A computer vision attack on the ARTiFACIAL CAPTCHA

Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a reverse Turing test that is used to differentiate bots from humans. Text CAPTCHAs have been widely used in commercial applications, but most of the text CAPTCHAs have been successfully attacked. An alternative...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 74; no. 13; pp. 4583 - 4597
Main Author Li, Qiujie
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-013-1823-z

Cover

Abstract Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a reverse Turing test that is used to differentiate bots from humans. Text CAPTCHAs have been widely used in commercial applications, but most of the text CAPTCHAs have been successfully attacked. An alternative is to develop image CAPTCHAs to replace text CAPTCHAs. ARTiFACIAL (Automated Reverse Turing test using FACIAL features) Rui and Liu ( 2003 ) is an image CAPTCHA system based on detecting human face and facial features and claimed to be attack-resistant and user-friendly. This paper proposes a compute vision attack on ARTiFACIAL. By carefully analyzing the limitations of face and facial feature detectors that ARTiFACIAL exploits, tailor-made attacking algorithm is designed instead of using general face and facial feature detectors directly. When tested with the 800 ARTiFACIAL challenges, the overall success rate of the attacking algorithm is 18.0 %, which is significantly higher than the estimate of 0.0006 % given in Rui and Liu ( 2003 ) for computer vision attacks. It takes an average time 1.47s for a PC with 3.2GHz Intel P4 and 2GB memory to pass an ARTiFACIAL test, compared with 14s for a human subject given in Rui and Liu ( 2003 ). From the successful attack, useful lessons for guiding the design of image CAPTCHAs are derived to advance the current understanding of the design of image CAPTCHAs and lead to more secure design.
AbstractList Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a reverse Turing test that is used to differentiate bots from humans. Text CAPTCHAs have been widely used in commercial applications, but most of the text CAPTCHAs have been successfully attacked. An alternative is to develop image CAPTCHAs to replace text CAPTCHAs. ARTiFACIAL (Automated Reverse Turing test using FACIAL features) Rui and Liu (2003) is an image CAPTCHA system based on detecting human face and facial features and claimed to be attack-resistant and user-friendly. This paper proposes a compute vision attack on ARTiFACIAL. By carefully analyzing the limitations of face and facial feature detectors that ARTiFACIAL exploits, tailor-made attacking algorithm is designed instead of using general face and facial feature detectors directly. When tested with the 800 ARTiFACIAL challenges, the overall success rate of the attacking algorithm is 18.0 %, which is significantly higher than the estimate of 0.0006 % given in Rui and Liu (2003) for computer vision attacks. It takes an average time 1.47s for a PC with 3.2GHz Intel P4 and 2GB memory to pass an ARTiFACIAL test, compared with 14s for a human subject given in Rui and Liu (2003). From the successful attack, useful lessons for guiding the design of image CAPTCHAs are derived to advance the current understanding of the design of image CAPTCHAs and lead to more secure design.
Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a reverse Turing test that is used to differentiate bots from humans. Text CAPTCHAs have been widely used in commercial applications, but most of the text CAPTCHAs have been successfully attacked. An alternative is to develop image CAPTCHAs to replace text CAPTCHAs. ARTiFACIAL (Automated Reverse Turing test using FACIAL features) Rui and Liu ( 2003 ) is an image CAPTCHA system based on detecting human face and facial features and claimed to be attack-resistant and user-friendly. This paper proposes a compute vision attack on ARTiFACIAL. By carefully analyzing the limitations of face and facial feature detectors that ARTiFACIAL exploits, tailor-made attacking algorithm is designed instead of using general face and facial feature detectors directly. When tested with the 800 ARTiFACIAL challenges, the overall success rate of the attacking algorithm is 18.0 %, which is significantly higher than the estimate of 0.0006 % given in Rui and Liu ( 2003 ) for computer vision attacks. It takes an average time 1.47s for a PC with 3.2GHz Intel P4 and 2GB memory to pass an ARTiFACIAL test, compared with 14s for a human subject given in Rui and Liu ( 2003 ). From the successful attack, useful lessons for guiding the design of image CAPTCHAs are derived to advance the current understanding of the design of image CAPTCHAs and lead to more secure design.
Author Li, Qiujie
Author_xml – sequence: 1
  givenname: Qiujie
  surname: Li
  fullname: Li, Qiujie
  email: liqiujie_1@163.com
  organization: College of Mechanical and Electronic Engineering, Nanjing Forestry University
BookMark eNp9kEFLwzAYQINMcJv-AG8FL16i-ZK0SY9lOB0MFJnnkKWpdnbtTFLB_Xoz6kEGesoHeS_5eBM0arvWInQJ5AYIEbcegHCKCTAMkjK8P0FjSAXDQlAYxZlJgkVK4AxNvN8QAllK-RjRIjHddtcH65LP2tddm-gQtHlP4hTebFI8r-p5MVsUy2RWPK1mD8U5Oq104-3FzzlFL_O7eIGXj_eLWbHEhkMesOCs0obmIKTJSwlrbatSrNOqrIjQwLnMmJGClGnJaMlZJlO5TqXJDDOgacqm6Hp4d-e6j976oLa1N7ZpdGu73isQIHMuWEYjenWEbrretXG7SGUgGSM8jxQMlHGd985WaufqrXZfCog6VFRDRRUrqkNFtY-OOHJMHXSInYLTdfOvSQfTx1_aV-t-7fSn9A1h8oUA
CitedBy_id crossref_primary_10_1007_s11042_017_4883_7
crossref_primary_10_1109_TDSC_2023_3238408
crossref_primary_10_3390_s23042338
crossref_primary_10_3390_app9102010
crossref_primary_10_1109_ACCESS_2024_3442976
crossref_primary_10_1049_iet_ifs_2018_5036
crossref_primary_10_1016_j_cose_2019_101635
Cites_doi 10.1007/978-3-540-88688-4_6
10.1145/1054972.1055070
10.1145/957013.957075
10.1109/EIT.2012.6220734
10.1109/TPAMI.2008.260
10.1145/1408664.1408671
10.1007/s11263-009-0275-4
10.1109/CVPR.2001.990517
10.1006/cviu.1995.1004
10.1145/1455770.1455839
10.1109/ACSAC.2007.47
10.1145/1455770.1455838
10.1109/second.2006.1629343
10.1109/34.927467
10.1145/1526709.1526822
10.1109/CVPR.2004.1315140
10.1145/1866307.1866329
10.1145/1752046.1752052
10.1145/1101149.1101218
10.1109/CVPR.2003.1211347
10.1145/966389.966390
10.1007/s11042-009-0341-5
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
Springer Science+Business Media New York 2015
Copyright_xml – notice: Springer Science+Business Media New York 2013
– notice: Springer Science+Business Media New York 2015
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-013-1823-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
ProQuest Research library
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts

ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 4597
ExternalDocumentID 3939957241
10_1007_s11042_013_1823_z
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c419t-743fac29178c9d81baefd7b5fdf07a144863c870d5d32d436858b58c6c3c1a253
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Thu Sep 04 20:16:30 EDT 2025
Sun Jul 13 04:19:18 EDT 2025
Wed Oct 01 02:49:57 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
Fri Feb 21 02:32:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords CAPTCHA
Computer vision
ARTiFACIAL
Attack
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-743fac29178c9d81baefd7b5fdf07a144863c870d5d32d436858b58c6c3c1a253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1761833049
PQPubID 54626
PageCount 15
ParticipantIDs proquest_miscellaneous_1718947362
proquest_journals_1761833049
crossref_primary_10_1007_s11042_013_1823_z
crossref_citationtrail_10_1007_s11042_013_1823_z
springer_journals_10_1007_s11042_013_1823_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Yan J, El Ahmad AS (2008) Usability of captchas or usability issues in captcha design. In: Proceedings of the 4th symposium on Usable privacy and security, ser. SOUPS ’08. ACM, New York, pp 44–52. doi:10.1145/1408664.1408671
Chew M, Tygar JD (2004) Image recognition captchas. EECS Department, University of California, Berkeley, Tech. Rep. UCB/CSD-04-1333. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2004/5256.html
RoshanbinNMillerJA survey and analysis of current captcha approachesJ Web Eng2013121&2140
Xiao R, Zhu L, Zhang H (2003) Boosting chain learning for object detection. In: ICCV. IEEE Computer Society, pp 709–715
Yan J, Ahmad ASE (2007) Breaking visual captchas with naive pattern recognition algorithms. In: ACSAC. IEEE Computer Society, pp 279–291
HuangS-YLeeY-KBellGOuZ-HAn efficient segmentation algorithm for captchas with line cluttering and character warpingMultimed Tools Appl201048226728910.1007/s11042-009-0341-5
Golle P (2008) Machine learning attacks against the asirra captcha. In: Proceedings of the 15th ACM conference on computer and communications security, ser. CCS ’08. ACM, New York, pp 535–542. doi:10.1145/1455770.1455838
Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii
Zhang C, Zhang Z (2010) A survey of recent advances in face detection. Tech. Rep., Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.5270
Zhu BB, Yan J, Li Q, Yang C, Liu J, Xu N, Yi M, Cai K (2010) Attacks and design of image recognition captchas. In: Proceedings of the 17th ACM conference on computer and communications security, ser. CCS ’10. ACM, New York, pp 187–200. doi:10.1145/1866307.1866329
Elson J, Douceur JR, Howell J, Saul J (2007) Asirra: a captcha that exploits interest-aligned manual image categorization. In: Proceedings of ACM CCS 2007, pp 366–374
CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Trans Pattern Anal Mach Intell200123668168510.1109/34.927467
Datta R, Li J, Wang JZ (2005) Imagination: a robust image-based captcha generation system. In: Proceedings of the 13th annual ACM international conference on multimedia, ser. MULTIMEDIA ’05. ACM, New York, pp 331–334. doi:10.1145/1101149.1101218
EnzweilerMGavrilaDMMonocular pedestrian detection: Survey and experimentsIEEE Trans Pattern Anal Mach Intell200931122179219510.1109/TPAMI.2008.260
Hu Y, Jiang D, Yan S, Zhang L, Zhang H (2004) Automatic 3d reconstruction for face recognition. In: Proceedings of the 6th IEEE international conference on automatic face and gesture recognition, ser. FGR’ 04. IEEE Computer Society, Washington, DC, pp 843–848. Avaliable: http://dl.acm.org/citation.cfm?id=1949767.1949914
MitraNJChuH-KLeeT-YWolfLYeshurunHCohen-OrDEmerging imagesACM Trans Graph2009285163:1163:8
Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. In: Machine learning, pp 80–91
Silky AzadKJAttacks and weaknesses against ocr technologyGlob J Comput Sci Technol20131331517
El Ahmad AS, Yan J, Marshall L (2010) The robustness of a new captcha. In: Proceedings of the 3rd European workshop on system security, ser. EUROSEC ’10. ACM, New York, pp 36–41. doi:10.1145/1752046.1752052
Liang L, Xiao R, Wen F, Sun J (2008) Face alignment via component-based discriminative search. In: Proceedings of the 10th European conference on computer vision: part II, ser. ECCV ’08. Springer-Verlag, Berlin, Heidelberg, pp 72–85
2D captchas from 3D models (2006) doi:10.1109/second.2006.1629343
Chellapilla K, Larson K, Simard P, Czerwinski M (2005) Designing human friendly human interaction proofs (hips). In: Proceedings of the SIGCHI conference on human factors in computing systems, ser. CHI ’05. ACM, New York, pp 711–720. doi:10.1145/1054972.1055070
Gossweiler R, Kamvar M, Baluja S (2009) What’s up captcha?: a captcha based on image orientation. In: Proceedings of the 18th international conference on World wide web, ser. WWW ’09. ACM, New York, pp 841–850. doi:10.1145/1526709.1526822
Ahn LV (2005) Human computation. Ph.D. dissertation, Carnegie Mellon University
D’Souza D, Polina PC, Yampolskiy RV (2012) Avatar captcha: Telling computers and humans apart via face classification. In: EIT. IEEE, pp 1–6
0002 XL (2007) Generic face alignment using boosted appearance model. In: CVPR. IEEE Computer Society
ChellapillaKSimardPYUsingmachine learning to break visual human interaction proofs (hips)Adv Neural Inf Process Syst200417265272
EveringhamMGoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vision201088230333810.1007/s11263-009-0275-4
Rui Y, Liu Z (2003) Artifacial: automated reverse turing test using facial features. In: Proceedings of the eleventh ACM international conference on multimedia, ser. MULTIMEDIA ’03. ACM, New York, pp 295–298. doi:10.1145/957013.957075
Yan J, El Ahmad AS (2008) A low-cost attack on a microsoft captcha. In: Proceedings of the 15th ACM conference on computer and communications security, ser. CCS ’08. ACM: New York, pp 543–554. doi:10.1145/1455770.1455839
CootesTFTaylorCJCooperDHGrahamJActive shape models: their training and applicationComput Vis Image Underst1995611385910.1006/cviu.1995.1004
Yan S, Li M, Zhang H, Cheng Q (2003) Ranking prior likelihood distributions for bayesian shape localization framework. In: ICCV03m, pp 51–58
Mori G, Malik J (2003) Recognizing objects in adversarial clutter: breaking a visual captcha. In: Proceedings of the 2003 IEEE computer society conference on computer vision and pattern recognition, ser. CVPR’03. IEEE Computer Society, Washington, DC, pp 134–141. Available: http://dl.acm.org/citation.cfm?id=1965841.1965858
von AhnLBlumMLangfordJTelling humans and computers apart automaticallyCommun ACM2004472566010.1145/966389.966390
Moy G, Jones N, Harkless C, Potter R (2004) Distortion estimation techniques in solving visual captchas. In: Proceedings of the 2004 IEEE computer society conference on Computer vision and pattern recognition, ser. CVPR’04. IEEE Computer Society, Washington, DC, pp 23–28. Available: http://dl.acm.org/citation.cfm?id=1896300.1896305
NJ Mitra (1823_CR18) 2009; 28
1823_CR1
1823_CR4
K Chellapilla (1823_CR2) 2004; 17
1823_CR3
1823_CR9
1823_CR20
KJ Silky Azad (1823_CR24) 2013; 13
1823_CR8
M Everingham (1823_CR12) 2010; 88
1823_CR7
S-Y Huang (1823_CR14) 2010; 48
1823_CR22
1823_CR23
L von Ahn (1823_CR26) 2004; 47
1823_CR28
1823_CR29
TF Cootes (1823_CR5) 1995; 61
1823_CR25
1823_CR27
N Roshanbin (1823_CR21) 2013; 12
1823_CR31
1823_CR10
1823_CR32
1823_CR33
1823_CR34
1823_CR30
M Enzweiler (1823_CR11) 2009; 31
1823_CR17
1823_CR19
1823_CR13
1823_CR35
TF Cootes (1823_CR6) 2001; 23
1823_CR15
1823_CR16
References_xml – reference: Hu Y, Jiang D, Yan S, Zhang L, Zhang H (2004) Automatic 3d reconstruction for face recognition. In: Proceedings of the 6th IEEE international conference on automatic face and gesture recognition, ser. FGR’ 04. IEEE Computer Society, Washington, DC, pp 843–848. Avaliable: http://dl.acm.org/citation.cfm?id=1949767.1949914
– reference: Golle P (2008) Machine learning attacks against the asirra captcha. In: Proceedings of the 15th ACM conference on computer and communications security, ser. CCS ’08. ACM, New York, pp 535–542. doi:10.1145/1455770.1455838
– reference: Moy G, Jones N, Harkless C, Potter R (2004) Distortion estimation techniques in solving visual captchas. In: Proceedings of the 2004 IEEE computer society conference on Computer vision and pattern recognition, ser. CVPR’04. IEEE Computer Society, Washington, DC, pp 23–28. Available: http://dl.acm.org/citation.cfm?id=1896300.1896305
– reference: ChellapillaKSimardPYUsingmachine learning to break visual human interaction proofs (hips)Adv Neural Inf Process Syst200417265272
– reference: HuangS-YLeeY-KBellGOuZ-HAn efficient segmentation algorithm for captchas with line cluttering and character warpingMultimed Tools Appl201048226728910.1007/s11042-009-0341-5
– reference: Yan J, El Ahmad AS (2008) A low-cost attack on a microsoft captcha. In: Proceedings of the 15th ACM conference on computer and communications security, ser. CCS ’08. ACM: New York, pp 543–554. doi:10.1145/1455770.1455839
– reference: El Ahmad AS, Yan J, Marshall L (2010) The robustness of a new captcha. In: Proceedings of the 3rd European workshop on system security, ser. EUROSEC ’10. ACM, New York, pp 36–41. doi:10.1145/1752046.1752052
– reference: Elson J, Douceur JR, Howell J, Saul J (2007) Asirra: a captcha that exploits interest-aligned manual image categorization. In: Proceedings of ACM CCS 2007, pp 366–374
– reference: Yan S, Li M, Zhang H, Cheng Q (2003) Ranking prior likelihood distributions for bayesian shape localization framework. In: ICCV03m, pp 51–58
– reference: Mori G, Malik J (2003) Recognizing objects in adversarial clutter: breaking a visual captcha. In: Proceedings of the 2003 IEEE computer society conference on computer vision and pattern recognition, ser. CVPR’03. IEEE Computer Society, Washington, DC, pp 134–141. Available: http://dl.acm.org/citation.cfm?id=1965841.1965858
– reference: 2D captchas from 3D models (2006) doi:10.1109/second.2006.1629343
– reference: Yan J, Ahmad ASE (2007) Breaking visual captchas with naive pattern recognition algorithms. In: ACSAC. IEEE Computer Society, pp 279–291
– reference: Chellapilla K, Larson K, Simard P, Czerwinski M (2005) Designing human friendly human interaction proofs (hips). In: Proceedings of the SIGCHI conference on human factors in computing systems, ser. CHI ’05. ACM, New York, pp 711–720. doi:10.1145/1054972.1055070
– reference: MitraNJChuH-KLeeT-YWolfLYeshurunHCohen-OrDEmerging imagesACM Trans Graph2009285163:1163:8
– reference: 0002 XL (2007) Generic face alignment using boosted appearance model. In: CVPR. IEEE Computer Society
– reference: Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. In: Machine learning, pp 80–91
– reference: Chew M, Tygar JD (2004) Image recognition captchas. EECS Department, University of California, Berkeley, Tech. Rep. UCB/CSD-04-1333. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2004/5256.html
– reference: Liang L, Xiao R, Wen F, Sun J (2008) Face alignment via component-based discriminative search. In: Proceedings of the 10th European conference on computer vision: part II, ser. ECCV ’08. Springer-Verlag, Berlin, Heidelberg, pp 72–85
– reference: Silky AzadKJAttacks and weaknesses against ocr technologyGlob J Comput Sci Technol20131331517
– reference: D’Souza D, Polina PC, Yampolskiy RV (2012) Avatar captcha: Telling computers and humans apart via face classification. In: EIT. IEEE, pp 1–6
– reference: Gossweiler R, Kamvar M, Baluja S (2009) What’s up captcha?: a captcha based on image orientation. In: Proceedings of the 18th international conference on World wide web, ser. WWW ’09. ACM, New York, pp 841–850. doi:10.1145/1526709.1526822
– reference: Yan J, El Ahmad AS (2008) Usability of captchas or usability issues in captcha design. In: Proceedings of the 4th symposium on Usable privacy and security, ser. SOUPS ’08. ACM, New York, pp 44–52. doi:10.1145/1408664.1408671
– reference: Xiao R, Zhu L, Zhang H (2003) Boosting chain learning for object detection. In: ICCV. IEEE Computer Society, pp 709–715
– reference: Zhang C, Zhang Z (2010) A survey of recent advances in face detection. Tech. Rep., Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.5270
– reference: Zhu BB, Yan J, Li Q, Yang C, Liu J, Xu N, Yi M, Cai K (2010) Attacks and design of image recognition captchas. In: Proceedings of the 17th ACM conference on computer and communications security, ser. CCS ’10. ACM, New York, pp 187–200. doi:10.1145/1866307.1866329
– reference: Ahn LV (2005) Human computation. Ph.D. dissertation, Carnegie Mellon University
– reference: von AhnLBlumMLangfordJTelling humans and computers apart automaticallyCommun ACM2004472566010.1145/966389.966390
– reference: CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Trans Pattern Anal Mach Intell200123668168510.1109/34.927467
– reference: EveringhamMGoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vision201088230333810.1007/s11263-009-0275-4
– reference: Datta R, Li J, Wang JZ (2005) Imagination: a robust image-based captcha generation system. In: Proceedings of the 13th annual ACM international conference on multimedia, ser. MULTIMEDIA ’05. ACM, New York, pp 331–334. doi:10.1145/1101149.1101218
– reference: EnzweilerMGavrilaDMMonocular pedestrian detection: Survey and experimentsIEEE Trans Pattern Anal Mach Intell200931122179219510.1109/TPAMI.2008.260
– reference: Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii
– reference: Rui Y, Liu Z (2003) Artifacial: automated reverse turing test using facial features. In: Proceedings of the eleventh ACM international conference on multimedia, ser. MULTIMEDIA ’03. ACM, New York, pp 295–298. doi:10.1145/957013.957075
– reference: CootesTFTaylorCJCooperDHGrahamJActive shape models: their training and applicationComput Vis Image Underst1995611385910.1006/cviu.1995.1004
– reference: RoshanbinNMillerJA survey and analysis of current captcha approachesJ Web Eng2013121&2140
– ident: 1823_CR17
  doi: 10.1007/978-3-540-88688-4_6
– ident: 1823_CR3
  doi: 10.1145/1054972.1055070
– volume: 28
  start-page: 163:1
  issue: 5
  year: 2009
  ident: 1823_CR18
  publication-title: ACM Trans Graph
– ident: 1823_CR22
  doi: 10.1145/957013.957075
– ident: 1823_CR8
  doi: 10.1109/EIT.2012.6220734
– volume: 31
  start-page: 2179
  issue: 12
  year: 2009
  ident: 1823_CR11
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.260
– ident: 1823_CR29
  doi: 10.1145/1408664.1408671
– volume: 12
  start-page: 1
  issue: 1&2
  year: 2013
  ident: 1823_CR21
  publication-title: J Web Eng
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  ident: 1823_CR12
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-009-0275-4
– ident: 1823_CR25
  doi: 10.1109/CVPR.2001.990517
– volume: 61
  start-page: 38
  issue: 1
  year: 1995
  ident: 1823_CR5
  publication-title: Comput Vis Image Underst
  doi: 10.1006/cviu.1995.1004
– ident: 1823_CR31
– ident: 1823_CR10
– ident: 1823_CR30
  doi: 10.1145/1455770.1455839
– ident: 1823_CR28
  doi: 10.1109/ACSAC.2007.47
– ident: 1823_CR13
– ident: 1823_CR34
– ident: 1823_CR4
– ident: 1823_CR15
  doi: 10.1145/1455770.1455838
– volume: 13
  start-page: 15
  issue: 3
  year: 2013
  ident: 1823_CR24
  publication-title: Glob J Comput Sci Technol
– ident: 1823_CR35
  doi: 10.1109/second.2006.1629343
– volume: 23
  start-page: 681
  issue: 6
  year: 2001
  ident: 1823_CR6
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.927467
– ident: 1823_CR16
  doi: 10.1145/1526709.1526822
– ident: 1823_CR20
  doi: 10.1109/CVPR.2004.1315140
– ident: 1823_CR33
  doi: 10.1145/1866307.1866329
– ident: 1823_CR23
– volume: 17
  start-page: 265
  year: 2004
  ident: 1823_CR2
  publication-title: Adv Neural Inf Process Syst
– ident: 1823_CR27
– ident: 1823_CR9
  doi: 10.1145/1752046.1752052
– ident: 1823_CR7
  doi: 10.1145/1101149.1101218
– ident: 1823_CR1
– ident: 1823_CR19
  doi: 10.1109/CVPR.2003.1211347
– volume: 47
  start-page: 56
  issue: 2
  year: 2004
  ident: 1823_CR26
  publication-title: Commun ACM
  doi: 10.1145/966389.966390
– ident: 1823_CR32
– volume: 48
  start-page: 267
  issue: 2
  year: 2010
  ident: 1823_CR14
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-009-0341-5
SSID ssj0016524
Score 2.0915933
Snippet Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a reverse Turing test that is used to differentiate bots from humans....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4583
SubjectTerms Algorithms
Analysis
Artificial intelligence
Automation
Computation
Computer Communication Networks
Computer Science
Computer vision
Computers
Cultural differences
Data Structures and Information Theory
Design engineering
Facial
Human
Logic
Multimedia computer applications
Multimedia Information Systems
Network security
Sensors
Special Purpose and Application-Based Systems
Studies
Success
Texts
Vision systems
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qvejBR1WsVongSVns5rk5iMTSUkVLEQu9hX0kIEpbNV789c402VYFvS1kk4XZmZ1vMjvzAZwadCHkXJjMhc98LzJMqEwxrshbEkj3qVD4fhD2R_7tOBjXYGBrYehapT0T5we1mWr6R37BMd4WFHzHV7NXRqxRlF21FBqyolYwl_MWYyuw6lJnrDqsXncHw4dFXiEMKppb0WboK7nNc86L6TiVqhDbAWJuj33-9FRL-PkrYzp3RL0t2KgQpJOUW74NtWzSgE3LzuBUxtqA9W-tBnfATRxtp5T15I4sCqmfHRwhCHQQ2D71ks5Ncud0kuFjp5_swqjXxQGr-BKY9nlcMAQDudQuBmBCxwbxqMxyE6kgN3k7khg5idDTaJ8mMJ5rytbzKhA61J7m0g28PahPppNsHxylUcNcqXhsMKQxVOAa-7nkkWorEbiqCW0rm1RXzcSJ0-IlXbZBJnGmKM6UxJl-NuFs8cqs7KTx3-SWFXhaGdV7ulSBJpwsHqM5UI5DTrLpB83hIvYjdMtNOLcb9e0Tfy148P-Ch7CGSCko74i1oF68fWRHiEYKdVyp2BfZrNej
  priority: 102
  providerName: ProQuest
Title A computer vision attack on the ARTiFACIAL CAPTCHA
URI https://link.springer.com/article/10.1007/s11042-013-1823-z
https://www.proquest.com/docview/1761833049
https://www.proquest.com/docview/1718947362
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vejBR1Ws1hLBk7LQTbLJ5hhLH75KEQv1FPaRgCip2PTSX-9sk7RVVPCUhUw2MDuz37fMzgzAhUYIMeBCRMJd4jq-JlzGklBp0NKQdNckCj8MvP7IvR2zcZHHPS1vu5chycVOvUp2oyaVxHQjQE7skPkmVJmp5oVGPLLDZejAY0UnW94iCIe0DGX-NMVXMFoxzG9B0QXWdPdgpyCJVpiv6j5sxGkNdssGDFbhjzXYXqsmeAB2aKlSJE8Zt0SWCfVq4Qh5noXc9aUbtm_Ce6sdDp_a_fAQRt0ODkjREoEolwYZQbxPhLLxjMVVoJFyijjRvmSJTlq-wMMR9xyFLqiZdmydV5eXjCtPOYoKmzlHUEknaXwMllRoRLaQNNB4atEmhzVwE0F92ZKc2bIOrVI3kSrqhZu2FW_RqtKxUWeE6oyMOqN5HS6Xn7znxTL-Em6UCo8Kv5lG1PdwjzGhvzqcL1-jxZswhkjjyczIUB64PiJvHa7KhVqb4rcfnvxL-hS2kBux_FZYAyrZxyw-Q_6RySZs8m6vCdWw93zXwed1ZzB8bC6s8BMcVtIn
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hOBQOffAQobRdpPZStCJrr-P1AVVuSpRAiFAFEjezD1tCRQkPo6r8uP62zsS7Ca1UbtwseW1Ls7P7fePZmQ_go0MIIXDhulKSyzh1XJnScGEILYmkSyoUPh51-mfy8Dw5X4DfoRaGjlWGPXG6UbuJpX_kewLjbUXBd_bl-oaTahRlV4OEhvbSCm5_2mLMF3Yclb9-Ygh3tz_4hvP9KYp6B6fdPvcqA9xKkdUcIbTSNsKwRdnMIYvTZeVSk1Suaqca4w3ViS16tUtcHLmmYbtJlO3Y2AodkWoEQsCSjGWGwd_S14PRyfdZHqOTeFld1eaIzSLkVafFe4JKY0hdATl-zB_-RsY53f0nQzsFvt5reOkZK8sbF3sDC-V4FV4FNQjmN4dVWHnU2nANopzZMKSpX2e6rrX9wfAKSSdDIn3Zy7uDfMi6-QkaLF-Hs2ex3AYsjifjchOYsejRkTYicxhCOSqozWSlRWraRiWRaUE72Kawvnk5aWhcFfO2y2TOAs1ZkDmLhxZ8nj1y3XTueGrwdjB44RfxXTF3uRbszG7j8qOcih6Xk3saI1QmU6QBLdgNE_XoFf_74NbTH_wAL_qnx8NiOBgdvYVlZGlJcz5tGxbr2_vyHTKh2rz37sbg4rk9_A8qdxSO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC5EQXYPvnaXHZ-9oJeVxulOMukcRMJo1vGFBwVv2X4ksCgzPiKiP81fZ9UkPeMKevMW6E4aqqurvkp11Qew7tCFkHPhulQhD4PYcWUKw4Uhb0kgPaRC4eOTzv55eHARXUzAs6-FoWuV3iYODbUbWPpHviUw3lYUfCdbZXMt4nQ327m-4cQgRZlWT6dRq8hh8fiA4dvddm8X93pDymzvrLvPG4YBbkORVBzdZ6mtxJBF2cQhgtNF6WITla5sxxpjDdUJLGq0i1wgXd2s3UTKdmxghZbEGIHmfyqmAapSz_6MMhidqCHUVW2OXln4jOqwbE9QUQzxKiC6D_jT_z5xDHTf5GaHLi-bg5kGq7K0Vq55mCj6CzDreSBYYxYW4OurpobfQKbM-il15TrTVaXtJcMnhJsMIfS_LO320iPWTU9RXOl3OP8Uuf2Ayf6gX_wEZizqstRGJA6DJ0eltElYahGbtlGRNC1oe9nktmlbTuwZV_m44TKJM0dx5iTO_KkFv0evXNc9Oz6avOwFnjfH9y4fK1sLfo2G8eBRNkX3i8E9zREqCXHrZQs2_Ua9-sR7Cy5-vOAaTKNe50e9k8Ml-ILwLKovpi3DZHV7X6wgBKrM6lDXGPz9bOV-AYKJEig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computer+vision+attack+on+the+ARTiFACIAL+CAPTCHA&rft.jtitle=Multimedia+tools+and+applications&rft.au=Li%2C+Qiujie&rft.date=2015-06-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=74&rft.issue=13&rft.spage=4583&rft.epage=4597&rft_id=info:doi/10.1007%2Fs11042-013-1823-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon