Application of a Machine Learning Algorithm to Develop and Validate a Prediction Model for Ambulatory Non-Arrivals Prediction Model for Ambulatory Non-Arrivals

Background Non-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent healthcare utilization. Reducing non-arrivals is important given their association with poorer health outcomes and cost to health systems. Objective T...

Full description

Saved in:
Bibliographic Details
Published inJournal of general internal medicine : JGIM Vol. 38; no. 10; pp. 2298 - 2307
Main Authors Coppa, Kevin, Kim, Eun Ji, Oppenheim, Michael I., Bock, Kevin R., Zanos, Theodoros P., Hirsch, Jamie S.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0884-8734
1525-1497
1525-1497
DOI10.1007/s11606-023-08065-y

Cover

Abstract Background Non-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent healthcare utilization. Reducing non-arrivals is important given their association with poorer health outcomes and cost to health systems. Objective To develop and validate a prediction model for ambulatory non-arrivals. Design Retrospective cohort study. Patients or Subjects Patients at an integrated health system who had an outpatient visit scheduled from January 1, 2020, to February 28, 2022. Main Measures Non-arrivals to scheduled appointments. Key Results There were over 4.3 million ambulatory appointments from 1.2 million adult patients. Patients with appointment non-arrivals were more likely to be single, racial/ethnic minorities, and not having an established primary care provider compared to those who arrived at their appointments. A prediction model using the XGBoost machine learning algorithm had the highest AUC value (0.768 [0.767–0.770]). Using SHAP values, the most impactful features in the model include rescheduled appointments, lead time (number of days from scheduled to appointment date), appointment provider, number of days since last appointment with the same department, and a patient’s prior appointment status within the same department. Scheduling visits close to an appointment date is predicted to be less likely to result in a non-arrival. Overall, the prediction model calibrated well for each department, especially over the operationally relevant probability range of 0 to 40%. Departments with fewer observations and lower non-arrival rates generally had a worse calibration. Conclusions Using a machine learning algorithm, we developed a prediction model for non-arrivals to scheduled ambulatory appointments usable for all medical specialties. The proposed prediction model can be deployed within an electronic health system or integrated into other dashboards to reduce non-arrivals. Future work will focus on the implementation and application of the model to reduce non-arrivals.
AbstractList Background Non-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent healthcare utilization. Reducing non-arrivals is important given their association with poorer health outcomes and cost to health systems. Objective To develop and validate a prediction model for ambulatory non-arrivals. Design Retrospective cohort study. Patients or Subjects Patients at an integrated health system who had an outpatient visit scheduled from January 1, 2020, to February 28, 2022. Main Measures Non-arrivals to scheduled appointments. Key Results There were over 4.3 million ambulatory appointments from 1.2 million adult patients. Patients with appointment non-arrivals were more likely to be single, racial/ethnic minorities, and not having an established primary care provider compared to those who arrived at their appointments. A prediction model using the XGBoost machine learning algorithm had the highest AUC value (0.768 [0.767–0.770]). Using SHAP values, the most impactful features in the model include rescheduled appointments, lead time (number of days from scheduled to appointment date), appointment provider, number of days since last appointment with the same department, and a patient’s prior appointment status within the same department. Scheduling visits close to an appointment date is predicted to be less likely to result in a non-arrival. Overall, the prediction model calibrated well for each department, especially over the operationally relevant probability range of 0 to 40%. Departments with fewer observations and lower non-arrival rates generally had a worse calibration. Conclusions Using a machine learning algorithm, we developed a prediction model for non-arrivals to scheduled ambulatory appointments usable for all medical specialties. The proposed prediction model can be deployed within an electronic health system or integrated into other dashboards to reduce non-arrivals. Future work will focus on the implementation and application of the model to reduce non-arrivals.
Non-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent healthcare utilization. Reducing non-arrivals is important given their association with poorer health outcomes and cost to health systems. To develop and validate a prediction model for ambulatory non-arrivals. Retrospective cohort study. Patients at an integrated health system who had an outpatient visit scheduled from January 1, 2020, to February 28, 2022. Non-arrivals to scheduled appointments. There were over 4.3 million ambulatory appointments from 1.2 million adult patients. Patients with appointment non-arrivals were more likely to be single, racial/ethnic minorities, and not having an established primary care provider compared to those who arrived at their appointments. A prediction model using the XGBoost machine learning algorithm had the highest AUC value (0.768 [0.767-0.770]). Using SHAP values, the most impactful features in the model include rescheduled appointments, lead time (number of days from scheduled to appointment date), appointment provider, number of days since last appointment with the same department, and a patient's prior appointment status within the same department. Scheduling visits close to an appointment date is predicted to be less likely to result in a non-arrival. Overall, the prediction model calibrated well for each department, especially over the operationally relevant probability range of 0 to 40%. Departments with fewer observations and lower non-arrival rates generally had a worse calibration. Using a machine learning algorithm, we developed a prediction model for non-arrivals to scheduled ambulatory appointments usable for all medical specialties. The proposed prediction model can be deployed within an electronic health system or integrated into other dashboards to reduce non-arrivals. Future work will focus on the implementation and application of the model to reduce non-arrivals.
Non-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent healthcare utilization. Reducing non-arrivals is important given their association with poorer health outcomes and cost to health systems.BACKGROUNDNon-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent healthcare utilization. Reducing non-arrivals is important given their association with poorer health outcomes and cost to health systems.To develop and validate a prediction model for ambulatory non-arrivals.OBJECTIVETo develop and validate a prediction model for ambulatory non-arrivals.Retrospective cohort study.DESIGNRetrospective cohort study.Patients at an integrated health system who had an outpatient visit scheduled from January 1, 2020, to February 28, 2022.PATIENTS OR SUBJECTSPatients at an integrated health system who had an outpatient visit scheduled from January 1, 2020, to February 28, 2022.Non-arrivals to scheduled appointments.MAIN MEASURESNon-arrivals to scheduled appointments.There were over 4.3 million ambulatory appointments from 1.2 million adult patients. Patients with appointment non-arrivals were more likely to be single, racial/ethnic minorities, and not having an established primary care provider compared to those who arrived at their appointments. A prediction model using the XGBoost machine learning algorithm had the highest AUC value (0.768 [0.767-0.770]). Using SHAP values, the most impactful features in the model include rescheduled appointments, lead time (number of days from scheduled to appointment date), appointment provider, number of days since last appointment with the same department, and a patient's prior appointment status within the same department. Scheduling visits close to an appointment date is predicted to be less likely to result in a non-arrival. Overall, the prediction model calibrated well for each department, especially over the operationally relevant probability range of 0 to 40%. Departments with fewer observations and lower non-arrival rates generally had a worse calibration.KEY RESULTSThere were over 4.3 million ambulatory appointments from 1.2 million adult patients. Patients with appointment non-arrivals were more likely to be single, racial/ethnic minorities, and not having an established primary care provider compared to those who arrived at their appointments. A prediction model using the XGBoost machine learning algorithm had the highest AUC value (0.768 [0.767-0.770]). Using SHAP values, the most impactful features in the model include rescheduled appointments, lead time (number of days from scheduled to appointment date), appointment provider, number of days since last appointment with the same department, and a patient's prior appointment status within the same department. Scheduling visits close to an appointment date is predicted to be less likely to result in a non-arrival. Overall, the prediction model calibrated well for each department, especially over the operationally relevant probability range of 0 to 40%. Departments with fewer observations and lower non-arrival rates generally had a worse calibration.Using a machine learning algorithm, we developed a prediction model for non-arrivals to scheduled ambulatory appointments usable for all medical specialties. The proposed prediction model can be deployed within an electronic health system or integrated into other dashboards to reduce non-arrivals. Future work will focus on the implementation and application of the model to reduce non-arrivals.CONCLUSIONSUsing a machine learning algorithm, we developed a prediction model for non-arrivals to scheduled ambulatory appointments usable for all medical specialties. The proposed prediction model can be deployed within an electronic health system or integrated into other dashboards to reduce non-arrivals. Future work will focus on the implementation and application of the model to reduce non-arrivals.
BackgroundNon-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent healthcare utilization. Reducing non-arrivals is important given their association with poorer health outcomes and cost to health systems.ObjectiveTo develop and validate a prediction model for ambulatory non-arrivals.DesignRetrospective cohort study.Patients or SubjectsPatients at an integrated health system who had an outpatient visit scheduled from January 1, 2020, to February 28, 2022.Main MeasuresNon-arrivals to scheduled appointments.Key ResultsThere were over 4.3 million ambulatory appointments from 1.2 million adult patients. Patients with appointment non-arrivals were more likely to be single, racial/ethnic minorities, and not having an established primary care provider compared to those who arrived at their appointments. A prediction model using the XGBoost machine learning algorithm had the highest AUC value (0.768 [0.767–0.770]). Using SHAP values, the most impactful features in the model include rescheduled appointments, lead time (number of days from scheduled to appointment date), appointment provider, number of days since last appointment with the same department, and a patient’s prior appointment status within the same department. Scheduling visits close to an appointment date is predicted to be less likely to result in a non-arrival. Overall, the prediction model calibrated well for each department, especially over the operationally relevant probability range of 0 to 40%. Departments with fewer observations and lower non-arrival rates generally had a worse calibration.ConclusionsUsing a machine learning algorithm, we developed a prediction model for non-arrivals to scheduled ambulatory appointments usable for all medical specialties. The proposed prediction model can be deployed within an electronic health system or integrated into other dashboards to reduce non-arrivals. Future work will focus on the implementation and application of the model to reduce non-arrivals.
Author Coppa, Kevin
Hirsch, Jamie S.
Kim, Eun Ji
Oppenheim, Michael I.
Bock, Kevin R.
Zanos, Theodoros P.
Author_xml – sequence: 1
  givenname: Kevin
  surname: Coppa
  fullname: Coppa, Kevin
  organization: Clinical Digital Solutions, Northwell Health
– sequence: 2
  givenname: Eun Ji
  surname: Kim
  fullname: Kim, Eun Ji
  organization: Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Institute of Health System Science
– sequence: 3
  givenname: Michael I.
  surname: Oppenheim
  fullname: Oppenheim, Michael I.
  organization: Clinical Digital Solutions, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
– sequence: 4
  givenname: Kevin R.
  surname: Bock
  fullname: Bock, Kevin R.
  organization: Clinical Digital Solutions, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell
– sequence: 5
  givenname: Theodoros P.
  surname: Zanos
  fullname: Zanos, Theodoros P.
  organization: Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Institute of Health System Science, Institute of Bioelectronic Medicine
– sequence: 6
  givenname: Jamie S.
  orcidid: 0000-0001-9571-1275
  surname: Hirsch
  fullname: Hirsch, Jamie S.
  email: jhirsch8@northwell.edu
  organization: Clinical Digital Solutions, Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Institute of Health System Science, Division of Kidney Diseases and Hypertension
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36757667$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1TAQRi1URG8Lf4AFssSGTcCPxHaWUXlKt8AC2FqOM7l15djBTory78l9AFIXFavZnG905psLdBZiAISeU_KaEiLfZEoFEQVhvCCKiKpYHqENrVhV0LKWZ2hDlCoLJXl5ji5yviWEcsbUE3TOhaykEHKDUjOO3lkzuRhw7LHB18beuAB4CyYFF3a48buY3HQz4Cnit3AHPo7YhA7_MN51ZoI19DVB5-xhyXXswOM-JtwM7ezNFNOCP8dQNCm5O-PzU_S4Xwc8O81L9P39u29XH4vtlw-frpptYUtaT4VS0NWtYkTarl-F1V65N8QIUhJZ9yCYFIxZxg20tqKikq2oeUVqoC2lnF8iftw7h9Esv4z3ekxuMGnRlOh9g_rYoF4b1IcG9bKmXh1TY4o_Z8iTHly24L0JEOesmZSlqlXJ5Yq-vIfexjmF9SbNVClpVRG513hxouZ2gO6vw58frIA6AjbFnBP02rrp8JApGecflmX3ov914amXvMJhB-mf9gOp35uNuhE
CitedBy_id crossref_primary_10_3389_frhs_2023_1288329
Cites_doi 10.1007/s11695-018-3480-9
10.1080/02770903.2017.1294695
10.5435/JAAOS-D-19-00550
10.1370/afm.752
10.1097/00005650-200202000-00008
10.1007/s11606-019-05426-4
10.1016/j.ijmedinf.2020.104290
10.2147/PPA.S93046
10.3390/healthcare10040599
10.1371/journal.pone.0214869
10.1080/13548506.2015.1120329
10.1161/JAHA.119.013372
10.1186/s12882-021-02402-1
10.1001/jama.2014.13186
10.1353/hpu.2004.0037
10.1186/s12913-020-05097-6
10.1177/1460458210380521
10.1016/j.msard.2019.101513
10.1097/01.mlr.0000109023.64650.73
10.1007/s10900-018-0572-3
10.1111/ctr.14202
10.22454/FamMed.2019.406053
10.1186/1471-2296-6-47
10.1016/j.jchf.2019.06.013
10.1097/JCMA.0000000000000068
10.2105/AJPH.94.1.66
10.1038/s41746-022-00594-w
10.1016/j.jacr.2018.12.046
10.1007/s11606-018-4471-1
10.1016/j.healthpol.2018.02.002
10.7205/MILMED-D-16-00345
10.1007/s00180-022-01207-6
10.1093/jamia/ocaa067
10.1001/archinte.1982.00340160143026
10.1016/j.aogh.2014.09.007
10.2214/AJR.19.22594
10.1007/s11606-020-06569-5
10.1016/j.hjdsi.2020.100464
10.1111/tme.12873
10.1021/acs.jmedchem.9b01101
10.1177/2150131913498513
10.1176/ps.47.8.848
10.1177/0272989X06295361
10.1007/s10822-020-00314-0
10.1007/s11606-013-2678-8
10.2196/19322
10.5144/0256-4947.2019.373
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Society of General Internal Medicine 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Society of General Internal Medicine.
Copyright Springer Nature B.V. Aug 2023
Copyright_xml – notice: The Author(s), under exclusive licence to Society of General Internal Medicine 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Society of General Internal Medicine.
– notice: Copyright Springer Nature B.V. Aug 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7RV
7U9
7X7
7XB
88C
8AO
8FD
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
K9.
M0S
M0T
M1P
M2O
M7N
MBDVC
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
Q9U
RC3
7X8
ADTOC
UNPAY
DOI 10.1007/s11606-023-08065-y
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nursing & Allied Health Database
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Research Library (Corporate)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Pharma Collection
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
Virology and AIDS Abstracts
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central (NIESG)
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1525-1497
EndPage 2307
ExternalDocumentID 10.1007/s11606-023-08065-y
36757667
10_1007_s11606_023_08065_y
Genre Journal Article
GroupedDBID ---
-Y2
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1CY
1N0
1OC
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
31~
36B
4.4
406
408
40D
40E
53G
5GY
5RE
5VS
67Z
6NX
78A
7RV
7X7
8-1
8AO
8FI
8FJ
8G5
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AAQQT
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAWTO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABIVO
ABJNI
ABJOX
ABKCH
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACUDM
ACXQS
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEBI
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZJQ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJAOE
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
AQUVI
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
B-.
BA0
BAWUL
BBWZM
BDATZ
BENPR
BFHJK
BGNMA
BKEYQ
BPHCQ
BVXVI
CAG
CCPQU
CO8
COF
CS3
CSCUP
D-I
DDRTE
DIK
DNIVK
DPUIP
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GRRUI
GUQSH
GX1
H13
HF~
HG5
HG6
HMCUK
HMJXF
HRMNR
HVGLF
HYE
HZ~
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
KPH
LH4
LLZTM
LW6
M0T
M1P
M2O
M4Y
MA-
N2Q
N4W
N9A
NAPCQ
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
OVD
P19
P2P
P6G
P9S
PF-
PHGZT
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPM
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJN
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TR2
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
WOQ
WOW
YFH
YLTOR
YOC
YUY
Z45
ZGI
ZMTXR
ZOVNA
~EX
AAFWJ
AAMMB
AAYXX
ABFSG
ABRTQ
ACSTC
AEFGJ
AEZWR
AFHIU
AFOHR
AGXDD
AHWEU
AIDQK
AIDYY
AIXLP
ATHPR
CITATION
PHGZM
PJZUB
PPXIY
PUEGO
WIN
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c419t-88ed9b8207cdf36787576fa0a604079fe627622c23aebc51657b693509e1b1133
IEDL.DBID BENPR
ISSN 0884-8734
1525-1497
IngestDate Sun Oct 26 03:32:49 EDT 2025
Sun Sep 28 09:57:19 EDT 2025
Mon Oct 06 17:17:26 EDT 2025
Mon Jul 21 06:07:11 EDT 2025
Wed Oct 01 06:34:42 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Wed Apr 09 21:57:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License 2023. The Author(s), under exclusive licence to Society of General Internal Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-88ed9b8207cdf36787576fa0a604079fe627622c23aebc51657b693509e1b1133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9571-1275
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11606-023-08065-y.pdf
PMID 36757667
PQID 2847155073
PQPubID 30490
PageCount 10
ParticipantIDs unpaywall_primary_10_1007_s11606_023_08065_y
proquest_miscellaneous_2774898437
proquest_journals_2847155073
pubmed_primary_36757667
crossref_citationtrail_10_1007_s11606_023_08065_y
crossref_primary_10_1007_s11606_023_08065_y
springer_journals_10_1007_s11606_023_08065_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationTitle Journal of general internal medicine : JGIM
PublicationTitleAbbrev J GEN INTERN MED
PublicationTitleAlternate J Gen Intern Med
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References RD Neal (8065_CR24) 2005; 6
AJ Vickers (8065_CR48) 2006; 26
EJ Kim (8065_CR3) 2019; 8
SM McLean (8065_CR14) 2016; 10
R Rodriguez-Perez (8065_CR47) 2020; 34
S Angraal (8065_CR45) 2020; 8
D Liu (8065_CR30) 2022; 5
LF Dantas (8065_CR20) 2018; 122
R Rodriguez-Perez (8065_CR46) 2020; 63
P Dhiman (8065_CR44) 2022; 32
LE Starbird (8065_CR22) 2019; 44
JA Patz (8065_CR32) 2014; 312
K Ruggeri (8065_CR21) 2020; 20
ML Parchman (8065_CR11) 2002; 40
CM Smith (8065_CR17) 1994; 38
PE Lonergan (8065_CR40) 2020; 22
AJ Dietrich (8065_CR10) 1982; 15
LF Dantas (8065_CR36) 2019; 29
CE Diaz-Castrillon (8065_CR49) 2021; 35
J Wosik (8065_CR39) 2020; 27
RM Goffman (8065_CR42) 2017; 182
AJ Karter (8065_CR9) 2004; 42
LR Miller-Matero (8065_CR23) 2016; 21
I Ali (8065_CR50) 2021; 22
LH Utidjian (8065_CR2) 2017; 54
SB Cashman (8065_CR18) 2004; 15
A Reddy (8065_CR38) 2020; 8
WC Tsai (8065_CR27) 2019; 82
8065_CR43
CG Moore (8065_CR13) 2001; 33
RM Werner (8065_CR1) 2014; 29
LR Chong (8065_CR34) 2020; 215
JR Starnes (8065_CR28) 2019; 51
EJ Kim (8065_CR7) 2018; 33
S Srinivas (8065_CR33) 2021; 145
8065_CR12
8065_CR15
8065_CR53
BJ Johnson (8065_CR5) 2007; 5
E Kaplan-Lewis (8065_CR54) 2013; 4
ES Gromisch (8065_CR35) 2020; 38
S AlMuhaideb (8065_CR41) 2019; 39
DC Gruzd (8065_CR25) 1986; 18
M Grunebaum (8065_CR26) 1996; 47
JA Patz (8065_CR31) 2014; 80
H Lenzi (8065_CR37) 2019; 14
AG Mainous 3rd (8065_CR8) 2004; 94
SR Lee (8065_CR51) 2018; 63
L Goldman (8065_CR19) 1982; 142
N Weingarten (8065_CR16) 1997; 10
AL Hixon (8065_CR4) 1999; 31
J Daggy (8065_CR6) 2010; 16
RJ Mieloszyk (8065_CR29) 2019; 16
EJ Curry (8065_CR52) 2020; 28
References_xml – volume: 29
  start-page: 40
  issue: 1
  year: 2019
  ident: 8065_CR36
  publication-title: Obes Surg.
  doi: 10.1007/s11695-018-3480-9
– volume: 54
  start-page: 1051
  issue: 10
  year: 2017
  ident: 8065_CR2
  publication-title: J Asthma.
  doi: 10.1080/02770903.2017.1294695
– volume: 28
  start-page: e1006
  issue: 22
  year: 2020
  ident: 8065_CR52
  publication-title: J Am Acad Orthop Surg.
  doi: 10.5435/JAAOS-D-19-00550
– volume: 5
  start-page: 534
  issue: 6
  year: 2007
  ident: 8065_CR5
  publication-title: Ann Fam Med.
  doi: 10.1370/afm.752
– volume: 40
  start-page: 137
  issue: 2
  year: 2002
  ident: 8065_CR11
  publication-title: Med Care.
  doi: 10.1097/00005650-200202000-00008
– ident: 8065_CR15
  doi: 10.1007/s11606-019-05426-4
– volume: 145
  year: 2021
  ident: 8065_CR33
  publication-title: Int J Med Inform.
  doi: 10.1016/j.ijmedinf.2020.104290
– volume: 10
  start-page: 479
  year: 2016
  ident: 8065_CR14
  publication-title: Patient Prefer Adherence.
  doi: 10.2147/PPA.S93046
– ident: 8065_CR53
  doi: 10.3390/healthcare10040599
– volume: 14
  issue: 4
  year: 2019
  ident: 8065_CR37
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0214869
– volume: 21
  start-page: 686
  issue: 6
  year: 2016
  ident: 8065_CR23
  publication-title: Psychol Health Med.
  doi: 10.1080/13548506.2015.1120329
– volume: 8
  issue: 23
  year: 2019
  ident: 8065_CR3
  publication-title: J Am Heart Assoc.
  doi: 10.1161/JAHA.119.013372
– volume: 22
  start-page: 194
  issue: 1
  year: 2021
  ident: 8065_CR50
  publication-title: BMC Nephrol.
  doi: 10.1186/s12882-021-02402-1
– volume: 312
  start-page: 1565
  issue: 15
  year: 2014
  ident: 8065_CR32
  publication-title: JAMA.
  doi: 10.1001/jama.2014.13186
– volume: 15
  start-page: 474
  issue: 3
  year: 2004
  ident: 8065_CR18
  publication-title: J Health Care Poor Underserved.
  doi: 10.1353/hpu.2004.0037
– volume: 20
  start-page: 363
  issue: 1
  year: 2020
  ident: 8065_CR21
  publication-title: BMC Health Serv Res.
  doi: 10.1186/s12913-020-05097-6
– volume: 16
  start-page: 246
  issue: 4
  year: 2010
  ident: 8065_CR6
  publication-title: Health Informatics J.
  doi: 10.1177/1460458210380521
– volume: 38
  year: 2020
  ident: 8065_CR35
  publication-title: Mult Scler Relat Disord.
  doi: 10.1016/j.msard.2019.101513
– volume: 42
  start-page: 110
  issue: 2
  year: 2004
  ident: 8065_CR9
  publication-title: Med Care.
  doi: 10.1097/01.mlr.0000109023.64650.73
– volume: 44
  start-page: 400
  issue: 2
  year: 2019
  ident: 8065_CR22
  publication-title: J Community Health.
  doi: 10.1007/s10900-018-0572-3
– volume: 35
  issue: 3
  year: 2021
  ident: 8065_CR49
  publication-title: Clin Transplant.
  doi: 10.1111/ctr.14202
– volume: 51
  start-page: 845
  issue: 10
  year: 2019
  ident: 8065_CR28
  publication-title: Fam Med.
  doi: 10.22454/FamMed.2019.406053
– volume: 6
  start-page: 47
  year: 2005
  ident: 8065_CR24
  publication-title: BMC Fam Pract.
  doi: 10.1186/1471-2296-6-47
– volume: 8
  start-page: 12
  issue: 1
  year: 2020
  ident: 8065_CR45
  publication-title: JACC Heart Fail.
  doi: 10.1016/j.jchf.2019.06.013
– volume: 82
  start-page: 436
  issue: 5
  year: 2019
  ident: 8065_CR27
  publication-title: J Chin Med Assoc.
  doi: 10.1097/JCMA.0000000000000068
– volume: 94
  start-page: 66
  issue: 1
  year: 2004
  ident: 8065_CR8
  publication-title: Am J Public Health.
  doi: 10.2105/AJPH.94.1.66
– volume: 5
  start-page: 50
  issue: 1
  year: 2022
  ident: 8065_CR30
  publication-title: NPJ Digit Med.
  doi: 10.1038/s41746-022-00594-w
– volume: 18
  start-page: 217
  issue: 4
  year: 1986
  ident: 8065_CR25
  publication-title: Fam Med.
– volume: 16
  start-page: 554
  issue: 4 Pt B
  year: 2019
  ident: 8065_CR29
  publication-title: J Am Coll Radiol.
  doi: 10.1016/j.jacr.2018.12.046
– volume: 31
  start-page: 627
  issue: 9
  year: 1999
  ident: 8065_CR4
  publication-title: Fam Med.
– volume: 33
  start-page: 1116
  issue: 7
  year: 2018
  ident: 8065_CR7
  publication-title: J Gen Intern Med.
  doi: 10.1007/s11606-018-4471-1
– volume: 122
  start-page: 412
  issue: 4
  year: 2018
  ident: 8065_CR20
  publication-title: Health Policy.
  doi: 10.1016/j.healthpol.2018.02.002
– volume: 182
  start-page: e1708
  issue: 5
  year: 2017
  ident: 8065_CR42
  publication-title: Mil Med.
  doi: 10.7205/MILMED-D-16-00345
– ident: 8065_CR43
  doi: 10.1007/s00180-022-01207-6
– volume: 27
  start-page: 957
  issue: 6
  year: 2020
  ident: 8065_CR39
  publication-title: J Am Med Inform Assoc.
  doi: 10.1093/jamia/ocaa067
– volume: 142
  start-page: 563
  issue: 3
  year: 1982
  ident: 8065_CR19
  publication-title: Arch Intern Med.
  doi: 10.1001/archinte.1982.00340160143026
– volume: 15
  start-page: 929
  issue: 5
  year: 1982
  ident: 8065_CR10
  publication-title: J Fam Pract.
– volume: 80
  start-page: 332
  issue: 4
  year: 2014
  ident: 8065_CR31
  publication-title: Ann Glob Health.
  doi: 10.1016/j.aogh.2014.09.007
– volume: 215
  start-page: 1155
  issue: 5
  year: 2020
  ident: 8065_CR34
  publication-title: AJR Am J Roentgenol.
  doi: 10.2214/AJR.19.22594
– ident: 8065_CR12
  doi: 10.1007/s11606-020-06569-5
– volume: 8
  issue: 4
  year: 2020
  ident: 8065_CR38
  publication-title: Healthc (Amst).
  doi: 10.1016/j.hjdsi.2020.100464
– volume: 32
  start-page: 306
  issue: 4
  year: 2022
  ident: 8065_CR44
  publication-title: Transfus Med.
  doi: 10.1111/tme.12873
– volume: 63
  start-page: 8761
  issue: 16
  year: 2020
  ident: 8065_CR46
  publication-title: J Med Chem.
  doi: 10.1021/acs.jmedchem.9b01101
– volume: 4
  start-page: 251
  issue: 4
  year: 2013
  ident: 8065_CR54
  publication-title: J Prim Care Community Health.
  doi: 10.1177/2150131913498513
– volume: 33
  start-page: 522
  issue: 7
  year: 2001
  ident: 8065_CR13
  publication-title: Fam Med.
– volume: 47
  start-page: 848
  issue: 8
  year: 1996
  ident: 8065_CR26
  publication-title: Psychiatr Serv.
  doi: 10.1176/ps.47.8.848
– volume: 63
  start-page: e159
  issue: 6
  year: 2018
  ident: 8065_CR51
  publication-title: J Healthc Manag.
– volume: 26
  start-page: 565
  issue: 6
  year: 2006
  ident: 8065_CR48
  publication-title: Med Decis Making.
  doi: 10.1177/0272989X06295361
– volume: 34
  start-page: 1013
  issue: 10
  year: 2020
  ident: 8065_CR47
  publication-title: J Comput Aided Mol Des.
  doi: 10.1007/s10822-020-00314-0
– volume: 29
  start-page: S689
  issue: Suppl 2
  year: 2014
  ident: 8065_CR1
  publication-title: J Gen Intern Med.
  doi: 10.1007/s11606-013-2678-8
– volume: 22
  issue: 7
  year: 2020
  ident: 8065_CR40
  publication-title: J Med Internet Res.
  doi: 10.2196/19322
– volume: 39
  start-page: 373
  issue: 6
  year: 2019
  ident: 8065_CR41
  publication-title: Ann Saudi Med.
  doi: 10.5144/0256-4947.2019.373
– volume: 10
  start-page: 407
  issue: 6
  year: 1997
  ident: 8065_CR16
  publication-title: J Am Board Fam Pract.
– volume: 38
  start-page: 25
  issue: 1
  year: 1994
  ident: 8065_CR17
  publication-title: J Fam Pract.
SSID ssj0013228
Score 2.4513578
Snippet Background Non-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent...
Non-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent healthcare...
BackgroundNon-arrivals to scheduled ambulatory visits are common and lead to a discontinuity of care, poor health outcomes, and increased subsequent healthcare...
SourceID unpaywall
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2298
SubjectTerms Adult
Algorithms
Appointments and Schedules
Arrivals
Calibration
Humans
Internal Medicine
Lead time
Learning algorithms
Machine Learning
Medicine
Medicine & Public Health
Minority & ethnic groups
Original Research
Patients
Prediction models
Primary care
Retrospective Studies
Time Factors
Subtitle Prediction Model for Ambulatory Non-Arrivals
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9wwDBZbB936UNZ1XW_rhgd9aw1x4tjJYxgrpXBlD73Rt2AndldIk5LLMe7fT06cuysrpX22rQRLsj7x2RLAsTFpya1JaBkklnKpAqqECmkkDAZsViSBdYzu9FKcz_jFdXztH4XNx9vuIyXZn9Trx25MuOw3jGjg2EC6fA1vYlfOC614Fmab3EEyYEeOvh5x_1TmcRkPw9F_GHODH92Bt4v6Xi3_qqraCEFn72HXY0eSDcreg1em_gDbU8-O70Obrdlo0liiyLS_KmmIr6J6Q7Lqpmlvuz93pGuIvzBEVF2S34jHXfKPi361TmIvxHVKqwjiWpLdadfoq2mX5LKpada2t2ij848wO_t59eOc-p4KtOAs7WiSmDLVGPZlUdoII5XEhMOqQAn0ZplaI0I8HsMijJTRRcxELLVII4QVhmmGCe0BbNVNbQ6BxFIxXYhUB1rywOIC7uJ9EscqtMbyCbBxa_PCFxx3fS-qfF0q2akjR3XkvTry5QROVmvuh3IbT84-GjWWe9eb5328dVXaogl8Xw2j0zgmRNWmWeAc6YruJDySE_g0aHr1OdwU3BKBI6ej6tfCn_qX05V5POPXP79M-hd4Fw5WSwN2BFtduzBfEQ11-ltv_P8APYD9gQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9wwDBfdFTb2sO-tV7rhwd5WX_Ph2MljWFvK4I4-7Eb3FOzEbsvS5EhzlNtfXzlx7roPysaebSuOIlk_RbIE8EHrpGBGx7TwYkOZkB6VXAY05BoNtp_HnrER3emMn8zZ57PobAsOh7swXbb7EJLs7zTYKk1Ve7AozMHm4pvPrScchNSzkUG6muDwA9jmESLyEWzPZ6fptx5AMlT4PrgcBRFFh0C4uzN_JvSzffoNdN4JmD6GR8tqIVc3sizv2KTjp6CHt-lTUb5Plq2a5D9-KfT4v6_7DJ440ErSXsqew5auXsDDqQvLv4Qm3YTBSW2IJNMuR1MTV771nKTled1cthdXpK2Jy1QisirIV3QE7F8HXHTaWIodEduirSQIqEl6pWyHsbpZkVld0bRpLlE5rl_B_Pjoy6cT6po50Jz5SUvjWBeJQrwh8sKEaCIFejpGepLjMSISo3mA53KQB6HUKo98HgnFkxDxjPaVj570axhVdaV3gERC-irnifKUYJ7BBcwCjTiKZGC0YWPwh0-Y5a7SuW24UWabGs2WoRkyNOsYmq3G8HG9ZtHX-bh39t4gGZnT-eusM_S2PFw4hvfrYdRWG4KRla6XOEfYaj8xC8UY3vQStX4cMgVZwnFkf5CIDfH79rK_FsO_2Pruv03fg1HbLPVbRF6teucU6xY8SCQ3
  priority: 102
  providerName: Unpaywall
Title Application of a Machine Learning Algorithm to Develop and Validate a Prediction Model for Ambulatory Non-Arrivals
URI https://link.springer.com/article/10.1007/s11606-023-08065-y
https://www.ncbi.nlm.nih.gov/pubmed/36757667
https://www.proquest.com/docview/2847155073
https://www.proquest.com/docview/2774898437
https://link.springer.com/content/pdf/10.1007/s11606-023-08065-y.pdf
UnpaywallVersion publishedVersion
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1525-1497
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013228
  issn: 0884-8734
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1525-1497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013228
  issn: 0884-8734
  databaseCode: GX1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1525-1497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013228
  issn: 0884-8734
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1525-1497
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013228
  issn: 0884-8734
  databaseCode: RPM
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1525-1497
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013228
  issn: 0884-8734
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (NIESG)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1525-1497
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013228
  issn: 0884-8734
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1525-1497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013228
  issn: 0884-8734
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1525-1497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013228
  issn: 0884-8734
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9trQTjAfG9wqiMxBuzyIdjJw8IBdQxgVpViKLuKXISeyBlSclSof73nBOnLUKqeEz8Ecd3Pv_ss38H8FqpKGdahTR3Qk2ZkA6VXHrU5wonbDcLHW08utMZv1ywz8tgeQSz_i6MOVbZ28TWUOdVZvbI37Zm1JBv-e9Xv6iJGmW8q30IDWlDK-TvWoqxYxh6hhlrAMMPk9n8675fIexwJUM74DN7jaa7TOdys7r2fOoYbyPd_D1V_YM_93yn9-DuulzJzW9ZFHvT08UDuG9xJYk7RXgIR6p8BHem1nP-GOp456kmlSaSTNtjlIpYhtVrEhfX-MPNjxvSVMQeJiKyzMl3xOpmYwALzWtTY1uJiaJWEMS8JL5JTRCwqt6QWVXSuK5_ov7ePoHFxeTbx0tq4y3QjLlRQ8NQ5VGKkEBkufZxFhO4GNHSkRxHuoi04h6aTi_zfKnSLHB5IFIe-Qg5lJu6uNh9CoOyKtUpkEBIN814lDqpYI7GAsxggTAIpKeVZiNw-65NMktGbmJiFMmORtmII0FxJK04ks0I3mzLrDoqjoO5z3qJJXZY3iY7JRrBq20yDijjJZGlqtaYRxhCnpD5YgTPOklvP4edgl3CMeW8F_2u8kNtOd-qx380_fnhpr-AE6_TUuq4ZzBo6rV6icioScdwLJZiDMP409WXydgqP75deDE-LWbz-OoP3XoLvA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9Nm8TgAfFNxwAjwROziBPHSR4mFGBTx9ZqQhvaW3ASe0zKkpK2mvLP8bdxTpy2CKniZc-xHevufB_--e4A3ioV5VyrkOZOqCkPpEOlkC71hEKDzbLQ0QbRHY3F8Jx_vfAvNuB3nwtjnlX2OrFV1HmVmTvyD60aNcW3vI-TX9R0jTLoat9CQ9rWCvl-W2LMJnYcq-YGQ7jp_tEX5Pc71z08OPs8pLbLAM04i2Y0DFUepWgIgyzXHuruAF1wLR0pUL6DSCvhosJwM9eTKs18JvwgFZGHhlaxlDFzIYomYIt7PMLgb-vTwfj02yqOEXZ-LEe943GbttMl7zFhonnXo45BN2nzt2n8x99dwWrvwfa8nMjmRhbFijk8fAD3rR9L4k7wHsKGKh_BnZFF6h9DHS-RcVJpIsmofbapiK3oekni4hIJPPt5TWYVsY-XiCxz8h1jA3MRgZNOa7Niu4jp2lYQ9LFJfJ2apmNV3ZBxVdK4rq_wvEyfwPmtUP4pbJZVqZ4D8QPJ0kxEqZMG3NE4gRvfI_R96Wql-QBYT9oks8XPTQ-OIlmWbTbsSJAdScuOpBnA-8WcSVf6Y-3o3Z5jiVUD02QptAN4s_iMB9igMrJU1RzHBKYAUMi9YADPOk4vfodEQZII_LLXs365-Lq97C3E4z-2vrN-669he3g2OklOjsbHL-Cu20ksddgubM7quXqJXtksfWVFn8CP2z5tfwDtb0Gm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIhU4IJ5loYCR4EStxrFjJweEIsqqpeyqB4r2FuzELkhpsmSzqvLX-HWM89hdhLTi0nNsx5rHN2PPeAahN8ZEGbcmJJkXWsKl8ogSyidMGDDYNA096yK6k6k4ueCfZ8FsB_0e3sK4tMoBE1ugzsrU3ZEftTDqim-xI9unRZwfjz_MfxHXQcpFWod2Gp2InJnmGo5vi_enx8Drt74__vT14wnpOwyQlNOoJmFoskiDEZRpZhngtgT32ypPCZBtGVkjfAALP_WZMjoNqAikFhEDI2uoptRdhgL835KMRS6dUM7kZgQj7DxYDojDeP9gp3u2R4U7x_uMeC6uSZq_jeI_nu5GlPYuur0s5qq5Vnm-YQjH99G93oPFcSdyD9COKR6ivUkfo3-EqngdE8elxQpP2oRNg_tarpc4zi-BnPWPK1yXuE9bwqrI8Dc4FbgrCJh0XrkV20Vcv7Ycg3eN4yvt2o2VVYOnZUHiqvoJmrJ4jC5uhO5P0G5RFuYpwoFUVKci0p6W3LMwgTuvIwwC5Vtj-QjRgbRJ2pc9d9038mRdsNmxIwF2JC07kmaE3q3mzLuiH1tHHwwcS3oAWCRrcR2h16vPoLouHqMKUy5hjHSlf0LO5Ajtd5xe_Q6IAiQR8OVwYP168W17OVyJx39s_dn2rb9Ce6BjyZfT6dlzdMfvBJZ49ADt1tXSvAB3rNYvW7nH6PtNK9of-3k_QA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9wwDBfdFTb2sO-tV7rhwd5WX_Ph2MljWFvK4I4-7Eb3FOzEbsvS5EhzlNtfXzlx7roPysaebSuOIlk_RbIE8EHrpGBGx7TwYkOZkB6VXAY05BoNtp_HnrER3emMn8zZ57PobAsOh7swXbb7EJLs7zTYKk1Ve7AozMHm4pvPrScchNSzkUG6muDwA9jmESLyEWzPZ6fptx5AMlT4PrgcBRFFh0C4uzN_JvSzffoNdN4JmD6GR8tqIVc3sizv2KTjp6CHt-lTUb5Plq2a5D9-KfT4v6_7DJ440ErSXsqew5auXsDDqQvLv4Qm3YTBSW2IJNMuR1MTV771nKTled1cthdXpK2Jy1QisirIV3QE7F8HXHTaWIodEduirSQIqEl6pWyHsbpZkVld0bRpLlE5rl_B_Pjoy6cT6po50Jz5SUvjWBeJQrwh8sKEaCIFejpGepLjMSISo3mA53KQB6HUKo98HgnFkxDxjPaVj570axhVdaV3gERC-irnifKUYJ7BBcwCjTiKZGC0YWPwh0-Y5a7SuW24UWabGs2WoRkyNOsYmq3G8HG9ZtHX-bh39t4gGZnT-eusM_S2PFw4hvfrYdRWG4KRla6XOEfYaj8xC8UY3vQStX4cMgVZwnFkf5CIDfH79rK_FsO_2Pruv03fg1HbLPVbRF6teucU6xY8SCQ3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Application+of+a+Machine+Learning+Algorithm+to+Develop+and+Validate+a+Prediction+Model+for+Ambulatory+Non-Arrivals&rft.jtitle=Journal+of+general+internal+medicine+%3A+JGIM&rft.au=Coppa%2C+Kevin&rft.au=Kim%2C+Eun+Ji&rft.au=Oppenheim%2C+Michael+I&rft.au=Bock%2C+Kevin+R&rft.date=2023-08-01&rft.eissn=1525-1497&rft.volume=38&rft.issue=10&rft.spage=2298&rft_id=info:doi/10.1007%2Fs11606-023-08065-y&rft_id=info%3Apmid%2F36757667&rft.externalDocID=36757667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8734&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8734&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8734&client=summon