouzakis TK, Nosyrev AE, Sutton CW, Mitsias PD, Tsatsakis A (2019) Current and future trends on diagnosis and prognosis of glioblastoma: from molecular biology to proteomics. Cells 8(8). https://doi.org/10.3390/CELLS8080863. [Accessed 26 Jul 2021]. https://www.pubmed.ncbi.nlm.nih.gov/31405017
– reference: Zheng J, Liu X, Wang P, Xue Y, Ma J, Qu C, Liu Y (2016) CRNDE promotes malignant progression of Glioma by attenuating miR-384/PIWIL4/STAT3 axis. Mol Ther 24(7):1199–1215. https://doi.org/10.1038/mt.2016.71. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/27058823
– reference: LizJEstellerMlncRNAs and microRNAs with a role in cancer developmentBiochim Biophys Acta Gene Regul Mech20161859116917610.1016/j.bbagrm.2015.06.015
– reference: StellaMFalzoneLCaponnettoAGattusoGBarbagalloCBattagliaRMirabellaFBroggiGAltieriRCertoFCaltabianoRSerum extracellular vesicle-derived circHIPK3 and circSMARCA5 are two novel diagnostic biomarkers for glioblastoma multiformePharmaceuticals202114761810.3390/ph14070618
– reference: Volders PJ, Anckaert J, Verheggen K, Nuytens J, Martens L, Mestdagh P, Vandesompele J (2019) Lncipedia 5: Towards a reference set of human long non-coding rnas. Nucleic Acids Res47(D1):D135–D139. https://doi.org/10.1093/nar/gky1031. [Accessed 10 May 2021]. https://pubmed.ncbi.nlm.nih.gov/30371849
– reference: HarrisonRMYinJParticulate matter in the atmosphere: Which particle properties are important for its effects on health?Sci Total Environ20002491–38510110.1016/S0048-9697(99)00513-6
– reference: KandlikarMThe causes and consequences of particulate air pollution in urban India: A synthesis of the scienceAnnu Rev Energy Env20002562968410.1146/annurev.energy.25.1.629.[accessed2021Jun30].www.annualreviews.org
– reference: WilksCClineMSWeilerEDiehkansMCraftBMartinCMurphyDPierceHBlackJNelsonDThe Cancer Genomics Hub (CGHub): overcoming cancer through the power of torrential dataDatabase : the Journal of Biological Databases and Curation201410.1093/database/bau093
– reference: XuNLiuBLianCDoychevaDMZhaoFuLiuYZhouJLong Noncoding RNA AC003092.1 Promotes Temozolomide Chemosensitivity through MiR-195/TFPI-2 Signaling Modulation in GlioblastomaCell Death Dis201891211610.1038/s41419-018-1183-8
– reference: DaiXLiaoKZhuangZChenBZhouZZhouSLinGAHIF promotes glioblastoma progression and radioresistance via exosomesInt J Oncol201954126127010.3892/ijo.2018.4621
– reference: LiuLUrchBSzyszkowiczMSpeckMLeingartnerKShuttRPelletierGGoldDRScottJABrookJRInfluence of exposure to coarse, fine and ultrafine urban particulate matter and their biological constituents on neural biomarkers in a randomized controlled crossover studyEnviron Int2017101899510.1016/j.envint.2017.01.010
– reference: Li C, Hu G, Wei B, Wang L, Liu N (2019b) OncoTargets and therapy, and undefined LncRNA LINC01494 Promotes Proliferation, Migration and Invasion in Glioma through MiR-122–5p/CCNG1 Axis. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6756415
– reference: Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA, Prada D, Samet J, Thurston G, Cohen A (2020) Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: Cancer J Clin 70(6):460–479. https://doi.org/10.3322/caac.21632
– reference: Chen W, Li Q, Zhang G, Wang H, Zhu Z, Chen L (2020b) LncRNA HOXA‐AS3 promotes the malignancy of glioblastoma through regulating miR‐455‐5p/USP3 axis. Wiley Online Library 24(20):11755–11767. https://doi.org/10.1111/jcmm.15788. [Accessed 22 May 2021]. https://onlinelibrary.wiley.com/doi/abs
– reference: VattanasitUNavasumritPKhadkaMBKanitwithayanunJPromvijitJAutrupHRuchirawatMOxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particlesInt J Hyg Environ Health20142171233310.1016/J.IJHEH.2013.03.002
– reference: FalzoneLLupoGLa RosaGRMCrimiSAnfusoCDSalemiRRapisardaELibraMCandidoSIdentification of novel MicroRNAs and their diagnostic and prognostic significance in oral cancerCancers201911561010.3390/cancers11050610
– reference: Wang Y, Wang Y, Li J, Zhang Y, Yin H, Han B (2015) CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling. Cancer Lett 367(2):122–128. https://doi.org/10.1016/j.canlet.2015.03.027. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/25813405
– reference: Chi Y, Huang Q, Lin Y, Ye G, Zhu H, Dong S (2018) Epithelial-mesenchymal transition effect of fine particulate matter from the Yangtze River Delta region in China on human bronchial epithelial cells. J Environ Sci (China) 66:155–164. https://doi.org/10.1016/j.jes.2017.05.002. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/29628082
– reference: Liu, Shuang, Ramkrishna Mitra, Ming-Ming Zhao, Wenhong Fan, Christine M Eischen, Feng Yin, and Zhongming Zhao (2016a) The potential roles of long noncoding RNAs (LncRNA) in glioblastoma development. Mol Cancer Ther 15 (12). https://doi.org/10.1158/1535-7163.MCT-16-0320
– reference: WangYZhongYHouTLiaoJZhangCSunCWangGPM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitroEcotoxicol Environ Saf201917815916710.1016/j.ecoenv.2019.03.086
– reference: Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C, Bogdahn U et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/nejmoa043330. [Accessed 24 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/15758009
– reference: Chen S, Wu X, Hu J, Dai G, Rong A, Guo G (2017) PM2.5 exposure decreases viability, migration and angiogenesis in human umbilical vein endothelial cells and human microvascular endothelial cells. Mol Med Rep 16(3):2425–2430. https://doi.org/10.3892/mmr.2017.6877. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/28677750
– reference: Li J, Zhou L (2018d) Biomedicine and Pharmacotherapy, and undefined Overexpression of LncRNA DANCR Positively Affects Progression of Glioma via Activating Wnt/β-Catenin Signaling. Elsevier Accessed 23 May 2021. https://www.sciencedirect.com/science/article/pii/S0753332217369275
– reference: OmidvarbornaHKumarAKimDSRecent studies on soot modeling for diesel combustionRenew Sustain Energy Rev20154863564710.1016/j.rser.2015.04.019
– reference: Wang SJ, Wang H, Zhao CD, Li R (2018d) Long noncoding RNA LINC01426 promotes glioma progression through PI3K/AKT signaling pathway and serves as a prognostic biomarker. Eur Rev Med Pharmacol Sci Accessed 23 May 2021. https://www.europeanreview.org/wp/wp-content/uploads/6358-6368.pdf
– reference: ZhaoCGaoYGuoRLiHYangBMicroarray expression profiles and bioinformatics analysis of mRNAs, lncRNAs, and circRNAs in the secondary temozolomide-resistant glioblastomaInvest New Drugs20203851227123510.1007/s10637-019-00884-3
– reference: Zhang Y, Cruickshanks N, Pahuski M, Yuan F, Dutta A, Schiff D, Purow B, Abounader R (2017a) Noncoding RNAs in glioblastoma. Exonpublications.Com. [Accessed 23 May 2021]. https://www.exonpublications.com/index.php/exon/article/view/128
– reference: Gao XF, He HQ, Zhu XB, Xie SL, Cao Y (2019a) LncRNA SNHG20 promotes tumorigenesis and cancer stemness in glioblastoma via activating PI3K/Akt/MTOR signaling pathway. Europepmc Org Accessed 23 May 2021. https://europepmc.org/article/med/30943748
– reference: WangRZhangSChenXLiNLiJJiaRPanYLiangHGenome and Epigenome CircNT5E Acts as a Sponge of MiR-422a to Promote Glioblastoma TumorigenesisAACR201810.1158/0008-5472.CAN-18-0532
– reference: Xu Z, Ding W, Deng X (2019a) PM2.5, fine particulate matter: a novel player in the epithelial-mesenchymal transition? Front Physiol https://doi.org/10.3389/fphys.2019.01404
– reference: LiaoYZhangBZhangTZhangYWangFLncRNA GATA6-AS promotes cancer cell proliferation and inhibits apoptosis in glioma by downregulating LncRNA TUG1Liebertpub Com2019341066066510.1089/cbr.2019.2830
– reference: WangGLiZTianNHanLFuYGuoZTianYMiR-148b-3p inhibits malignant biological behaviors of human glioma cells induced by high HOTAIR expressionOncol Lett201612287988610.3892/ol.2016.4743
– reference: Xie H, Shi S, Chen Q, Chen Z (2019) LncRNA TRG-AS1 promotes glioblastoma cell proliferation by competitively binding with MiR-877–5p to regulate SUZ12 expression. Pathol Res Pract 215 (8). https://doi.org/10.1016/j.prp.2019.152476
– reference: Jindal SK, Aggarwal AN, Jindal A (2020) Household air pollution in India and respiratory diseases: Current status and future directions. Curr Opin Pulm Med 26(2):128–134. https://doi.org/10.1097/MCP.0000000000000642.  [Accessed 22 May 2021]. https://journals.lww.com/co-pulmonarymedicine/Fulltext/2020/03000/Household_air_pollution_in_India_and_respiratory.5.aspx
– reference: Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, Dong S (2017c) Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-09818-6. [Accessed 21 May 2021]. /pmc/articles/PMC5570922
– reference: ZhaoYLiHFangSKangYWuWHaoYLiZBuDSunNZhangMQNONCODE 2016: An informative and valuable data source of long non-coding RNAsNucleic Acids Res201644D1D203D20810.1093/nar/gkv1252.[accessed2021Jul4]./pmc/articles/PMC4702886/
– reference: D’AlessioAProiettiGSicaGScicchitanoBMPathological and molecular features of glioblastoma and Its peritumoral tissueCancers201911446910.3390/cancers11040469
– reference: Santibáñez-AndradeMChirinoYIGonzález-RamírezISánchez-PérezYGarcía-CuellarCMDeciphering the code between air pollution and disease: The effect of particulate matter on cancer hallmarksInt J Mol Sci202021113610.3390/ijms21010136.[accessed2021May21].www.mdpi.com/journal/ijms
– reference: ZhangLWangHMeijieXuChenFLiWHaotianHuYuanQLong Noncoding RNA HAS2-AS1 Promotes Tumor Progression in Glioblastoma via Functioning as a Competing Endogenous RNAJ Cell Biochem2020121166167110.1002/jcb.29313
– reference: SmithKRNational burden of disease in India from indoor air pollutionProc Natl Acad Sci USA20009724132861329310.1073/pnas.97.24.13286.[accessed2021Jun30].www.pnas.org
– reference: Zhang Y, Li Y, Wang Q, Zhang X, Wang D, Tang HC, Meng X, Ding X (2017b) Identification of an lncRNA-miRNA-mRNA interaction mechanism in breast cancer based on bioinformatic analysis. Mol Med Rep 16(4):5113–5120. https://doi.org/10.3892/MMR.2017.7304. [Accessed 26 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/28849135
– reference: Hu S, Yao Y, Hu X, Zhu Y (2094) LncRNA DCST1-AS1 Downregulates MiR-29b through methylation in glioblastoma (GBM) to promote cancer cell proliferation. Clin Transl Oncol 22: 2230–35. https://doi.org/10.1007/s12094-020-02363-1
– reference: HuiBXuYZhaoBJiHMaZXuSHeZWangKLuJOverexpressed long noncoding RNA TUG1 affects the cell cycle, proliferation, and apoptosis of pancreatic cancer partly through suppressing RND3 and MT2AOnco Targets Ther2019121043105710.2147/OTT.S188396
– reference: Poulsen AH, Hvidtfeldt UA, Sørensen M, Puett R, Ketzel M, Brandt J, Geels C, Christensen JH, Raaschou-Nielsen O (2020) Intracranial tumors of the central nervous system and air pollution - A nationwide case-control study from Denmark. Environ Health: A Glob Access Sci Source 19(1). https://doi.org/10.1186/s12940-020-00631-9
– reference: IserICPereiraMBLenzGWinkMRThe epithelial-to-mesenchymal transition-like process in glioblastoma: an updated systematic review and in silico investigationMed Res Rev201737227131310.1002/med.21408
– reference: Chen Q, Cai J, Wang Q, Wang Y, Liu M, Yang J, Zhou J, Kang C, Li M, Jiang C. (2018b) Biology of human tumors long noncoding RNA NEAT1, regulated by the EGFR pathway, contributes to glioblastoma progression through the WNT/b-Catenin pathway by scaffolding EZH2. AACR https://doi.org/10.1158/1078-0432.CCR-17-0605. [Accessed 22 May 2021]. http://clincancerres.aacrjournals.org
– reference: Yan Y, Xu Z, Chen X, Wang X, Zeng S, Zhao Z, Qian L et al (2019) Novel function of LncRNA ADAMTS9-AS2 in promoting temozolomide resistance in glioblastoma via upregulating the FUS/MDM2 ubiquitination axis. Front Cell Dev Biol 7 (October). https://doi.org/10.3389/fcell.2019.00217
– reference: Jin Z, Piao L, Sun G, Lv C, Jing Y, Jin R - OncoTargets and therapy, and undefined (2020c) n.d. Long non-coding RNA PART1 exerts tumor suppressive functions in glioma via sponging MiR-190a-3p and inactivation of PTEN/AKT pathway. Ncbi Nlm Nih Gov Accessed 23 May 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7007780
– reference: Pastori C, Kapranov P, Penas C, Peschansky V, Volmar CH, Sarkaria JN, Bregy A, Komotar R, Laurent GS, Ayad NG et al (2015) The bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation. Proc Natl Acad Sci USA 112(27):8326–8331. https://doi.org/10.1073/pnas.1424220112. [Accessed 4 Jul 2021]. https://europepmc.org/articles/PMC4500283
– reference: Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia 6(1):1–6. https://doi.org/10.1016/s1476-5586(04)80047-2. [Accessed 20 May 2021]. https://pubmed.ncbi.nlm.nih.gov/15068665
– reference: Ma K, Li C, Xu J, Ren F, Xu X, Liu C, Niu B, Li F (2020) LncRNA Gm16410 regulates PM2.5-induced lung endothelial-mesenchymal transition via the TGF-β1/Smad3/p-Smad3 pathway. Ecotoxicol Environ Safety 205. https://doi.org/10.1016/j.ecoenv.2020.111327. [Accessed 23 Jun 2021]. https://pubmed.ncbi.nlm.nih.gov/32961493
– reference: OrachJRiderCFCarlstenCConcentration-dependent health effects of air pollution in controlled human exposuresEnviron Int202115010.1016/J.ENVINT.2021.106424
– reference: Todorova PK, Fletcher-Sananikone E, Mukherjee B, Kollipara R, Vemireddy V, Xie X-J, Guida PM, Story MD, Hatanpaa K, Habib AA et al (2019) Radiation-induced DNA damage cooperates with heterozygosity of TP53 and PTEN to generate high grade gliomas. https://doi.org/10.1158/0008-5472.CAN-19-0680
– reference: Shih C-H, Chen J-K, Kuo L-W, Cho K-H, Hsiao T-C, Lin Z-W, Lin Y-S, Kang J-H, Lo Y-C, Chuang K-J et al (2018) Chronic pulmonary exposure to traffic-related fine particulate matter causes brain impairment in adult rats. PTCL Fibre Toxicol 15(1):44. https://doi.org/10.1186/s12989-018-0281-1. [Accessed 4 Jul 2021]. https://particleandfibretoxicology.biomedcentral.com/articles https://doi.org/10.1186/s12989-018-0281-1
– reference: DongZCuiHEpigenetic modulation of metabolism in glioblastomaSemin Cancer Biol201957455110.1016/j.semcancer.2018.09.002
– reference: DaiXLiaoKZhuangZChenBZhouZZhouSLinGZhangFLinYMiaoYAHIF promotes glioblastoma progression and radioresistance via exosomesInt J Oncol201954126127010.3892/ijo.2018.4621
– reference: He C, Jiang B, Ma J, Li Q (2016) Aberrant NEAT1 expression is associated with clinical outcome in high grade glioma patients. APMIS 124(3):169–174. https://doi.org/10.1111/apm.12480. [Accessed 4 Jul 2021]. https://pubmed.ncbi.nlm.nih.gov/26582084
– reference: Chen HH, Zong J, Wang SJ (2019) GAPLINC Sponging MiR-331–3p in Glioblastoma Eur Rev Med Pharmacol Sci. Europeanreview.Org. Accessed 23 May 2021. https://www.europeanreview.org/wp/wp-content/uploads/262-270.pdf
– reference: Bian EB, Chen EF, Xu YD, Yang ZH, Tang F, Ma CC, Wang HL, Zhao B (2019) Exosomal LncRNA-ATB Activates astrocytes that promote glioma cell invasion.
– reference: Wang S, Guo X, Lv W, Li Y (2020a) LZ-C management undefined. LncRNA RPSAP52 upregulates TGF-β1 to increase cancer cell stemness and predict postoperative survival in glioblastoma. Ncbi Nlm Nih Gov [Accessed 23 May 2021]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170709
– ident: 2069_CR157
  doi: 10.18632/aging.104073
– volume: 24
  start-page: 108
  issue: 2
  year: 2018
  ident: 2069_CR68
  publication-title: Curr Opin Pulm Med
  doi: 10.1097/MCP.0000000000000463
– ident: 2069_CR117
  doi: 10.1111/cas.14002
– ident: 2069_CR76
  doi: 10.1016/j.biopha.2018.03.116
– ident: 2069_CR13
  doi: 10.18632/oncotarget.9569
– ident: 2069_CR97
  doi: 10.1186/1743-8977-10-63
– volume: 67
  start-page: 111
  issue: 1
  year: 2020
  ident: 2069_CR93
  publication-title: Neoplasma
  doi: 10.4149/neo_2019_190121N61
– volume: 47
  start-page: 2723
  year: 2020
  ident: 2069_CR128
  publication-title: Springer
  doi: 10.1007/s11033-020-05371-0
– ident: 2069_CR106
  doi: 10.3390/ijerph17218193
– ident: 2069_CR150
  doi: 10.1158/0008-5472.CAN-18-0532
– volume: 57
  start-page: 67
  issue: 1
  year: 2020
  ident: 2069_CR185
  publication-title: Int J Oncol
– ident: 2069_CR50
  doi: 10.1080/15592294.2017.1356555
– volume: 53
  start-page: 235
  issue: 2
  year: 2021
  ident: 2069_CR167
  publication-title: J Bioenerg Biomembr
  doi: 10.1007/s10863-021-09879-3
– volume: 217
  start-page: 23
  issue: 1
  year: 2014
  ident: 2069_CR144
  publication-title: Int J Hyg Environ Health
  doi: 10.1016/J.IJHEH.2013.03.002
– volume: 37
  start-page: 271
  issue: 2
  year: 2017
  ident: 2069_CR59
  publication-title: Med Res Rev
  doi: 10.1002/med.21408
– volume: 121
  start-page: 661
  issue: 1
  year: 2020
  ident: 2069_CR179
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.29313
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 2069_CR162
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10025-2
– volume: 38
  start-page: 1227
  issue: 5
  year: 2020
  ident: 2069_CR189
  publication-title: Invest New Drugs
  doi: 10.1007/s10637-019-00884-3
– ident: 2069_CR31
  doi: 10.1007/s10565-013-9242-5
– ident: 2069_CR131
  doi: 10.3390/CELLS8080863
– ident: 2069_CR72
  doi: 10.3390/CANCERS12092505
– ident: 2069_CR153
– ident: 2069_CR140
  doi: 10.1158/0008-5472.CAN-19-0680
– volume: 12
  start-page: 603
  issue: 3
  year: 2020
  ident: 2069_CR197
  publication-title: Cancers
  doi: 10.3390/cancers12030603.[accessed2021May22].www.mdpi.com/journal/cancers
– ident: 2069_CR166
  doi: 10.1002/cam4.1718
– ident: 2069_CR9
  doi: 10.1093/neuonc/noaa127
– ident: 2069_CR38
  doi: 10.4149/neo_2018_180829N656
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 2069_CR124
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-65785-5
– ident: 2069_CR26
  doi: 10.18632/aging.101845
– volume: 11
  start-page: 469
  issue: 4
  year: 2019
  ident: 2069_CR30
  publication-title: Cancers
  doi: 10.3390/cancers11040469
– volume: 12
  start-page: 1043
  year: 2019
  ident: 2069_CR57
  publication-title: Onco Targets Ther
  doi: 10.2147/OTT.S188396
– volume: 120
  start-page: 15527
  issue: 9
  year: 2019
  ident: 2069_CR155
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.28819
– volume: 27
  start-page: 341
  issue: 3
  year: 2019
  ident: 2069_CR40
  publication-title: Oncol Res
  doi: 10.3727/096504018X15228909735079
– volume: 1
  start-page: 7
  issue: 1
  year: 2008
  ident: 2069_CR70
  publication-title: Air Qual Atmos Health
  doi: 10.1007/s11869-008-0008-9
– ident: 2069_CR115
  doi: 10.1073/pnas.1424220112
– volume: 37
  year: 2020
  ident: 2069_CR107
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2020.101580
– ident: 2069_CR22
  doi: 10.1111/jcmm.15788
– ident: 2069_CR195
  doi: 10.1093/jb/mvz097
– ident: 2069_CR110
  doi: 10.1016/j.bbagen.2021.130065
– ident: 2069_CR127
  doi: 10.1186/s12989-018-0281-1 10.1186/s12989-018-0281-1
– volume: 48
  start-page: 635
  year: 2015
  ident: 2069_CR112
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.04.019
– ident: 2069_CR33
  doi: 10.1093/nar/gkn617
– volume: 178
  start-page: 159
  year: 2019
  ident: 2069_CR154
  publication-title: Ecotoxicol Environ Saf
  doi: 10.1016/j.ecoenv.2019.03.086
– volume: 21
  start-page: 136
  issue: 1
  year: 2020
  ident: 2069_CR122
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms21010136.[accessed2021May21].www.mdpi.com/journal/ijms
– volume: 97
  start-page: 13286
  issue: 24
  year: 2000
  ident: 2069_CR132
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.24.13286.[accessed2021Jun30].www.pnas.org
– ident: 2069_CR139
  doi: 10.1038/s41419-020-2267-9
– volume: 11
  start-page: 610
  issue: 5
  year: 2019
  ident: 2069_CR36
  publication-title: Cancers
  doi: 10.3390/cancers11050610
– volume: 7
  start-page: 241
  year: 2020
  ident: 2069_CR181
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2020.562798.[accessed2021Jun24].www.frontiersin.org
– volume: 8
  start-page: 14
  year: 2020
  ident: 2069_CR104
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2020.00014
– ident: 2069_CR29
  doi: 10.1016/j.yexmp.2019.104359
– ident: 2069_CR2
  doi: 10.1007/s13181-011-0203-1
– volume: 278
  start-page: 192
  issue: 2
  year: 2009
  ident: 2069_CR121
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2009.01.010
– ident: 2069_CR35
  doi: 10.1002/wsbm.75 10.1002/wsbm.75
– ident: 2069_CR183
– ident: 2069_CR156
  doi: 10.2147/CMAR.S227496
– volume: 193
  year: 2021
  ident: 2069_CR83
  publication-title: Environ Res
  doi: 10.1016/J.ENVRES.2020.110506
– volume: 11
  start-page: 2935
  issue: 10
  year: 2020
  ident: 2069_CR187
  publication-title: J Cancer
  doi: 10.7150/jca.41942
– ident: 2069_CR79
  doi: 10.1186/s13046-018-0941-x
– year: 2014
  ident: 2069_CR178
  publication-title: Elsevier
  doi: 10.1016/j.canlet.2014.12.051
– volume: 234
  start-page: 406
  year: 2018
  ident: 2069_CR5
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2017.11.093
– ident: 2069_CR69
  doi: 10.4103/aihb.aihb_51_20
– ident: 2069_CR100
  doi: 10.1007/s11356-020-12051-w
– ident: 2069_CR114
  doi: 10.3390/atmos11101094
– ident: 2069_CR19
  doi: 10.3892/mmr.2017.6877
– ident: 2069_CR1
  doi: 10.1093/neuonc/nox163
– ident: 2069_CR67
  doi: 10.18632/oncotarget.4290
– ident: 2069_CR174
  doi: 10.1093/jnci/djx166
– ident: 2069_CR192
  doi: 10.1038/mt.2016.71
– ident: 2069_CR54
  doi: 10.1038/s41598-017-09818-6
– ident: 2069_CR52
  doi: 10.1007/s12094-020-02363-1
– ident: 2069_CR74
  doi: 10.2147/OTT.S213345
– ident: 2069_CR58
  doi: 10.1186/s13039-014-0098-z
– volume: 34
  start-page: 660
  issue: 10
  year: 2019
  ident: 2069_CR85
  publication-title: Liebertpub Com
  doi: 10.1089/cbr.2019.2830
– ident: 2069_CR129
  doi: 10.1186/s12935-020-01690-1
– volume: 18
  start-page: 15003
  issue: 20
  year: 2018
  ident: 2069_CR186
  publication-title: Atmos Chem Phys
  doi: 10.5194/acp-18-15003-2018
– volume: 24
  start-page: 6362
  issue: 11
  year: 2020
  ident: 2069_CR168
  publication-title: Wiley Online Library
  doi: 10.1111/jcmm.15280
– ident: 2069_CR51
  doi: 10.1111/jcmm.13338
– ident: 2069_CR61
  doi: 10.1186/s12943-020-01210-9
– ident: 2069_CR14
  doi: 10.1111/jcmm.15189
– ident: 2069_CR95
  doi: 10.1038/s41598-018-23885-3
– ident: 2069_CR108
  doi: 10.1016/j.celrep.2016.05.018
– ident: 2069_CR49
  doi: 10.1016/j.abb.2017.01.013
– ident: 2069_CR42
– volume: 13
  start-page: 46
  issue: 1
  year: 2015
  ident: 2069_CR175
  publication-title: Genom Proteom Bioinform
  doi: 10.1016/j.gpb.2015.01.005
– ident: 2069_CR125
  doi: 10.1038/s41612-020-0124-2 10.1038/s41612-020-0124-2
– volume: 10
  start-page: 1
  issue: 11
  year: 2019
  ident: 2069_CR32
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-019-2055-6
– volume: 54
  start-page: 261
  issue: 1
  year: 2019
  ident: 2069_CR28
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2018.4621
– ident: 2069_CR143
  doi: 10.5114/wo.2014.40559
– volume: 57
  start-page: 45
  year: 2019
  ident: 2069_CR34
  publication-title: Semin Cancer Biol
  doi: 10.1016/j.semcancer.2018.09.002
– ident: 2069_CR7
  doi: 10.1016/j.cell.2013.09.034
– ident: 2069_CR45
– volume: 249
  start-page: 85
  issue: 1–3
  year: 2000
  ident: 2069_CR47
  publication-title: Sci Total Environ
  doi: 10.1016/S0048-9697(99)00513-6
– volume: 42
  start-page: 504
  issue: 4
  year: 2015
  ident: 2069_CR134
  publication-title: J Behav Heal Serv Res
  doi: 10.1007/s11414-013-9386-3
– year: 2019
  ident: 2069_CR60
  publication-title: AACR
  doi: 10.1158/1078-0432.CCR-19-0747
– ident: 2069_CR84
  doi: 10.1186/s13046-019-1371-0
– ident: 2069_CR23
  doi: 10.1158/1078-0432.CCR-18-1656
– ident: 2069_CR77
  doi: 10.1183/09031936.06.00025006
– ident: 2069_CR64
  doi: 10.1097/MCP.0000000000000642
– ident: 2069_CR138
  doi: 10.1186/s12943-017-0737-1
– ident: 2069_CR193
  doi: 10.1186/s12943-018-0849-2
– volume: 372
  start-page: 905
  issue: 10
  year: 2015
  ident: 2069_CR41
  publication-title: N Engl J Med
  doi: 10.1056/nejmoa1414123
– ident: 2069_CR164
  doi: 10.1016/j.prp.2019.152476
– ident: 2069_CR171
  doi: 10.3389/fphys.2019.01404
– ident: 2069_CR20
  doi: 10.1158/1078-0432.CCR-17-0605
– ident: 2069_CR101
  doi: 10.1002/mc.20398
– volume: 16
  start-page: 1360
  issue: 6
  year: 2014
  ident: 2069_CR71
  publication-title: Environ Sci Process Impacts
  doi: 10.1039/c3em00719g.[accessed2021Jul4]./pmc/articles/PMC4191923/
– ident: 2069_CR137
  doi: 10.1093/database/bax084/4565823
– volume: 144
  year: 2020
  ident: 2069_CR46
  publication-title: Environ Int
  doi: 10.1016/j.envint.2020.106046
– volume: 14
  start-page: 587
  issue: 10
  year: 2017
  ident: 2069_CR130
  publication-title: Nat Rev Clin Oncol
  doi: 10.1038/nrclinonc.2017.122.[accessed2021Jun24].www.nature.com/nrclinonc
– volume: 120
  start-page: 15157
  issue: 9
  year: 2019
  ident: 2069_CR165
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.28777
– ident: 2069_CR161
  doi: 10.1093/JNCICS/PKZ107
– ident: 2069_CR105
  doi: 10.1038/s41419-019-1477-5
– ident: 2069_CR98
  doi: 10.1007/s00401-016-1545-1
– ident: 2069_CR188
  doi: 10.1186/s13046-019-1139-6
– ident: 2069_CR4
  doi: 10.3892/ijo.2018.4644
– year: 2020
  ident: 2069_CR177
  publication-title: Cell Transplant
  doi: 10.1177/0963689720906777
– ident: 2069_CR48
  doi: 10.1111/apm.12480
– ident: 2069_CR82
  doi: 10.1042/BSR20171577
– ident: 2069_CR147
  doi: 10.1016/j.canlet.2015.03.027
– volume: 203
  year: 2019
  ident: 2069_CR146
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2019.107395
– ident: 2069_CR116
  doi: 10.1186/s12940-020-00631-9
– ident: 2069_CR118
  doi: 10.1016/s1476-5586(04)80047-2
– volume: 52
  start-page: 114
  issue: 2
  year: 2019
  ident: 2069_CR180
  publication-title: Med Mol Morphol
  doi: 10.1007/s00795-018-0209-8
– ident: 2069_CR24
  doi: 10.4149/neo_2018_180606N377
– ident: 2069_CR80
  doi: 10.1042/BSR20171577
– ident: 2069_CR120
  doi: 10.1007/978-981-15-7241-8_30
– ident: 2069_CR15
– volume: 23
  start-page: 1494
  issue: 13
  year: 2009
  ident: 2069_CR160
  publication-title: Genes Dev
  doi: 10.1101/gad.1800909
– year: 2020
  ident: 2069_CR39
  publication-title: Cancer Biotherapy and Radiopharmaceuticals
  doi: 10.1089/cbr.2019.3484
– ident: 2069_CR91
– ident: 2069_CR151
  doi: 10.1016/j.bbrc.2018.04.133
– ident: 2069_CR21
  doi: 10.1158/1078-0432.CCR-17-0605
– ident: 2069_CR184
  doi: 10.3892/MMR.2017.7304
– volume: 18
  start-page: 1081
  issue: 2
  year: 2019
  ident: 2069_CR96
  publication-title: Exp Ther Med
– ident: 2069_CR62
  doi: 10.2147/OTT.S232848
– ident: 2069_CR196
  doi: 10.18632/oncotarget.3229
– ident: 2069_CR136
  doi: 10.1056/nejmoa043330
– ident: 2069_CR194
  doi: 10.1016/j.bbrc.2018.04.217
– volume: 25
  start-page: 629
  year: 2000
  ident: 2069_CR65
  publication-title: Annu Rev Energy Env
  doi: 10.1146/annurev.energy.25.1.629.[accessed2021Jun30].www.annualreviews.org
– ident: 2069_CR56
  doi: 10.1038/nm.3981
– ident: 2069_CR10
– volume: 9
  start-page: 1
  issue: 12
  year: 2018
  ident: 2069_CR170
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-018-1183-8
– volume: 35
  start-page: 101
  issue: 2
  year: 2020
  ident: 2069_CR18
  publication-title: Liebertpub Com
  doi: 10.1089/cbr.2019.3054
– ident: 2069_CR66
  doi: 10.22159/ijpps.2017v9i1.15440
– ident: 2069_CR8
  doi: 10.18632/oncotarget.15991
– ident: 2069_CR149
  doi: 10.2147/OTT.S130365
– volume: 136
  start-page: 65
  issue: 1
  year: 2017
  ident: 2069_CR73
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.026991
– volume: 143
  start-page: 525
  issue: 3
  year: 2019
  ident: 2069_CR75
  publication-title: J Neurooncol
  doi: 10.1007/s11060-019-03185-0
– volume: 14
  start-page: 618
  issue: 7
  year: 2021
  ident: 2069_CR135
  publication-title: Pharmaceuticals
  doi: 10.3390/ph14070618
– ident: 2069_CR145
  doi: 10.1093/nar/gky1031
– volume: 79
  start-page: 694
  issue: 12
  year: 2005
  ident: 2069_CR16
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-005-0001-0
– ident: 2069_CR123
  doi: 10.3390/ijms21010136
– ident: 2069_CR92
  doi: 10.1042/BSR20190994
– ident: 2069_CR191
  doi: 10.1007/s13277-015-3843-y
– ident: 2069_CR43
  doi: 10.3389/fonc.2018.00503
– volume: 101
  start-page: 89
  year: 2017
  ident: 2069_CR88
  publication-title: Environ Int
  doi: 10.1016/j.envint.2017.01.010
– volume: 150
  year: 2021
  ident: 2069_CR113
  publication-title: Environ Int
  doi: 10.1016/J.ENVINT.2021.106424
– year: 2020
  ident: 2069_CR182
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2020.562798
– volume: 11
  start-page: 17
  issue: 1
  year: 2018
  ident: 2069_CR119
  publication-title: Cancers
  doi: 10.3390/cancers11010017
– volume: 81
  start-page: 671
  issue: 4
  year: 2018
  ident: 2069_CR126
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-018-3522-y
– ident: 2069_CR133
  doi: 10.3390/cells9112369
– ident: 2069_CR176
  doi: 10.1007/s13273-020-00095-5
– ident: 2069_CR109
  doi: 10.1093/eurpub/ckaa165.841
– ident: 2069_CR63
  doi: 10.2147/OTT.S232848
– ident: 2069_CR53
  doi: 10.1038/s41598-017-09818-6
– volume: 130
  start-page: 878
  year: 2019
  ident: 2069_CR6
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.03.005
– volume: 34
  start-page: 589
  issue: 9
  year: 2019
  ident: 2069_CR17
  publication-title: Cancer Biother Radiopharm
  doi: 10.1089/cbr.2019.2779
– volume: 27
  start-page: 341
  year: 2021
  ident: 2069_CR37
  publication-title: Oncol Res
  doi: 10.3727/096504018X15228909735079
– ident: 2069_CR12
– volume: 41
  start-page: 79
  issue: 1
  year: 2021
  ident: 2069_CR111
  publication-title: Cell Mol Neurobiol
  doi: 10.1007/s10571-020-00833-2
– ident: 2069_CR86
  doi: 10.1158/1535-7163.MCT-16-0320
– volume: 18
  start-page: 25
  issue: 1
  year: 2019
  ident: 2069_CR78
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2019.7564
– volume: 1859
  start-page: 169
  issue: 1
  year: 2016
  ident: 2069_CR94
  publication-title: Biochim Biophys Acta Gene Regul Mech
  doi: 10.1016/j.bbagrm.2015.06.015
– ident: 2069_CR44
  doi: 10.21037/atm.2019.11.36
– ident: 2069_CR173
  doi: 10.3389/fcell.2019.00217
– volume: 12
  start-page: 879
  issue: 2
  year: 2016
  ident: 2069_CR148
  publication-title: Oncol Lett
  doi: 10.3892/ol.2016.4743
– ident: 2069_CR142
  doi: 10.1016/J.SEMCANCER.2020.12.015
– volume: 42
  start-page: 911
  issue: 3
  year: 2019
  ident: 2069_CR11
  publication-title: Oncol Rep
– ident: 2069_CR87
  doi: 10.18632/oncotarget.9699
– volume: 687
  start-page: 839
  year: 2019
  ident: 2069_CR3
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.06.102
– year: 2014
  ident: 2069_CR159
  publication-title: Database : the Journal of Biological Databases and Curation
  doi: 10.1093/database/bau093
– ident: 2069_CR172
  doi: 10.3389/fphys.2019.01404
– ident: 2069_CR103
  doi: 10.1016/j.ecoenv.2020.111327
– ident: 2069_CR90
  doi: 10.1186/s13045-018-0619-z
– ident: 2069_CR158
  doi: 10.1097/WNR.0000000000001469
– volume: 54
  start-page: 261
  issue: 1
  year: 2019
  ident: 2069_CR27
  publication-title: Int J Oncol
  doi: 10.3892/ijo.2018.4621
– ident: 2069_CR55
  doi: 10.1038/s41598-017-09818-6
– ident: 2069_CR81
  doi: 10.1042/BSR20171577
– ident: 2069_CR102
  doi: 10.1002/jcb.29572
– ident: 2069_CR25
  doi: 10.1016/j.jes.2017.05.002
– volume: 22
  start-page: 6338
  issue: 12
  year: 2018
  ident: 2069_CR89
  publication-title: Wiley Online Library
  doi: 10.1111/jcmm.13932
– year: 2018
  ident: 2069_CR152
  publication-title: AACR
  doi: 10.1158/0008-5472.CAN-18-0532
– volume: 13
  start-page: 7531
  year: 2020
  ident: 2069_CR163
  publication-title: Onco Targets Ther
  doi: 10.2147/OTT.S257050
– ident: 2069_CR99
  doi: 10.1186/s12943-020-1137-5
– year: 2018
  ident: 2069_CR169
  publication-title: Biochemi Biophys Res Commun
  doi: 10.1016/j.bbrc.2018.01.109
– ident: 2069_CR141
  doi: 10.3322/caac.21632
– volume: 44
  start-page: D203
  issue: D1
  year: 2016
  ident: 2069_CR190
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1252.[accessed2021Jul4]./pmc/articles/PMC4702886/
SSID ssj0021418
Score 2.3642154
SecondaryResourceType review_article
Snippet With a reported rise in global air pollution, more than 50% of the population remains exposed to toxic air pollutants in the form of particulate matters (PMs)....
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2188
SubjectTerms Air pollution
Anthropogenic factors
Biomedical and Life Sciences
Biomedicine
Brain cancer
Cancer
Carcinogens
Cell Biology
Correlation
Glioblastoma
Global air pollution
Health hazards
Human influences
Invasiveness
Neurochemistry
Neurology
Neurosciences
Non-coding RNA
Pollutants
Proteomics
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoXLhUpUC7LVRGqriARRzHTsIFRS2vSiDEQ9pb5PhRIW2ztFkqceh_74zj3QUhOEaxHcszGX_zJuQrN41yPlMsUxkoKEZ4pp32zBap51Zan2g06J-dq5Ob7MdQDqPBrYthlVOZGAS1HRu0ke8F7UlgINzB3W-GXaPQuxpbaLwhSxyQCLZuyIdzhYtnwb6XFKVkhSpVTJrpU-dSYGeGsewAmFTJyqcX0zO0-cxTGi6go3fkbUSOtOpJvUIWXPuerFYtaM2_Hug2DbGcwUi-Sv5dBI7A1lyOnvUlNGkVQjdgbTpqzeV5Rb8_wDZ-xv5dVLeWHo9uxw3gaVhS09P2r-6iMNyHJ3p1OwK-odUjn3eYFWs8wZAOVf1ujdwcHV5_O2Gx0QIzGS8nrEGYUzpMYm0EQA4LmCxtPDe5zZT0QC9uZJoXcJ_y3BdAX68TJ0uRSSlso8U6WWzHrftIaAJT0jS3cLoe6-IA-mqwXo3Jc2mt1QPCp6dcm1iFHJthjOp5_WSkTA2UqQNl6nJAdmZz7voaHK-O3pgSr47_Y1fPuWdAtmav4U9C94hu3fgexwiJaboJjPnQE332OaEEikYxILtTLpgv_vJePr2-l89kOUUODKmNG2Rx8ufebQLGmTRfAiP_B_0J9sU
  priority: 102
  providerName: ProQuest
Title Particulate Matters Affecting lncRNA Dysregulation and Glioblastoma Invasiveness: In Silico Applications and Current Insights
URI https://link.springer.com/article/10.1007/s12031-022-02069-9
https://www.ncbi.nlm.nih.gov/pubmed/36370303
https://www.proquest.com/docview/2747130094
https://www.proquest.com/docview/2735865504
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7YUXBGxAYas8Ce1lWEri2El4C6PbYFo1DSqVp8iJ7WlSSRHpkPbA_86d67SgwSSeoihnx_Kd7d_5vgBex02trEsVT1WKCkojHNdWO27yxMVGGhdputA_H6vTSfpxKqchKKzrvd17k6TfqdfBbgkKICfvc4Q4quDFBmxJyieFUjxJypWaFaf-Vi_KC8lzVagQKvP3Pv48ju5gzDv2UX_sHD-GRwEvsnLJ4CfwwLZPYbtsUVf-essOmPfg9Ffj2_DzwssBFeSy7HyZOJOV3mED-2aztrkcl-z9LQ7jKlTtYro17GR2Pa8RRWOXmn1of-gubIFv8Y19up6htLDyN0u3bxUyOyFJRwp-twOT49Hno1MeyivwJo2LBa8J3BSWQldrgUDDIBJLahc3mUmVdMiluJFJluMpGmcuR646HVlZiFRKYWotnsFmO2_tC2ARNkmSzODsOsqGg5irpiw1TZZJY4weQNzPctWE3ONUAmNWrbMmE2cq5EzlOVMVAzhctfm2zLxxL_Vuz7wqrMKu8hq3IOfJAeyvPuP6IaOIbu38hmiEpODcCGmeL5m--p1QgjZEMYA3vRSsO__3WF7-H_kreJiQRPoAx13YXHy_sXuIdBb1EDayaTaErfLky9kIn-9G44vLoRf3X1Jy984
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2B7ggoDy2FDAScAGrSZwnUoUCbdml3VVVWqm34MQ2qrTNFrIF7YFf49uYcZxdUEVvPUaxHccznvcD4IVflbE2YczDOEQFpRKGSy0NV2lgfBUp40ky6I_G8eA4_HQSnazA7y4XhsIqO5poCbWaVmQj37Tak6BAuHfn3zh1jSLvatdCQ7rWCmrLlhhziR17ev4TVbhma7iN8H4ZBLs7Rx8G3HUZ4FXoZzNeEo_PNGVwlgL5rUKBJCiNXyUqjCODm_WrKEhSZCZ-YlL8OSM9HWUijCKhSilw3RuwGpIBpQer73fGB4cLlc8PrYXRS7OIp3EWu7SdNnkvwAvFKZoeRbY449m_rPGSvHvJV2tZ4O4duO1kV5a3yHYXVnR9D9byGvX2szl7xWw0qTXTr8GvA4uT1BxMs1FbxJPlNngE12aTujoc52x7jtv46jqIMVkr9nFyOi1RosclJRvWP2TjyPFbfGKfTyeIuSz_y-tuZ7kqUzikIWNDcx-OrwUID6BXT2v9CJiHU4IgUXi6hirzoPxXUsWcKkkipZTsg9-dclG5OujUjmNSLCs4E2QKhExhIVNkfXi9mHPeVgG5cvRGB7zCUYSmWOJvH54vXuNdJgeNrPX0gsaIiBKFPRzzsAX64nMiFkScRR_edFiwXPz_e1m_ei_P4ObgaLRf7A_He4_hVkDYaBMtN6A3-36hn6DENSufOrRm8OW6b9Ifx446AA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw9GlsEuKCgPFRGGAk4ALWkjhOGqQJBbqyMlZVg0m7BSe20aSSDtKBeuAP8qt4z3Fa0MRuO0axHcfv-X1_ADwNqzIxNk54nMSooFTCcmWU5bof2VBLbQNFBv2DcbJ3FL8_lsdr8LvLhaGwyo4mOkKtZxXZyLed9iQoEG7b-rCIyWD4-vQbpw5S5Gnt2mko32ZB77hyYz7JY98sfqI61-yMBgj7Z1E03P30do_7jgO8isNszkvi95mhbM5SIO_VKJxEpQ2rVMeJtLjxsJJR2kfGEqa2jz9qVWBkJmIphS6VwHWvwEaKXB8VwY03u-PJ4VL9C2NnbQz6meT9JEt8Ck-byBfh5eIUWY_iW5Lx7F82eU72Pee3dexweAOuezmW5S3i3YQ1U9-CzbxGHf7rgj1nLrLUmew34dfE4Sc1CjPsoC3oyXIXSIJrs2ldHY5zNljgNr74bmJM1Zq9m57MSpTucUnFRvUP1XjS_Aqf2MeTKWIxy__ywLtZvuIUDmnI8NDchqNLAcIdWK9ntbkHLMApUZRqPF1LVXpQFiypek6VplJrrXoQdqdcVL4mOrXmmBaras4EmQIhUzjIFFkPXiznnLYVQS4cvdUBr_DUoSlWuNyDJ8vXeK_JWaNqMzujMUJS0nCAY-62QF9-TiSCCLXowcsOC1aL_38v9y_ey2O4ijeq-DAa7z-AaxEho8u53IL1-fcz8xCFr3n5yGM1g8-XfZH-AMSBPkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particulate+Matters+Affecting+lncRNA+Dysregulation+and+Glioblastoma+Invasiveness%3A+In+Silico+Applications+and+Current+Insights&rft.jtitle=Journal+of+molecular+neuroscience&rft.au=Mukherjee%2C+Swagatama&rft.au=Kundu%2C+Uma&rft.au=Desai%2C+Dhwani&rft.au=Pillai%2C+Prakash+P.&rft.date=2022-11-01&rft.pub=Springer+US&rft.issn=0895-8696&rft.eissn=1559-1166&rft.volume=72&rft.issue=11&rft.spage=2188&rft.epage=2206&rft_id=info:doi/10.1007%2Fs12031-022-02069-9&rft.externalDocID=10_1007_s12031_022_02069_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0895-8696&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0895-8696&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0895-8696&client=summon