DestVI identifies continuums of cell types in spatial transcriptomics data

Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 40; no. 9; pp. 1360 - 1369
Main Authors Lopez, Romain, Li, Baoguo, Keren-Shaul, Hadas, Boyeau, Pierre, Kedmi, Merav, Pilzer, David, Jelinski, Adam, Yofe, Ido, David, Eyal, Wagner, Allon, Ergen, Can, Addadi, Yoseph, Golani, Ofra, Ronchese, Franca, Jordan, Michael I., Amit, Ido, Yosef, Nir
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.09.2022
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1087-0156
1546-1696
1546-1696
DOI10.1038/s41587-022-01272-8

Cover

Abstract Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ). DestVI models continuous cell states in spatial transcriptomics data.
AbstractList Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ).Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ).
Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ). DestVI models continuous cell states in spatial transcriptomics data.
Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ).
Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools (https://scvi-tools.org).DestVI models continuous cell states in spatial transcriptomics data.
Author Addadi, Yoseph
Jelinski, Adam
Lopez, Romain
Pilzer, David
David, Eyal
Li, Baoguo
Jordan, Michael I.
Wagner, Allon
Amit, Ido
Yofe, Ido
Ronchese, Franca
Golani, Ofra
Keren-Shaul, Hadas
Boyeau, Pierre
Kedmi, Merav
Ergen, Can
Yosef, Nir
Author_xml – sequence: 1
  givenname: Romain
  orcidid: 0000-0003-0495-738X
  surname: Lopez
  fullname: Lopez, Romain
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
– sequence: 2
  givenname: Baoguo
  surname: Li
  fullname: Li, Baoguo
  organization: Department of Immunology, Weizmann Institute of Science
– sequence: 3
  givenname: Hadas
  surname: Keren-Shaul
  fullname: Keren-Shaul, Hadas
  organization: Department of Life Sciences Core Facilities, Weizmann Institute of Science
– sequence: 4
  givenname: Pierre
  surname: Boyeau
  fullname: Boyeau, Pierre
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
– sequence: 5
  givenname: Merav
  surname: Kedmi
  fullname: Kedmi, Merav
  organization: Department of Life Sciences Core Facilities, Weizmann Institute of Science
– sequence: 6
  givenname: David
  surname: Pilzer
  fullname: Pilzer, David
  organization: Department of Life Sciences Core Facilities, Weizmann Institute of Science
– sequence: 7
  givenname: Adam
  surname: Jelinski
  fullname: Jelinski, Adam
  organization: Department of Immunology, Weizmann Institute of Science
– sequence: 8
  givenname: Ido
  surname: Yofe
  fullname: Yofe, Ido
  organization: Department of Immunology, Weizmann Institute of Science
– sequence: 9
  givenname: Eyal
  surname: David
  fullname: David, Eyal
  organization: Department of Immunology, Weizmann Institute of Science
– sequence: 10
  givenname: Allon
  surname: Wagner
  fullname: Wagner, Allon
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
– sequence: 11
  givenname: Can
  surname: Ergen
  fullname: Ergen, Can
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
– sequence: 12
  givenname: Yoseph
  orcidid: 0000-0001-9827-0436
  surname: Addadi
  fullname: Addadi, Yoseph
  organization: Department of Life Sciences Core Facilities, Weizmann Institute of Science
– sequence: 13
  givenname: Ofra
  orcidid: 0000-0002-9793-236X
  surname: Golani
  fullname: Golani, Ofra
  organization: Department of Life Sciences Core Facilities, Weizmann Institute of Science
– sequence: 14
  givenname: Franca
  orcidid: 0000-0001-5835-8230
  surname: Ronchese
  fullname: Ronchese, Franca
  organization: Malaghan Institute of Medical Research
– sequence: 15
  givenname: Michael I.
  orcidid: 0000-0001-8935-817X
  surname: Jordan
  fullname: Jordan, Michael I.
  organization: Department of Immunology, Weizmann Institute of Science, Department of Statistics, University of California, Berkeley
– sequence: 16
  givenname: Ido
  orcidid: 0000-0003-2968-877X
  surname: Amit
  fullname: Amit, Ido
  email: ido.amit@weizmann.ac.il
  organization: Department of Immunology, Weizmann Institute of Science
– sequence: 17
  givenname: Nir
  orcidid: 0000-0001-9004-1225
  surname: Yosef
  fullname: Yosef, Nir
  email: niryosef@berkeley.edu
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Center for Computational Biology, University of California, Berkeley, Chan Zuckerberg Biohub, Ragon Institute of MGH, MIT and Harvard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35449415$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtPxCAUhYkZ4zz0D7gwTdy4qQIFCkszvsZM4kbdEkqpYdLSCm3M_HsZZ9TExcQVN9xzuOd-TMHItc4AcIrgJYIZvwoEUZ6nEOMUIpzjlB-ACaKEpYgJNoo13LQRZWMwDWEFIWSEsSMwzighIron4PHGhP51kdjSuN5W1oREt7Fyw9CEpK0Sbeo66dddbFiXhE71VsULr1zQ3nZ921gdklL16hgcVqoO5mR3zsDL3e3z_CFdPt0v5tfLVBMk-rSgnOcaVVpDzY2oBK5YgUumi4xlOisEQ6XIoFC0JIoySnUpcqpyQTDXsBDZDGTbdwfXqfWHqmvZedsov5YIyg0ZuSUjIxn5RUby6LrYujrfvg9xadnYsFlOOdMOQWJG44A8hyxKz_9IV-3gXdxJ4hxhhDiBKKrOdqqhaEz5k-GbbRTgrUD7NgRvqv_F5H9M2vaRefwTr2y937rjEuIc92b8b-w9rk_weKw5
CitedBy_id crossref_primary_10_1126_sciadv_add9818
crossref_primary_10_1016_j_gpb_2022_11_011
crossref_primary_10_1038_s41581_024_00841_1
crossref_primary_10_1093_bib_bbae082
crossref_primary_10_1186_s13059_023_03138_x
crossref_primary_10_1093_bib_bbae719
crossref_primary_10_7554_eLife_88431
crossref_primary_10_59717_j_xinn_life_2024_100097
crossref_primary_10_7554_eLife_88431_3
crossref_primary_10_1093_cei_uxae077
crossref_primary_10_1186_s13059_024_03426_0
crossref_primary_10_2217_fon_2023_0658
crossref_primary_10_1093_gpbjnl_qzae057
crossref_primary_10_1002_smtd_202401163
crossref_primary_10_1016_j_cell_2024_01_021
crossref_primary_10_1093_bioinformatics_btac825
crossref_primary_10_3390_cells12151970
crossref_primary_10_3389_fbinf_2023_1159381
crossref_primary_10_1038_s41467_023_43600_9
crossref_primary_10_1186_s13059_025_03505_w
crossref_primary_10_1038_s41467_023_43220_3
crossref_primary_10_1038_s42003_025_07872_9
crossref_primary_10_1016_j_csbj_2022_12_001
crossref_primary_10_1016_j_jaci_2024_11_001
crossref_primary_10_1038_s41587_024_02173_8
crossref_primary_10_1016_j_cels_2023_06_003
crossref_primary_10_1038_s41591_024_02972_1
crossref_primary_10_1186_s13059_024_03416_2
crossref_primary_10_1002_advs_202305449
crossref_primary_10_1038_s41576_022_00553_x
crossref_primary_10_1038_s41592_023_01992_y
crossref_primary_10_1016_j_stem_2022_05_007
crossref_primary_10_3389_fonc_2023_1172314
crossref_primary_10_1038_s41477_023_01387_z
crossref_primary_10_1126_sciimmunol_adr0782
crossref_primary_10_1038_d41586_022_01743_7
crossref_primary_10_1186_s13059_023_03159_6
crossref_primary_10_1016_j_bbadis_2024_167276
crossref_primary_10_1360_TB_2024_0332
crossref_primary_10_1016_j_jgg_2024_11_009
crossref_primary_10_1214_24_AOAS1953
crossref_primary_10_1038_s10038_024_01275_0
crossref_primary_10_1186_s12859_024_06003_1
crossref_primary_10_1093_bib_bbac245
crossref_primary_10_1007_s12016_024_09001_6
crossref_primary_10_1016_j_neuron_2022_09_030
crossref_primary_10_1038_s42003_024_06104_w
crossref_primary_10_1038_s41467_023_37168_7
crossref_primary_10_1093_bioinformatics_btad642
crossref_primary_10_1007_s11427_023_2561_0
crossref_primary_10_1016_j_crmeth_2024_100864
crossref_primary_10_1063_5_0091135
crossref_primary_10_1016_j_copbio_2024_103111
crossref_primary_10_1016_j_stemcr_2022_11_007
crossref_primary_10_1126_science_ado3927
crossref_primary_10_1186_s13073_024_01350_3
crossref_primary_10_1016_j_patter_2024_100986
crossref_primary_10_1038_s41587_022_01467_z
crossref_primary_10_1038_s41586_024_07563_1
crossref_primary_10_1016_j_csbj_2022_05_056
crossref_primary_10_1038_s43588_024_00683_8
crossref_primary_10_1038_s41586_023_06685_2
crossref_primary_10_1186_s13059_024_03353_0
crossref_primary_10_1007_s44272_024_00018_8
crossref_primary_10_1093_bioinformatics_btae747
crossref_primary_10_47184_tp_2024_01_07
crossref_primary_10_1055_a_2299_7880
crossref_primary_10_3389_fnins_2023_1198154
crossref_primary_10_1186_s13059_023_03145_y
crossref_primary_10_2174_1574893618666230529145130
crossref_primary_10_1016_j_cell_2024_03_029
crossref_primary_10_1093_nar_gkae876
crossref_primary_10_1186_s43556_023_00144_0
crossref_primary_10_1002_smtd_202401145
crossref_primary_10_1016_j_future_2024_07_013
crossref_primary_10_1038_s41467_023_36983_2
crossref_primary_10_1038_s41467_023_37111_w
crossref_primary_10_1038_s41586_024_08453_2
crossref_primary_10_29296_24999490_2024_02_02
crossref_primary_10_1093_bib_bbae250
crossref_primary_10_1002_wrna_1839
crossref_primary_10_1016_j_cmpb_2024_108431
crossref_primary_10_1093_bib_bbae130
crossref_primary_10_3389_fimmu_2023_1183286
crossref_primary_10_1093_bioadv_vbae081
crossref_primary_10_1093_bioinformatics_btae072
crossref_primary_10_1093_gigascience_giae089
crossref_primary_10_1038_s41467_024_49445_0
crossref_primary_10_1038_s42256_023_00734_1
crossref_primary_10_1002_advs_202206939
crossref_primary_10_1038_s41467_023_43629_w
crossref_primary_10_1038_s42256_023_00737_y
crossref_primary_10_3389_fonc_2023_1266397
crossref_primary_10_1073_pnas_2319804121
Cites_doi 10.1038/s41586-020-2496-1
10.1038/s41576-021-00370-8
10.1126/scitranslmed.aaa1260
10.1126/science.aaw1219
10.15252/msb.20199198
10.1038/s41592-018-0229-2
10.1038/s41467-019-12412-1
10.1126/science.aaf2403
10.1126/sciadv.abb3446
10.1198/106186006X113430
10.1186/1471-2172-13-63
10.1038/s41592-019-0548-y
10.15252/msb.20209620
10.1073/pnas.1408839111
10.1038/s41587-021-01206-w
10.1016/j.cmet.2019.04.003
10.1186/s13059-020-1926-6
10.1186/2191-219X-4-15
10.1126/science.abb9536
10.1038/s41587-020-0739-1
10.1038/nmeth.2930
10.1038/s41592-019-0686-2
10.1126/science.aaf5453
10.1038/s42003-020-01247-y
10.1038/s41598-017-13462-5
10.1016/j.cell.2020.08.043
10.1038/s41467-019-10500-w
10.1016/j.cell.2021.05.010
10.1073/pnas.1700600114
10.1038/nbt.3711
10.1038/s41592-020-01050-x
10.1038/s41587-019-0113-3
10.1038/s41467-017-02554-5
10.1016/j.cell.2012.07.021
10.1038/s41592-019-0619-0
10.1016/j.humpath.2007.02.018
10.1016/j.smim.2016.03.008
10.1186/s13059-017-1382-0
10.1126/science.aaa6090
10.1186/1471-2105-14-128
10.1016/j.cell.2020.06.032
10.1038/s41576-020-00292-x
10.1016/j.cell.2019.05.031
10.1109/TVCG.2004.17
10.1038/s41587-021-00830-w
10.1111/j.2517-6161.1995.tb02031.x
10.1101/2021.07.07.451498
10.1038/s41586-019-1049-y
10.1101/2020.02.06.937805
10.2307/2986645
10.1038/s41467-021-26614-z
10.1101/794289
10.1093/bib/bbaa414
10.1038/s41587-021-01139-4
10.1146/annurev-statistics-022513-115657
10.1038/s41592-018-0175-z
10.1093/nar/gkab043
10.1016/j.cels.2019.01.001
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2022
2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
RC3
7X8
ADTOC
UNPAY
DOI 10.1038/s41587-022-01272-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database (via ProQuest SciTech Premium Collection)
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 1369
ExternalDocumentID oai:pubmedcentral.nih.gov:9756396
35449415
10_1038_s41587_022_01272_8
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: U19 AI090023
  funderid: https://doi.org/10.13039/100000060
– fundername: Chan-Zuckerberg BioHub
– fundername: NIAID NIH HHS
  grantid: U19 AI090023
– fundername: Howard Hughes Medical Institute
– fundername: NIMH NIH HHS
  grantid: U19 MH114821
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
3V.
4.4
4R4
53G
5BI
5M7
5RE
5S5
70F
7X7
88A
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAEEF
AAHBH
AAIKC
AAMNW
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NNMJJ
NXXTH
O9-
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XI7
XOL
Y6R
YZZ
ZGI
ZHY
ZXP
~KM
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QO
7QP
7QR
7T7
7TK
7TM
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
AGSTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c419t-b5887c1fcc0c8e9f92f6b2d6cb363c3b961d9309a5d4a5655cd975a79428c0b93
IEDL.DBID 8FG
ISSN 1087-0156
1546-1696
IngestDate Wed Aug 20 00:02:43 EDT 2025
Wed Oct 01 13:59:14 EDT 2025
Wed Aug 13 09:06:17 EDT 2025
Thu Apr 03 07:08:39 EDT 2025
Thu Apr 24 23:09:26 EDT 2025
Wed Oct 01 04:49:30 EDT 2025
Fri Feb 21 02:39:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-b5887c1fcc0c8e9f92f6b2d6cb363c3b961d9309a5d4a5655cd975a79428c0b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2968-877X
0000-0001-9827-0436
0000-0001-9004-1225
0000-0003-0495-738X
0000-0001-5835-8230
0000-0001-8935-817X
0000-0002-9793-236X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/9756396
PMID 35449415
PQID 2712118401
PQPubID 47191
PageCount 10
ParticipantIDs unpaywall_primary_10_1038_s41587_022_01272_8
proquest_miscellaneous_2654287706
proquest_journals_2712118401
pubmed_primary_35449415
crossref_primary_10_1038_s41587_022_01272_8
crossref_citationtrail_10_1038_s41587_022_01272_8
springer_journals_10_1038_s41587_022_01272_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2022
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Zhang, Xu, Yosef (CR55) 2019; 10
Kastenmüller, Torabi-Parizi, Subramanian, Lämmermann, Germain (CR35) 2012; 150
Carmona-Fontaine (CR43) 2017; 114
Kumar (CR20) 2019; 30
Xu (CR32) 2021; 17
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR51) 2014; 15
Armingol, Officer, Harismendy, Lewis (CR50) 2021; 22
Stuart (CR27) 2019; 177
Hampton, Chtanova (CR34) 2016; 28
Zou, Hastie, Tibshirani (CR57) 2006; 15
(CR66) 2020; 583
Srivatsan (CR30) 2021; 373
Katzenelenbogen (CR37) 2020; 182
Risso, Perraudeau, Gribkova, Dudoit, Vert (CR54) 2018; 9
Yosef, Regev (CR39) 2016; 354
CR2
CR4
Steinberg (CR40) 2014; 4
CR7
Ståhl (CR10) 2016; 353
Cho (CR49) 2021; 184
CR46
CR45
Massi (CR38) 2007; 38
Garraud (CR33) 2012; 13
Pedregosa (CR59) 2011; 12
Ortiz (CR16) 2020; 6
Gayoso (CR21) 2022; 40
Hie, Bryson, Berger (CR29) 2019; 37
Wippold, Lämmle, Anatelli, Lennerz, Perry (CR41) 2006; 27
Lähnemann (CR17) 2020; 21
CR19
Lopez, Regier, Cole, Jordan, Yosef (CR24) 2018; 15
Longo, Guo, Ji, Khavari (CR47) 2021; 22
Wagner, Regev, Yosef (CR1) 2016; 34
CR15
Chen, Boettiger, Moffitt, Wang, Zhuang (CR6) 2015; 348
CR14
Benjamini, Hochberg (CR65) 1995; 57
CR12
CR56
CR11
Chen (CR64) 2013; 14
CR53
CR52
Lopez, Gayoso, Yosef (CR18) 2020; 16
Andersson (CR13) 2020; 3
Virtanen (CR62) 2020; 17
Duque-Correa (CR44) 2014; 111
Gayoso (CR31) 2021; 18
Rodriques (CR9) 2019; 363
Grün, Kester, van Oudenaarden (CR23) 2014; 11
Stickels (CR8) 2020; 39
Vickovic (CR48) 2019; 16
Godet (CR42) 2019; 10
CR26
CR25
Ji (CR5) 2020; 182
CR22
CR63
CR61
CR60
Korsunsky (CR28) 2019; 16
Asp (CR3) 2017; 7
Wolf, Angerer, Theis (CR58) 2018; 19
Hatfield (CR36) 2015; 7
A Gayoso (1272_CR21) 2022; 40
HR Hampton (1272_CR34) 2016; 28
A Wagner (1272_CR1) 2016; 34
W Kastenmüller (1272_CR35) 2012; 150
C Carmona-Fontaine (1272_CR43) 2017; 114
B Hie (1272_CR29) 2019; 37
O Garraud (1272_CR33) 2012; 13
E Armingol (1272_CR50) 2021; 22
Tabula Muris Consortium. (1272_CR66) 2020; 583
MA Duque-Correa (1272_CR44) 2014; 111
R Lopez (1272_CR18) 2020; 16
X Zhang (1272_CR55) 2019; 10
1272_CR26
1272_CR25
1272_CR22
SM Hatfield (1272_CR36) 2015; 7
H Zou (1272_CR57) 2006; 15
SK Longo (1272_CR47) 2021; 22
A Gayoso (1272_CR31) 2021; 18
A Andersson (1272_CR13) 2020; 3
1272_CR63
M Asp (1272_CR3) 2017; 7
1272_CR61
1272_CR60
S Kumar (1272_CR20) 2019; 30
D Grün (1272_CR23) 2014; 11
R Lopez (1272_CR24) 2018; 15
1272_CR15
1272_CR14
T Stuart (1272_CR27) 2019; 177
I Korsunsky (1272_CR28) 2019; 16
1272_CR12
1272_CR56
1272_CR11
1272_CR53
I Godet (1272_CR42) 2019; 10
FA Wolf (1272_CR58) 2018; 19
N Yosef (1272_CR39) 2016; 354
S Vickovic (1272_CR48) 2019; 16
SR Srivatsan (1272_CR30) 2021; 373
SG Rodriques (1272_CR9) 2019; 363
1272_CR19
FJ Wippold 2nd (1272_CR41) 2006; 27
JD Steinberg (1272_CR40) 2014; 4
PL Ståhl (1272_CR10) 2016; 353
EY Chen (1272_CR64) 2013; 14
C Xu (1272_CR32) 2021; 17
D Massi (1272_CR38) 2007; 38
1272_CR52
C Ortiz (1272_CR16) 2020; 6
Y Katzenelenbogen (1272_CR37) 2020; 182
F Pedregosa (1272_CR59) 2011; 12
N Srivastava (1272_CR51) 2014; 15
1272_CR46
Y Benjamini (1272_CR65) 1995; 57
1272_CR45
AL Ji (1272_CR5) 2020; 182
D Risso (1272_CR54) 2018; 9
C-S Cho (1272_CR49) 2021; 184
RR Stickels (1272_CR8) 2020; 39
D Lähnemann (1272_CR17) 2020; 21
1272_CR2
1272_CR4
KH Chen (1272_CR6) 2015; 348
1272_CR7
P Virtanen (1272_CR62) 2020; 17
References_xml – ident: CR45
– ident: CR22
– volume: 583
  start-page: 590
  year: 2020
  end-page: 595
  ident: CR66
  article-title: A single-cell transcriptomic atlas characterizes ageing tissues in the mouse
  publication-title: Nature
  doi: 10.1038/s41586-020-2496-1
– volume: 22
  start-page: 627
  year: 2021
  end-page: 644
  ident: CR47
  article-title: Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-021-00370-8
– volume: 7
  start-page: 277ra30
  year: 2015
  ident: CR36
  article-title: Immunological mechanisms of the antitumor effects of supplemental oxygenation
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa1260
– volume: 363
  start-page: 1463
  year: 2019
  end-page: 1467
  ident: CR9
  article-title: Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 16
  start-page: e9198
  year: 2020
  ident: CR18
  article-title: Enhancing scientific discoveries in molecular biology with deep generative models
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20199198
– ident: CR4
– volume: 15
  start-page: 1053
  year: 2018
  end-page: 1058
  ident: CR24
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– ident: CR12
– volume: 10
  year: 2019
  ident: CR42
  article-title: Fate-mapping post-hypoxic tumor cells reveals a ROS-resistant phenotype that promotes metastasis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12412-1
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR51
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: CR61
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: CR65
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
– volume: 353
  start-page: 78
  year: 2016
  end-page: 82
  ident: CR10
  article-title: Visualization and analysis of gene expression in tissue sections by spatial transcriptomics
  publication-title: Science
  doi: 10.1126/science.aaf2403
– ident: CR25
– volume: 6
  start-page: eabb3446
  year: 2020
  ident: CR16
  article-title: Molecular atlas of the adult mouse brain
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb3446
– ident: CR46
– ident: CR19
– volume: 15
  start-page: 265
  year: 2006
  end-page: 286
  ident: CR57
  article-title: Sparse principal component analysis
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186006X113430
– ident: CR15
– volume: 13
  start-page: 63
  year: 2012
  ident: CR33
  article-title: Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond
  publication-title: BMC Immunol.
  doi: 10.1186/1471-2172-13-63
– volume: 16
  start-page: 987
  year: 2019
  end-page: 990
  ident: CR48
  article-title: High-definition spatial transcriptomics for in situ tissue profiling
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0548-y
– ident: CR11
– volume: 17
  start-page: e9620
  year: 2021
  ident: CR32
  article-title: Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20209620
– volume: 111
  start-page: E4024
  year: 2014
  end-page: E4032
  ident: CR44
  article-title: Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1408839111
– volume: 40
  start-page: 163
  year: 2022
  end-page: 166
  ident: CR21
  article-title: scvi-tools: a library for deep probabilistic analysis of single-cell omics data. A Python library for probabilistic analysis of single-cell omics data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01206-w
– volume: 30
  start-page: 201
  year: 2019
  end-page: 211
  ident: CR20
  article-title: Intra-tumoral metabolic zonation and resultant phenotypic diversification are dictated by blood vessel proximity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.04.003
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR59
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: CR60
– volume: 21
  start-page: 31
  year: 2020
  ident: CR17
  article-title: Eleven grand challenges in single-cell data science
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1926-6
– volume: 4
  year: 2014
  ident: CR40
  article-title: Negative contrast Cerenkov luminescence imaging of blood vessels in a tumor mouse model using [ Ga]gallium chloride
  publication-title: EJNMMI Res
  doi: 10.1186/2191-219X-4-15
– volume: 373
  start-page: 111
  year: 2021
  end-page: 117
  ident: CR30
  article-title: Embryo-scale, single-cell spatial transcriptomics
  publication-title: Science
  doi: 10.1126/science.abb9536
– ident: CR26
– volume: 39
  start-page: 313
  year: 2020
  end-page: 319
  ident: CR8
  article-title: Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0739-1
– volume: 11
  start-page: 637
  year: 2014
  end-page: 640
  ident: CR23
  article-title: Validation of noise models for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2930
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: CR62
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 354
  start-page: 64
  year: 2016
  end-page: 68
  ident: CR39
  article-title: Writ large: genomic dissection of the effect of cellular environment on immune response
  publication-title: Science
  doi: 10.1126/science.aaf5453
– volume: 3
  start-page: 565
  year: 2020
  ident: CR13
  article-title: Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01247-y
– volume: 7
  year: 2017
  ident: CR3
  article-title: Spatial detection of fetal marker genes expressed at low level in adult human heart tissue
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13462-5
– ident: CR14
– ident: CR2
– ident: CR53
– volume: 182
  start-page: 1661
  year: 2020
  end-page: 1662
  ident: CR5
  article-title: Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.043
– volume: 10
  year: 2019
  ident: CR55
  article-title: Simulating multiple faceted variability in single cell RNA sequencing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10500-w
– volume: 184
  start-page: 3559
  year: 2021
  end-page: 3572
  ident: CR49
  article-title: Microscopic examination of spatial transcriptome using Seq-Scope
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.010
– ident: CR56
– volume: 114
  start-page: 2934
  year: 2017
  end-page: 2939
  ident: CR43
  article-title: Metabolic origins of spatial organization in the tumor microenvironment
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1700600114
– ident: CR63
– volume: 34
  start-page: 1145
  year: 2016
  end-page: 1160
  ident: CR1
  article-title: Revealing the vectors of cellular identity with single-cell genomics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3711
– volume: 18
  start-page: 272
  year: 2021
  end-page: 282
  ident: CR31
  article-title: Joint probabilistic modeling of single-cell multi-omic data with totalVI
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01050-x
– volume: 37
  start-page: 685
  year: 2019
  end-page: 691
  ident: CR29
  article-title: Efficient integration of heterogeneous single-cell transcriptomes using Scanorama
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0113-3
– volume: 9
  year: 2018
  ident: CR54
  article-title: A general and flexible method for signal extraction from single-cell RNA-seq data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02554-5
– volume: 150
  start-page: 1235
  year: 2012
  end-page: 1248
  ident: CR35
  article-title: A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.021
– volume: 16
  start-page: 1289
  year: 2019
  end-page: 1296
  ident: CR28
  article-title: Fast, sensitive and accurate integration of single-cell data with Harmony
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0619-0
– volume: 38
  start-page: 1516
  year: 2007
  end-page: 1525
  ident: CR38
  article-title: Arginine metabolism in tumor-associated macrophages in cutaneous malignant melanoma: evidence from human and experimental tumors
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2007.02.018
– volume: 28
  start-page: 129
  year: 2016
  end-page: 136
  ident: CR34
  article-title: The lymph node neutrophil
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2016.03.008
– volume: 19
  year: 2018
  ident: CR58
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 27
  start-page: 2037
  year: 2006
  end-page: 2041
  ident: CR41
  article-title: Neuropathology for the neuroradiologist: palisades and pseudopalisades
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 348
  start-page: aaa6090
  year: 2015
  ident: CR6
  article-title: RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells
  publication-title: Science
  doi: 10.1126/science.aaa6090
– ident: CR52
– volume: 14
  start-page: 128
  year: 2013
  ident: CR64
  article-title: Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-128
– volume: 182
  start-page: 872
  year: 2020
  end-page: 885
  ident: CR37
  article-title: Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.032
– volume: 22
  start-page: 71
  year: 2021
  end-page: 88
  ident: CR50
  article-title: Deciphering cell–cell interactions and communication from gene expression
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-00292-x
– ident: CR7
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902
  ident: CR27
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1272_CR59
  publication-title: J. Mach. Learn. Res.
– volume: 10
  year: 2019
  ident: 1272_CR55
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10500-w
– volume: 17
  start-page: 261
  year: 2020
  ident: 1272_CR62
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– ident: 1272_CR63
  doi: 10.1109/TVCG.2004.17
– ident: 1272_CR11
  doi: 10.1038/s41587-021-00830-w
– volume: 37
  start-page: 685
  year: 2019
  ident: 1272_CR29
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0113-3
– volume: 184
  start-page: 3559
  year: 2021
  ident: 1272_CR49
  publication-title: Cell
  doi: 10.1016/j.cell.2021.05.010
– volume: 583
  start-page: 590
  year: 2020
  ident: 1272_CR66
  publication-title: Nature
  doi: 10.1038/s41586-020-2496-1
– volume: 9
  year: 2018
  ident: 1272_CR54
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02554-5
– volume: 7
  start-page: 277ra30
  year: 2015
  ident: 1272_CR36
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa1260
– ident: 1272_CR53
– volume: 21
  start-page: 31
  year: 2020
  ident: 1272_CR17
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1926-6
– volume: 16
  start-page: e9198
  year: 2020
  ident: 1272_CR18
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20199198
– volume: 150
  start-page: 1235
  year: 2012
  ident: 1272_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2012.07.021
– volume: 57
  start-page: 289
  year: 1995
  ident: 1272_CR65
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 1272_CR56
  doi: 10.1101/2021.07.07.451498
– volume: 10
  year: 2019
  ident: 1272_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12412-1
– volume: 15
  start-page: 1929
  year: 2014
  ident: 1272_CR51
  publication-title: J. Mach. Learn. Res.
– ident: 1272_CR7
  doi: 10.1038/s41586-019-1049-y
– volume: 363
  start-page: 1463
  year: 2019
  ident: 1272_CR9
  publication-title: Science
  doi: 10.1126/science.aaw1219
– ident: 1272_CR61
  doi: 10.1101/2020.02.06.937805
– volume: 6
  start-page: eabb3446
  year: 2020
  ident: 1272_CR16
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb3446
– volume: 177
  start-page: 1888
  year: 2019
  ident: 1272_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– ident: 1272_CR25
– ident: 1272_CR60
  doi: 10.2307/2986645
– volume: 38
  start-page: 1516
  year: 2007
  ident: 1272_CR38
  publication-title: Hum. Pathol.
  doi: 10.1016/j.humpath.2007.02.018
– ident: 1272_CR52
– ident: 1272_CR4
  doi: 10.1038/s41467-021-26614-z
– volume: 13
  start-page: 63
  year: 2012
  ident: 1272_CR33
  publication-title: BMC Immunol.
  doi: 10.1186/1471-2172-13-63
– ident: 1272_CR46
  doi: 10.1101/794289
– volume: 18
  start-page: 272
  year: 2021
  ident: 1272_CR31
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01050-x
– volume: 11
  start-page: 637
  year: 2014
  ident: 1272_CR23
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2930
– volume: 373
  start-page: 111
  year: 2021
  ident: 1272_CR30
  publication-title: Science
  doi: 10.1126/science.abb9536
– volume: 14
  start-page: 128
  year: 2013
  ident: 1272_CR64
  publication-title: BMC Bioinf.
  doi: 10.1186/1471-2105-14-128
– ident: 1272_CR14
  doi: 10.1093/bib/bbaa414
– volume: 348
  start-page: aaa6090
  year: 2015
  ident: 1272_CR6
  publication-title: Science
  doi: 10.1126/science.aaa6090
– ident: 1272_CR45
– volume: 7
  year: 2017
  ident: 1272_CR3
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13462-5
– volume: 15
  start-page: 1053
  year: 2018
  ident: 1272_CR24
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 182
  start-page: 872
  year: 2020
  ident: 1272_CR37
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.032
– volume: 30
  start-page: 201
  year: 2019
  ident: 1272_CR20
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.04.003
– ident: 1272_CR15
  doi: 10.1038/s41587-021-01139-4
– ident: 1272_CR22
  doi: 10.1146/annurev-statistics-022513-115657
– volume: 16
  start-page: 1289
  year: 2019
  ident: 1272_CR28
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0619-0
– volume: 22
  start-page: 627
  year: 2021
  ident: 1272_CR47
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-021-00370-8
– ident: 1272_CR2
  doi: 10.1038/s41592-018-0175-z
– ident: 1272_CR12
  doi: 10.1093/nar/gkab043
– volume: 28
  start-page: 129
  year: 2016
  ident: 1272_CR34
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2016.03.008
– volume: 4
  year: 2014
  ident: 1272_CR40
  publication-title: EJNMMI Res
  doi: 10.1186/2191-219X-4-15
– volume: 354
  start-page: 64
  year: 2016
  ident: 1272_CR39
  publication-title: Science
  doi: 10.1126/science.aaf5453
– ident: 1272_CR19
  doi: 10.1016/j.cels.2019.01.001
– volume: 22
  start-page: 71
  year: 2021
  ident: 1272_CR50
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-00292-x
– volume: 17
  start-page: e9620
  year: 2021
  ident: 1272_CR32
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20209620
– volume: 16
  start-page: 987
  year: 2019
  ident: 1272_CR48
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0548-y
– volume: 15
  start-page: 265
  year: 2006
  ident: 1272_CR57
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186006X113430
– volume: 114
  start-page: 2934
  year: 2017
  ident: 1272_CR43
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1700600114
– volume: 19
  year: 2018
  ident: 1272_CR58
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 353
  start-page: 78
  year: 2016
  ident: 1272_CR10
  publication-title: Science
  doi: 10.1126/science.aaf2403
– volume: 182
  start-page: 1661
  year: 2020
  ident: 1272_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.043
– ident: 1272_CR26
– volume: 27
  start-page: 2037
  year: 2006
  ident: 1272_CR41
  publication-title: AJNR Am. J. Neuroradiol.
– volume: 34
  start-page: 1145
  year: 2016
  ident: 1272_CR1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3711
– volume: 40
  start-page: 163
  year: 2022
  ident: 1272_CR21
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-01206-w
– volume: 39
  start-page: 313
  year: 2020
  ident: 1272_CR8
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0739-1
– volume: 3
  start-page: 565
  year: 2020
  ident: 1272_CR13
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01247-y
– volume: 111
  start-page: E4024
  year: 2014
  ident: 1272_CR44
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1408839111
SSID ssj0006466
Score 2.655588
Snippet Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with...
SourceID unpaywall
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1360
SubjectTerms 631/114/2397
631/208/199
Agriculture
Animals
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Cell culture
Continuums
Exome Sequencing
Gene expression
Gene Expression Profiling - methods
Gene sequencing
Life Sciences
Lymph nodes
Mice
Neoplasms - genetics
Open source software
Single-Cell Analysis - methods
Software
Spatial data
Transcriptome - genetics
Transcriptomes
Transcriptomics
Tumors
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTrDtgY-yQWAgI_HG0iZ24sSPE2IakzYhRNF4imzHEdFatyKJpvHXc85HKSBN7NmXnJ2z7yP38x3AW1Mwk5s08kOOkU6EPr0vc818RqUrNyd43mZ0zy_46Sw6u4wvtyAc7sK0oH2tyomdLya2_N5iK1cLPR1wYlORxGhV-T3Y5i6nNILt2cWn428dkN7BKNuOregZcOQveH9RJmDptEJj5SioAyPQBDXBn8boHw9zIzu6BzuNXcmbazmfbxigk0fweZh6hzu5mjS1muiff1V1vNPaHsPD3h0lx93QE9gydgz3uwaVN2PY2yhXOIYH530i_imcuXj160dS5h3ayFTEgd5L2zSLiiwL4hICxP3frUhpSeVw28indpax1VPuMnRFHD51H2YnH768P_X7tgy-jkJR-ypGxaTDQutAp0YUghZc0ZxrxTjTTAke5oIFQsZ5JNFfjHWO65J48GmqAyXYAYzs0prnQAoZqMQUSIuBpgiYpDLAmJkzirohSpkH4SCfTPc1y13rjHnW5s5ZmnUyzVCmWSvTLPXg3fqZVVex41bqw0HsWX96q4wmrvAdhr6hB2_Ww3ju3LeT1iwbpHGdvtIkCbgHz7rtsmbH4igSyMqDo2H__H75bXM5Wu-x_5j6i7uRv4Rd2m59h487hFH9ozGv0KGq1ev-CP0CD5oVpQ
  priority: 102
  providerName: Unpaywall
Title DestVI identifies continuums of cell types in spatial transcriptomics data
URI https://link.springer.com/article/10.1038/s41587-022-01272-8
https://www.ncbi.nlm.nih.gov/pubmed/35449415
https://www.proquest.com/docview/2712118401
https://www.proquest.com/docview/2654287706
https://www.ncbi.nlm.nih.gov/pmc/articles/9756396
UnpaywallVersion submittedVersion
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006466
  issn: 1546-1696
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1546-1696
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006466
  issn: 1546-1696
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1546-1696
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0006466
  issn: 1546-1696
  databaseCode: 8FG
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1db9Mw8MQ28bEHBGVAYFRG4o1Fc-zEiZ9Qi1bGpFUToqg8RY7jSJVKWkgjtH_PXZJmRUgVT5YSJ7buy_flO4B3rpAud0noBwotnRB1et_kVvpSGCo3p1XeRHSvp-pyFl7No3nncKu6tMqtTGwEdb6y5CM_FzEVI0NzJPiw_ulT1yiKrnYtNA7gKBBISXRTfPKpl8SqjVUGPKH0ykh1l2a4TM4rPLjoqaDEBBGjVPj7YPpH29yJlB7Dw7pcm9vfZrncOYwmT-Bxp0WyUYv2p3DPlQO43_aVvB3A8U6VwQE8uO7i58_giszMb5_ZIm-ThFzFKFd9Udb1j4qtCkZ-fEZu2YotSlZRujWus6EDrREvdIe5YpRWegKzycXXj5d-103Bt2GgN34WoTyxQWEtt4nThRaFykSubCaVtDLTKsi15NpEeWhQzYtsruPIIL-KxPJMy-dwWK5K9xJYYXgWuwLnIkI0l0YYjqaukgJZOkykB8EWlKntSo1Tx4tl2oS8ZZK24E8R_GkD_jTx4H3_zbottLF39ukWQ2nHdFV6RyIevO1fI7sQ7EzpVjXOoQZdSRxz5cGLFrP9cjIKQ41LeXC2RfXdz_ft5awnh__Y-qv9W38Nj0RDlZTGdgqHm1-1e4N6zyYbwkE8j4cNiQ_haDQZj6c4ji-mN19wnE1vRt__AJBL_eo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NQzD2gKAwCAwwEjyxaIntOPEDQgiY2m3d04b6FhzHkSqVtJBGU_8p_kbu8tEVIVW87DVxYuvu5_vwne8A3rpCuNwl0g8VejoSbXrf5Fb4ghsqN6dV3kR0xxdqeCVPJ9FkB373d2EorbKXiY2gzueWzsiPeUzFyNAdCT8ufvrUNYqiq30LjRYWZ251jS5b9WH0Bfn7jvOTr5efh37XVcC3MtRLP4twX9mwsDawidOF5oXKeK5sJpSwItMqzLUItIlyadDciWyu48ggbnlig4yKL6HIvyNFIKlWfzxZO3io3ZvYaBgklM4Zqe6STiCS4woVJT3llAjBY5RCfyvCf6zbjcjsPuzV5cKsrs1stqH8Th7Cg85qZZ9amD2CHVcO4G7bx3I1gP2NqoYDuDfu4vWP4ZTc2m8jNs3bpCRXMcqNn5Z1_aNi84JR3IDRMXDFpiWrKL0b51mSAm3EGd2ZrhilsT6Bq1uh8wHslvPSPQNWmCCLXYFjEQA6EIabAF1rJTiKEJkID8KelKntSptTh41Z2oTYRZK25E-R_GlD_jTx4P36m0Vb2GPr6MOeQ2m3yav0BpIevFm_xu1JtDOlm9c4hhqCJXEcKA-etpxdTyciKTVO5cFRz-qbn29by9EaDv-x9Ofbl_4a9oaX4_P0fHRx9gLu8wahlEJ3CLvLX7V7iTbXMnvVAJ3B99veWX8ATD81Lg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRRR6qGB5BQoYCU402sROnPhQVRVl1W1pxYGivaWO40grLdmFbFTtX-PXMZNXFyGtuPSaOLE1nqfn8wzAe5sLm9k4cH2JkU6APr2rMyNcwTWVm1MyqzO6F5fy9Co4m4STLfjd3YUhWGWnE2tFnc0NnZEPeUTFyDAc8Yd5C4v4ejI6Wvx0qYMUZVq7dhoNi5zb1Q2Gb-Xh-AT3-gPno8_fPp26bYcB1wS-WrppiDJm_NwYz8RW5YrnMuWZNKmQwohUST9TwlM6zAKNrk9oMhWFGnmYx8ZLqRATqv97kQgEwcmiSR_soaWv86S-FxO0M5TthR1PxMMSjSY95QSK4BFqpL-N4j-e7lqWdhceVMVCr270bLZmCEePYK_1YNlxw3KPYcsWA7jf9LRcDWB3rcLhAHYu2tz9EzijEPf7mE2zBqBkS0Y4-WlRVT9KNs8Z5RAYHQmXbFqwkqDeOM-SjGmt2uj-dMkI0voUru6Ezs9gu5gX9gWwXHtpZHMci8ygPKG59jDMloKjOgli4YDfkTIxbZlz6rYxS-p0u4iThvwJkj-pyZ_EDnzsv1k0RT42jt7vdihpBb5MbtnTgXf9axRVop0u7LzCMdQcLI4iTzrwvNnZfjoRBoHCqRw46Lb69ueb1nLQs8N_LP3l5qW_hR2UqeTL-PL8FTzkNYMSmm4ftpe_Kvsa3a9l-qbmcwbXdy1YfwAjfTlp
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTrDtgY-yQWAgI_HG0iZ24sSPE2IakzYhRNF4imzHEdFatyKJpvHXc85HKSBN7NmXnJ2z7yP38x3AW1Mwk5s08kOOkU6EPr0vc818RqUrNyd43mZ0zy_46Sw6u4wvtyAc7sK0oH2tyomdLya2_N5iK1cLPR1wYlORxGhV-T3Y5i6nNILt2cWn428dkN7BKNuOregZcOQveH9RJmDptEJj5SioAyPQBDXBn8boHw9zIzu6BzuNXcmbazmfbxigk0fweZh6hzu5mjS1muiff1V1vNPaHsPD3h0lx93QE9gydgz3uwaVN2PY2yhXOIYH530i_imcuXj160dS5h3ayFTEgd5L2zSLiiwL4hICxP3frUhpSeVw28indpax1VPuMnRFHD51H2YnH768P_X7tgy-jkJR-ypGxaTDQutAp0YUghZc0ZxrxTjTTAke5oIFQsZ5JNFfjHWO65J48GmqAyXYAYzs0prnQAoZqMQUSIuBpgiYpDLAmJkzirohSpkH4SCfTPc1y13rjHnW5s5ZmnUyzVCmWSvTLPXg3fqZVVex41bqw0HsWX96q4wmrvAdhr6hB2_Ww3ju3LeT1iwbpHGdvtIkCbgHz7rtsmbH4igSyMqDo2H__H75bXM5Wu-x_5j6i7uRv4Rd2m59h487hFH9ozGv0KGq1ev-CP0CD5oVpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DestVI+identifies+continuums+of+cell+types+in+spatial+transcriptomics+data&rft.jtitle=Nature+biotechnology&rft.au=Lopez%2C+Romain&rft.au=Li%2C+Baoguo&rft.au=Keren-Shaul%2C+Hadas&rft.au=Boyeau%2C+Pierre&rft.date=2022-09-01&rft.issn=1546-1696&rft.eissn=1546-1696&rft.volume=40&rft.issue=9&rft.spage=1360&rft_id=info:doi/10.1038%2Fs41587-022-01272-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon