A computer vision attack on the ARTiFACIAL CAPTCHA
Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a reverse Turing test that is used to differentiate bots from humans. Text CAPTCHAs have been widely used in commercial applications, but most of the text CAPTCHAs have been successfully attacked. An alternative...
        Saved in:
      
    
          | Published in | Multimedia tools and applications Vol. 74; no. 13; pp. 4583 - 4597 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.06.2015
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1380-7501 1573-7721  | 
| DOI | 10.1007/s11042-013-1823-z | 
Cover
| Abstract | Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a reverse Turing test that is used to differentiate bots from humans. Text CAPTCHAs have been widely used in commercial applications, but most of the text CAPTCHAs have been successfully attacked. An alternative is to develop image CAPTCHAs to replace text CAPTCHAs. ARTiFACIAL (Automated Reverse Turing test using FACIAL features) Rui and Liu (
2003
) is an image CAPTCHA system based on detecting human face and facial features and claimed to be attack-resistant and user-friendly. This paper proposes a compute vision attack on ARTiFACIAL. By carefully analyzing the limitations of face and facial feature detectors that ARTiFACIAL exploits, tailor-made attacking algorithm is designed instead of using general face and facial feature detectors directly. When tested with the 800 ARTiFACIAL challenges, the overall success rate of the attacking algorithm is 18.0 %, which is significantly higher than the estimate of 0.0006 % given in Rui and Liu (
2003
) for computer vision attacks. It takes an average time 1.47s for a PC with 3.2GHz Intel P4 and 2GB memory to pass an ARTiFACIAL test, compared with 14s for a human subject given in Rui and Liu (
2003
). From the successful attack, useful lessons for guiding the design of image CAPTCHAs are derived to advance the current understanding of the design of image CAPTCHAs and lead to more secure design. | 
    
|---|---|
| AbstractList | Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a reverse Turing test that is used to differentiate bots from humans. Text CAPTCHAs have been widely used in commercial applications, but most of the text CAPTCHAs have been successfully attacked. An alternative is to develop image CAPTCHAs to replace text CAPTCHAs. ARTiFACIAL (Automated Reverse Turing test using FACIAL features) Rui and Liu (2003) is an image CAPTCHA system based on detecting human face and facial features and claimed to be attack-resistant and user-friendly. This paper proposes a compute vision attack on ARTiFACIAL. By carefully analyzing the limitations of face and facial feature detectors that ARTiFACIAL exploits, tailor-made attacking algorithm is designed instead of using general face and facial feature detectors directly. When tested with the 800 ARTiFACIAL challenges, the overall success rate of the attacking algorithm is 18.0 %, which is significantly higher than the estimate of 0.0006 % given in Rui and Liu (2003) for computer vision attacks. It takes an average time 1.47s for a PC with 3.2GHz Intel P4 and 2GB memory to pass an ARTiFACIAL test, compared with 14s for a human subject given in Rui and Liu (2003). From the successful attack, useful lessons for guiding the design of image CAPTCHAs are derived to advance the current understanding of the design of image CAPTCHAs and lead to more secure design. Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a reverse Turing test that is used to differentiate bots from humans. Text CAPTCHAs have been widely used in commercial applications, but most of the text CAPTCHAs have been successfully attacked. An alternative is to develop image CAPTCHAs to replace text CAPTCHAs. ARTiFACIAL (Automated Reverse Turing test using FACIAL features) Rui and Liu ( 2003 ) is an image CAPTCHA system based on detecting human face and facial features and claimed to be attack-resistant and user-friendly. This paper proposes a compute vision attack on ARTiFACIAL. By carefully analyzing the limitations of face and facial feature detectors that ARTiFACIAL exploits, tailor-made attacking algorithm is designed instead of using general face and facial feature detectors directly. When tested with the 800 ARTiFACIAL challenges, the overall success rate of the attacking algorithm is 18.0 %, which is significantly higher than the estimate of 0.0006 % given in Rui and Liu ( 2003 ) for computer vision attacks. It takes an average time 1.47s for a PC with 3.2GHz Intel P4 and 2GB memory to pass an ARTiFACIAL test, compared with 14s for a human subject given in Rui and Liu ( 2003 ). From the successful attack, useful lessons for guiding the design of image CAPTCHAs are derived to advance the current understanding of the design of image CAPTCHAs and lead to more secure design.  | 
    
| Author | Li, Qiujie | 
    
| Author_xml | – sequence: 1 givenname: Qiujie surname: Li fullname: Li, Qiujie email: liqiujie_1@163.com organization: College of Mechanical and Electronic Engineering, Nanjing Forestry University  | 
    
| BookMark | eNp9kEFLwzAYQINMcJv-AG8FL16i-ZK0SY9lOB0MFJnnkKWpdnbtTFLB_Xoz6kEGesoHeS_5eBM0arvWInQJ5AYIEbcegHCKCTAMkjK8P0FjSAXDQlAYxZlJgkVK4AxNvN8QAllK-RjRIjHddtcH65LP2tddm-gQtHlP4hTebFI8r-p5MVsUy2RWPK1mD8U5Oq104-3FzzlFL_O7eIGXj_eLWbHEhkMesOCs0obmIKTJSwlrbatSrNOqrIjQwLnMmJGClGnJaMlZJlO5TqXJDDOgacqm6Hp4d-e6j976oLa1N7ZpdGu73isQIHMuWEYjenWEbrretXG7SGUgGSM8jxQMlHGd985WaufqrXZfCog6VFRDRRUrqkNFtY-OOHJMHXSInYLTdfOvSQfTx1_aV-t-7fSn9A1h8oUA | 
    
| CitedBy_id | crossref_primary_10_1007_s11042_017_4883_7 crossref_primary_10_1109_TDSC_2023_3238408 crossref_primary_10_3390_s23042338 crossref_primary_10_3390_app9102010 crossref_primary_10_1109_ACCESS_2024_3442976 crossref_primary_10_1049_iet_ifs_2018_5036 crossref_primary_10_1016_j_cose_2019_101635  | 
    
| Cites_doi | 10.1007/978-3-540-88688-4_6 10.1145/1054972.1055070 10.1145/957013.957075 10.1109/EIT.2012.6220734 10.1109/TPAMI.2008.260 10.1145/1408664.1408671 10.1007/s11263-009-0275-4 10.1109/CVPR.2001.990517 10.1006/cviu.1995.1004 10.1145/1455770.1455839 10.1109/ACSAC.2007.47 10.1145/1455770.1455838 10.1109/second.2006.1629343 10.1109/34.927467 10.1145/1526709.1526822 10.1109/CVPR.2004.1315140 10.1145/1866307.1866329 10.1145/1752046.1752052 10.1145/1101149.1101218 10.1109/CVPR.2003.1211347 10.1145/966389.966390 10.1007/s11042-009-0341-5  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media New York 2013 Springer Science+Business Media New York 2015  | 
    
| Copyright_xml | – notice: Springer Science+Business Media New York 2013 – notice: Springer Science+Business Media New York 2015  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U  | 
    
| DOI | 10.1007/s11042-013-1823-z | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database ProQuest Research library Research Library (Corporate) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate)  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-7721 | 
    
| EndPage | 4597 | 
    
| ExternalDocumentID | 3939957241 10_1007_s11042_013_1823_z  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U  | 
    
| ID | FETCH-LOGICAL-c419t-743fac29178c9d81baefd7b5fdf07a144863c870d5d32d436858b58c6c3c1a253 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1380-7501 | 
    
| IngestDate | Thu Sep 04 20:16:30 EDT 2025 Sun Jul 13 04:19:18 EDT 2025 Wed Oct 01 02:49:57 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 Fri Feb 21 02:32:15 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Keywords | CAPTCHA Computer vision ARTiFACIAL Attack  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c419t-743fac29178c9d81baefd7b5fdf07a144863c870d5d32d436858b58c6c3c1a253 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 1761833049 | 
    
| PQPubID | 54626 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_miscellaneous_1718947362 proquest_journals_1761833049 crossref_primary_10_1007_s11042_013_1823_z crossref_citationtrail_10_1007_s11042_013_1823_z springer_journals_10_1007_s11042_013_1823_z  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-06-01 | 
    
| PublicationDateYYYYMMDD | 2015-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Multimedia tools and applications | 
    
| PublicationTitleAbbrev | Multimed Tools Appl | 
    
| PublicationYear | 2015 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Yan J, El Ahmad AS (2008) Usability of captchas or usability issues in captcha design. In: Proceedings of the 4th symposium on Usable privacy and security, ser. SOUPS ’08. ACM, New York, pp 44–52. doi:10.1145/1408664.1408671 Chew M, Tygar JD (2004) Image recognition captchas. EECS Department, University of California, Berkeley, Tech. Rep. UCB/CSD-04-1333. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2004/5256.html RoshanbinNMillerJA survey and analysis of current captcha approachesJ Web Eng2013121&2140 Xiao R, Zhu L, Zhang H (2003) Boosting chain learning for object detection. In: ICCV. IEEE Computer Society, pp 709–715 Yan J, Ahmad ASE (2007) Breaking visual captchas with naive pattern recognition algorithms. In: ACSAC. IEEE Computer Society, pp 279–291 HuangS-YLeeY-KBellGOuZ-HAn efficient segmentation algorithm for captchas with line cluttering and character warpingMultimed Tools Appl201048226728910.1007/s11042-009-0341-5 Golle P (2008) Machine learning attacks against the asirra captcha. In: Proceedings of the 15th ACM conference on computer and communications security, ser. CCS ’08. ACM, New York, pp 535–542. doi:10.1145/1455770.1455838 Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii Zhang C, Zhang Z (2010) A survey of recent advances in face detection. Tech. Rep., Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.5270 Zhu BB, Yan J, Li Q, Yang C, Liu J, Xu N, Yi M, Cai K (2010) Attacks and design of image recognition captchas. In: Proceedings of the 17th ACM conference on computer and communications security, ser. CCS ’10. ACM, New York, pp 187–200. doi:10.1145/1866307.1866329 Elson J, Douceur JR, Howell J, Saul J (2007) Asirra: a captcha that exploits interest-aligned manual image categorization. In: Proceedings of ACM CCS 2007, pp 366–374 CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Trans Pattern Anal Mach Intell200123668168510.1109/34.927467 Datta R, Li J, Wang JZ (2005) Imagination: a robust image-based captcha generation system. In: Proceedings of the 13th annual ACM international conference on multimedia, ser. MULTIMEDIA ’05. ACM, New York, pp 331–334. doi:10.1145/1101149.1101218 EnzweilerMGavrilaDMMonocular pedestrian detection: Survey and experimentsIEEE Trans Pattern Anal Mach Intell200931122179219510.1109/TPAMI.2008.260 Hu Y, Jiang D, Yan S, Zhang L, Zhang H (2004) Automatic 3d reconstruction for face recognition. In: Proceedings of the 6th IEEE international conference on automatic face and gesture recognition, ser. FGR’ 04. IEEE Computer Society, Washington, DC, pp 843–848. Avaliable: http://dl.acm.org/citation.cfm?id=1949767.1949914 MitraNJChuH-KLeeT-YWolfLYeshurunHCohen-OrDEmerging imagesACM Trans Graph2009285163:1163:8 Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. In: Machine learning, pp 80–91 Silky AzadKJAttacks and weaknesses against ocr technologyGlob J Comput Sci Technol20131331517 El Ahmad AS, Yan J, Marshall L (2010) The robustness of a new captcha. In: Proceedings of the 3rd European workshop on system security, ser. EUROSEC ’10. ACM, New York, pp 36–41. doi:10.1145/1752046.1752052 Liang L, Xiao R, Wen F, Sun J (2008) Face alignment via component-based discriminative search. In: Proceedings of the 10th European conference on computer vision: part II, ser. ECCV ’08. Springer-Verlag, Berlin, Heidelberg, pp 72–85 2D captchas from 3D models (2006) doi:10.1109/second.2006.1629343 Chellapilla K, Larson K, Simard P, Czerwinski M (2005) Designing human friendly human interaction proofs (hips). In: Proceedings of the SIGCHI conference on human factors in computing systems, ser. CHI ’05. ACM, New York, pp 711–720. doi:10.1145/1054972.1055070 Gossweiler R, Kamvar M, Baluja S (2009) What’s up captcha?: a captcha based on image orientation. In: Proceedings of the 18th international conference on World wide web, ser. WWW ’09. ACM, New York, pp 841–850. doi:10.1145/1526709.1526822 Ahn LV (2005) Human computation. Ph.D. dissertation, Carnegie Mellon University D’Souza D, Polina PC, Yampolskiy RV (2012) Avatar captcha: Telling computers and humans apart via face classification. In: EIT. IEEE, pp 1–6 0002 XL (2007) Generic face alignment using boosted appearance model. In: CVPR. IEEE Computer Society ChellapillaKSimardPYUsingmachine learning to break visual human interaction proofs (hips)Adv Neural Inf Process Syst200417265272 EveringhamMGoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vision201088230333810.1007/s11263-009-0275-4 Rui Y, Liu Z (2003) Artifacial: automated reverse turing test using facial features. In: Proceedings of the eleventh ACM international conference on multimedia, ser. MULTIMEDIA ’03. ACM, New York, pp 295–298. doi:10.1145/957013.957075 Yan J, El Ahmad AS (2008) A low-cost attack on a microsoft captcha. In: Proceedings of the 15th ACM conference on computer and communications security, ser. CCS ’08. ACM: New York, pp 543–554. doi:10.1145/1455770.1455839 CootesTFTaylorCJCooperDHGrahamJActive shape models: their training and applicationComput Vis Image Underst1995611385910.1006/cviu.1995.1004 Yan S, Li M, Zhang H, Cheng Q (2003) Ranking prior likelihood distributions for bayesian shape localization framework. In: ICCV03m, pp 51–58 Mori G, Malik J (2003) Recognizing objects in adversarial clutter: breaking a visual captcha. In: Proceedings of the 2003 IEEE computer society conference on computer vision and pattern recognition, ser. CVPR’03. IEEE Computer Society, Washington, DC, pp 134–141. Available: http://dl.acm.org/citation.cfm?id=1965841.1965858 von AhnLBlumMLangfordJTelling humans and computers apart automaticallyCommun ACM2004472566010.1145/966389.966390 Moy G, Jones N, Harkless C, Potter R (2004) Distortion estimation techniques in solving visual captchas. In: Proceedings of the 2004 IEEE computer society conference on Computer vision and pattern recognition, ser. CVPR’04. IEEE Computer Society, Washington, DC, pp 23–28. Available: http://dl.acm.org/citation.cfm?id=1896300.1896305 NJ Mitra (1823_CR18) 2009; 28 1823_CR1 1823_CR4 K Chellapilla (1823_CR2) 2004; 17 1823_CR3 1823_CR9 1823_CR20 KJ Silky Azad (1823_CR24) 2013; 13 1823_CR8 M Everingham (1823_CR12) 2010; 88 1823_CR7 S-Y Huang (1823_CR14) 2010; 48 1823_CR22 1823_CR23 L von Ahn (1823_CR26) 2004; 47 1823_CR28 1823_CR29 TF Cootes (1823_CR5) 1995; 61 1823_CR25 1823_CR27 N Roshanbin (1823_CR21) 2013; 12 1823_CR31 1823_CR10 1823_CR32 1823_CR33 1823_CR34 1823_CR30 M Enzweiler (1823_CR11) 2009; 31 1823_CR17 1823_CR19 1823_CR13 1823_CR35 TF Cootes (1823_CR6) 2001; 23 1823_CR15 1823_CR16  | 
    
| References_xml | – reference: Hu Y, Jiang D, Yan S, Zhang L, Zhang H (2004) Automatic 3d reconstruction for face recognition. In: Proceedings of the 6th IEEE international conference on automatic face and gesture recognition, ser. FGR’ 04. IEEE Computer Society, Washington, DC, pp 843–848. Avaliable: http://dl.acm.org/citation.cfm?id=1949767.1949914 – reference: Golle P (2008) Machine learning attacks against the asirra captcha. In: Proceedings of the 15th ACM conference on computer and communications security, ser. CCS ’08. ACM, New York, pp 535–542. doi:10.1145/1455770.1455838 – reference: Moy G, Jones N, Harkless C, Potter R (2004) Distortion estimation techniques in solving visual captchas. In: Proceedings of the 2004 IEEE computer society conference on Computer vision and pattern recognition, ser. CVPR’04. IEEE Computer Society, Washington, DC, pp 23–28. Available: http://dl.acm.org/citation.cfm?id=1896300.1896305 – reference: ChellapillaKSimardPYUsingmachine learning to break visual human interaction proofs (hips)Adv Neural Inf Process Syst200417265272 – reference: HuangS-YLeeY-KBellGOuZ-HAn efficient segmentation algorithm for captchas with line cluttering and character warpingMultimed Tools Appl201048226728910.1007/s11042-009-0341-5 – reference: Yan J, El Ahmad AS (2008) A low-cost attack on a microsoft captcha. In: Proceedings of the 15th ACM conference on computer and communications security, ser. CCS ’08. ACM: New York, pp 543–554. doi:10.1145/1455770.1455839 – reference: El Ahmad AS, Yan J, Marshall L (2010) The robustness of a new captcha. In: Proceedings of the 3rd European workshop on system security, ser. EUROSEC ’10. ACM, New York, pp 36–41. doi:10.1145/1752046.1752052 – reference: Elson J, Douceur JR, Howell J, Saul J (2007) Asirra: a captcha that exploits interest-aligned manual image categorization. In: Proceedings of ACM CCS 2007, pp 366–374 – reference: Yan S, Li M, Zhang H, Cheng Q (2003) Ranking prior likelihood distributions for bayesian shape localization framework. In: ICCV03m, pp 51–58 – reference: Mori G, Malik J (2003) Recognizing objects in adversarial clutter: breaking a visual captcha. In: Proceedings of the 2003 IEEE computer society conference on computer vision and pattern recognition, ser. CVPR’03. IEEE Computer Society, Washington, DC, pp 134–141. Available: http://dl.acm.org/citation.cfm?id=1965841.1965858 – reference: 2D captchas from 3D models (2006) doi:10.1109/second.2006.1629343 – reference: Yan J, Ahmad ASE (2007) Breaking visual captchas with naive pattern recognition algorithms. In: ACSAC. IEEE Computer Society, pp 279–291 – reference: Chellapilla K, Larson K, Simard P, Czerwinski M (2005) Designing human friendly human interaction proofs (hips). In: Proceedings of the SIGCHI conference on human factors in computing systems, ser. CHI ’05. ACM, New York, pp 711–720. doi:10.1145/1054972.1055070 – reference: MitraNJChuH-KLeeT-YWolfLYeshurunHCohen-OrDEmerging imagesACM Trans Graph2009285163:1163:8 – reference: 0002 XL (2007) Generic face alignment using boosted appearance model. In: CVPR. IEEE Computer Society – reference: Schapire RE, Singer Y (1999) Improved boosting algorithms using confidence-rated predictions. In: Machine learning, pp 80–91 – reference: Chew M, Tygar JD (2004) Image recognition captchas. EECS Department, University of California, Berkeley, Tech. Rep. UCB/CSD-04-1333. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2004/5256.html – reference: Liang L, Xiao R, Wen F, Sun J (2008) Face alignment via component-based discriminative search. In: Proceedings of the 10th European conference on computer vision: part II, ser. ECCV ’08. Springer-Verlag, Berlin, Heidelberg, pp 72–85 – reference: Silky AzadKJAttacks and weaknesses against ocr technologyGlob J Comput Sci Technol20131331517 – reference: D’Souza D, Polina PC, Yampolskiy RV (2012) Avatar captcha: Telling computers and humans apart via face classification. In: EIT. IEEE, pp 1–6 – reference: Gossweiler R, Kamvar M, Baluja S (2009) What’s up captcha?: a captcha based on image orientation. In: Proceedings of the 18th international conference on World wide web, ser. WWW ’09. ACM, New York, pp 841–850. doi:10.1145/1526709.1526822 – reference: Yan J, El Ahmad AS (2008) Usability of captchas or usability issues in captcha design. In: Proceedings of the 4th symposium on Usable privacy and security, ser. SOUPS ’08. ACM, New York, pp 44–52. doi:10.1145/1408664.1408671 – reference: Xiao R, Zhu L, Zhang H (2003) Boosting chain learning for object detection. In: ICCV. IEEE Computer Society, pp 709–715 – reference: Zhang C, Zhang Z (2010) A survey of recent advances in face detection. Tech. Rep., Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.167.5270 – reference: Zhu BB, Yan J, Li Q, Yang C, Liu J, Xu N, Yi M, Cai K (2010) Attacks and design of image recognition captchas. In: Proceedings of the 17th ACM conference on computer and communications security, ser. CCS ’10. ACM, New York, pp 187–200. doi:10.1145/1866307.1866329 – reference: Ahn LV (2005) Human computation. Ph.D. dissertation, Carnegie Mellon University – reference: von AhnLBlumMLangfordJTelling humans and computers apart automaticallyCommun ACM2004472566010.1145/966389.966390 – reference: CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Trans Pattern Anal Mach Intell200123668168510.1109/34.927467 – reference: EveringhamMGoolLWilliamsCKWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vision201088230333810.1007/s11263-009-0275-4 – reference: Datta R, Li J, Wang JZ (2005) Imagination: a robust image-based captcha generation system. In: Proceedings of the 13th annual ACM international conference on multimedia, ser. MULTIMEDIA ’05. ACM, New York, pp 331–334. doi:10.1145/1101149.1101218 – reference: EnzweilerMGavrilaDMMonocular pedestrian detection: Survey and experimentsIEEE Trans Pattern Anal Mach Intell200931122179219510.1109/TPAMI.2008.260 – reference: Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Hawaii – reference: Rui Y, Liu Z (2003) Artifacial: automated reverse turing test using facial features. In: Proceedings of the eleventh ACM international conference on multimedia, ser. MULTIMEDIA ’03. ACM, New York, pp 295–298. doi:10.1145/957013.957075 – reference: CootesTFTaylorCJCooperDHGrahamJActive shape models: their training and applicationComput Vis Image Underst1995611385910.1006/cviu.1995.1004 – reference: RoshanbinNMillerJA survey and analysis of current captcha approachesJ Web Eng2013121&2140 – ident: 1823_CR17 doi: 10.1007/978-3-540-88688-4_6 – ident: 1823_CR3 doi: 10.1145/1054972.1055070 – volume: 28 start-page: 163:1 issue: 5 year: 2009 ident: 1823_CR18 publication-title: ACM Trans Graph – ident: 1823_CR22 doi: 10.1145/957013.957075 – ident: 1823_CR8 doi: 10.1109/EIT.2012.6220734 – volume: 31 start-page: 2179 issue: 12 year: 2009 ident: 1823_CR11 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.260 – ident: 1823_CR29 doi: 10.1145/1408664.1408671 – volume: 12 start-page: 1 issue: 1&2 year: 2013 ident: 1823_CR21 publication-title: J Web Eng – volume: 88 start-page: 303 issue: 2 year: 2010 ident: 1823_CR12 publication-title: Int J Comput Vision doi: 10.1007/s11263-009-0275-4 – ident: 1823_CR25 doi: 10.1109/CVPR.2001.990517 – volume: 61 start-page: 38 issue: 1 year: 1995 ident: 1823_CR5 publication-title: Comput Vis Image Underst doi: 10.1006/cviu.1995.1004 – ident: 1823_CR31 – ident: 1823_CR10 – ident: 1823_CR30 doi: 10.1145/1455770.1455839 – ident: 1823_CR28 doi: 10.1109/ACSAC.2007.47 – ident: 1823_CR13 – ident: 1823_CR34 – ident: 1823_CR4 – ident: 1823_CR15 doi: 10.1145/1455770.1455838 – volume: 13 start-page: 15 issue: 3 year: 2013 ident: 1823_CR24 publication-title: Glob J Comput Sci Technol – ident: 1823_CR35 doi: 10.1109/second.2006.1629343 – volume: 23 start-page: 681 issue: 6 year: 2001 ident: 1823_CR6 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.927467 – ident: 1823_CR16 doi: 10.1145/1526709.1526822 – ident: 1823_CR20 doi: 10.1109/CVPR.2004.1315140 – ident: 1823_CR33 doi: 10.1145/1866307.1866329 – ident: 1823_CR23 – volume: 17 start-page: 265 year: 2004 ident: 1823_CR2 publication-title: Adv Neural Inf Process Syst – ident: 1823_CR27 – ident: 1823_CR9 doi: 10.1145/1752046.1752052 – ident: 1823_CR7 doi: 10.1145/1101149.1101218 – ident: 1823_CR1 – ident: 1823_CR19 doi: 10.1109/CVPR.2003.1211347 – volume: 47 start-page: 56 issue: 2 year: 2004 ident: 1823_CR26 publication-title: Commun ACM doi: 10.1145/966389.966390 – ident: 1823_CR32 – volume: 48 start-page: 267 issue: 2 year: 2010 ident: 1823_CR14 publication-title: Multimed Tools Appl doi: 10.1007/s11042-009-0341-5  | 
    
| SSID | ssj0016524 | 
    
| Score | 2.0915933 | 
    
| Snippet | Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a reverse Turing test that is used to differentiate bots from humans.... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 4583 | 
    
| SubjectTerms | Algorithms Analysis Artificial intelligence Automation Computation Computer Communication Networks Computer Science Computer vision Computers Cultural differences Data Structures and Information Theory Design engineering Facial Human Logic Multimedia computer applications Multimedia Information Systems Network security Sensors Special Purpose and Application-Based Systems Studies Success Texts Vision systems  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qvejBR1WsVongSVns5rk5iMTSUkVLEQu9hX0kIEpbNV789c402VYFvS1kk4XZmZ1vMjvzAZwadCHkXJjMhc98LzJMqEwxrshbEkj3qVD4fhD2R_7tOBjXYGBrYehapT0T5we1mWr6R37BMd4WFHzHV7NXRqxRlF21FBqyolYwl_MWYyuw6lJnrDqsXncHw4dFXiEMKppb0WboK7nNc86L6TiVqhDbAWJuj33-9FRL-PkrYzp3RL0t2KgQpJOUW74NtWzSgE3LzuBUxtqA9W-tBnfATRxtp5T15I4sCqmfHRwhCHQQ2D71ks5Ncud0kuFjp5_swqjXxQGr-BKY9nlcMAQDudQuBmBCxwbxqMxyE6kgN3k7khg5idDTaJ8mMJ5rytbzKhA61J7m0g28PahPppNsHxylUcNcqXhsMKQxVOAa-7nkkWorEbiqCW0rm1RXzcSJ0-IlXbZBJnGmKM6UxJl-NuFs8cqs7KTx3-SWFXhaGdV7ulSBJpwsHqM5UI5DTrLpB83hIvYjdMtNOLcb9e0Tfy148P-Ch7CGSCko74i1oF68fWRHiEYKdVyp2BfZrNej priority: 102 providerName: ProQuest  | 
    
| Title | A computer vision attack on the ARTiFACIAL CAPTCHA | 
    
| URI | https://link.springer.com/article/10.1007/s11042-013-1823-z https://www.proquest.com/docview/1761833049 https://www.proquest.com/docview/1718947362  | 
    
| Volume | 74 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vejBR1Ws1hLBk7LQTbLJ5hhLH75KEQv1FPaRgCip2PTSX-9sk7RVVPCUhUw2MDuz37fMzgzAhUYIMeBCRMJd4jq-JlzGklBp0NKQdNckCj8MvP7IvR2zcZHHPS1vu5chycVOvUp2oyaVxHQjQE7skPkmVJmp5oVGPLLDZejAY0UnW94iCIe0DGX-NMVXMFoxzG9B0QXWdPdgpyCJVpiv6j5sxGkNdssGDFbhjzXYXqsmeAB2aKlSJE8Zt0SWCfVq4Qh5noXc9aUbtm_Ce6sdDp_a_fAQRt0ODkjREoEolwYZQbxPhLLxjMVVoJFyijjRvmSJTlq-wMMR9xyFLqiZdmydV5eXjCtPOYoKmzlHUEknaXwMllRoRLaQNNB4atEmhzVwE0F92ZKc2bIOrVI3kSrqhZu2FW_RqtKxUWeE6oyMOqN5HS6Xn7znxTL-Em6UCo8Kv5lG1PdwjzGhvzqcL1-jxZswhkjjyczIUB64PiJvHa7KhVqb4rcfnvxL-hS2kBux_FZYAyrZxyw-Q_6RySZs8m6vCdWw93zXwed1ZzB8bC6s8BMcVtIn | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB4hOBQOffAQobRdpPZStCJrr-P1AVVuSpRAiFAFEjezD1tCRQkPo6r8uP62zsS7Ca1UbtwseW1Ls7P7fePZmQ_go0MIIXDhulKSyzh1XJnScGEILYmkSyoUPh51-mfy8Dw5X4DfoRaGjlWGPXG6UbuJpX_kewLjbUXBd_bl-oaTahRlV4OEhvbSCm5_2mLMF3Yclb9-Ygh3tz_4hvP9KYp6B6fdPvcqA9xKkdUcIbTSNsKwRdnMIYvTZeVSk1Suaqca4w3ViS16tUtcHLmmYbtJlO3Y2AodkWoEQsCSjGWGwd_S14PRyfdZHqOTeFld1eaIzSLkVafFe4JKY0hdATl-zB_-RsY53f0nQzsFvt5reOkZK8sbF3sDC-V4FV4FNQjmN4dVWHnU2nANopzZMKSpX2e6rrX9wfAKSSdDIn3Zy7uDfMi6-QkaLF-Hs2ex3AYsjifjchOYsejRkTYicxhCOSqozWSlRWraRiWRaUE72Kawvnk5aWhcFfO2y2TOAs1ZkDmLhxZ8nj1y3XTueGrwdjB44RfxXTF3uRbszG7j8qOcih6Xk3saI1QmU6QBLdgNE_XoFf_74NbTH_wAL_qnx8NiOBgdvYVlZGlJcz5tGxbr2_vyHTKh2rz37sbg4rk9_A8qdxSO | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS-RAEC5EQXYPvnaXHZ-9oJeVxulOMukcRMJo1vGFBwVv2X4ksCgzPiKiP81fZ9UkPeMKevMW6E4aqqurvkp11Qew7tCFkHPhulQhD4PYcWUKw4Uhb0kgPaRC4eOTzv55eHARXUzAs6-FoWuV3iYODbUbWPpHviUw3lYUfCdbZXMt4nQ327m-4cQgRZlWT6dRq8hh8fiA4dvddm8X93pDymzvrLvPG4YBbkORVBzdZ6mtxJBF2cQhgtNF6WITla5sxxpjDdUJLGq0i1wgXd2s3UTKdmxghZbEGIHmfyqmAapSz_6MMhidqCHUVW2OXln4jOqwbE9QUQzxKiC6D_jT_z5xDHTf5GaHLi-bg5kGq7K0Vq55mCj6CzDreSBYYxYW4OurpobfQKbM-il15TrTVaXtJcMnhJsMIfS_LO320iPWTU9RXOl3OP8Uuf2Ayf6gX_wEZizqstRGJA6DJ0eltElYahGbtlGRNC1oe9nktmlbTuwZV_m44TKJM0dx5iTO_KkFv0evXNc9Oz6avOwFnjfH9y4fK1sLfo2G8eBRNkX3i8E9zREqCXHrZQs2_Ua9-sR7Cy5-vOAaTKNe50e9k8Ml-ILwLKovpi3DZHV7X6wgBKrM6lDXGPz9bOV-AYKJEig | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+computer+vision+attack+on+the+ARTiFACIAL+CAPTCHA&rft.jtitle=Multimedia+tools+and+applications&rft.au=Li%2C+Qiujie&rft.date=2015-06-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=74&rft.issue=13&rft.spage=4583&rft.epage=4597&rft_id=info:doi/10.1007%2Fs11042-013-1823-z&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |