NerLTR-DTA: drug–target binding affinity prediction based on neighbor relationship and learning to rank

Abstract Motivation Drug–target interaction prediction plays an important role in new drug discovery and drug repurposing. Binding affinity indicates the strength of drug–target interactions. Predicting drug–target binding affinity is expected to provide promising candidates for biologists, which ca...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 38; no. 7; pp. 1964 - 1971
Main Authors Ru, Xiaoqing, Ye, Xiucai, Sakurai, Tetsuya, Zou, Quan
Format Journal Article
LanguageEnglish
Published England Oxford University Press 28.03.2022
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btac048

Cover

Abstract Abstract Motivation Drug–target interaction prediction plays an important role in new drug discovery and drug repurposing. Binding affinity indicates the strength of drug–target interactions. Predicting drug–target binding affinity is expected to provide promising candidates for biologists, which can effectively reduce the workload of wet laboratory experiments and speed up the entire process of drug research. Given that, numerous new proteins are sequenced and compounds are synthesized, several improved computational methods have been proposed for such predictions, but there are still some challenges. (i) Many methods only discuss and implement one application scenario, they focus on drug repurposing and ignore the discovery of new drugs and targets. (ii) Many methods do not consider the priority order of proteins (or drugs) related to each target drug (or protein). Therefore, it is necessary to develop a comprehensive method that can be used in multiple scenarios and focuses on candidate order. Results In this study, we propose a method called NerLTR-DTA that uses the neighbor relationship of similarity and sharing to extract features, and applies a ranking framework with regression attributes to predict affinity values and priority order of query drug (or query target) and its related proteins (or compounds). It is worth noting that using the characteristics of learning to rank to set different queries can smartly realize the multi-scenario application of the method, including the discovery of new drugs and new targets. Experimental results on two commonly used datasets show that NerLTR-DTA outperforms some state-of-the-art competing methods. NerLTR-DTA achieves excellent performance in all application scenarios mentioned in this study, and the rm(test)2 values guarantee such excellent performance is not obtained by chance. Moreover, it can be concluded that NerLTR-DTA can provide accurate ranking lists for the relevant results of most queries through the statistics of the association relationship of each query drug (or query protein). In general, NerLTR-DTA is a powerful tool for predicting drug–target associations and can contribute to new drug discovery and drug repurposing. Availability and implementation The proposed method is implemented in Python and Java. Source codes and datasets are available at https://github.com/RUXIAOQING964914140/NerLTR-DTA.
AbstractList Drug-target interaction prediction plays an important role in new drug discovery and drug repurposing. Binding affinity indicates the strength of drug-target interactions. Predicting drug-target binding affinity is expected to provide promising candidates for biologists, which can effectively reduce the workload of wet laboratory experiments and speed up the entire process of drug research. Given that, numerous new proteins are sequenced and compounds are synthesized, several improved computational methods have been proposed for such predictions, but there are still some challenges. (i) Many methods only discuss and implement one application scenario, they focus on drug repurposing and ignore the discovery of new drugs and targets. (ii) Many methods do not consider the priority order of proteins (or drugs) related to each target drug (or protein). Therefore, it is necessary to develop a comprehensive method that can be used in multiple scenarios and focuses on candidate order. In this study, we propose a method called NerLTR-DTA that uses the neighbor relationship of similarity and sharing to extract features, and applies a ranking framework with regression attributes to predict affinity values and priority order of query drug (or query target) and its related proteins (or compounds). It is worth noting that using the characteristics of learning to rank to set different queries can smartly realize the multi-scenario application of the method, including the discovery of new drugs and new targets. Experimental results on two commonly used datasets show that NerLTR-DTA outperforms some state-of-the-art competing methods. NerLTR-DTA achieves excellent performance in all application scenarios mentioned in this study, and the rm(test)2 values guarantee such excellent performance is not obtained by chance. Moreover, it can be concluded that NerLTR-DTA can provide accurate ranking lists for the relevant results of most queries through the statistics of the association relationship of each query drug (or query protein). In general, NerLTR-DTA is a powerful tool for predicting drug-target associations and can contribute to new drug discovery and drug repurposing. The proposed method is implemented in Python and Java. Source codes and datasets are available at https://github.com/RUXIAOQING964914140/NerLTR-DTA.
Abstract Motivation Drug–target interaction prediction plays an important role in new drug discovery and drug repurposing. Binding affinity indicates the strength of drug–target interactions. Predicting drug–target binding affinity is expected to provide promising candidates for biologists, which can effectively reduce the workload of wet laboratory experiments and speed up the entire process of drug research. Given that, numerous new proteins are sequenced and compounds are synthesized, several improved computational methods have been proposed for such predictions, but there are still some challenges. (i) Many methods only discuss and implement one application scenario, they focus on drug repurposing and ignore the discovery of new drugs and targets. (ii) Many methods do not consider the priority order of proteins (or drugs) related to each target drug (or protein). Therefore, it is necessary to develop a comprehensive method that can be used in multiple scenarios and focuses on candidate order. Results In this study, we propose a method called NerLTR-DTA that uses the neighbor relationship of similarity and sharing to extract features, and applies a ranking framework with regression attributes to predict affinity values and priority order of query drug (or query target) and its related proteins (or compounds). It is worth noting that using the characteristics of learning to rank to set different queries can smartly realize the multi-scenario application of the method, including the discovery of new drugs and new targets. Experimental results on two commonly used datasets show that NerLTR-DTA outperforms some state-of-the-art competing methods. NerLTR-DTA achieves excellent performance in all application scenarios mentioned in this study, and the rm(test)2 values guarantee such excellent performance is not obtained by chance. Moreover, it can be concluded that NerLTR-DTA can provide accurate ranking lists for the relevant results of most queries through the statistics of the association relationship of each query drug (or query protein). In general, NerLTR-DTA is a powerful tool for predicting drug–target associations and can contribute to new drug discovery and drug repurposing. Availability and implementation The proposed method is implemented in Python and Java. Source codes and datasets are available at https://github.com/RUXIAOQING964914140/NerLTR-DTA.
Drug-target interaction prediction plays an important role in new drug discovery and drug repurposing. Binding affinity indicates the strength of drug-target interactions. Predicting drug-target binding affinity is expected to provide promising candidates for biologists, which can effectively reduce the workload of wet laboratory experiments and speed up the entire process of drug research. Given that, numerous new proteins are sequenced and compounds are synthesized, several improved computational methods have been proposed for such predictions, but there are still some challenges. (i) Many methods only discuss and implement one application scenario, they focus on drug repurposing and ignore the discovery of new drugs and targets. (ii) Many methods do not consider the priority order of proteins (or drugs) related to each target drug (or protein). Therefore, it is necessary to develop a comprehensive method that can be used in multiple scenarios and focuses on candidate order.MOTIVATIONDrug-target interaction prediction plays an important role in new drug discovery and drug repurposing. Binding affinity indicates the strength of drug-target interactions. Predicting drug-target binding affinity is expected to provide promising candidates for biologists, which can effectively reduce the workload of wet laboratory experiments and speed up the entire process of drug research. Given that, numerous new proteins are sequenced and compounds are synthesized, several improved computational methods have been proposed for such predictions, but there are still some challenges. (i) Many methods only discuss and implement one application scenario, they focus on drug repurposing and ignore the discovery of new drugs and targets. (ii) Many methods do not consider the priority order of proteins (or drugs) related to each target drug (or protein). Therefore, it is necessary to develop a comprehensive method that can be used in multiple scenarios and focuses on candidate order.In this study, we propose a method called NerLTR-DTA that uses the neighbor relationship of similarity and sharing to extract features, and applies a ranking framework with regression attributes to predict affinity values and priority order of query drug (or query target) and its related proteins (or compounds). It is worth noting that using the characteristics of learning to rank to set different queries can smartly realize the multi-scenario application of the method, including the discovery of new drugs and new targets. Experimental results on two commonly used datasets show that NerLTR-DTA outperforms some state-of-the-art competing methods. NerLTR-DTA achieves excellent performance in all application scenarios mentioned in this study, and the rm(test)2 values guarantee such excellent performance is not obtained by chance. Moreover, it can be concluded that NerLTR-DTA can provide accurate ranking lists for the relevant results of most queries through the statistics of the association relationship of each query drug (or query protein). In general, NerLTR-DTA is a powerful tool for predicting drug-target associations and can contribute to new drug discovery and drug repurposing.RESULTSIn this study, we propose a method called NerLTR-DTA that uses the neighbor relationship of similarity and sharing to extract features, and applies a ranking framework with regression attributes to predict affinity values and priority order of query drug (or query target) and its related proteins (or compounds). It is worth noting that using the characteristics of learning to rank to set different queries can smartly realize the multi-scenario application of the method, including the discovery of new drugs and new targets. Experimental results on two commonly used datasets show that NerLTR-DTA outperforms some state-of-the-art competing methods. NerLTR-DTA achieves excellent performance in all application scenarios mentioned in this study, and the rm(test)2 values guarantee such excellent performance is not obtained by chance. Moreover, it can be concluded that NerLTR-DTA can provide accurate ranking lists for the relevant results of most queries through the statistics of the association relationship of each query drug (or query protein). In general, NerLTR-DTA is a powerful tool for predicting drug-target associations and can contribute to new drug discovery and drug repurposing.The proposed method is implemented in Python and Java. Source codes and datasets are available at https://github.com/RUXIAOQING964914140/NerLTR-DTA.AVAILABILITY AND IMPLEMENTATIONThe proposed method is implemented in Python and Java. Source codes and datasets are available at https://github.com/RUXIAOQING964914140/NerLTR-DTA.
Author Ru, Xiaoqing
Ye, Xiucai
Sakurai, Tetsuya
Zou, Quan
Author_xml – sequence: 1
  givenname: Xiaoqing
  orcidid: 0000-0002-2968-6435
  surname: Ru
  fullname: Ru, Xiaoqing
  organization: Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
– sequence: 2
  givenname: Xiucai
  surname: Ye
  fullname: Ye, Xiucai
  email: yexiucai@cs.tsukuba.ac.jp
  organization: Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
– sequence: 3
  givenname: Tetsuya
  surname: Sakurai
  fullname: Sakurai, Tetsuya
  organization: Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
– sequence: 4
  givenname: Quan
  orcidid: 0000-0001-6406-1142
  surname: Zou
  fullname: Zou, Quan
  email: zouquan@nclab.net
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35134828$$D View this record in MEDLINE/PubMed
BookMark eNqNkcluFDEURS0URAb4hchLNkU8lcuF2EQJk9RKpKhZlzw8dwzVdmG7FtnxD_whX0I13SCRDaz8JJ_j4d5TdBRTBITOKXlFSc8vTEgh-pS3ugZbLkzVlgj1BJ1QIUnDSNsfLTOXXSMU4cfotJTPhLRUCPEMHfOWcqGYOkHhBvJqfddcry9fY5fnzY9v36vOG6jYhOhC3GDtfYihPuApgwu2hhSx0QUcXoYIYXNvUsYZRr3bKvdhwjo6PILOcefXhLOOX56jp16PBV4c1jP06d3b9dWHZnX7_uPV5aqxgva10R10y_OZlNJK7x3j3ijROWvavpU90-Ad8ctHFOOgFe9a1tleG1DCtV61_Ay93J875fR1hlKHbSgWxlFHSHMZmGTdEoxSdEHPD-hstuCGKYetzg_D73gWQO4Bm1MpGfwfhJJh18Pwdw_DoYdFfPNItKH-yqdmHcZ_63Svp3n63yt_AraeqmE
CitedBy_id crossref_primary_10_7717_peerj_16625
crossref_primary_10_1039_D3RA00281K
crossref_primary_10_1093_bfgp_elad008
crossref_primary_10_1093_bib_bbad396
crossref_primary_10_1109_JBHI_2024_3350666
crossref_primary_10_1109_JBHI_2022_3219213
crossref_primary_10_1016_j_compbiomed_2022_105984
crossref_primary_10_1016_j_compbiomed_2023_106955
crossref_primary_10_1038_s41598_023_27995_5
crossref_primary_10_1109_TCBB_2024_3468434
crossref_primary_10_1093_bib_bbac539
crossref_primary_10_1016_j_compbiomed_2023_107762
crossref_primary_10_1186_s12864_024_10326_x
crossref_primary_10_1186_s12915_025_02166_2
crossref_primary_10_1109_JBHI_2024_3402529
crossref_primary_10_1016_j_compbiolchem_2023_107968
crossref_primary_10_3390_cimb45090482
crossref_primary_10_3934_mbe_2023469
crossref_primary_10_1021_acs_jcim_3c00260
crossref_primary_10_1093_bib_bbaf024
crossref_primary_10_1093_bioinformatics_btad615
crossref_primary_10_1186_s12859_024_05671_3
crossref_primary_10_2174_0115748936294345240510112941
crossref_primary_10_1007_s00521_024_10814_x
crossref_primary_10_1002_jcc_27193
crossref_primary_10_1016_j_jmb_2024_168843
crossref_primary_10_1093_bioinformatics_btad059
crossref_primary_10_1093_bib_bbac628
crossref_primary_10_1371_journal_pcbi_1011851
crossref_primary_10_1371_journal_pcbi_1011036
crossref_primary_10_1093_bib_bbad118
crossref_primary_10_1016_j_biosystems_2023_105094
crossref_primary_10_1093_bioinformatics_btad560
crossref_primary_10_1016_j_eswa_2023_120754
crossref_primary_10_3390_ijms26062468
crossref_primary_10_1109_TCBB_2023_3258448
Cites_doi 10.1093/bioinformatics/bty535
10.1093/nar/gkm911
10.1093/bioinformatics/btab473
10.1021/acsomega.9b01997
10.1145/1273496.1273513
10.1186/s12859-016-0977-x
10.1093/bib/bbv066
10.1038/nm.4306
10.1371/journal.pcbi.1004760
10.1002/minf.201400009
10.1093/bioinformatics/bts360
10.1093/bioinformatics/btaa284
10.1093/bioinformatics/bty593
10.1038/nrd.2018.168
10.1038/s41598-017-18025-2
10.1093/biomet/92.4.965
10.1038/nbt.1990
10.3390/molecules14051660
10.1093/bioinformatics/btaa772
10.1093/bioinformatics/btab334
10.1109/TSMC.1986.4308985
10.1186/s13321-017-0209-z
10.1093/bioinformatics/btv256
10.1126/science.abd0724
10.1007/s10791-005-6991-7
10.1093/bioinformatics/btw244
10.1093/bioinformatics/btx429
10.1021/acs.jpclett.1c00867
10.1093/bioinformatics/btaa921
10.1517/17425255.2014.950222
10.1016/j.ins.2017.08.045
10.1093/bib/bbu010
10.1093/nar/gkaa971
10.1021/ci400709d
10.1093/bioinformatics/btn162
10.1093/bib/bby002
10.1021/acs.jcim.6b00740
10.1145/1390156.1390306
10.1002/med.21602
10.1093/bioinformatics/btp433
10.1145/1102351.1102363
10.2174/1389203718666161114111656
10.1038/s42256-020-00276-w
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2022
– notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bioinformatics/btac048
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 1971
ExternalDocumentID 35134828
10_1093_bioinformatics_btac048
10.1093/bioinformatics/btac048
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: JST SPRING
  grantid: JPMJSP2124
– fundername: JST COI-NEXT
– fundername: National Natural Science Foundation of China
  grantid: 62131004
– fundername: Sichuan Provincial Science Fund for Distinguished Young Scholars
  grantid: 2021JDJQ0025
– fundername: New Energy and Industrial Technology Development Organization 265
– fundername: Special Science Foundation of Quzhou
  grantid: 2021D004
GroupedDBID -~X
.2P
.I3
482
48X
53G
5GY
AAIMJ
AAJKP
AAKPC
AAMVS
AAPQZ
AAPXW
AARHZ
AAVAP
ABEFU
ABEJV
ABGNP
ABJNI
ABNGD
ABNKS
ABPTD
ABSMQ
ABWST
ABXVV
ABZBJ
ACGFS
ACPQN
ACUFI
ACUKT
ACYTK
ADEYI
ADFTL
ADGZP
ADHKW
ADOCK
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEPUE
AETBJ
AFFNX
AFFZL
AFOFC
AFSHK
AGINJ
AGKRT
AGQXC
AI.
ALMA_UNASSIGNED_HOLDINGS
ALTZX
AQDSO
ARIXL
ASAOO
ATDFG
ATTQO
AXUDD
AYOIW
AZFZN
AZVOD
BHONS
CXTWN
CZ4
DFGAJ
EE~
ELUNK
F5P
F9B
FEDTE
H5~
HAR
HVGLF
HW0
IOX
KSI
KSN
MBTAY
MVM
NGC
PB-
Q1.
Q5Y
QBD
RD5
RIG
ROL
ROZ
RXO
TLC
TN5
TOX
TR2
VH1
WH7
XJT
ZGI
~91
---
-E4
.DC
0R~
23N
2WC
4.4
5WA
70D
AAIJN
AAMDB
AAOGV
AAVLN
AAYXX
ABEUO
ABIXL
ABPQP
ABQLI
ACIWK
ACPRK
ACUXJ
ADBBV
ADEZT
ADGKP
ADHZD
ADMLS
ADPDF
ADRDM
ADVEK
AEMDU
AENEX
AENZO
AEWNT
AFGWE
AFIYH
AFRAH
AGKEF
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALUQC
AMNDL
APIBT
APWMN
ASPBG
AVWKF
BAWUL
BAYMD
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EMOBN
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HZ~
J21
JXSIZ
KAQDR
KOP
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
R44
RNS
RPM
RUSNO
RW1
SV3
TEORI
TJP
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
ID FETCH-LOGICAL-c419t-a7e72052666c6ffd23fb847dcb595692aefd0f514823ea837527c9abe84d5f853
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Fri Jul 11 10:42:43 EDT 2025
Thu Apr 03 07:07:01 EDT 2025
Tue Jul 01 02:33:58 EDT 2025
Thu Apr 24 23:13:06 EDT 2025
Wed Apr 02 06:59:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-a7e72052666c6ffd23fb847dcb595692aefd0f514823ea837527c9abe84d5f853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6406-1142
0000-0002-2968-6435
PMID 35134828
PQID 2627136881
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2627136881
pubmed_primary_35134828
crossref_primary_10_1093_bioinformatics_btac048
crossref_citationtrail_10_1093_bioinformatics_btac048
oup_primary_10_1093_bioinformatics_btac048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-28
PublicationDateYYYYMMDD 2022-03-28
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-28
  day: 28
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Burges (2023020109013188200_btac048-B4) 2005
Zhou (2023020109013188200_btac048-B49) 2021; 37
Chen (2023020109013188200_btac048-B8) 2017; 33
Öztürk (2023020109013188200_btac048-B30) 2019
Ding (2023020109013188200_btac048-B11) 2017; 418-419
O’Meara (2023020109013188200_btac048-B27) 2020
Zheng (2023020109013188200_btac048-B48) 2019; 4
Liu (2023020109013188200_btac048-B23) 2021; 3
Liu (2023020109013188200_btac048-B20) 2015; 31
Öztürk (2023020109013188200_btac048-B29) 2018; 34
Öztürk (2023020109013188200_btac048-B28) 2016; 17
Gönen (2023020109013188200_btac048-B14) 2005; 92
Wei (2023020109013188200_btac048-B42) 2021; 37
Pratim Roy (2023020109013188200_btac048-B32) 2009; 14
Theodoris (2023020109013188200_btac048-B38) 2021; 371
Wang (2023020109013188200_btac048-B41) 2018; 19
Xia (2023020109013188200_btac048-B44) 2010; 4
He (2023020109013188200_btac048-B15) 2017; 9
Pushpakom (2023020109013188200_btac048-B33) 2019; 18
Liu (2023020109013188200_btac048-B21) 2016; 12
Jin (2023020109013188200_btac048-B16) 2021; 37
Davis (2023020109013188200_btac048-B10) 2011; 29
Ragoza (2023020109013188200_btac048-B34) 2017; 57
Ezzat (2023020109013188200_btac048-B12) 2019; 20
Tang (2023020109013188200_btac048-B37) 2014; 54
Tsubaki (2023020109013188200_btac048-B40) 2019; 35
Cao (2023020109013188200_btac048-B6) 2014; 33
Mousavian (2023020109013188200_btac048-B25) 2014; 10
Köksoy (2023020109013188200_btac048-B18) 2006; 175
Cao (2023020109013188200_btac048-B5) 2007
Kim (2023020109013188200_btac048-B17) 2021; 49
Yuan (2023020109013188200_btac048-B47) 2016; 32
Benson (2023020109013188200_btac048-B2) 2007; 36
Yamanishi (2023020109013188200_btac048-B45) 2008; 24
Nguyen (2023020109013188200_btac048-B26) 2021; 37
Gönen (2023020109013188200_btac048-B13) 2012; 28
Xia (2023020109013188200_btac048-B43) 2008
Pahikkala (2023020109013188200_btac048-B31) 2015; 16
Rayhan (2023020109013188200_btac048-B35) 2017; 7
Trotman (2023020109013188200_btac048-B39) 2005; 8
Liu (2023020109013188200_btac048-B22) 2020; 36
Steck (2023020109013188200_btac048-B36) 2008
Chen (2023020109013188200_btac048-B7) 2016; 17
Marmolin (2023020109013188200_btac048-B24) 1986; 16
Bleakley (2023020109013188200_btac048-B3) 2009; 25
Corsello (2023020109013188200_btac048-B9) 2017; 23
Yang (2023020109013188200_btac048-B46) 2021; 12
Bahuguna (2023020109013188200_btac048-B1) 2020; 40
References_xml – volume: 4
  start-page: 1
  year: 2010
  ident: 2023020109013188200_btac048-B44
  article-title: Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces. In, BMC systems biology
  publication-title: BioMed Central
– volume: 35
  start-page: 309
  year: 2019
  ident: 2023020109013188200_btac048-B40
  article-title: Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty535
– volume: 36
  start-page: D674
  year: 2007
  ident: 2023020109013188200_btac048-B2
  article-title: Binding MOAD, a high-quality protein–ligand database
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm911
– volume: 37
  start-page: 4485
  year: 2021
  ident: 2023020109013188200_btac048-B49
  article-title: MultiDTI: drug–target interaction prediction based on multi-modal representation learning to bridge the gap between new chemical entities and known heterogeneous network
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab473
– volume: 175
  start-page: 1716
  year: 2006
  ident: 2023020109013188200_btac048-B18
  article-title: Multiresponse robust design: mean square error (MSE) criterion
  publication-title: Appl. Math. Comput
– volume: 4
  start-page: 15956
  year: 2019
  ident: 2023020109013188200_btac048-B48
  article-title: Onionnet: a multiple-layer intermolecular-contact-based convolutional neural network for protein–ligand binding affinity prediction
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01997
– start-page: 129
  volume-title: Proceedings of the 24th International Conference on Machine Learning
  year: 2007
  ident: 2023020109013188200_btac048-B5
  doi: 10.1145/1273496.1273513
– volume: 17
  start-page: 128
  year: 2016
  ident: 2023020109013188200_btac048-B28
  article-title: A comparative study of SMILES-based compound similarity functions for drug–target interaction prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-0977-x
– volume: 17
  start-page: 696
  year: 2016
  ident: 2023020109013188200_btac048-B7
  article-title: Drug–target interaction prediction: databases, web servers and computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv066
– volume: 23
  start-page: 405
  year: 2017
  ident: 2023020109013188200_btac048-B9
  article-title: The Drug Repurposing Hub: a next-generation drug library and information resource
  publication-title: Nat. Med
  doi: 10.1038/nm.4306
– volume: 12
  start-page: e1004760
  year: 2016
  ident: 2023020109013188200_btac048-B21
  article-title: Neighborhood regularized logistic matrix factorization for drug–target interaction prediction
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1004760
– volume: 33
  start-page: 669
  year: 2014
  ident: 2023020109013188200_btac048-B6
  article-title: Computational prediction of drug–target interactions using chemical, biological, and network features
  publication-title: Mol. Inf
  doi: 10.1002/minf.201400009
– volume: 28
  start-page: 2304
  year: 2012
  ident: 2023020109013188200_btac048-B13
  article-title: Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts360
– volume: 36
  start-page: 4180
  year: 2020
  ident: 2023020109013188200_btac048-B22
  article-title: HPOLabeler: improving prediction of human protein–phenotype associations by learning to rank
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa284
– start-page: 1209
  volume-title: Advances in Neural Information Processing Systems
  year: 2008
  ident: 2023020109013188200_btac048-B36
– volume: 34
  start-page: i821
  year: 2018
  ident: 2023020109013188200_btac048-B29
  article-title: DeepDTA: deep drug–target binding affinity prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty593
– volume: 18
  start-page: 41
  year: 2019
  ident: 2023020109013188200_btac048-B33
  article-title: Drug repurposing: progress, challenges and recommendations
  publication-title: Nat. Rev. Drug Discov
  doi: 10.1038/nrd.2018.168
– volume: 7
  start-page: 1
  year: 2017
  ident: 2023020109013188200_btac048-B35
  article-title: iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting
  publication-title: Sci. Rep
  doi: 10.1038/s41598-017-18025-2
– volume: 92
  start-page: 965
  year: 2005
  ident: 2023020109013188200_btac048-B14
  article-title: Concordance probability and discriminatory power in proportional hazards regression
  publication-title: Biometrika
  doi: 10.1093/biomet/92.4.965
– volume: 29
  start-page: 1046
  year: 2011
  ident: 2023020109013188200_btac048-B10
  article-title: Comprehensive analysis of kinase inhibitor selectivity
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.1990
– volume: 14
  start-page: 1660
  year: 2009
  ident: 2023020109013188200_btac048-B32
  article-title: On two novel parameters for validation of predictive QSAR models
  publication-title: Molecules
  doi: 10.3390/molecules14051660
– volume: 37
  start-page: 913
  year: 2021
  ident: 2023020109013188200_btac048-B16
  article-title: SMI-BLAST: a novel supervised search framework based on PSI-BLAST for protein remote homology detection
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa772
– year: 2019
  ident: 2023020109013188200_btac048-B30
– volume: 37
  start-page: 3302
  year: 2021
  ident: 2023020109013188200_btac048-B42
  article-title: iCircDA-LTR: identification of circRNA–disease associations based on learning to rank
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab334
– volume: 16
  start-page: 486
  year: 1986
  ident: 2023020109013188200_btac048-B24
  article-title: Subjective MSE measures
  publication-title: IEEE Trans. Syst. Man Cybern
  doi: 10.1109/TSMC.1986.4308985
– year: 2020
  ident: 2023020109013188200_btac048-B27
  article-title: A SARS-CoV-2-human protein–protein interaction map reveals drug targets and potential drug-repurposing
  publication-title: BioRxiv
– volume: 9
  start-page: 1
  year: 2017
  ident: 2023020109013188200_btac048-B15
  article-title: SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines
  publication-title: J. Cheminf
  doi: 10.1186/s13321-017-0209-z
– volume: 31
  start-page: i221
  year: 2015
  ident: 2023020109013188200_btac048-B20
  article-title: Improving compound–protein interaction prediction by building up highly credible negative samples
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv256
– volume: 371
  start-page: eabd0724
  year: 2021
  ident: 2023020109013188200_btac048-B38
  article-title: Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease
  publication-title: Science
  doi: 10.1126/science.abd0724
– volume: 8
  start-page: 359
  year: 2005
  ident: 2023020109013188200_btac048-B39
  article-title: Learning to rank
  publication-title: Inf. Retrieval
  doi: 10.1007/s10791-005-6991-7
– volume: 32
  start-page: i18
  year: 2016
  ident: 2023020109013188200_btac048-B47
  article-title: DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw244
– volume: 33
  start-page: 3473
  year: 2017
  ident: 2023020109013188200_btac048-B8
  article-title: ProtDec-LTR2. 0: an improved method for protein remote homology detection by combining pseudo protein and supervised Learning to Rank
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx429
– volume: 12
  start-page: 4247
  year: 2021
  ident: 2023020109013188200_btac048-B46
  article-title: ML-DTI: mutual learning mechanism for interpretable drug–target interaction prediction
  publication-title: J. Phys. Chem. Lett
  doi: 10.1021/acs.jpclett.1c00867
– volume: 37
  start-page: 1140
  year: 2021
  ident: 2023020109013188200_btac048-B26
  article-title: GraphDTA: predicting drug–target binding affinity with graph neural networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa921
– volume: 10
  start-page: 1273
  year: 2014
  ident: 2023020109013188200_btac048-B25
  article-title: Drug–target interaction prediction via chemogenomic space: learning-based methods
  publication-title: Expert Opin. Drug Metab. Toxicol
  doi: 10.1517/17425255.2014.950222
– volume: 418-419
  start-page: 546
  year: 2017
  ident: 2023020109013188200_btac048-B11
  article-title: Identification of drug–target interactions via multiple information integration
  publication-title: Inf. Sci
  doi: 10.1016/j.ins.2017.08.045
– volume: 16
  start-page: 325
  year: 2015
  ident: 2023020109013188200_btac048-B31
  article-title: Toward more realistic drug–target interaction predictions
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbu010
– volume: 49
  start-page: D1388
  year: 2021
  ident: 2023020109013188200_btac048-B17
  article-title: PubChem in 2021: new data content and improved web interfaces
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa971
– volume: 54
  start-page: 735
  year: 2014
  ident: 2023020109013188200_btac048-B37
  article-title: Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci400709d
– volume: 24
  start-page: i232
  year: 2008
  ident: 2023020109013188200_btac048-B45
  article-title: Prediction of drug–target interaction networks from the integration of chemical and genomic spaces
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn162
– volume: 20
  start-page: 1337
  year: 2019
  ident: 2023020109013188200_btac048-B12
  article-title: Computational prediction of drug–target interactions using chemogenomic approaches: an empirical survey
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby002
– volume: 57
  start-page: 942
  year: 2017
  ident: 2023020109013188200_btac048-B34
  article-title: Protein–ligand scoring with convolutional neural networks
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.6b00740
– start-page: 1192
  volume-title: Proceedings of the 25th International Conference on Machine Learning
  year: 2008
  ident: 2023020109013188200_btac048-B43
  doi: 10.1145/1390156.1390306
– volume: 40
  start-page: 263
  year: 2020
  ident: 2023020109013188200_btac048-B1
  article-title: An overview of new antitubercular drugs, drug candidates, and their targets
  publication-title: Med. Res. Rev
  doi: 10.1002/med.21602
– volume: 25
  start-page: 2397
  year: 2009
  ident: 2023020109013188200_btac048-B3
  article-title: Supervised prediction of drug–target interactions using bipartite local models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp433
– start-page: 89
  volume-title: Proceedings of the 22nd International Conference on Machine Learning
  year: 2005
  ident: 2023020109013188200_btac048-B4
  doi: 10.1145/1102351.1102363
– volume: 19
  start-page: 445
  year: 2018
  ident: 2023020109013188200_btac048-B41
  article-title: Rfdt: a rotation forest-based predictor for predicting drug–target interactions using drug structure and protein sequence information
  publication-title: Curr. Protein Peptide Sci
  doi: 10.2174/1389203718666161114111656
– volume: 3
  start-page: 68
  year: 2021
  ident: 2023020109013188200_btac048-B23
  article-title: A deep learning framework for drug repurposing via emulating clinical trials on real-world patient data
  publication-title: Nat. Mach. Intell
  doi: 10.1038/s42256-020-00276-w
SSID ssj0051444
ssj0005056
Score 2.5535414
Snippet Abstract Motivation Drug–target interaction prediction plays an important role in new drug discovery and drug repurposing. Binding affinity indicates the...
Drug-target interaction prediction plays an important role in new drug discovery and drug repurposing. Binding affinity indicates the strength of drug-target...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1964
SubjectTerms Algorithms
Drug Development - methods
Drug Discovery - methods
Drug Repositioning
Proteins - chemistry
Software
Title NerLTR-DTA: drug–target binding affinity prediction based on neighbor relationship and learning to rank
URI https://www.ncbi.nlm.nih.gov/pubmed/35134828
https://www.proquest.com/docview/2627136881
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4qCF7E91sieBLCtkmTbbyJT0QUZIW9lTQPLUh3qd2DN_-D_9Bf4mTTKquIemuhSctMkpnpzHwfQvuJzI2kVhCqY0sSpx2RkeLEMmaNiAx1oUD2WlzcJZd93p9CcdsL8zWFL1knLwYNiKgHLu7ktdKw7ODUBUvsOQt6N_3Poo7IQ8OEG3AFksBp66G904i1DcI_zjlhmyb63b65nWPzc7aA5hu_ER8FRS-iKVsuodnAJPm8jIprW131bslJ7-gQm2p0__byGoq8cV6MG1ewcq6A_fuMh5VPzniFYG_DDIaL0v8hheWAq7Y47qEYYlUa3NBK3ON6gD3B-wq6OzvtHV-QhkWB6CSWNVFd26Ue1UUILZwzlLkcTJLROYfYSFJlnYkc93igzCqIVzntaqlymyaGO7Dmq2imHJR2HWE4DZjUKYu0YgmXPrilMrYQA3GjpIg3EG_ll-kGYtwzXTxmIdXNskm5Z43cN1DnY9wwgGz8OuIA1PPnh_daLWaweXxGRJV2MHrKqKAQpIs0hU9fC-r9mJPx2AP_pJv_edUWmqO-PyJihKbbaKauRnYHvJY630XT5_14d7xc3wHf4vCw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NerLTR-DTA%3A+drug%E2%80%93target+binding+affinity+prediction+based+on+neighbor+relationship+and+learning+to+rank&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Ru%2C+Xiaoqing&rft.au=Ye%2C+Xiucai&rft.au=Sakurai%2C+Tetsuya&rft.au=Zou%2C+Quan&rft.date=2022-03-28&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=38&rft.issue=7&rft.spage=1964&rft.epage=1971&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtac048&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btac048
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon