DestVI identifies continuums of cell types in spatial transcriptomics data
Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of...
Saved in:
Published in | Nature biotechnology Vol. 40; no. 9; pp. 1360 - 1369 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.09.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1087-0156 1546-1696 1546-1696 |
DOI | 10.1038/s41587-022-01272-8 |
Cover
Abstract | Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools (
https://scvi-tools.org
).
DestVI models continuous cell states in spatial transcriptomics data. |
---|---|
AbstractList | Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ).Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ). Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ). DestVI models continuous cell states in spatial transcriptomics data. Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ). Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools (https://scvi-tools.org).DestVI models continuous cell states in spatial transcriptomics data. |
Author | Addadi, Yoseph Jelinski, Adam Lopez, Romain Pilzer, David David, Eyal Li, Baoguo Jordan, Michael I. Wagner, Allon Amit, Ido Yofe, Ido Ronchese, Franca Golani, Ofra Keren-Shaul, Hadas Boyeau, Pierre Kedmi, Merav Ergen, Can Yosef, Nir |
Author_xml | – sequence: 1 givenname: Romain orcidid: 0000-0003-0495-738X surname: Lopez fullname: Lopez, Romain organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley – sequence: 2 givenname: Baoguo surname: Li fullname: Li, Baoguo organization: Department of Immunology, Weizmann Institute of Science – sequence: 3 givenname: Hadas surname: Keren-Shaul fullname: Keren-Shaul, Hadas organization: Department of Life Sciences Core Facilities, Weizmann Institute of Science – sequence: 4 givenname: Pierre surname: Boyeau fullname: Boyeau, Pierre organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley – sequence: 5 givenname: Merav surname: Kedmi fullname: Kedmi, Merav organization: Department of Life Sciences Core Facilities, Weizmann Institute of Science – sequence: 6 givenname: David surname: Pilzer fullname: Pilzer, David organization: Department of Life Sciences Core Facilities, Weizmann Institute of Science – sequence: 7 givenname: Adam surname: Jelinski fullname: Jelinski, Adam organization: Department of Immunology, Weizmann Institute of Science – sequence: 8 givenname: Ido surname: Yofe fullname: Yofe, Ido organization: Department of Immunology, Weizmann Institute of Science – sequence: 9 givenname: Eyal surname: David fullname: David, Eyal organization: Department of Immunology, Weizmann Institute of Science – sequence: 10 givenname: Allon surname: Wagner fullname: Wagner, Allon organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley – sequence: 11 givenname: Can surname: Ergen fullname: Ergen, Can organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley – sequence: 12 givenname: Yoseph orcidid: 0000-0001-9827-0436 surname: Addadi fullname: Addadi, Yoseph organization: Department of Life Sciences Core Facilities, Weizmann Institute of Science – sequence: 13 givenname: Ofra orcidid: 0000-0002-9793-236X surname: Golani fullname: Golani, Ofra organization: Department of Life Sciences Core Facilities, Weizmann Institute of Science – sequence: 14 givenname: Franca orcidid: 0000-0001-5835-8230 surname: Ronchese fullname: Ronchese, Franca organization: Malaghan Institute of Medical Research – sequence: 15 givenname: Michael I. orcidid: 0000-0001-8935-817X surname: Jordan fullname: Jordan, Michael I. organization: Department of Immunology, Weizmann Institute of Science, Department of Statistics, University of California, Berkeley – sequence: 16 givenname: Ido orcidid: 0000-0003-2968-877X surname: Amit fullname: Amit, Ido email: ido.amit@weizmann.ac.il organization: Department of Immunology, Weizmann Institute of Science – sequence: 17 givenname: Nir orcidid: 0000-0001-9004-1225 surname: Yosef fullname: Yosef, Nir email: niryosef@berkeley.edu organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Center for Computational Biology, University of California, Berkeley, Chan Zuckerberg Biohub, Ragon Institute of MGH, MIT and Harvard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35449415$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtPxCAUhYkZ4zz0D7gwTdy4qQIFCkszvsZM4kbdEkqpYdLSCm3M_HsZZ9TExcQVN9xzuOd-TMHItc4AcIrgJYIZvwoEUZ6nEOMUIpzjlB-ACaKEpYgJNoo13LQRZWMwDWEFIWSEsSMwzighIron4PHGhP51kdjSuN5W1oREt7Fyw9CEpK0Sbeo66dddbFiXhE71VsULr1zQ3nZ921gdklL16hgcVqoO5mR3zsDL3e3z_CFdPt0v5tfLVBMk-rSgnOcaVVpDzY2oBK5YgUumi4xlOisEQ6XIoFC0JIoySnUpcqpyQTDXsBDZDGTbdwfXqfWHqmvZedsov5YIyg0ZuSUjIxn5RUby6LrYujrfvg9xadnYsFlOOdMOQWJG44A8hyxKz_9IV-3gXdxJ4hxhhDiBKKrOdqqhaEz5k-GbbRTgrUD7NgRvqv_F5H9M2vaRefwTr2y937rjEuIc92b8b-w9rk_weKw5 |
CitedBy_id | crossref_primary_10_1126_sciadv_add9818 crossref_primary_10_1016_j_gpb_2022_11_011 crossref_primary_10_1038_s41581_024_00841_1 crossref_primary_10_1093_bib_bbae082 crossref_primary_10_1186_s13059_023_03138_x crossref_primary_10_1093_bib_bbae719 crossref_primary_10_7554_eLife_88431 crossref_primary_10_59717_j_xinn_life_2024_100097 crossref_primary_10_7554_eLife_88431_3 crossref_primary_10_1093_cei_uxae077 crossref_primary_10_1186_s13059_024_03426_0 crossref_primary_10_2217_fon_2023_0658 crossref_primary_10_1093_gpbjnl_qzae057 crossref_primary_10_1002_smtd_202401163 crossref_primary_10_1016_j_cell_2024_01_021 crossref_primary_10_1093_bioinformatics_btac825 crossref_primary_10_3390_cells12151970 crossref_primary_10_3389_fbinf_2023_1159381 crossref_primary_10_1038_s41467_023_43600_9 crossref_primary_10_1186_s13059_025_03505_w crossref_primary_10_1038_s41467_023_43220_3 crossref_primary_10_1038_s42003_025_07872_9 crossref_primary_10_1016_j_csbj_2022_12_001 crossref_primary_10_1016_j_jaci_2024_11_001 crossref_primary_10_1038_s41587_024_02173_8 crossref_primary_10_1016_j_cels_2023_06_003 crossref_primary_10_1038_s41591_024_02972_1 crossref_primary_10_1186_s13059_024_03416_2 crossref_primary_10_1002_advs_202305449 crossref_primary_10_1038_s41576_022_00553_x crossref_primary_10_1038_s41592_023_01992_y crossref_primary_10_1016_j_stem_2022_05_007 crossref_primary_10_3389_fonc_2023_1172314 crossref_primary_10_1038_s41477_023_01387_z crossref_primary_10_1126_sciimmunol_adr0782 crossref_primary_10_1038_d41586_022_01743_7 crossref_primary_10_1186_s13059_023_03159_6 crossref_primary_10_1016_j_bbadis_2024_167276 crossref_primary_10_1360_TB_2024_0332 crossref_primary_10_1016_j_jgg_2024_11_009 crossref_primary_10_1214_24_AOAS1953 crossref_primary_10_1038_s10038_024_01275_0 crossref_primary_10_1186_s12859_024_06003_1 crossref_primary_10_1093_bib_bbac245 crossref_primary_10_1007_s12016_024_09001_6 crossref_primary_10_1016_j_neuron_2022_09_030 crossref_primary_10_1038_s42003_024_06104_w crossref_primary_10_1038_s41467_023_37168_7 crossref_primary_10_1093_bioinformatics_btad642 crossref_primary_10_1007_s11427_023_2561_0 crossref_primary_10_1016_j_crmeth_2024_100864 crossref_primary_10_1063_5_0091135 crossref_primary_10_1016_j_copbio_2024_103111 crossref_primary_10_1016_j_stemcr_2022_11_007 crossref_primary_10_1126_science_ado3927 crossref_primary_10_1186_s13073_024_01350_3 crossref_primary_10_1016_j_patter_2024_100986 crossref_primary_10_1038_s41587_022_01467_z crossref_primary_10_1038_s41586_024_07563_1 crossref_primary_10_1016_j_csbj_2022_05_056 crossref_primary_10_1038_s43588_024_00683_8 crossref_primary_10_1038_s41586_023_06685_2 crossref_primary_10_1186_s13059_024_03353_0 crossref_primary_10_1007_s44272_024_00018_8 crossref_primary_10_1093_bioinformatics_btae747 crossref_primary_10_47184_tp_2024_01_07 crossref_primary_10_1055_a_2299_7880 crossref_primary_10_3389_fnins_2023_1198154 crossref_primary_10_1186_s13059_023_03145_y crossref_primary_10_2174_1574893618666230529145130 crossref_primary_10_1016_j_cell_2024_03_029 crossref_primary_10_1093_nar_gkae876 crossref_primary_10_1186_s43556_023_00144_0 crossref_primary_10_1002_smtd_202401145 crossref_primary_10_1016_j_future_2024_07_013 crossref_primary_10_1038_s41467_023_36983_2 crossref_primary_10_1038_s41467_023_37111_w crossref_primary_10_1038_s41586_024_08453_2 crossref_primary_10_29296_24999490_2024_02_02 crossref_primary_10_1093_bib_bbae250 crossref_primary_10_1002_wrna_1839 crossref_primary_10_1016_j_cmpb_2024_108431 crossref_primary_10_1093_bib_bbae130 crossref_primary_10_3389_fimmu_2023_1183286 crossref_primary_10_1093_bioadv_vbae081 crossref_primary_10_1093_bioinformatics_btae072 crossref_primary_10_1093_gigascience_giae089 crossref_primary_10_1038_s41467_024_49445_0 crossref_primary_10_1038_s42256_023_00734_1 crossref_primary_10_1002_advs_202206939 crossref_primary_10_1038_s41467_023_43629_w crossref_primary_10_1038_s42256_023_00737_y crossref_primary_10_3389_fonc_2023_1266397 crossref_primary_10_1073_pnas_2319804121 |
Cites_doi | 10.1038/s41586-020-2496-1 10.1038/s41576-021-00370-8 10.1126/scitranslmed.aaa1260 10.1126/science.aaw1219 10.15252/msb.20199198 10.1038/s41592-018-0229-2 10.1038/s41467-019-12412-1 10.1126/science.aaf2403 10.1126/sciadv.abb3446 10.1198/106186006X113430 10.1186/1471-2172-13-63 10.1038/s41592-019-0548-y 10.15252/msb.20209620 10.1073/pnas.1408839111 10.1038/s41587-021-01206-w 10.1016/j.cmet.2019.04.003 10.1186/s13059-020-1926-6 10.1186/2191-219X-4-15 10.1126/science.abb9536 10.1038/s41587-020-0739-1 10.1038/nmeth.2930 10.1038/s41592-019-0686-2 10.1126/science.aaf5453 10.1038/s42003-020-01247-y 10.1038/s41598-017-13462-5 10.1016/j.cell.2020.08.043 10.1038/s41467-019-10500-w 10.1016/j.cell.2021.05.010 10.1073/pnas.1700600114 10.1038/nbt.3711 10.1038/s41592-020-01050-x 10.1038/s41587-019-0113-3 10.1038/s41467-017-02554-5 10.1016/j.cell.2012.07.021 10.1038/s41592-019-0619-0 10.1016/j.humpath.2007.02.018 10.1016/j.smim.2016.03.008 10.1186/s13059-017-1382-0 10.1126/science.aaa6090 10.1186/1471-2105-14-128 10.1016/j.cell.2020.06.032 10.1038/s41576-020-00292-x 10.1016/j.cell.2019.05.031 10.1109/TVCG.2004.17 10.1038/s41587-021-00830-w 10.1111/j.2517-6161.1995.tb02031.x 10.1101/2021.07.07.451498 10.1038/s41586-019-1049-y 10.1101/2020.02.06.937805 10.2307/2986645 10.1038/s41467-021-26614-z 10.1101/794289 10.1093/bib/bbaa414 10.1038/s41587-021-01139-4 10.1146/annurev-statistics-022513-115657 10.1038/s41592-018-0175-z 10.1093/nar/gkab043 10.1016/j.cels.2019.01.001 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2022 2022. The Author(s), under exclusive licence to Springer Nature America, Inc. The Author(s), under exclusive licence to Springer Nature America, Inc. 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature America, Inc. – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2022. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U RC3 7X8 ADTOC UNPAY |
DOI | 10.1038/s41587-022-01272-8 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database (via ProQuest SciTech Premium Collection) Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Agriculture Biology |
EISSN | 1546-1696 |
EndPage | 1369 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:9756396 35449415 10_1038_s41587_022_01272_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: U19 AI090023 funderid: https://doi.org/10.13039/100000060 – fundername: Chan-Zuckerberg BioHub – fundername: NIAID NIH HHS grantid: U19 AI090023 – fundername: Howard Hughes Medical Institute – fundername: NIMH NIH HHS grantid: U19 MH114821 |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 3V. 4.4 4R4 53G 5BI 5M7 5RE 5S5 70F 7X7 88A 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAEEF AAHBH AAIKC AAMNW AARCD AAYOK AAYZH AAZLF ABAWZ ABDBF ABDPE ABEFU ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BKOMP BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FA8 FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LGEZI LK8 LOTEE M0L M1P M2O M2P M7P M7S ML0 MVM N95 NADUK NEJ NNMJJ NXXTH O9- ODYON P2P PKN PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RVV RXW SHXYY SIXXV SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XI7 XOL Y6R YZZ ZGI ZHY ZXP ~KM AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NFIDA NPM 7QO 7QP 7QR 7T7 7TK 7TM 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 7X8 AGSTI ADTOC UNPAY |
ID | FETCH-LOGICAL-c419t-b5887c1fcc0c8e9f92f6b2d6cb363c3b961d9309a5d4a5655cd975a79428c0b93 |
IEDL.DBID | 8FG |
ISSN | 1087-0156 1546-1696 |
IngestDate | Wed Aug 20 00:02:43 EDT 2025 Wed Oct 01 13:59:14 EDT 2025 Wed Aug 13 09:06:17 EDT 2025 Thu Apr 03 07:08:39 EDT 2025 Thu Apr 24 23:09:26 EDT 2025 Wed Oct 01 04:49:30 EDT 2025 Fri Feb 21 02:39:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature America, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-b5887c1fcc0c8e9f92f6b2d6cb363c3b961d9309a5d4a5655cd975a79428c0b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2968-877X 0000-0001-9827-0436 0000-0001-9004-1225 0000-0003-0495-738X 0000-0001-5835-8230 0000-0001-8935-817X 0000-0002-9793-236X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9756396 |
PMID | 35449415 |
PQID | 2712118401 |
PQPubID | 47191 |
PageCount | 10 |
ParticipantIDs | unpaywall_primary_10_1038_s41587_022_01272_8 proquest_miscellaneous_2654287706 proquest_journals_2712118401 pubmed_primary_35449415 crossref_primary_10_1038_s41587_022_01272_8 crossref_citationtrail_10_1038_s41587_022_01272_8 springer_journals_10_1038_s41587_022_01272_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Science and Business of Biotechnology |
PublicationTitle | Nature biotechnology |
PublicationTitleAbbrev | Nat Biotechnol |
PublicationTitleAlternate | Nat Biotechnol |
PublicationYear | 2022 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Zhang, Xu, Yosef (CR55) 2019; 10 Kastenmüller, Torabi-Parizi, Subramanian, Lämmermann, Germain (CR35) 2012; 150 Carmona-Fontaine (CR43) 2017; 114 Kumar (CR20) 2019; 30 Xu (CR32) 2021; 17 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR51) 2014; 15 Armingol, Officer, Harismendy, Lewis (CR50) 2021; 22 Stuart (CR27) 2019; 177 Hampton, Chtanova (CR34) 2016; 28 Zou, Hastie, Tibshirani (CR57) 2006; 15 (CR66) 2020; 583 Srivatsan (CR30) 2021; 373 Katzenelenbogen (CR37) 2020; 182 Risso, Perraudeau, Gribkova, Dudoit, Vert (CR54) 2018; 9 Yosef, Regev (CR39) 2016; 354 CR2 CR4 Steinberg (CR40) 2014; 4 CR7 Ståhl (CR10) 2016; 353 Cho (CR49) 2021; 184 CR46 CR45 Massi (CR38) 2007; 38 Garraud (CR33) 2012; 13 Pedregosa (CR59) 2011; 12 Ortiz (CR16) 2020; 6 Gayoso (CR21) 2022; 40 Hie, Bryson, Berger (CR29) 2019; 37 Wippold, Lämmle, Anatelli, Lennerz, Perry (CR41) 2006; 27 Lähnemann (CR17) 2020; 21 CR19 Lopez, Regier, Cole, Jordan, Yosef (CR24) 2018; 15 Longo, Guo, Ji, Khavari (CR47) 2021; 22 Wagner, Regev, Yosef (CR1) 2016; 34 CR15 Chen, Boettiger, Moffitt, Wang, Zhuang (CR6) 2015; 348 CR14 Benjamini, Hochberg (CR65) 1995; 57 CR12 CR56 CR11 Chen (CR64) 2013; 14 CR53 CR52 Lopez, Gayoso, Yosef (CR18) 2020; 16 Andersson (CR13) 2020; 3 Virtanen (CR62) 2020; 17 Duque-Correa (CR44) 2014; 111 Gayoso (CR31) 2021; 18 Rodriques (CR9) 2019; 363 Grün, Kester, van Oudenaarden (CR23) 2014; 11 Stickels (CR8) 2020; 39 Vickovic (CR48) 2019; 16 Godet (CR42) 2019; 10 CR26 CR25 Ji (CR5) 2020; 182 CR22 CR63 CR61 CR60 Korsunsky (CR28) 2019; 16 Asp (CR3) 2017; 7 Wolf, Angerer, Theis (CR58) 2018; 19 Hatfield (CR36) 2015; 7 A Gayoso (1272_CR21) 2022; 40 HR Hampton (1272_CR34) 2016; 28 A Wagner (1272_CR1) 2016; 34 W Kastenmüller (1272_CR35) 2012; 150 C Carmona-Fontaine (1272_CR43) 2017; 114 B Hie (1272_CR29) 2019; 37 O Garraud (1272_CR33) 2012; 13 E Armingol (1272_CR50) 2021; 22 Tabula Muris Consortium. (1272_CR66) 2020; 583 MA Duque-Correa (1272_CR44) 2014; 111 R Lopez (1272_CR18) 2020; 16 X Zhang (1272_CR55) 2019; 10 1272_CR26 1272_CR25 1272_CR22 SM Hatfield (1272_CR36) 2015; 7 H Zou (1272_CR57) 2006; 15 SK Longo (1272_CR47) 2021; 22 A Gayoso (1272_CR31) 2021; 18 A Andersson (1272_CR13) 2020; 3 1272_CR63 M Asp (1272_CR3) 2017; 7 1272_CR61 1272_CR60 S Kumar (1272_CR20) 2019; 30 D Grün (1272_CR23) 2014; 11 R Lopez (1272_CR24) 2018; 15 1272_CR15 1272_CR14 T Stuart (1272_CR27) 2019; 177 I Korsunsky (1272_CR28) 2019; 16 1272_CR12 1272_CR56 1272_CR11 1272_CR53 I Godet (1272_CR42) 2019; 10 FA Wolf (1272_CR58) 2018; 19 N Yosef (1272_CR39) 2016; 354 S Vickovic (1272_CR48) 2019; 16 SR Srivatsan (1272_CR30) 2021; 373 SG Rodriques (1272_CR9) 2019; 363 1272_CR19 FJ Wippold 2nd (1272_CR41) 2006; 27 JD Steinberg (1272_CR40) 2014; 4 PL Ståhl (1272_CR10) 2016; 353 EY Chen (1272_CR64) 2013; 14 C Xu (1272_CR32) 2021; 17 D Massi (1272_CR38) 2007; 38 1272_CR52 C Ortiz (1272_CR16) 2020; 6 Y Katzenelenbogen (1272_CR37) 2020; 182 F Pedregosa (1272_CR59) 2011; 12 N Srivastava (1272_CR51) 2014; 15 1272_CR46 Y Benjamini (1272_CR65) 1995; 57 1272_CR45 AL Ji (1272_CR5) 2020; 182 D Risso (1272_CR54) 2018; 9 C-S Cho (1272_CR49) 2021; 184 RR Stickels (1272_CR8) 2020; 39 D Lähnemann (1272_CR17) 2020; 21 1272_CR2 1272_CR4 KH Chen (1272_CR6) 2015; 348 1272_CR7 P Virtanen (1272_CR62) 2020; 17 |
References_xml | – ident: CR45 – ident: CR22 – volume: 583 start-page: 590 year: 2020 end-page: 595 ident: CR66 article-title: A single-cell transcriptomic atlas characterizes ageing tissues in the mouse publication-title: Nature doi: 10.1038/s41586-020-2496-1 – volume: 22 start-page: 627 year: 2021 end-page: 644 ident: CR47 article-title: Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-021-00370-8 – volume: 7 start-page: 277ra30 year: 2015 ident: CR36 article-title: Immunological mechanisms of the antitumor effects of supplemental oxygenation publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa1260 – volume: 363 start-page: 1463 year: 2019 end-page: 1467 ident: CR9 article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution publication-title: Science doi: 10.1126/science.aaw1219 – volume: 16 start-page: e9198 year: 2020 ident: CR18 article-title: Enhancing scientific discoveries in molecular biology with deep generative models publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20199198 – ident: CR4 – volume: 15 start-page: 1053 year: 2018 end-page: 1058 ident: CR24 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – ident: CR12 – volume: 10 year: 2019 ident: CR42 article-title: Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis publication-title: Nat. Commun. doi: 10.1038/s41467-019-12412-1 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR51 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: CR61 – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: CR65 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. Ser. B (Methodol.) – volume: 353 start-page: 78 year: 2016 end-page: 82 ident: CR10 article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics publication-title: Science doi: 10.1126/science.aaf2403 – ident: CR25 – volume: 6 start-page: eabb3446 year: 2020 ident: CR16 article-title: Molecular atlas of the adult mouse brain publication-title: Sci. Adv. doi: 10.1126/sciadv.abb3446 – ident: CR46 – ident: CR19 – volume: 15 start-page: 265 year: 2006 end-page: 286 ident: CR57 article-title: Sparse principal component analysis publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X113430 – ident: CR15 – volume: 13 start-page: 63 year: 2012 ident: CR33 article-title: Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond publication-title: BMC Immunol. doi: 10.1186/1471-2172-13-63 – volume: 16 start-page: 987 year: 2019 end-page: 990 ident: CR48 article-title: High-definition spatial transcriptomics for in situ tissue profiling publication-title: Nat. Methods doi: 10.1038/s41592-019-0548-y – ident: CR11 – volume: 17 start-page: e9620 year: 2021 ident: CR32 article-title: Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20209620 – volume: 111 start-page: E4024 year: 2014 end-page: E4032 ident: CR44 article-title: Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1408839111 – volume: 40 start-page: 163 year: 2022 end-page: 166 ident: CR21 article-title: scvi-tools: a library for deep probabilistic analysis of single-cell omics data. A Python library for probabilistic analysis of single-cell omics data publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01206-w – volume: 30 start-page: 201 year: 2019 end-page: 211 ident: CR20 article-title: Intra-tumoral metabolic zonation and resultant phenotypic diversification are dictated by blood vessel proximity publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.04.003 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: CR59 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – ident: CR60 – volume: 21 start-page: 31 year: 2020 ident: CR17 article-title: Eleven grand challenges in single-cell data science publication-title: Genome Biol. doi: 10.1186/s13059-020-1926-6 – volume: 4 year: 2014 ident: CR40 article-title: Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [ Ga]gallium chloride publication-title: EJNMMI Res doi: 10.1186/2191-219X-4-15 – volume: 373 start-page: 111 year: 2021 end-page: 117 ident: CR30 article-title: Embryo-scale, single-cell spatial transcriptomics publication-title: Science doi: 10.1126/science.abb9536 – ident: CR26 – volume: 39 start-page: 313 year: 2020 end-page: 319 ident: CR8 article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0739-1 – volume: 11 start-page: 637 year: 2014 end-page: 640 ident: CR23 article-title: Validation of noise models for single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/nmeth.2930 – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: CR62 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 354 start-page: 64 year: 2016 end-page: 68 ident: CR39 article-title: Writ large: genomic dissection of the effect of cellular environment on immune response publication-title: Science doi: 10.1126/science.aaf5453 – volume: 3 start-page: 565 year: 2020 ident: CR13 article-title: Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography publication-title: Commun. Biol. doi: 10.1038/s42003-020-01247-y – volume: 7 year: 2017 ident: CR3 article-title: Spatial detection of fetal marker genes expressed at low level in adult human heart tissue publication-title: Sci. Rep. doi: 10.1038/s41598-017-13462-5 – ident: CR14 – ident: CR2 – ident: CR53 – volume: 182 start-page: 1661 year: 2020 end-page: 1662 ident: CR5 article-title: Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma publication-title: Cell doi: 10.1016/j.cell.2020.08.043 – volume: 10 year: 2019 ident: CR55 article-title: Simulating multiple faceted variability in single cell RNA sequencing publication-title: Nat. Commun. doi: 10.1038/s41467-019-10500-w – volume: 184 start-page: 3559 year: 2021 end-page: 3572 ident: CR49 article-title: Microscopic examination of spatial transcriptome using Seq-Scope publication-title: Cell doi: 10.1016/j.cell.2021.05.010 – ident: CR56 – volume: 114 start-page: 2934 year: 2017 end-page: 2939 ident: CR43 article-title: Metabolic origins of spatial organization in the tumor microenvironment publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1700600114 – ident: CR63 – volume: 34 start-page: 1145 year: 2016 end-page: 1160 ident: CR1 article-title: Revealing the vectors of cellular identity with single-cell genomics publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3711 – volume: 18 start-page: 272 year: 2021 end-page: 282 ident: CR31 article-title: Joint probabilistic modeling of single-cell multi-omic data with totalVI publication-title: Nat. Methods doi: 10.1038/s41592-020-01050-x – volume: 37 start-page: 685 year: 2019 end-page: 691 ident: CR29 article-title: Efficient integration of heterogeneous single-cell transcriptomes using Scanorama publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0113-3 – volume: 9 year: 2018 ident: CR54 article-title: A general and flexible method for signal extraction from single-cell RNA-seq data publication-title: Nat. Commun. doi: 10.1038/s41467-017-02554-5 – volume: 150 start-page: 1235 year: 2012 end-page: 1248 ident: CR35 article-title: A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread publication-title: Cell doi: 10.1016/j.cell.2012.07.021 – volume: 16 start-page: 1289 year: 2019 end-page: 1296 ident: CR28 article-title: Fast, sensitive and accurate integration of single-cell data with Harmony publication-title: Nat. Methods doi: 10.1038/s41592-019-0619-0 – volume: 38 start-page: 1516 year: 2007 end-page: 1525 ident: CR38 article-title: Arginine metabolism in tumor-associated macrophages in cutaneous malignant melanoma: evidence from human and experimental tumors publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2007.02.018 – volume: 28 start-page: 129 year: 2016 end-page: 136 ident: CR34 article-title: The lymph node neutrophil publication-title: Semin. Immunol. doi: 10.1016/j.smim.2016.03.008 – volume: 19 year: 2018 ident: CR58 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 27 start-page: 2037 year: 2006 end-page: 2041 ident: CR41 article-title: Neuropathology for the neuroradiologist: palisades and pseudopalisades publication-title: AJNR Am. J. Neuroradiol. – volume: 348 start-page: aaa6090 year: 2015 ident: CR6 article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells publication-title: Science doi: 10.1126/science.aaa6090 – ident: CR52 – volume: 14 start-page: 128 year: 2013 ident: CR64 article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool publication-title: BMC Bioinf. doi: 10.1186/1471-2105-14-128 – volume: 182 start-page: 872 year: 2020 end-page: 885 ident: CR37 article-title: Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer publication-title: Cell doi: 10.1016/j.cell.2020.06.032 – volume: 22 start-page: 71 year: 2021 end-page: 88 ident: CR50 article-title: Deciphering cell–cell interactions and communication from gene expression publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-00292-x – ident: CR7 – volume: 177 start-page: 1888 year: 2019 end-page: 1902 ident: CR27 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 12 start-page: 2825 year: 2011 ident: 1272_CR59 publication-title: J. Mach. Learn. Res. – volume: 10 year: 2019 ident: 1272_CR55 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10500-w – volume: 17 start-page: 261 year: 2020 ident: 1272_CR62 publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – ident: 1272_CR63 doi: 10.1109/TVCG.2004.17 – ident: 1272_CR11 doi: 10.1038/s41587-021-00830-w – volume: 37 start-page: 685 year: 2019 ident: 1272_CR29 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0113-3 – volume: 184 start-page: 3559 year: 2021 ident: 1272_CR49 publication-title: Cell doi: 10.1016/j.cell.2021.05.010 – volume: 583 start-page: 590 year: 2020 ident: 1272_CR66 publication-title: Nature doi: 10.1038/s41586-020-2496-1 – volume: 9 year: 2018 ident: 1272_CR54 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02554-5 – volume: 7 start-page: 277ra30 year: 2015 ident: 1272_CR36 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa1260 – ident: 1272_CR53 – volume: 21 start-page: 31 year: 2020 ident: 1272_CR17 publication-title: Genome Biol. doi: 10.1186/s13059-020-1926-6 – volume: 16 start-page: e9198 year: 2020 ident: 1272_CR18 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20199198 – volume: 150 start-page: 1235 year: 2012 ident: 1272_CR35 publication-title: Cell doi: 10.1016/j.cell.2012.07.021 – volume: 57 start-page: 289 year: 1995 ident: 1272_CR65 publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: 1272_CR56 doi: 10.1101/2021.07.07.451498 – volume: 10 year: 2019 ident: 1272_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12412-1 – volume: 15 start-page: 1929 year: 2014 ident: 1272_CR51 publication-title: J. Mach. Learn. Res. – ident: 1272_CR7 doi: 10.1038/s41586-019-1049-y – volume: 363 start-page: 1463 year: 2019 ident: 1272_CR9 publication-title: Science doi: 10.1126/science.aaw1219 – ident: 1272_CR61 doi: 10.1101/2020.02.06.937805 – volume: 6 start-page: eabb3446 year: 2020 ident: 1272_CR16 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb3446 – volume: 177 start-page: 1888 year: 2019 ident: 1272_CR27 publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – ident: 1272_CR25 – ident: 1272_CR60 doi: 10.2307/2986645 – volume: 38 start-page: 1516 year: 2007 ident: 1272_CR38 publication-title: Hum. Pathol. doi: 10.1016/j.humpath.2007.02.018 – ident: 1272_CR52 – ident: 1272_CR4 doi: 10.1038/s41467-021-26614-z – volume: 13 start-page: 63 year: 2012 ident: 1272_CR33 publication-title: BMC Immunol. doi: 10.1186/1471-2172-13-63 – ident: 1272_CR46 doi: 10.1101/794289 – volume: 18 start-page: 272 year: 2021 ident: 1272_CR31 publication-title: Nat. Methods doi: 10.1038/s41592-020-01050-x – volume: 11 start-page: 637 year: 2014 ident: 1272_CR23 publication-title: Nat. Methods doi: 10.1038/nmeth.2930 – volume: 373 start-page: 111 year: 2021 ident: 1272_CR30 publication-title: Science doi: 10.1126/science.abb9536 – volume: 14 start-page: 128 year: 2013 ident: 1272_CR64 publication-title: BMC Bioinf. doi: 10.1186/1471-2105-14-128 – ident: 1272_CR14 doi: 10.1093/bib/bbaa414 – volume: 348 start-page: aaa6090 year: 2015 ident: 1272_CR6 publication-title: Science doi: 10.1126/science.aaa6090 – ident: 1272_CR45 – volume: 7 year: 2017 ident: 1272_CR3 publication-title: Sci. Rep. doi: 10.1038/s41598-017-13462-5 – volume: 15 start-page: 1053 year: 2018 ident: 1272_CR24 publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – volume: 182 start-page: 872 year: 2020 ident: 1272_CR37 publication-title: Cell doi: 10.1016/j.cell.2020.06.032 – volume: 30 start-page: 201 year: 2019 ident: 1272_CR20 publication-title: Cell Metab. doi: 10.1016/j.cmet.2019.04.003 – ident: 1272_CR15 doi: 10.1038/s41587-021-01139-4 – ident: 1272_CR22 doi: 10.1146/annurev-statistics-022513-115657 – volume: 16 start-page: 1289 year: 2019 ident: 1272_CR28 publication-title: Nat. Methods doi: 10.1038/s41592-019-0619-0 – volume: 22 start-page: 627 year: 2021 ident: 1272_CR47 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-021-00370-8 – ident: 1272_CR2 doi: 10.1038/s41592-018-0175-z – ident: 1272_CR12 doi: 10.1093/nar/gkab043 – volume: 28 start-page: 129 year: 2016 ident: 1272_CR34 publication-title: Semin. Immunol. doi: 10.1016/j.smim.2016.03.008 – volume: 4 year: 2014 ident: 1272_CR40 publication-title: EJNMMI Res doi: 10.1186/2191-219X-4-15 – volume: 354 start-page: 64 year: 2016 ident: 1272_CR39 publication-title: Science doi: 10.1126/science.aaf5453 – ident: 1272_CR19 doi: 10.1016/j.cels.2019.01.001 – volume: 22 start-page: 71 year: 2021 ident: 1272_CR50 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-00292-x – volume: 17 start-page: e9620 year: 2021 ident: 1272_CR32 publication-title: Mol. Syst. Biol. doi: 10.15252/msb.20209620 – volume: 16 start-page: 987 year: 2019 ident: 1272_CR48 publication-title: Nat. Methods doi: 10.1038/s41592-019-0548-y – volume: 15 start-page: 265 year: 2006 ident: 1272_CR57 publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X113430 – volume: 114 start-page: 2934 year: 2017 ident: 1272_CR43 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1700600114 – volume: 19 year: 2018 ident: 1272_CR58 publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 353 start-page: 78 year: 2016 ident: 1272_CR10 publication-title: Science doi: 10.1126/science.aaf2403 – volume: 182 start-page: 1661 year: 2020 ident: 1272_CR5 publication-title: Cell doi: 10.1016/j.cell.2020.08.043 – ident: 1272_CR26 – volume: 27 start-page: 2037 year: 2006 ident: 1272_CR41 publication-title: AJNR Am. J. Neuroradiol. – volume: 34 start-page: 1145 year: 2016 ident: 1272_CR1 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3711 – volume: 40 start-page: 163 year: 2022 ident: 1272_CR21 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-021-01206-w – volume: 39 start-page: 313 year: 2020 ident: 1272_CR8 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0739-1 – volume: 3 start-page: 565 year: 2020 ident: 1272_CR13 publication-title: Commun. Biol. doi: 10.1038/s42003-020-01247-y – volume: 111 start-page: E4024 year: 2014 ident: 1272_CR44 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1408839111 |
SSID | ssj0006466 |
Score | 2.655588 |
Snippet | Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with... |
SourceID | unpaywall proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1360 |
SubjectTerms | 631/114/2397 631/208/199 Agriculture Animals Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Cell culture Continuums Exome Sequencing Gene expression Gene Expression Profiling - methods Gene sequencing Life Sciences Lymph nodes Mice Neoplasms - genetics Open source software Single-Cell Analysis - methods Software Spatial data Transcriptome - genetics Transcriptomes Transcriptomics Tumors |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTrDtgY-yQWAgI_HG0iZ24sSPE2IakzYhRNF4imzHEdFatyKJpvHXc85HKSBN7NmXnJ2z7yP38x3AW1Mwk5s08kOOkU6EPr0vc818RqUrNyd43mZ0zy_46Sw6u4wvtyAc7sK0oH2tyomdLya2_N5iK1cLPR1wYlORxGhV-T3Y5i6nNILt2cWn428dkN7BKNuOregZcOQveH9RJmDptEJj5SioAyPQBDXBn8boHw9zIzu6BzuNXcmbazmfbxigk0fweZh6hzu5mjS1muiff1V1vNPaHsPD3h0lx93QE9gydgz3uwaVN2PY2yhXOIYH530i_imcuXj160dS5h3ayFTEgd5L2zSLiiwL4hICxP3frUhpSeVw28indpax1VPuMnRFHD51H2YnH768P_X7tgy-jkJR-ypGxaTDQutAp0YUghZc0ZxrxTjTTAke5oIFQsZ5JNFfjHWO65J48GmqAyXYAYzs0prnQAoZqMQUSIuBpgiYpDLAmJkzirohSpkH4SCfTPc1y13rjHnW5s5ZmnUyzVCmWSvTLPXg3fqZVVex41bqw0HsWX96q4wmrvAdhr6hB2_Ww3ju3LeT1iwbpHGdvtIkCbgHz7rtsmbH4igSyMqDo2H__H75bXM5Wu-x_5j6i7uRv4Rd2m59h487hFH9ozGv0KGq1ev-CP0CD5oVpQ priority: 102 providerName: Unpaywall |
Title | DestVI identifies continuums of cell types in spatial transcriptomics data |
URI | https://link.springer.com/article/10.1038/s41587-022-01272-8 https://www.ncbi.nlm.nih.gov/pubmed/35449415 https://www.proquest.com/docview/2712118401 https://www.proquest.com/docview/2654287706 https://www.ncbi.nlm.nih.gov/pmc/articles/9756396 |
UnpaywallVersion | submittedVersion |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1546-1696 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006466 issn: 1546-1696 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1546-1696 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006466 issn: 1546-1696 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1546-1696 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0006466 issn: 1546-1696 databaseCode: 8FG dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8MQ28bEHBGVAYFRG4o1Fc-zEiZ9Qi1bGpFUToqg8RY7jSJVKWkgjtH_PXZJmRUgVT5YSJ7buy_flO4B3rpAud0noBwotnRB1et_kVvpSGCo3p1XeRHSvp-pyFl7No3nncKu6tMqtTGwEdb6y5CM_FzEVI0NzJPiw_ulT1yiKrnYtNA7gKBBISXRTfPKpl8SqjVUGPKH0ykh1l2a4TM4rPLjoqaDEBBGjVPj7YPpH29yJlB7Dw7pcm9vfZrncOYwmT-Bxp0WyUYv2p3DPlQO43_aVvB3A8U6VwQE8uO7i58_giszMb5_ZIm-ThFzFKFd9Udb1j4qtCkZ-fEZu2YotSlZRujWus6EDrREvdIe5YpRWegKzycXXj5d-103Bt2GgN34WoTyxQWEtt4nThRaFykSubCaVtDLTKsi15NpEeWhQzYtsruPIIL-KxPJMy-dwWK5K9xJYYXgWuwLnIkI0l0YYjqaukgJZOkykB8EWlKntSo1Tx4tl2oS8ZZK24E8R_GkD_jTx4H3_zbottLF39ukWQ2nHdFV6RyIevO1fI7sQ7EzpVjXOoQZdSRxz5cGLFrP9cjIKQ41LeXC2RfXdz_ft5awnh__Y-qv9W38Nj0RDlZTGdgqHm1-1e4N6zyYbwkE8j4cNiQ_haDQZj6c4ji-mN19wnE1vRt__AJBL_eo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQzD2gKAwCAwwEjyxaIntOPEDQgiY2m3d04b6FhzHkSqVtJBGU_8p_kbu8tEVIVW87DVxYuvu5_vwne8A3rpCuNwl0g8VejoSbXrf5Fb4ghsqN6dV3kR0xxdqeCVPJ9FkB373d2EorbKXiY2gzueWzsiPeUzFyNAdCT8ufvrUNYqiq30LjRYWZ251jS5b9WH0Bfn7jvOTr5efh37XVcC3MtRLP4twX9mwsDawidOF5oXKeK5sJpSwItMqzLUItIlyadDciWyu48ggbnlig4yKL6HIvyNFIKlWfzxZO3io3ZvYaBgklM4Zqe6STiCS4woVJT3llAjBY5RCfyvCf6zbjcjsPuzV5cKsrs1stqH8Th7Cg85qZZ9amD2CHVcO4G7bx3I1gP2NqoYDuDfu4vWP4ZTc2m8jNs3bpCRXMcqNn5Z1_aNi84JR3IDRMXDFpiWrKL0b51mSAm3EGd2ZrhilsT6Bq1uh8wHslvPSPQNWmCCLXYFjEQA6EIabAF1rJTiKEJkID8KelKntSptTh41Z2oTYRZK25E-R_GlD_jTx4P36m0Vb2GPr6MOeQ2m3yav0BpIevFm_xu1JtDOlm9c4hhqCJXEcKA-etpxdTyciKTVO5cFRz-qbn29by9EaDv-x9Ofbl_4a9oaX4_P0fHRx9gLu8wahlEJ3CLvLX7V7iTbXMnvVAJ3B99veWX8ATD81Lg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRRR6qGB5BQoYCU402sROnPhQVRVl1W1pxYGivaWO40grLdmFbFTtX-PXMZNXFyGtuPSaOLE1nqfn8wzAe5sLm9k4cH2JkU6APr2rMyNcwTWVm1MyqzO6F5fy9Co4m4STLfjd3YUhWGWnE2tFnc0NnZEPeUTFyDAc8Yd5C4v4ejI6Wvx0qYMUZVq7dhoNi5zb1Q2Gb-Xh-AT3-gPno8_fPp26bYcB1wS-WrppiDJm_NwYz8RW5YrnMuWZNKmQwohUST9TwlM6zAKNrk9oMhWFGnmYx8ZLqRATqv97kQgEwcmiSR_soaWv86S-FxO0M5TthR1PxMMSjSY95QSK4BFqpL-N4j-e7lqWdhceVMVCr270bLZmCEePYK_1YNlxw3KPYcsWA7jf9LRcDWB3rcLhAHYu2tz9EzijEPf7mE2zBqBkS0Y4-WlRVT9KNs8Z5RAYHQmXbFqwkqDeOM-SjGmt2uj-dMkI0voUru6Ezs9gu5gX9gWwXHtpZHMci8ygPKG59jDMloKjOgli4YDfkTIxbZlz6rYxS-p0u4iThvwJkj-pyZ_EDnzsv1k0RT42jt7vdihpBb5MbtnTgXf9axRVop0u7LzCMdQcLI4iTzrwvNnZfjoRBoHCqRw46Lb69ueb1nLQs8N_LP3l5qW_hR2UqeTL-PL8FTzkNYMSmm4ftpe_Kvsa3a9l-qbmcwbXdy1YfwAjfTlp |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTrDtgY-yQWAgI_HG0iZ24sSPE2IakzYhRNF4imzHEdFatyKJpvHXc85HKSBN7NmXnJ2z7yP38x3AW1Mwk5s08kOOkU6EPr0vc818RqUrNyd43mZ0zy_46Sw6u4wvtyAc7sK0oH2tyomdLya2_N5iK1cLPR1wYlORxGhV-T3Y5i6nNILt2cWn428dkN7BKNuOregZcOQveH9RJmDptEJj5SioAyPQBDXBn8boHw9zIzu6BzuNXcmbazmfbxigk0fweZh6hzu5mjS1muiff1V1vNPaHsPD3h0lx93QE9gydgz3uwaVN2PY2yhXOIYH530i_imcuXj160dS5h3ayFTEgd5L2zSLiiwL4hICxP3frUhpSeVw28indpax1VPuMnRFHD51H2YnH768P_X7tgy-jkJR-ypGxaTDQutAp0YUghZc0ZxrxTjTTAke5oIFQsZ5JNFfjHWO65J48GmqAyXYAYzs0prnQAoZqMQUSIuBpgiYpDLAmJkzirohSpkH4SCfTPc1y13rjHnW5s5ZmnUyzVCmWSvTLPXg3fqZVVex41bqw0HsWX96q4wmrvAdhr6hB2_Ww3ju3LeT1iwbpHGdvtIkCbgHz7rtsmbH4igSyMqDo2H__H75bXM5Wu-x_5j6i7uRv4Rd2m59h487hFH9ozGv0KGq1ev-CP0CD5oVpQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DestVI+identifies+continuums+of+cell+types+in+spatial+transcriptomics+data&rft.jtitle=Nature+biotechnology&rft.au=Lopez%2C+Romain&rft.au=Li%2C+Baoguo&rft.au=Keren-Shaul%2C+Hadas&rft.au=Boyeau%2C+Pierre&rft.date=2022-09-01&rft.issn=1546-1696&rft.eissn=1546-1696&rft.volume=40&rft.issue=9&rft.spage=1360&rft_id=info:doi/10.1038%2Fs41587-022-01272-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |