Model-based optimal scenario planning in EAST
•Scenario planning in EAST is formulated as a constrained nonlinear optimization problem.•The magnetic diffusion equation is combined with physics-based correlations to obtain a control-oriented response model.•The optimization objective is to design feedforward actuator trajectories to reach a desi...
Saved in:
Published in | Fusion engineering and design Vol. 123; no. C; pp. 569 - 573 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2017
Elsevier Science Ltd Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0920-3796 1873-7196 1873-7196 |
DOI | 10.1016/j.fusengdes.2017.03.143 |
Cover
Abstract | •Scenario planning in EAST is formulated as a constrained nonlinear optimization problem.•The magnetic diffusion equation is combined with physics-based correlations to obtain a control-oriented response model.•The optimization objective is to design feedforward actuator trajectories to reach a desired plasma state.•The desired plasma state is defined in terms of the q profile, βN, and a stationary condition.•The model-based optimization problem under input and state constraints is solved by employing sequential quadratic programming.
Ongoing work in the fusion community focuses on developing advanced plasma scenarios characterized by high plasma confinement, magnetohydrodynamic (MHD) stability, and noninductively driven plasma current. The toroidal current density profile, or alternatively the q profile, together with the normalized beta, are often used to characterize these advanced scenarios. The development of these advanced scenarios is experimentally carried out by specifying the devices’ actuator trajectory waveforms, such as the total plasma current, the plasma density, and the auxiliary heating and current-drive (H&CD) sources based on trial-and-error basis. In this work, a model-based numerical optimization approach is followed to complement the experimental effort on actuator trajectory planning in the EAST tokamak. The evolution of the q profile is closely related to the evolution of the poloidal magnetic flux profile, whose dynamics is modeled by a nonlinear partial differential equation (PDE) referred to as the magnetic-flux diffusion equation (MDE). In this work, the MDE is combined with physics-based correlations obtained from EAST experimental data for the plasma density, temperature, resistivity and non-inductive current drives to develop a control-oriented nonlinear PDE model. The optimization objective is to design feedforward trajectories for the plasma current, plasma density, electron cyclotron heating power, neutral beam injection power and lower hybrid current drive power that steer the plasma to desired q profile and βN such that the achieved state is stationary in time. The optimization is subject to the plasma dynamics (described by the physics-based PDE model) and plasma state and actuator constraints, such as the maximum available amount of H&CD power and MHD stability limits. This defines a nonlinear, constrained optimization problem that is solved by employing sequential quadratic programming. The optimized actuator trajectories are assessed in nonlinear transport simulations in preparation for experimental tests in EAST. |
---|---|
AbstractList | Not provided. •Scenario planning in EAST is formulated as a constrained nonlinear optimization problem.•The magnetic diffusion equation is combined with physics-based correlations to obtain a control-oriented response model.•The optimization objective is to design feedforward actuator trajectories to reach a desired plasma state.•The desired plasma state is defined in terms of the q profile, βN, and a stationary condition.•The model-based optimization problem under input and state constraints is solved by employing sequential quadratic programming. Ongoing work in the fusion community focuses on developing advanced plasma scenarios characterized by high plasma confinement, magnetohydrodynamic (MHD) stability, and noninductively driven plasma current. The toroidal current density profile, or alternatively the q profile, together with the normalized beta, are often used to characterize these advanced scenarios. The development of these advanced scenarios is experimentally carried out by specifying the devices’ actuator trajectory waveforms, such as the total plasma current, the plasma density, and the auxiliary heating and current-drive (H&CD) sources based on trial-and-error basis. In this work, a model-based numerical optimization approach is followed to complement the experimental effort on actuator trajectory planning in the EAST tokamak. The evolution of the q profile is closely related to the evolution of the poloidal magnetic flux profile, whose dynamics is modeled by a nonlinear partial differential equation (PDE) referred to as the magnetic-flux diffusion equation (MDE). In this work, the MDE is combined with physics-based correlations obtained from EAST experimental data for the plasma density, temperature, resistivity and non-inductive current drives to develop a control-oriented nonlinear PDE model. The optimization objective is to design feedforward trajectories for the plasma current, plasma density, electron cyclotron heating power, neutral beam injection power and lower hybrid current drive power that steer the plasma to desired q profile and βN such that the achieved state is stationary in time. The optimization is subject to the plasma dynamics (described by the physics-based PDE model) and plasma state and actuator constraints, such as the maximum available amount of H&CD power and MHD stability limits. This defines a nonlinear, constrained optimization problem that is solved by employing sequential quadratic programming. The optimized actuator trajectories are assessed in nonlinear transport simulations in preparation for experimental tests in EAST. Ongoing work in the fusion community focuses on developing advanced plasma scenarios characterized by high plasma confinement, magnetohydrodynamic (MHD) stability, and noninductively driven plasma current. The toroidal current density profile, or alternatively the q profile, together with the normalized beta, are often used to characterize these advanced scenarios. The development of these advanced scenarios is experimentally carried out by specifying the devices’ actuator trajectory waveforms, such as the total plasma current, the plasma density, and the auxiliary heating and current-drive (H&CD) sources based on trial-and-error basis. In this work, a model-based numerical optimization approach is followed to complement the experimental effort on actuator trajectory planning in the EAST tokamak. The evolution of the q profile is closely related to the evolution of the poloidal magnetic flux profile, whose dynamics is modeled by a nonlinear partial differential equation (PDE) referred to as the magnetic-flux diffusion equation (MDE). In this work, the MDE is combined with physics-based correlations obtained from EAST experimental data for the plasma density, temperature, resistivity and non-inductive current drives to develop a control-oriented nonlinear PDE model. The optimization objective is to design feedforward trajectories for the plasma current, plasma density, electron cyclotron heating power, neutral beam injection power and lower hybrid current drive power that steer the plasma to desired q profile and βN such that the achieved state is stationary in time. The optimization is subject to the plasma dynamics (described by the physics-based PDE model) and plasma state and actuator constraints, such as the maximum available amount of H&CD power and MHD stability limits. This defines a nonlinear, constrained optimization problem that is solved by employing sequential quadratic programming. The optimized actuator trajectories are assessed in nonlinear transport simulations in preparation for experimental tests in EAST. |
Author | Rafiq, Tariq Schuster, Eugenio Wang, Hexiang Ding, Siye Kritz, Arnold |
Author_xml | – sequence: 1 givenname: Hexiang surname: Wang fullname: Wang, Hexiang email: hexiang@lehigh.edu organization: Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA – sequence: 2 givenname: Eugenio surname: Schuster fullname: Schuster, Eugenio organization: Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA – sequence: 3 givenname: Tariq surname: Rafiq fullname: Rafiq, Tariq organization: Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA – sequence: 4 givenname: Arnold surname: Kritz fullname: Kritz, Arnold organization: Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA – sequence: 5 givenname: Siye surname: Ding fullname: Ding, Siye organization: Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China |
BackLink | https://www.osti.gov/biblio/1538305$$D View this record in Osti.gov |
BookMark | eNqNkEtLxDAUhYMoOD5-g0XXrblN004WLgbxBYoLx3VIk9sxQ01q0lH892aouHCjEMjmO4fz3QOy67xDQk6AFkChPl8X3SaiWxmMRUmhKSgroGI7ZAbzhuUNiHqXzKgoac4aUe-TgxjXNIHpzUj-4A32easimswPo31VfRY1OhWsz4ZeOWfdKrMuu1o8LY_IXqf6iMff_yF5vr5aXt7m9483d5eL-1xXIMZcCFMLoTQzJceKdi3yEk1VixKYLjlvVQ28BdXVaUfbdkIxaAQHxJY3RjXskMyn3o0b1OeH6ns5hDQtfEqgcqst1_JHW261JWUyaafo6RT1cbQyajuiftHeOdSjBM7mjPIEnU3QEPzbBuMo134TXFJKXVxAXQETibqYKB18jAE7mdrUaL0bg7L9P6Y0v_L_l1hMSUxHfrcYtiLoNBobth7G2z87vgCmDaVp |
CitedBy_id | crossref_primary_10_1088_1741_4326_ad35d6 crossref_primary_10_1016_j_fusengdes_2023_113606 |
Cites_doi | 10.1109/TPS.2009.2037626 10.1088/0741-3335/54/2/025002 10.1016/j.fusengdes.2007.04.016 10.1088/0741-3335/50/11/115001 10.1088/0029-5515/55/9/093005 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright Elsevier Science Ltd. Nov 2017 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Nov 2017 |
CorporateAuthor | Lehigh Univ., Bethlehem, PA (United States) |
CorporateAuthor_xml | – name: Lehigh Univ., Bethlehem, PA (United States) |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M OTOTI ADTOC UNPAY |
DOI | 10.1016/j.fusengdes.2017.03.143 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7196 |
EndPage | 573 |
ExternalDocumentID | oai:osti.gov:1550489 1538305 10_1016_j_fusengdes_2017_03_143 S0920379617303630 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 LZ3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SET SEW SHN SPC SPCBC SSR SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AFXIZ AGCQF AGRNS FR3 H8D KR7 L7M SSH AALMO AAPBV ABPIF OTOTI ADTOC UNPAY |
ID | FETCH-LOGICAL-c419t-99d699ac3d25e40fbe52ed469213c255ba615b1af6001bbf9a317951eeb57da73 |
IEDL.DBID | UNPAY |
ISSN | 0920-3796 1873-7196 |
IngestDate | Sun Aug 24 08:57:22 EDT 2025 Fri May 19 02:14:24 EDT 2023 Fri Jul 25 04:59:22 EDT 2025 Wed Oct 01 01:56:56 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 Fri Feb 23 02:47:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | C |
Keywords | Tokamak plasma control Scenario planning Model-based control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-99d699ac3d25e40fbe52ed469213c255ba615b1af6001bbf9a317951eeb57da73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0010537 USDOE Office of Science (SC) |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.osti.gov/biblio/1550489 |
PQID | 2059164139 |
PQPubID | 2047562 |
PageCount | 5 |
ParticipantIDs | unpaywall_primary_10_1016_j_fusengdes_2017_03_143 osti_scitechconnect_1538305 proquest_journals_2059164139 crossref_citationtrail_10_1016_j_fusengdes_2017_03_143 crossref_primary_10_1016_j_fusengdes_2017_03_143 elsevier_sciencedirect_doi_10_1016_j_fusengdes_2017_03_143 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2017 2017-11-00 20171101 2017-11-01 |
PublicationDateYYYYMMDD | 2017-11-01 |
PublicationDate_xml | – month: 11 year: 2017 text: November 2017 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Fusion engineering and design |
PublicationYear | 2017 |
Publisher | Elsevier B.V Elsevier Science Ltd Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd – name: Elsevier |
References | Ou, Luce, Schuster (bib0040) 2007; 82 Wesson (bib0005) 2004 Ou, Xu, Schuster (bib0010) 2008; 50 Xu, Arastoo, Schuster (bib0015) 2009 Wakatani (bib0045) 1999; 39 Xu, Schuster (bib0020) 2009 Barton, Boyer, Shi, Wehner, Schuster (bib0035) 2015; 55 Xu, Dalessio, Ou, Schuster (bib0025) 2010; 38 Felici, Sauter (bib0030) 2012; 54 Wesson (10.1016/j.fusengdes.2017.03.143_bib0005) 2004 Xu (10.1016/j.fusengdes.2017.03.143_bib0015) 2009 Ou (10.1016/j.fusengdes.2017.03.143_bib0010) 2008; 50 Felici (10.1016/j.fusengdes.2017.03.143_bib0030) 2012; 54 Wakatani (10.1016/j.fusengdes.2017.03.143_bib0045) 1999; 39 Xu (10.1016/j.fusengdes.2017.03.143_bib0020) 2009 Ou (10.1016/j.fusengdes.2017.03.143_bib0040) 2007; 82 Xu (10.1016/j.fusengdes.2017.03.143_bib0025) 2010; 38 Barton (10.1016/j.fusengdes.2017.03.143_bib0035) 2015; 55 |
References_xml | – volume: 38 start-page: 163 year: 2010 end-page: 173 ident: bib0025 article-title: Ramp-up phase current profile control of tokamak plasmas via nonlinear programming publication-title: IEEE Trans. Plasma Sci. – volume: 39 start-page: 2201 year: 1999 end-page: 2206 ident: bib0045 article-title: ITER physics basis publication-title: Nuclear Fusion – volume: 50 start-page: 115001 year: 2008 ident: bib0010 article-title: Design and simulation of extremum-seeking open-loop optimal control of current profile in the DIII-D tokamak publication-title: Plasma Phys. Control. Fusion – year: 2004 ident: bib0005 article-title: Tokamaks – year: 2009 ident: bib0020 article-title: Control of ramp-up current profile dynamics in tokamak plasmas via the minimal-surface theory publication-title: Proceedings of the 48th IEEE Conference on Decision and Control – volume: 54 start-page: 025002 year: 2012 ident: bib0030 article-title: Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control publication-title: Plasma Phys. Control. Fusion – volume: 82 start-page: 1153 year: 2007 end-page: 1160 ident: bib0040 article-title: Towards model-based current profile control at DIII-D publication-title: Fusion Eng. Des. – year: 2009 ident: bib0015 article-title: On iterative learning control of parabolic distributed parameter systems publication-title: Proceedings of the 17th Mediterranean Conference on Control and Automation – volume: 55 start-page: 093005 year: 2015 ident: bib0035 article-title: Physics-model-based nonlinear actuator trajectory optimization and safety factor profile feedback control for advanced scenario development in DIII-D publication-title: Nuclear Fusion – volume: 38 start-page: 163 issue: 2 year: 2010 ident: 10.1016/j.fusengdes.2017.03.143_bib0025 article-title: Ramp-up phase current profile control of tokamak plasmas via nonlinear programming publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2009.2037626 – volume: 39 start-page: 2201 issue: 12 year: 1999 ident: 10.1016/j.fusengdes.2017.03.143_bib0045 article-title: ITER physics basis publication-title: Nuclear Fusion – volume: 54 start-page: 025002 year: 2012 ident: 10.1016/j.fusengdes.2017.03.143_bib0030 article-title: Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/54/2/025002 – year: 2004 ident: 10.1016/j.fusengdes.2017.03.143_bib0005 – year: 2009 ident: 10.1016/j.fusengdes.2017.03.143_bib0020 article-title: Control of ramp-up current profile dynamics in tokamak plasmas via the minimal-surface theory – volume: 82 start-page: 1153 year: 2007 ident: 10.1016/j.fusengdes.2017.03.143_bib0040 article-title: Towards model-based current profile control at DIII-D publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2007.04.016 – volume: 50 start-page: 115001 year: 2008 ident: 10.1016/j.fusengdes.2017.03.143_bib0010 article-title: Design and simulation of extremum-seeking open-loop optimal control of current profile in the DIII-D tokamak publication-title: Plasma Phys. Control. Fusion doi: 10.1088/0741-3335/50/11/115001 – year: 2009 ident: 10.1016/j.fusengdes.2017.03.143_bib0015 article-title: On iterative learning control of parabolic distributed parameter systems – volume: 55 start-page: 093005 issue: 9 year: 2015 ident: 10.1016/j.fusengdes.2017.03.143_bib0035 article-title: Physics-model-based nonlinear actuator trajectory optimization and safety factor profile feedback control for advanced scenario development in DIII-D publication-title: Nuclear Fusion doi: 10.1088/0029-5515/55/9/093005 |
SSID | ssj0017017 |
Score | 2.1681018 |
Snippet | •Scenario planning in EAST is formulated as a constrained nonlinear optimization problem.•The magnetic diffusion equation is combined with physics-based... Ongoing work in the fusion community focuses on developing advanced plasma scenarios characterized by high plasma confinement, magnetohydrodynamic (MHD)... Not provided. |
SourceID | unpaywall osti proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 569 |
SubjectTerms | Beam injection Computational fluid dynamics Computer simulation Constraint modelling Control theory Cyclotrons Design optimization Electron cyclotron heating Evolution Feedforward control Fluid flow Fluid mechanics Magnetic flux Magnetohydrodynamics Model-based control Neutral beams Nonlinear control Nonlinear differential equations Nuclear power plants Nuclear Science & Technology Partial differential equations Plasma currents Plasma density Plasma dynamics Plasma etching Scenario planning Stability Studies Tokamak devices Tokamak plasma control Trajectory analysis Trajectory optimization Waveforms |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1KL-pB_MTYKjl4jc0mu0nXWyktIuilLfQWdrMbqcQkSIt48bc7ky9aECp4TMjAMrt58yaZeUPInfSUjnUiIU3lkKCwoe-giprDYm4SqjxT_S54fgkeF-xpyZcdMm56YbCsssb-CtNLtK7vDGpvDorVajBzhef6oYAQjDDsY96O6l9wpu-_2zIPlBsvW6YFdgrD0zs1Xgl-5njVBnW7aYhqp2X7zu8RqpvDS7dDRA82WSG_PmWabsWk6Qk5rsmkParWe0o6JjsjR1sSg-fEwWFnqYPBSts54MM7GKCCE-TIuV3UI4vsVWZPRrP5BVlMJ_Pxo1OPSHBiRsXaEUIHQsjY1x43zE2U4Z7RkPJ61I8hW1ASGIuiMkFeo1QiJPAFIFXGKB5qGfqXpJvlmbkiNjxNNWMs4UNgGVSqAFINHSiOM8OYCC0SNG6J4lo_HMdYpFFTKPYWtf6M0J-R60Nm4VvEbQ2LSkJjv8lD4_do5zREAPT7jXu4U2iIOrgxFgyBJUI7gJtF-s0GRvXritYcaDLEc2ER2m7qX1d7_Z_V9sghXlXtjX3SXX9szA3wnLW6LQ_yD6vk-XE priority: 102 providerName: Elsevier |
Title | Model-based optimal scenario planning in EAST |
URI | https://dx.doi.org/10.1016/j.fusengdes.2017.03.143 https://www.proquest.com/docview/2059164139 https://www.osti.gov/biblio/1538305 https://www.osti.gov/biblio/1550489 |
UnpaywallVersion | submittedVersion |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017017 issn: 1873-7196 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1873-7196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017017 issn: 1873-7196 databaseCode: AIKHN dateStart: 19950102 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-7196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017017 issn: 1873-7196 databaseCode: ACRLP dateStart: 19950102 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-7196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017017 issn: 1873-7196 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017017 issn: 1873-7196 databaseCode: AKRWK dateStart: 19870101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED71xwPiAdgGotBVkdhrSp3YSc1bxVp1m1YhjUrwFNmxg7qFpEKtEDzwt3PXJBVFkzrtPZ9i586-7-LzdwBflKdNbBKFaarABIX3fZdU1FweC5sw7dniuODnJBhP-fcbcVODs-ouDJVV5ujcq5pKPdPpLD8nFs37sg7NgE6RGtCcTq4GtysVPbr_G666cLF-6LshOtRGFVdCPzLujCVlbhaSnunqgs7fY1CD3rxBNXeW2Vw9Pao0fRN1RvvwtRpvUWzyp7tc6G78_E7KccuEDmCvZJ3OoHCTD1Cz2UfYfaNF-Alc6oqWuhTVjJPjRnKPAJJ6wmQ6d-ZlbyNnljnDwa_rQ5iOhteXY7fspeDGnMmFK6UJpFSxbzxheS_RVnjWYG7sMT_GtEIrpDaaqYQIkNaJVEgskH1Zq0VoVOgfQSPLM3sMDj7NDOc8EX2kI0zpAHMSE2hBzcW4DFsQVF83ikuhcep3kUZVRdnvaG2WiMwS9XxMQfwW9NbAeaG1sR1yUZkvKilDQQUijAjbwadkGQKSYG5MlUWIpBiAu2AL2pUfROW6JrRAPo2BX7aArX3jX0d78h-YNjQWD0v7GanPQneg3n1hHWgOvv0YTzrlQngFmoIE9w |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB6kHtSD-MTVqnvwunQfya7xVkqlvnqxBW8h2WSlUrdFKuK_d6abLS0IFbzu7gdhknzzzWYyA3ClYm1yUygMUzkGKOw6CaiKWsBybotIx7Y6Lnjqp70hu3_hLxvQqe_CUFql4_6K0-ds7Z60nDVb09Go9RyKOEwygS6YaDjBuH2TceTkBmy27x56_cVhQhbOG-_S9wEBVtK8CvrT8Wosle6OMip4Or_B87uTakxw361o0a3Pcqq-v9R4vOSWbvdg1-lJv10NeR82bHkAO0tVBg8hoH5n44D8lfEnSBHvCKAiThgmT_yp61rkj0q_234eHMHwtjvo9ALXJSHIWSRmgRAmFULliYm5ZWGhLY-twag3jpIcAwatULToSBUkbbQuhELJgLrKWs0zo7LkGBrlpLQn4OPXkWGMFfwahUakdIrRhkk1p7ZhTGQepLVZZO5KiFMni7Gsc8Xe5MKekuwpwwSDi8SDcAGcVlU01kNuarvLlQUhkevXg89opghIpXBzyhlCJLE78psHzXoCpduxhOaolHH5CA-ixaT-dbSn_xntJWz1Bk-P8vGu_3AG2_Smuu3YhMbs49Oeo-yZ6Qu3rH8ABwn9qg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1qPYgHv8X6RUCvqd1kN-l6K9oigkXQQj2F3exGqjEp0iL6651pkqIiVLznkU1msvMmO_MG4FR52sQmUZimCkxQeNt3SUXN5bGwCdOeLY4LbvrB1YBfD8WwBidVLwyVVebo3LOaSj3S6Sg_IxbN23IJlgM6RarD8qB_23mYqehR_284m8LF2qHvhuhQ36q4EvqR8WgsKXOzkPRMZw06v8egOt35G9VcmWZj9f6m0vRL1Omtw2W13qLY5Lk5nehm_PFDynHBA23AWsk6nU7hJptQs9kWrH7RItwGl6aipS5FNePkuJG8IICknjCZzp1xOdvIGWVOt3N3vwODXvf-4sotZym4MWdy4kppAilV7BtPWN5KtBWeNZgbe8yPMa3QCqmNZiohAqR1IhUSC2Rf1moRGhX6u1DP8szugYNXM8M5T0Qb6QhTOsCcxARa0HAxLsMGBNXbjeJSaJzmXaRRVVH2FM3NEpFZopaPKYjfgNYcOC60NhZDzivzRSVlKKhAhBFhMfiALENAEsyNqbIIkRQDcBdswGHlB1H5XRNaIJ_GwC8bwOa-8dfV7v8Dcwj1yevUHiH1mejj0vU_AWxLAms |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+optimal+scenario+planning+in+EAST&rft.jtitle=Fusion+engineering+and+design&rft.au=Wang%2C+Hexiang&rft.au=Schuster%2C+Eugenio&rft.au=Rafiq%2C+Tariq&rft.au=Kritz%2C+Arnold&rft.date=2017-11-01&rft.pub=Elsevier&rft.issn=0920-3796&rft.eissn=1873-7196&rft.volume=123&rft.issue=C&rft_id=info:doi/10.1016%2Fj.fusengdes.2017.03.143&rft.externalDocID=1538305 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-3796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-3796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-3796&client=summon |