Technical economic analysis of PV-driven electricity and cold cogeneration systems using particle swarm optimization algorithm

Three different studies are presented in this paper. As a first step, a Particle Swarm Optimization (PSO) algorithm is used to optimize a prototype of cold/electricity cogeneration designed to be disconnected from the grid and implanted in an insular tropical region where a high need of cold and ele...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 211; p. 119009
Main Authors Perrigot, Antoine, Perier-Muzet, Maxime, Ortega, Pascal, Stitou, Driss
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.11.2020
Elsevier
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
1873-6785
DOI10.1016/j.energy.2020.119009

Cover

Abstract Three different studies are presented in this paper. As a first step, a Particle Swarm Optimization (PSO) algorithm is used to optimize a prototype of cold/electricity cogeneration designed to be disconnected from the grid and implanted in an insular tropical region where a high need of cold and electricity is required. The electricity is provided by solar photovoltaic panels and the electrical energy in excess is stored in the form of hydrogen thanks to an electrolyzer. When a lack of electricity occurs a fuel cell provides the missing electricity by using the stored hydrogen. An electrically driven heat pump is also used to produce and cover the cold needs. Finally, in order to increase the overall efficiency of this electricity/cold cogeneration system, the low-grade waste heat generated by the different components of the system, mostly the electrolyzer and the fuel cell, is recovered and upgraded by a thermochemical reactor enabling a further cold production. The thermochemical reactor assists the heat pump for the cold supply, decreasing thus the electricity consumption. Such a prototype is intended to be built in Tahiti during the RECIF project. The PSO algorithm has been implemented and results are promising because component’s size is reasonable, and the driving strategy is consistent while both demands are always satisfied. In a second study, the same PSO algorithm has been used to perform an analysis and identify a general shape of load profiles for which it become interesting, from an economic point of view, to store electricity into hydrogen instead of electrochemical batteries when the cold production is only handled by a heat pump. This study has shown that the more electricity is consumed at night, the more it is interesting to use hydrogen. Finally, the algorithm has been used to see the evolution of the economic interest when a thermochemical system is added. This study has been carried out considering a storage into hydrogen and an exploitation of the low-grade heat by a thermochemical unit to enable a further cold production. The economic interest of a thermochemical system has not been proven by this study, that is why further considerations must be considered in order to justify its use as ecological impacts for example. •PSO can be applied on cogeneration systems to size them and find a driving strategy.•Hydrogen becomes more interesting than batteries when storage needs are increasing.•Thermochemical systems are useful to increase efficiency.•Thermochemical systems cost can be compensated if cold consumption occurs at night.
AbstractList Three different studies are presented in this paper. As a first step, a Particle Swarm Optimization (PSO) algorithm is used to optimize a prototype of cold/electricity cogeneration designed to be disconnected from the grid and implanted in an insular tropical region where a high need of cold and electricity is required. The electricity is provided by solar photovoltaic panels and the electrical energy in excess is stored in the form of hydrogen thanks to an electrolyzer. When a lack of electricity occurs a fuel cell provides the missing electricity by using the stored hydrogen. An electrically driven heat pump is also used to produce and cover the cold needs. Finally, in order to increase the overall efficiency of this electricity/cold cogeneration system, the low-grade waste heat generated by the different components of the system, mostly the electrolyzer and the fuel cell, is recovered and upgraded by a thermochemical reactor enabling a further cold production. The thermochemical reactor assists the heat pump for the cold supply, decreasing thus the electricity consumption. Such a prototype is intended to be built in Tahiti during the RECIF project. The PSO algorithm has been implemented and results are promising because component’s size is reasonable, and the driving strategy is consistent while both demands are always satisfied. In a second study, the same PSO algorithm has been used to perform an analysis and identify a general shape of load profiles for which it become interesting, from an economic point of view, to store electricity into hydrogen instead of electrochemical batteries when the cold production is only handled by a heat pump. This study has shown that the more electricity is consumed at night, the more it is interesting to use hydrogen. Finally, the algorithm has been used to see the evolution of the economic interest when a thermochemical system is added. This study has been carried out considering a storage into hydrogen and an exploitation of the low-grade heat by a thermochemical unit to enable a further cold production. The economic interest of a thermochemical system has not been proven by this study, that is why further considerations must be considered in order to justify its use as ecological impacts for example.
Three different studies are presented in this paper. As a first step, a Particle Swarm Optimization(PSO) algorithm is used to optimize a prototype of cold/electricity cogeneration designed to be disconnected from the grid and implanted in an insular tropical region where a high need of cold and electricity is required. The electricity is provided by solar photovoltaic panels and the electrical energy in excess is stored in the form of hydrogenthanks to an electrolyzer. When a lack of electricity occurs a fuel cell provides the missing electricity by using the stored hydrogen. An electrically driven heat pump is also used to produce and cover the cold needs. Finally, in order to increase the overall efficiency of this electricity/cold cogeneration system, the low-grade waste heat generated by the different components of the system, mostly the electrolyzer and the fuel cell, is recovered and upgraded by a thermochemical reactor enabling a further cold production. The thermochemical reactor assiststhe heat pump for the cold supply, decreasing thus the electricity consumption. Such a prototypeis intended to be built in Tahiti during the RECIF project. The PSO algorithm has been implemented and results are promising because component’s size isreasonable, and the driving strategy is consistent while both demands are always satisfied.In a second study, the samePSO algorithm has beenused to perform an analysis and identify a general shape of load profiles for which it become interesting, from an economic point of view, to store electricity into hydrogeninstead of electrochemical batterieswhen the cold production is only handled by a heat pump.This study has shown that the more electricity is consumed at night, the more it is interesting to use hydrogen. Finally, the algorithm has been used to see the evolution of the economic interest when athermochemical system is added. This study has been carried out considering a storage into hydrogenand an exploitation of the low-grade heat by a thermochemical unit to enable a further cold production.The economic interest of a thermochemical system has not been proven bythis study, that is why further considerations must be consideredin order to justify its useas ecological impacts for example
Three different studies are presented in this paper. As a first step, a Particle Swarm Optimization (PSO) algorithm is used to optimize a prototype of cold/electricity cogeneration designed to be disconnected from the grid and implanted in an insular tropical region where a high need of cold and electricity is required. The electricity is provided by solar photovoltaic panels and the electrical energy in excess is stored in the form of hydrogen thanks to an electrolyzer. When a lack of electricity occurs a fuel cell provides the missing electricity by using the stored hydrogen. An electrically driven heat pump is also used to produce and cover the cold needs. Finally, in order to increase the overall efficiency of this electricity/cold cogeneration system, the low-grade waste heat generated by the different components of the system, mostly the electrolyzer and the fuel cell, is recovered and upgraded by a thermochemical reactor enabling a further cold production. The thermochemical reactor assists the heat pump for the cold supply, decreasing thus the electricity consumption. Such a prototype is intended to be built in Tahiti during the RECIF project. The PSO algorithm has been implemented and results are promising because component’s size is reasonable, and the driving strategy is consistent while both demands are always satisfied. In a second study, the same PSO algorithm has been used to perform an analysis and identify a general shape of load profiles for which it become interesting, from an economic point of view, to store electricity into hydrogen instead of electrochemical batteries when the cold production is only handled by a heat pump. This study has shown that the more electricity is consumed at night, the more it is interesting to use hydrogen. Finally, the algorithm has been used to see the evolution of the economic interest when a thermochemical system is added. This study has been carried out considering a storage into hydrogen and an exploitation of the low-grade heat by a thermochemical unit to enable a further cold production. The economic interest of a thermochemical system has not been proven by this study, that is why further considerations must be considered in order to justify its use as ecological impacts for example. •PSO can be applied on cogeneration systems to size them and find a driving strategy.•Hydrogen becomes more interesting than batteries when storage needs are increasing.•Thermochemical systems are useful to increase efficiency.•Thermochemical systems cost can be compensated if cold consumption occurs at night.
ArticleNumber 119009
Author Perrigot, Antoine
Perier-Muzet, Maxime
Stitou, Driss
Ortega, Pascal
Author_xml – sequence: 1
  givenname: Antoine
  surname: Perrigot
  fullname: Perrigot, Antoine
  email: antoine.perrigot@promes.cnrs.fr
  organization: CNRS-PROMES Laboratory, Tecnosud, Rambla de La Thermodynamique, 66100, Perpignan, France
– sequence: 2
  givenname: Maxime
  surname: Perier-Muzet
  fullname: Perier-Muzet, Maxime
  organization: CNRS-PROMES Laboratory, Tecnosud, Rambla de La Thermodynamique, 66100, Perpignan, France
– sequence: 3
  givenname: Pascal
  surname: Ortega
  fullname: Ortega, Pascal
  organization: GEPASUD Laboratory, University of French Polynesia, BP 6570, 98702, Tahiti, French Polynesia
– sequence: 4
  givenname: Driss
  surname: Stitou
  fullname: Stitou, Driss
  organization: CNRS-PROMES Laboratory, Tecnosud, Rambla de La Thermodynamique, 66100, Perpignan, France
BackLink https://hal.science/hal-02972731$$DView record in HAL
BookMark eNqNkU2LFDEQhhtZwdnVf-AhRz30mKS_PQjLorvCgB5Wr6EmXT1TQzoZk8ws7cHfvmlbEDyohySkeN5K8uQyu7DOYpa9FHwtuKjfHNZo0e-mteQylUTHefckW4m2KfK6aauLbMWLmudVWcpn2WUIB8551XbdKvtxj3pvSYNhqJ11I2kGFswUKDA3sM9f897TGS1Dgzp60hSnRPRMOzNPu_loiOQsC1OIOAZ2CmR37Ag-kjbIwgP4kbljpJG-LySYnfMU9-Pz7OkAJuCLX-tV9uXD-_ubu3zz6fbjzfUm16XoYl4XRSWgb7oO0r6tu1LKYds2wLcDYNH2KMottsDrvta1qHXZCtlAqdMokOviKquWvid7hOkBjFFHTyP4SQmuZonqoBaJapaoFokp93rJ7eF3wgGpu-uNmmtcdo1sCnEWiX21sEfvvp0wRDVS0GgMWHSnoGTVlEXFpWgS-nZBtXcheBxU0vpTTfRA5l93Kv8I_-dT3i0xTJ7PhF4FTWg19uTTz6re0d8bPAL4tsJp
CitedBy_id crossref_primary_10_1016_j_est_2021_102870
crossref_primary_10_1155_2022_1283588
crossref_primary_10_1155_2022_1795454
crossref_primary_10_35378_gujs_1192114
crossref_primary_10_1016_j_psep_2024_01_086
crossref_primary_10_1016_j_energy_2022_126082
crossref_primary_10_1016_j_seta_2023_103324
crossref_primary_10_1016_j_energy_2024_130917
crossref_primary_10_1016_j_enconman_2021_114147
crossref_primary_10_1016_j_enconman_2022_115368
crossref_primary_10_1109_ACCESS_2023_3278261
crossref_primary_10_1016_j_enconman_2021_115176
crossref_primary_10_3724_SP_J_1249_2023_03353
crossref_primary_10_1016_j_energy_2022_125069
crossref_primary_10_1016_j_est_2024_114790
crossref_primary_10_3390_hydrogen2020011
crossref_primary_10_1016_j_energy_2023_126819
crossref_primary_10_1016_j_ijhydene_2023_03_417
crossref_primary_10_1016_j_energy_2021_120648
crossref_primary_10_1016_j_energy_2024_132181
Cites_doi 10.1023/A:1022602019183
10.1016/j.energy.2006.07.024
10.1016/j.energy.2011.07.029
10.1016/j.ijhydene.2020.02.018
10.1016/j.jclepro.2017.01.157
10.1016/j.aei.2005.01.004
10.1016/j.energy.2012.09.029
10.1016/j.ijhydene.2017.06.206
10.1016/j.apenergy.2018.03.049
10.1016/j.ijhydene.2009.09.047
10.1016/j.apenergy.2013.10.001
10.1016/j.applthermaleng.2018.01.081
10.1016/j.scs.2018.05.027
10.1016/j.applthermaleng.2005.05.031
10.1016/j.enbuild.2015.09.036
10.1016/j.solener.2009.10.020
10.1016/j.ijhydene.2011.02.003
10.1016/j.jpowsour.2010.03.051
10.1016/j.energy.2011.05.027
10.1016/j.energy.2011.05.030
10.1016/j.jpowsour.2011.06.008
10.1109/ICNN.1995.488968
10.1016/j.ijhydene.2011.06.147
10.1016/j.ijhydene.2010.03.015
10.1016/j.ijhydene.2015.06.139
10.1016/j.rser.2012.04.007
10.1016/j.apenergy.2018.02.063
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.energy.2020.119009
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID oai:HAL:hal-02972731v1
10_1016_j_energy_2020_119009
S0360544220321162
GeographicLocations Tahiti
GeographicLocations_xml – name: Tahiti
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c419t-63351ad799a419869422fb87a0bfae38de14be8a06d6c616c48127a4c7a43e0c3
IEDL.DBID .~1
ISSN 0360-5442
1873-6785
IngestDate Sun Oct 26 03:58:49 EDT 2025
Tue Oct 14 20:12:19 EDT 2025
Sun Sep 28 02:41:53 EDT 2025
Thu Oct 09 00:37:41 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
Fri Feb 23 02:46:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thermochemical process
Cogeneration
Cold
Electricity
Hydrogen
Particle swarm optimization
cogeneration
cold
electricity
hydrogen
particle swarm optimization
thermochemical process
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-63351ad799a419869422fb87a0bfae38de14be8a06d6c616c48127a4c7a43e0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9471-6402
0000-0002-2390-5692
0000-0002-6204-7424
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-02972731
PQID 2574350217
PQPubID 24069
ParticipantIDs unpaywall_primary_10_1016_j_energy_2020_119009
hal_primary_oai_HAL_hal_02972731v1
proquest_miscellaneous_2574350217
crossref_citationtrail_10_1016_j_energy_2020_119009
crossref_primary_10_1016_j_energy_2020_119009
elsevier_sciencedirect_doi_10_1016_j_energy_2020_119009
PublicationCentury 2000
PublicationDate 2020-11-15
PublicationDateYYYYMMDD 2020-11-15
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Palomba, Ferraro, Frazzica, Vasta, Sergi, Antonucci (bib5) 2018; 216
Mehrpooya, Sayyad, Zonouz (bib11) 2017; 148
(bib23) 2015
Stitou, Mazet, Mauran (bib19) 2012; 41
Calise, Ferruzzi, Vanoli (bib15) 2012; 41
Margalef, Samuelsen (bib7) 2010; 195
Elbeltagi, Hegazi, Grierson (bib24) Jan. 2005; 19
Yu, Han, Cao (bib8) Sep. 2011; 36
Wang, Zhai, Jing, Zhang (bib30) 2010
Taner (bib1) 2018
Weber, Maréchal, Favrat, Kraines (bib13) 2006; 26
Twaha, Ramli (bib28) 2018; 41
Anand, Narang, Dhillon (bib31) 2019
Le Pierrès, Stitou, Mazet (bib21) 2007; 32
Das, Abraham, Konar (bib27) 2008
Michel, Mazet, Mauran, Stitou, Xu (bib18) 2012; 47
Chen, Gong, Wan, Luo, Wan (bib16) Sep. 2015; 40
Cot-Gores, Castell, Cabeza (bib33) Sep. 2012; 16
Ma, Wang, Yan, Dai, Lu (bib14) 2011; 196
Shabani, Andrews, Watkins (bib2) 2009; 84
Ferrucci, Stitou, Ortega, Lucas (bib20) 2017; 219
Goldberg, Holland (bib25) 1988; 3
Hendron, Engebrecht (bib35) 2010; 79
Martins, Mauran, Stitou, Neveu (bib17) 2012; 41
Singh, Chauhan, Singh (bib32) 2020; 45
SOFRES (bib22) 2011
Oro, de Oliveira, Bazzo (bib6) 2018; 136
University (bib39) 2019
Al-Sulaiman, Dincer, Hamdullahpur (bib4) 2010; 35
Fong, Lee (bib12) 2014; 114
Brka (bib36) 2015
Attemene, Agbli, Fofana, Hissel (bib37) 2019; xxxx
Stoppato, Benato, Destro, Mirandola (bib29) 2016; 124
Kennedy, Eberhart (bib26) 1948; 4
Baniasadi, Alemrajabi (bib9) 2010; 35
Palomba, Prestipino, Galvagno (bib10) 2017; 42
(bib34) 2017
Shabani, Andrews (bib3) 2011; 36
Kairies (bib38) 2017
(10.1016/j.energy.2020.119009_bib23) 2015
Anand (10.1016/j.energy.2020.119009_bib31) 2019
Shabani (10.1016/j.energy.2020.119009_bib3) 2011; 36
Twaha (10.1016/j.energy.2020.119009_bib28) 2018; 41
Martins (10.1016/j.energy.2020.119009_bib17) 2012; 41
Baniasadi (10.1016/j.energy.2020.119009_bib9) 2010; 35
Hendron (10.1016/j.energy.2020.119009_bib35) 2010; 79
Attemene (10.1016/j.energy.2020.119009_bib37) 2019; xxxx
Margalef (10.1016/j.energy.2020.119009_bib7) 2010; 195
Al-Sulaiman (10.1016/j.energy.2020.119009_bib4) 2010; 35
Taner (10.1016/j.energy.2020.119009_bib1) 2018
University (10.1016/j.energy.2020.119009_bib39)
Stoppato (10.1016/j.energy.2020.119009_bib29) 2016; 124
Goldberg (10.1016/j.energy.2020.119009_bib25) 1988; 3
Brka (10.1016/j.energy.2020.119009_bib36) 2015
Yu (10.1016/j.energy.2020.119009_bib8) 2011; 36
Le Pierrès (10.1016/j.energy.2020.119009_bib21) 2007; 32
Elbeltagi (10.1016/j.energy.2020.119009_bib24) 2005; 19
Weber (10.1016/j.energy.2020.119009_bib13) 2006; 26
Singh (10.1016/j.energy.2020.119009_bib32) 2020; 45
Chen (10.1016/j.energy.2020.119009_bib16) 2015; 40
Calise (10.1016/j.energy.2020.119009_bib15) 2012; 41
Michel (10.1016/j.energy.2020.119009_bib18) 2012; 47
Palomba (10.1016/j.energy.2020.119009_bib10) 2017; 42
Ma (10.1016/j.energy.2020.119009_bib14) 2011; 196
Palomba (10.1016/j.energy.2020.119009_bib5) 2018; 216
Mehrpooya (10.1016/j.energy.2020.119009_bib11) 2017; 148
Shabani (10.1016/j.energy.2020.119009_bib2) 2009; 84
Stitou (10.1016/j.energy.2020.119009_bib19) 2012; 41
Ferrucci (10.1016/j.energy.2020.119009_bib20) 2017; 219
Wang (10.1016/j.energy.2020.119009_bib30) 2010
Fong (10.1016/j.energy.2020.119009_bib12) 2014; 114
Kairies (10.1016/j.energy.2020.119009_bib38) 2017
SOFRES (10.1016/j.energy.2020.119009_bib22) 2011
Cot-Gores (10.1016/j.energy.2020.119009_bib33) 2012; 16
Oro (10.1016/j.energy.2020.119009_bib6) 2018; 136
Kennedy (10.1016/j.energy.2020.119009_bib26) 1948; 4
Das (10.1016/j.energy.2020.119009_bib27) 2008
References_xml – volume: 16
  start-page: 5207
  year: Sep. 2012
  end-page: 5224
  ident: bib33
  article-title: Thermochemical energy storage and conversion: a-state-of-the-art review of the experimental research under practical conditions
  publication-title: Renew Sustain Energy Rev
– year: 2019
  ident: bib39
  article-title: How to prolong lithium-based batteries
– year: 2015
  ident: bib36
  article-title: Optimisation of stand-alone hydrogen-based renewable energy systems using intelligent techniques Optimisation of stand-alone hydrogen-based renewable energy systems using intelligent techniques
– volume: 36
  start-page: 5442
  year: 2011
  end-page: 5452
  ident: bib3
  article-title: An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 10070
  year: 2020
  end-page: 10088
  ident: bib32
  article-title: Capacity optimization of grid connected solar/fuel cell energy system using hybrid ABC-PSO algorithm
  publication-title: Int J Hydrogen Energy
– year: 2018
  ident: bib1
  article-title: Energy and exergy analyze of PEM fuel cell: a case study of modeling and simulations
– volume: 216
  start-page: 620
  year: 2018
  end-page: 633
  ident: bib5
  article-title: Experimental and numerical analysis of a SOFC-CHP system with adsorption and hybrid chillers for telecommunication applications
  publication-title: Appl Energy
– volume: 47
  start-page: 553
  year: 2012
  end-page: 563
  ident: bib18
  article-title: Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed
  publication-title: Energy
– volume: 195
  start-page: 5674
  year: 2010
  end-page: 5685
  ident: bib7
  article-title: Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller
  publication-title: J Power Sources
– year: 2011
  ident: bib22
  article-title: Etude du niveau d’équipement et des comportements des ménages à Tahiti et Moorea en matière d’énergie : étude par sondage
– year: 2015
  ident: bib23
  publication-title: Plan climat-énergie de la polynésie française
– volume: 19
  start-page: 43
  year: Jan. 2005
  end-page: 53
  ident: bib24
  article-title: Comparison among five evolutionary-based optimization algorithms
  publication-title: Adv Eng Inf
– volume: 41
  start-page: 18
  year: 2012
  end-page: 30
  ident: bib15
  article-title: Transient simulation of polygeneration systems based on PEM fuel cells and solar heating and cooling technologies
  publication-title: Energy
– volume: 124
  start-page: 241
  year: 2016
  end-page: 247
  ident: bib29
  article-title: A model for the optimal design and management of a cogeneration system with energy storage
  publication-title: Energy Build
– volume: 3
  start-page: 95
  year: 1988
  end-page: 99
  ident: bib25
  article-title: Genetic algorithms and machine learning
  publication-title: Mach Learn
– volume: 114
  start-page: 426
  year: 2014
  end-page: 433
  ident: bib12
  article-title: Investigation on zero grid-electricity design strategies of solid oxide fuel cell trigeneration system for high-rise building in hot and humid climate
  publication-title: Appl Energy
– volume: 84
  start-page: 144
  year: 2009
  end-page: 155
  ident: bib2
  article-title: Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation
  publication-title: Sol Energy
– volume: 36
  start-page: 12561
  year: Sep. 2011
  end-page: 12573
  ident: bib8
  article-title: Investigation on performance of an integrated solid oxide fuel cell and absorption chiller tri-generation system
  publication-title: Int J Hydrogen Energy
– volume: 41
  start-page: 261
  year: 2012
  end-page: 270
  ident: bib19
  article-title: Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning
  publication-title: Energy
– volume: 219
  start-page: 240
  year: 2017
  end-page: 255
  ident: bib20
  article-title: Mechanical compressor-driven thermochemical storage for cooling applications in tropical insular regions. Concept and efficiency analysis
  publication-title: Appl Energy
– year: 2017
  ident: bib34
  article-title: Hawai data on residential households
– volume: 35
  start-page: 5104
  year: 2010
  end-page: 5113
  ident: bib4
  article-title: Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle
  publication-title: Int J Hydrogen Energy
– volume: 41
  start-page: 320
  year: 2018
  end-page: 331
  ident: bib28
  article-title: A review of optimization approaches for hybrid distributed energy generation systems: off-grid and grid-connected systems
  publication-title: Sustain. Cities Soc.
– volume: 35
  start-page: 9460
  year: 2010
  end-page: 9467
  ident: bib9
  article-title: Fuel cell energy generation and recovery cycle analysis for residential application
  publication-title: Int J Hydrogen Energy
– volume: 79
  year: 2010
  ident: bib35
  article-title: Building America house simulation protocols
– volume: 136
  start-page: 747
  year: 2018
  end-page: 754
  ident: bib6
  article-title: An integrated solution for waste heat recovery from fuel cells applied to adsorption systems
  publication-title: Appl Therm Eng
– year: 2010
  ident: bib30
  article-title: Particle swarm optimization for redundant building cooling heating and power system
– year: 2017
  ident: bib38
  article-title: Battery storage technology improvements and cost reductions to 2030: a Deep Dive
  publication-title: Int. Renew. Energy Agency Work.
– year: 2008
  ident: bib27
  article-title: Particle swarm optimization and differential evolution algorithms: technical analysis, applications and hydridization perspectives
– volume: xxxx
  year: 2019
  ident: bib37
  article-title: Optimal sizing of a wind, fuel cell, electrolyzer, battery and supercapacitor system for off-grid applications
  publication-title: Int J Hydrogen Energy
– year: 2019
  ident: bib31
  article-title: Multi-objective combined heat and power unit commitment using particle swarm optimization
– volume: 148
  start-page: 283
  year: 2017
  end-page: 294
  ident: bib11
  article-title: Energy, exergy and sensitivity analyses of a hybrid combined cooling, heating and power (CCHP) plant with molten carbonate fuel cell (MCFC) and Stirling engine
  publication-title: J Clean Prod
– volume: 42
  start-page: 27866
  year: 2017
  end-page: 27883
  ident: bib10
  article-title: Tri-generation for industrial applications: development of a simulation model for a gasification-SOFC based system
  publication-title: Int J Hydrogen Energy
– volume: 32
  start-page: 600
  year: 2007
  end-page: 608
  ident: bib21
  article-title: New deep-freezing process using renewable low-grade heat: from the conceptual design to experimental results
  publication-title: Energy
– volume: 26
  start-page: 1409
  year: 2006
  end-page: 1419
  ident: bib13
  article-title: Optimization of an SOFC-based decentralized polygeneration system for providing energy services in an office-building in Tōkyō
  publication-title: Appl Therm Eng
– volume: 40
  start-page: 10647
  year: Sep. 2015
  end-page: 10657
  ident: bib16
  article-title: Performance analysis of 5 kW PEMFC-based residential micro-CCHP with absorption chiller
  publication-title: Int J Hydrogen Energy
– volume: 41
  start-page: 104
  year: 2012
  end-page: 112
  ident: bib17
  article-title: A new thermal-hydraulic process for solar cooling
  publication-title: Energy
– volume: 196
  start-page: 8463
  year: 2011
  end-page: 8471
  ident: bib14
  article-title: Thermodynamic analysis of a new combined cooling, heat and power system driven by solid oxide fuel cell based on ammonia-water mixture
  publication-title: J Power Sources
– volume: 4
  start-page: 1942
  year: 1948
  ident: bib26
  article-title: Particle swarm optimization
  publication-title: in Proceedings of ICNN’95 - International Conference on Neural Networks
– year: 2010
  ident: 10.1016/j.energy.2020.119009_bib30
– volume: 3
  start-page: 95
  issue: 2/3
  year: 1988
  ident: 10.1016/j.energy.2020.119009_bib25
  article-title: Genetic algorithms and machine learning
  publication-title: Mach Learn
  doi: 10.1023/A:1022602019183
– volume: 32
  start-page: 600
  issue: 4
  year: 2007
  ident: 10.1016/j.energy.2020.119009_bib21
  article-title: New deep-freezing process using renewable low-grade heat: from the conceptual design to experimental results
  publication-title: Energy
  doi: 10.1016/j.energy.2006.07.024
– volume: 41
  start-page: 261
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2020.119009_bib19
  article-title: Experimental investigation of a solid/gas thermochemical storage process for solar air-conditioning
  publication-title: Energy
  doi: 10.1016/j.energy.2011.07.029
– volume: 45
  start-page: 10070
  issue: 16
  year: 2020
  ident: 10.1016/j.energy.2020.119009_bib32
  article-title: Capacity optimization of grid connected solar/fuel cell energy system using hybrid ABC-PSO algorithm
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.02.018
– volume: 148
  start-page: 283
  year: 2017
  ident: 10.1016/j.energy.2020.119009_bib11
  article-title: Energy, exergy and sensitivity analyses of a hybrid combined cooling, heating and power (CCHP) plant with molten carbonate fuel cell (MCFC) and Stirling engine
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.01.157
– volume: 19
  start-page: 43
  issue: 1
  year: 2005
  ident: 10.1016/j.energy.2020.119009_bib24
  article-title: Comparison among five evolutionary-based optimization algorithms
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2005.01.004
– volume: 47
  start-page: 553
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2020.119009_bib18
  article-title: Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed
  publication-title: Energy
  doi: 10.1016/j.energy.2012.09.029
– volume: 42
  start-page: 27866
  issue: 46
  year: 2017
  ident: 10.1016/j.energy.2020.119009_bib10
  article-title: Tri-generation for industrial applications: development of a simulation model for a gasification-SOFC based system
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.06.206
– volume: 219
  start-page: 240
  year: 2017
  ident: 10.1016/j.energy.2020.119009_bib20
  article-title: Mechanical compressor-driven thermochemical storage for cooling applications in tropical insular regions. Concept and efficiency analysis
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.03.049
– year: 2018
  ident: 10.1016/j.energy.2020.119009_bib1
– volume: 35
  start-page: 5104
  issue: 10
  year: 2010
  ident: 10.1016/j.energy.2020.119009_bib4
  article-title: Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.09.047
– volume: 114
  start-page: 426
  year: 2014
  ident: 10.1016/j.energy.2020.119009_bib12
  article-title: Investigation on zero grid-electricity design strategies of solid oxide fuel cell trigeneration system for high-rise building in hot and humid climate
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.10.001
– ident: 10.1016/j.energy.2020.119009_bib39
– year: 2019
  ident: 10.1016/j.energy.2020.119009_bib31
– volume: 136
  start-page: 747
  year: 2018
  ident: 10.1016/j.energy.2020.119009_bib6
  article-title: An integrated solution for waste heat recovery from fuel cells applied to adsorption systems
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2018.01.081
– volume: xxxx
  year: 2019
  ident: 10.1016/j.energy.2020.119009_bib37
  article-title: Optimal sizing of a wind, fuel cell, electrolyzer, battery and supercapacitor system for off-grid applications
  publication-title: Int J Hydrogen Energy
– volume: 41
  start-page: 320
  issue: April
  year: 2018
  ident: 10.1016/j.energy.2020.119009_bib28
  article-title: A review of optimization approaches for hybrid distributed energy generation systems: off-grid and grid-connected systems
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.05.027
– volume: 26
  start-page: 1409
  issue: 13
  year: 2006
  ident: 10.1016/j.energy.2020.119009_bib13
  article-title: Optimization of an SOFC-based decentralized polygeneration system for providing energy services in an office-building in Tōkyō
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2005.05.031
– year: 2017
  ident: 10.1016/j.energy.2020.119009_bib38
  article-title: Battery storage technology improvements and cost reductions to 2030: a Deep Dive
  publication-title: Int. Renew. Energy Agency Work.
– volume: 124
  start-page: 241
  year: 2016
  ident: 10.1016/j.energy.2020.119009_bib29
  article-title: A model for the optimal design and management of a cogeneration system with energy storage
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.09.036
– year: 2015
  ident: 10.1016/j.energy.2020.119009_bib23
– volume: 84
  start-page: 144
  issue: 1
  year: 2009
  ident: 10.1016/j.energy.2020.119009_bib2
  article-title: Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2009.10.020
– volume: 36
  start-page: 5442
  issue: 9
  year: 2011
  ident: 10.1016/j.energy.2020.119009_bib3
  article-title: An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.02.003
– volume: 195
  start-page: 5674
  issue: 17
  year: 2010
  ident: 10.1016/j.energy.2020.119009_bib7
  article-title: Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.03.051
– year: 2011
  ident: 10.1016/j.energy.2020.119009_bib22
– volume: 41
  start-page: 18
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2020.119009_bib15
  article-title: Transient simulation of polygeneration systems based on PEM fuel cells and solar heating and cooling technologies
  publication-title: Energy
  doi: 10.1016/j.energy.2011.05.027
– year: 2015
  ident: 10.1016/j.energy.2020.119009_bib36
– volume: 41
  start-page: 104
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2020.119009_bib17
  article-title: A new thermal-hydraulic process for solar cooling
  publication-title: Energy
  doi: 10.1016/j.energy.2011.05.030
– volume: 196
  start-page: 8463
  issue: 20
  year: 2011
  ident: 10.1016/j.energy.2020.119009_bib14
  article-title: Thermodynamic analysis of a new combined cooling, heat and power system driven by solid oxide fuel cell based on ammonia-water mixture
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2011.06.008
– volume: 4
  start-page: 1942
  year: 1948
  ident: 10.1016/j.energy.2020.119009_bib26
  article-title: Particle swarm optimization
  publication-title: in Proceedings of ICNN’95 - International Conference on Neural Networks
  doi: 10.1109/ICNN.1995.488968
– volume: 36
  start-page: 12561
  issue: 19
  year: 2011
  ident: 10.1016/j.energy.2020.119009_bib8
  article-title: Investigation on performance of an integrated solid oxide fuel cell and absorption chiller tri-generation system
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.06.147
– volume: 35
  start-page: 9460
  issue: 17
  year: 2010
  ident: 10.1016/j.energy.2020.119009_bib9
  article-title: Fuel cell energy generation and recovery cycle analysis for residential application
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.015
– volume: 40
  start-page: 10647
  issue: 33
  year: 2015
  ident: 10.1016/j.energy.2020.119009_bib16
  article-title: Performance analysis of 5 kW PEMFC-based residential micro-CCHP with absorption chiller
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.06.139
– volume: 16
  start-page: 5207
  issue: 7
  year: 2012
  ident: 10.1016/j.energy.2020.119009_bib33
  article-title: Thermochemical energy storage and conversion: a-state-of-the-art review of the experimental research under practical conditions
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.04.007
– year: 2008
  ident: 10.1016/j.energy.2020.119009_bib27
– volume: 216
  start-page: 620
  year: 2018
  ident: 10.1016/j.energy.2020.119009_bib5
  article-title: Experimental and numerical analysis of a SOFC-CHP system with adsorption and hybrid chillers for telecommunication applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.063
– volume: 79
  year: 2010
  ident: 10.1016/j.energy.2020.119009_bib35
  article-title: Building America house simulation protocols
SSID ssj0005899
Score 2.4726272
Snippet Three different studies are presented in this paper. As a first step, a Particle Swarm Optimization (PSO) algorithm is used to optimize a prototype of...
Three different studies are presented in this paper. As a first step, a Particle Swarm Optimization(PSO) algorithm is used to optimize a prototype of...
SourceID unpaywall
hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119009
SubjectTerms algorithms
Chemical and Process Engineering
Cogeneration
Cold
electric energy consumption
electric power
Electricity
electrochemistry
energy
Engineering Sciences
evolution
fuel cells
heat
heat pumps
Hydrogen
Particle swarm optimization
prototypes
Tahiti
Thermochemical process
tropics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZGdxgXfgwmOn7IIK6u4sZ2nGOFNlUIph0oGifLTpx2o02qJmUaB_523kucMiHE4JAoiWwl0ff8_Dl573uEvB3nqDImE8aFV0wABWfaOsesFz52Is2itg7ZxzM1nYn3F_Jij9A-F2YBjDP4fjxmWFsJZlhY3-wrCWx7QPZnZ-eTL90vyIhJ0dbH4TqJGfhd2WfHtSFcvk2fg0XgGF1DGmHU4Z9nn3sLDIO8xTEPtuXa3lzb5fLWdHP6sAt7rFuVQowy-TraNm6Uff9Nw_Fvb_KIPAhck04643hM9nx5SA76VOT6kByd_Epzg4ZhnNdPyI_2izviR31oTm2QL6FVQc8_s3yDfpJ2ZXQuMyDz0CKnYFe4m7dq1gg67bSia4oR9nO6DqZK62u7WdEKPNYqpIJSu5xXm8tmsXpKZqcnn95NWajUwDLB04apOJbcIuwWzrVKxXhcOJ3YyBXWxzr3XDivbaRylSmuMgG8IrEigy32URYfkUFZlf4ZoZGwXGub5glWZi-ki1wipQMW4rQodD4kcY-gyYKMOVbTWJo-Xu3KdLgbxN10uA8J2_VadzIed7RPeuMwAcSOYhiYae7o-QbQ3t0E1bunkw8Gr_UW8I0Pyeve1AwMZ_xHY0tfbWsDHhQILC4Uh2S0s8F_eubj_-3wnNzHM8ys5PIFGTSbrX8JFKtxr8Io-wlBwSRa
  priority: 102
  providerName: Unpaywall
Title Technical economic analysis of PV-driven electricity and cold cogeneration systems using particle swarm optimization algorithm
URI https://dx.doi.org/10.1016/j.energy.2020.119009
https://www.proquest.com/docview/2574350217
https://hal.science/hal-02972731
UnpaywallVersion submittedVersion
Volume 211
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6785
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED667qF7GVu3suxH0cZe1VixbMuPobRkv0Jhy-iehGTLaUZihzhp6Uv_9t3ZcpbBoGMPjrE5E6E7ffqc3N0H8H6QU5exKOFCuphLpOBcGWu5cdKFVqZZ0OiQfRnHo4n8eBld7sFpVwtDaZUe-1tMb9Da3-n72ewvZ7P-V8Re5BtyQBrgQjQ4LGVCKgYndztpHqrRkCRjTtZd-VyT4-Wa-jp8SxwQdqQBpSX-fXt6cEV5kjsk9GBTLs3tjZnPd_aj8yfw2BNJNmzH-hT2XHkIB12dcX0IR2e_a9jQ0C_i-hncNT-nk3OY8-bM-N4krCrYxXeerwgEWauRM8uQqaNFzjBo6GPatKomj7K2EXTNKH1-ypZ-5lh9Y1YLViEcLXydJzPzabWara8Wz2FyfvbtdMS9DAPPpEjXPA7DSBjyqcFrFac45YVViQlsYVyociekdcoEcR5nsYgziaQhMTLDI3RBFh7BflmV7gWwQBqhlEnzhGTXi8gGNokiixTDKlmovAdhN_s68z3KSSpjrrtktJ-69Zkmn-nWZz3g26eWbY-Oe-yTzrH6j1jTuI3c8-Q7jIPtl1Br7tHws6Z7JAKGVFBcix687cJE41qlP2BM6apNrREekZ3SW2APTrbx809jfvnfY34Fj-iK6idF9Br216uNe4NEam2Pm5VyDA-HHz6NxniejC-GP34BOocfzw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8a41AuCAYT5WsGcfUaN07iHKdpUwfdhMSGdrPsxOk6tUnVtExc9rfzXuKUIiENcUikOC-K5ff888_J-wD4NMwpy1iUcCFdzCVScK6Mtdw46UIr0yxo6pCdX8SjK_n5OrregeMuFobcKj32t5jeoLVvGfjRHCym08E3xF7kG3JINcCFIBx-LKNhQjuww_stPw_VFJEkaU7iXfxc4-TlmgA73CYOCTzSgPwS_74-PbohR8ktFtpblwvz887MZlsL0ukzeOqZJDtqO_scdly5B70u0Ljeg_2T30FsKOhncf0C7pvv6aQd5rw4Mz45CasK9vU7z5eEgqwtkjPNkKqjRM7Qaug0aXJVk0pZmwm6ZuQ_P2ELP3SsvjPLOasQj-Y-0JOZ2aRaTlc385dwdXpyeTzivg4Dz6RIVzwOw0gYUqrBaxWnOOaFVYkJbGFcqHInpHXKBHEeZ7GIM4msITEywyN0QRbuw25Zle4VsEAaoZRJ84TqrheRDWwSRRY5hlWyUHkfwm70deaTlFOtjJnuvNFudaszTTrTrc76wDdPLdokHQ_IJ51i9R_GpnEdeeDJj2gHm5dQbu7R0VhTG1UBQy4ofog-fOjMRONkpT8wpnTVutaIj0hPaRvYh8ON_fxTn1__d58PoDe6PB_r8dnFlzfwhO5QMKWI3sLuarl275BVrez7Ztb8Aq4MH7Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZGdxgXfgwmOn7IIK6u4sZ2nGOFNlUIph0oGifLTpx2o02qJmUaB_523kucMiHE4JAoiWwl0ff8_Dl573uEvB3nqDImE8aFV0wABWfaOsesFz52Is2itg7ZxzM1nYn3F_Jij9A-F2YBjDP4fjxmWFsJZlhY3-wrCWx7QPZnZ-eTL90vyIhJ0dbH4TqJGfhd2WfHtSFcvk2fg0XgGF1DGmHU4Z9nn3sLDIO8xTEPtuXa3lzb5fLWdHP6sAt7rFuVQowy-TraNm6Uff9Nw_Fvb_KIPAhck04643hM9nx5SA76VOT6kByd_Epzg4ZhnNdPyI_2izviR31oTm2QL6FVQc8_s3yDfpJ2ZXQuMyDz0CKnYFe4m7dq1gg67bSia4oR9nO6DqZK62u7WdEKPNYqpIJSu5xXm8tmsXpKZqcnn95NWajUwDLB04apOJbcIuwWzrVKxXhcOJ3YyBXWxzr3XDivbaRylSmuMgG8IrEigy32URYfkUFZlf4ZoZGwXGub5glWZi-ki1wipQMW4rQodD4kcY-gyYKMOVbTWJo-Xu3KdLgbxN10uA8J2_VadzIed7RPeuMwAcSOYhiYae7o-QbQ3t0E1bunkw8Gr_UW8I0Pyeve1AwMZ_xHY0tfbWsDHhQILC4Uh2S0s8F_eubj_-3wnNzHM8ys5PIFGTSbrX8JFKtxr8Io-wlBwSRa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Technical+economic+analysis+of+PV-driven+electricity+and+cold+cogeneration+systems+using+Particle+Swarm+Optimization+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Perrigot%2C+Antoine&rft.au=Perier-Muzet%2C+Maxime&rft.au=Ortega%2C+Pascal&rft.au=Stitou%2C+Driss&rft.date=2020-11-15&rft.pub=Elsevier&rft.issn=0360-5442&rft.eissn=1873-6785&rft.volume=211&rft_id=info:doi/10.1016%2Fj.energy.2020.119009&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02972731v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon