Assessment of density functional theory for iron(II) molecules across the spin-crossover transition

Octahedral Fe2+ molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 137; no. 12; p. 124303
Main Authors Droghetti, A., Alfè, D., Sanvito, S.
Format Journal Article
LanguageEnglish
Published United States 28.09.2012
Subjects
Online AccessGet full text
ISSN0021-9606
1089-7690
1520-9032
1089-7690
DOI10.1063/1.4752411

Cover

Abstract Octahedral Fe2+ molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of the various possible spin-states has not been identified yet. Here, we critically discuss the issues related to the theoretical description of this class of molecules from first principles. In particular, we present a comparison between different density functionals for four ions, namely, [Fe(H2O)6]2+, [Fe(NH3)6]2+, [Fe(NCH)6]2+, and [Fe(CO)6]2+. These are characterized by different ligand-field splittings and ground state spin multiplicities. Since no experimental data are available for the gas phase, the density functional theory results are benchmarked against those obtained with diffusion Monte Carlo, one of the most accurate methods available to compute ground state total energies of quantum systems. On the one hand, we show that most of the functionals considered provide a good description of the geometry and of the shape of the potential energy surfaces. On the other hand, the same functionals fail badly in predicting the energy differences between the various spin states. In the case of [Fe(H2O)6]2+, [Fe(NH3)6]2+, [Fe(NCH)6]2+, this failure is related to the drastic underestimation of the exchange energy. Therefore, quite accurate results can be achieved with hybrid functionals including about 50% of Hartree-Fock exchange. In contrast, in the case of [Fe(CO)6]2+, the failure is likely to be caused by the multiconfigurational character of the ground state wave-function and no suitable exchange and correlation functional has been identified.
AbstractList Octahedral Fe2+ molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of the various possible spin-states has not been identified yet. Here, we critically discuss the issues related to the theoretical description of this class of molecules from first principles. In particular, we present a comparison between different density functionals for four ions, namely, [Fe(H2O)6]2+, [Fe(NH3)6]2+, [Fe(NCH)6]2+, and [Fe(CO)6]2+. These are characterized by different ligand-field splittings and ground state spin multiplicities. Since no experimental data are available for the gas phase, the density functional theory results are benchmarked against those obtained with diffusion Monte Carlo, one of the most accurate methods available to compute ground state total energies of quantum systems. On the one hand, we show that most of the functionals considered provide a good description of the geometry and of the shape of the potential energy surfaces. On the other hand, the same functionals fail badly in predicting the energy differences between the various spin states. In the case of [Fe(H2O)6]2+, [Fe(NH3)6]2+, [Fe(NCH)6]2+, this failure is related to the drastic underestimation of the exchange energy. Therefore, quite accurate results can be achieved with hybrid functionals including about 50% of Hartree-Fock exchange. In contrast, in the case of [Fe(CO)6]2+, the failure is likely to be caused by the multiconfigurational character of the ground state wave-function and no suitable exchange and correlation functional has been identified.
Octahedral Fe(2+) molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of the various possible spin-states has not been identified yet. Here, we critically discuss the issues related to the theoretical description of this class of molecules from first principles. In particular, we present a comparison between different density functionals for four ions, namely, [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), and [Fe(CO)(6)](2+). These are characterized by different ligand-field splittings and ground state spin multiplicities. Since no experimental data are available for the gas phase, the density functional theory results are benchmarked against those obtained with diffusion Monte Carlo, one of the most accurate methods available to compute ground state total energies of quantum systems. On the one hand, we show that most of the functionals considered provide a good description of the geometry and of the shape of the potential energy surfaces. On the other hand, the same functionals fail badly in predicting the energy differences between the various spin states. In the case of [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), this failure is related to the drastic underestimation of the exchange energy. Therefore, quite accurate results can be achieved with hybrid functionals including about 50% of Hartree-Fock exchange. In contrast, in the case of [Fe(CO)(6)](2+), the failure is likely to be caused by the multiconfigurational character of the ground state wave-function and no suitable exchange and correlation functional has been identified.
Octahedral Fe(2+) molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of the various possible spin-states has not been identified yet. Here, we critically discuss the issues related to the theoretical description of this class of molecules from first principles. In particular, we present a comparison between different density functionals for four ions, namely, [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), and [Fe(CO)(6)](2+). These are characterized by different ligand-field splittings and ground state spin multiplicities. Since no experimental data are available for the gas phase, the density functional theory results are benchmarked against those obtained with diffusion Monte Carlo, one of the most accurate methods available to compute ground state total energies of quantum systems. On the one hand, we show that most of the functionals considered provide a good description of the geometry and of the shape of the potential energy surfaces. On the other hand, the same functionals fail badly in predicting the energy differences between the various spin states. In the case of [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), this failure is related to the drastic underestimation of the exchange energy. Therefore, quite accurate results can be achieved with hybrid functionals including about 50% of Hartree-Fock exchange. In contrast, in the case of [Fe(CO)(6)](2+), the failure is likely to be caused by the multiconfigurational character of the ground state wave-function and no suitable exchange and correlation functional has been identified.Octahedral Fe(2+) molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of the various possible spin-states has not been identified yet. Here, we critically discuss the issues related to the theoretical description of this class of molecules from first principles. In particular, we present a comparison between different density functionals for four ions, namely, [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), and [Fe(CO)(6)](2+). These are characterized by different ligand-field splittings and ground state spin multiplicities. Since no experimental data are available for the gas phase, the density functional theory results are benchmarked against those obtained with diffusion Monte Carlo, one of the most accurate methods available to compute ground state total energies of quantum systems. On the one hand, we show that most of the functionals considered provide a good description of the geometry and of the shape of the potential energy surfaces. On the other hand, the same functionals fail badly in predicting the energy differences between the various spin states. In the case of [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), this failure is related to the drastic underestimation of the exchange energy. Therefore, quite accurate results can be achieved with hybrid functionals including about 50% of Hartree-Fock exchange. In contrast, in the case of [Fe(CO)(6)](2+), the failure is likely to be caused by the multiconfigurational character of the ground state wave-function and no suitable exchange and correlation functional has been identified.
Author Sanvito, S.
Alfè, D.
Droghetti, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Droghetti
  fullname: Droghetti, A.
– sequence: 2
  givenname: D.
  surname: Alfè
  fullname: Alfè, D.
– sequence: 3
  givenname: S.
  surname: Sanvito
  fullname: Sanvito, S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23020327$$D View this record in MEDLINE/PubMed
BookMark eNqFkE1r3DAQhkVJ6W6SHvIHio67AScafdjWMSxtshDIpTkbWR5TB1naSnbL_vvYu5seSmlOwwzPvDM85-TMB4-EXAG7AZaLW7iRheIS4ANZAit1VuSanZElYxwynbN8Qc5TemGMQcHlJ7LggnEmeLEk9i4lTKlHP9DQ0gZ96oY9bUdvhy544-jwA0OcJiHSLga_2m7XtA8O7egwUWNjSGmGaNp1Pju04RdGOkQzZ00hl-Rja1zCz6d6QZ6_ff2-ecgen-63m7vHzErQQyZR8BprPb2o0RatqE0t0ba6VcIUTZMroaUoG1Xz0mglLeRcIm9VAxyUQXFBro-5o9-Z_W_jXLWLXW_ivgJWzaYqqE6mJnh1hHcx_BwxDVXfJYvOGY9hTBUILjhIVor3Uc6ZKqBUM_rlhI51j82f-2_CJ2B9BA6iIrb_ffH2L9Z2g5mNTm4794-NV6oxnqE
CitedBy_id crossref_primary_10_1016_j_epsl_2013_08_012
crossref_primary_10_1021_acs_jctc_2c00059
crossref_primary_10_1039_C5DT03712C
crossref_primary_10_3390_magnetochemistry2010012
crossref_primary_10_1021_acs_jctc_5b00327
crossref_primary_10_1016_j_cocom_2022_e00735
crossref_primary_10_1021_acs_jctc_6b00332
crossref_primary_10_1039_C8CP01283K
crossref_primary_10_1007_s11244_021_01482_5
crossref_primary_10_1038_s41570_022_00424_3
crossref_primary_10_1002_jcc_24676
crossref_primary_10_1021_acs_jpclett_9b01650
crossref_primary_10_1021_acs_jctc_0c00628
crossref_primary_10_1021_acs_jctc_7b01196
crossref_primary_10_1021_acs_jctc_9b00842
crossref_primary_10_1039_C9NJ02462J
crossref_primary_10_1063_5_0125700
crossref_primary_10_1063_5_0133999
crossref_primary_10_1021_acs_jpclett_1c00631
crossref_primary_10_1021_acs_jpclett_1c00796
crossref_primary_10_1021_acs_jctc_6b00937
crossref_primary_10_1016_j_mssp_2014_08_019
crossref_primary_10_1021_acs_jpca_7b08750
crossref_primary_10_1021_acs_jctc_1c00034
crossref_primary_10_1016_j_aej_2014_03_008
crossref_primary_10_1557_mrs_2014_112
crossref_primary_10_1063_1_4838016
crossref_primary_10_1039_C9CP00105K
crossref_primary_10_1063_1_4922693
crossref_primary_10_1007_s00894_024_05839_x
crossref_primary_10_1063_1_4921165
crossref_primary_10_1021_acs_jpca_6b11930
crossref_primary_10_1021_acs_jctc_9b01109
crossref_primary_10_1021_acs_jpclett_0c02288
crossref_primary_10_1063_1_5050037
crossref_primary_10_1016_j_checat_2023_100534
crossref_primary_10_1021_acs_inorgchem_9b00109
crossref_primary_10_1016_j_jmgm_2024_108867
crossref_primary_10_1021_acs_jctc_4c00042
crossref_primary_10_1021_acs_iecr_7b00808
crossref_primary_10_1021_acs_inorgchem_1c01838
crossref_primary_10_1002_chem_201704014
crossref_primary_10_1149_2_1041709jes
crossref_primary_10_1039_C4CP01478B
crossref_primary_10_1021_acs_jpca_7b12652
crossref_primary_10_1039_D2CP02733J
crossref_primary_10_1021_acs_chemrev_1c00347
crossref_primary_10_1021_acs_jpclett_3c01551
crossref_primary_10_1016_j_commatsci_2021_111161
crossref_primary_10_1021_acs_jctc_7b00848
crossref_primary_10_1021_acs_inorgchem_3c03689
crossref_primary_10_1021_nl304304e
crossref_primary_10_1103_PhysRevB_87_205114
crossref_primary_10_1140_epjp_i2013_13116_y
crossref_primary_10_1063_5_0047386
crossref_primary_10_1021_acs_jpca_9b06490
crossref_primary_10_1021_acs_jctc_3c00600
crossref_primary_10_1021_acs_jpca_0c01458
crossref_primary_10_1021_ic401037x
crossref_primary_10_1039_D2CE00895E
crossref_primary_10_1039_C9ME00069K
crossref_primary_10_3389_fchem_2019_00219
crossref_primary_10_1063_1_5124239
crossref_primary_10_1016_j_comptc_2015_09_011
crossref_primary_10_1063_5_0089460
crossref_primary_10_1063_5_0128950
crossref_primary_10_1063_5_0147313
crossref_primary_10_1063_5_0169105
crossref_primary_10_1103_PhysRevMaterials_3_086002
crossref_primary_10_1021_acs_jpclett_7b00570
crossref_primary_10_1080_08927022_2016_1258465
crossref_primary_10_1063_1_5091563
crossref_primary_10_1021_acs_jctc_2c00925
crossref_primary_10_1103_PhysRevB_91_241111
crossref_primary_10_1103_PhysRevB_88_020408
crossref_primary_10_1021_acs_jctc_2c00924
crossref_primary_10_1039_D0CP02977G
crossref_primary_10_1039_D1NJ01849C
crossref_primary_10_1063_1_4926836
crossref_primary_10_1021_acs_jctc_7b01061
crossref_primary_10_1021_acs_jpclett_8b00170
crossref_primary_10_1021_acs_inorgchem_0c00454
crossref_primary_10_1021_acs_jpca_4c05046
crossref_primary_10_1002_ejic_202200014
crossref_primary_10_1002_wcms_1439
crossref_primary_10_1021_acs_iecr_8b04015
crossref_primary_10_1039_C7SC01247K
crossref_primary_10_1021_acscatal_0c04300
crossref_primary_10_1039_D1SC03701C
crossref_primary_10_3390_molecules25215176
crossref_primary_10_1039_C7CP01263B
Cites_doi 10.1002/qua.22105
10.1063/1.477267
10.1002/anie.200905062
10.1007/3-540-37072-2
10.1103/PhysRevB.51.4014
10.1063/1.1829049
10.1063/1.476577
10.1103/PhysRevB.33.8822
10.1063/1.1839854
10.1021/jp803441m
10.1103/PhysRevLett.108.217201
10.1021/j100096a001
10.1007/b40394-9
10.1002/adma.201003821
10.1063/1.1888569
10.1063/1.467146
10.1088/0022-3719/18/5/005
10.1088/0953-8984/22/2/023201
10.1063/1.474864
10.1063/1.460849
10.1063/1.459851
10.1103/PhysRevB.70.161101
10.1063/1.478522
10.1063/1.2820786
10.1021/ja9031677
10.1063/1.448799
10.1103/PhysRevLett.77.3865
10.1021/ja2090096
10.1103/RevModPhys.73.33
10.1139/p80-159
10.1103/PhysRevB.74.161102
10.1038/nmat2133
10.1002/cpa.3160100201
10.1021/ja00526a026
10.1021/jp982759r
10.1039/b102907j
10.1021/ic060852l
10.1039/B908208E
10.1063/1.2406067
10.1063/1.1710046
10.1021/ic025891l
10.1126/science.268.5208.265
10.1080/00268970010018431
10.1039/c1cs15047b
10.1103/PhysRevB.37.785
10.1039/b709482p
10.1088/0953-8984/21/39/395502
10.1063/1.464913
10.1103/PhysRevB.79.094428
10.1063/1.478401
10.1063/1.2353829
10.1103/PhysRevB.83.245415
10.1007/s00214-001-0300-3
10.1088/0953-8984/21/8/084203
10.1088/0953-8984/19/34/343201
10.1016/j.cpc.2010.04.018
10.1063/1.1927081
10.1103/PhysRevA.38.3098
10.1103/PhysRevLett.95.100201
10.1021/jp049043i
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7U5
8FD
H8D
L7M
ADTOC
UNPAY
DOI 10.1063/1.4752411
DatabaseName CrossRef
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Aerospace Database
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1089-7690
ExternalDocumentID 10.1063/1.4752411
23020327
10_1063_1_4752411
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
1UP
2-P
29K
4.4
53G
5VS
85S
AAAAW
AABDS
AAGWI
AAPUP
AAYIH
AAYXX
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
ADXHL
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CITATION
CS3
D-I
DU5
EBS
EJD
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
WH7
YQT
YZZ
~02
NPM
7X8
7U5
8FD
H8D
L7M
.GJ
0ZJ
186
2WC
3O-
41~
6TJ
9M8
AAYJJ
ABDPE
ACBNA
ADTOC
AETEA
AFFNX
AI.
H~9
MVM
NEUPN
NHB
OHT
QZG
RDFOP
T9H
UBC
UNPAY
VH1
VOH
X7L
XJT
XOL
ZCG
ZGI
ZXP
ID FETCH-LOGICAL-c419t-4e32beb97249ec7f3bab4ecf9f53a7dd6539438d5b28a954c1624e2f5d1215ae3
IEDL.DBID UNPAY
ISSN 0021-9606
1089-7690
1520-9032
IngestDate Wed Aug 20 00:10:54 EDT 2025
Fri Jul 11 07:13:43 EDT 2025
Thu Jul 10 23:44:34 EDT 2025
Mon Jul 21 06:03:30 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
Tue Jul 01 00:44:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-4e32beb97249ec7f3bab4ecf9f53a7dd6539438d5b28a954c1624e2f5d1215ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4752411/15452992/124303_1_online.pdf
PMID 23020327
PQID 1220571853
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1063_1_4752411
proquest_miscellaneous_1323214083
proquest_miscellaneous_1220571853
pubmed_primary_23020327
crossref_primary_10_1063_1_4752411
crossref_citationtrail_10_1063_1_4752411
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-09-28
PublicationDateYYYYMMDD 2012-09-28
PublicationDate_xml – month: 09
  year: 2012
  text: 2012-09-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2012
References (2023062602571126300_c27) 2001; 99
(2023062602571126300_c49) 2006; 128
(2023062602571126300_c14) 2011; 83
(2023062602571126300_c44) 2002; 31
(2023062602571126300_c38) 2008; 112
(2023062602571126300_c16) 2010; 22
(2023062602571126300_c19) 2007; 126
2023062602571126300_c56
2023062602571126300_c18
(2023062602571126300_c51) 2006
(2023062602571126300_c6) 2007; 17
(2023062602571126300_c10) 2012; 108
(2023062602571126300_c22) 2011
(2023062602571126300_c28) 2004; 120
(2023062602571126300_c36) 1999; 110
(2023062602571126300_c63) 2005; 95
(2023062602571126300_c71) 1997; 107
(2023062602571126300_c34) 1994; 98
(2023062602571126300_c64) 2006; 74
(2023062602571126300_c12) 2010; 49
(2023062602571126300_c70) 1998; 109
(2023062602571126300_c24) 1996; 77
(2023062602571126300_c58) 1994; 100
(2023062602571126300_c46) 2009; 131
Fiolhais (2023062602571126300_c23) 2003
(2023062602571126300_c37) 1996
(2023062602571126300_c32) 2002; 41
(2023062602571126300_c53) 1980; 58
(2023062602571126300_c13) 2011; 23
2023062602571126300_c68
(2023062602571126300_c26) 1988; 37
(2023062602571126300_c4) 1995; 268
(2023062602571126300_c50) 2007; 19
(2023062602571126300_c35) 1999; 110
(2023062602571126300_c47) 2009; 79
(2023062602571126300_c59) 1957; 10
(2023062602571126300_c11) 2006; 45
(2023062602571126300_c48) 2006; 125
(2023062602571126300_c17) 2011
(2023062602571126300_c52) 2010; 181
(2023062602571126300_c40) 1985; 18
(2023062602571126300_c9) 2011; 134
(2023062602571126300_c25) 1988; 38
(2023062602571126300_c15) 2001; 73
(2023062602571126300_c20) 2004; 108
(2023062602571126300_c3) 1980; 102
(2023062602571126300_c39) 2004
(2023062602571126300_c33) 2001; 107
(2023062602571126300_c2) 1991; 94
(2023062602571126300_c30) 1998; 109
(2023062602571126300_c45) 2009; 21
(2023062602571126300_c5); 2009
Van Doren (2023062602571126300_c21) 2001
(2023062602571126300_c67) 1998; 102
(2023062602571126300_c55) 1993; 98
(2023062602571126300_c61) 2005; 122
(2023062602571126300_c62) 1991; 95
2023062602571126300_c42
2023062602571126300_c43
Gütlich (2023062602571126300_c1) 2004
(2023062602571126300_c65) 2009; 21
(2023062602571126300_c69) 2010; 110
(2023062602571126300_c54) 1986; 33
(2023062602571126300_c29) 2005; 122
(2023062602571126300_c41) 1995; 51
(2023062602571126300_c31) 2005; 122
(2023062602571126300_c7) 2008; 7
(2023062602571126300_c57) 1985; 82
(2023062602571126300_c66) 2004; 70
(2023062602571126300_c8) 2011; 40
(2023062602571126300_c60) 2005; 122
References_xml – volume: 110
  start-page: 331
  year: 2010
  ident: 2023062602571126300_c69
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.22105
– volume: 109
  start-page: 6264
  year: 1998
  ident: 2023062602571126300_c70
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.477267
– volume: 49
  start-page: 1159
  year: 2010
  ident: 2023062602571126300_c12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200905062
– volume-title: A Primer in Density Functional Theory
  year: 2003
  ident: 2023062602571126300_c23
  doi: 10.1007/3-540-37072-2
– volume: 51
  start-page: 4014
  year: 1995
  ident: 2023062602571126300_c41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.4014
– volume: 122
  start-page: 014112
  year: 2005
  ident: 2023062602571126300_c61
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1829049
– volume: 109
  start-page: 400
  year: 1998
  ident: 2023062602571126300_c30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.476577
– ident: 2023062602571126300_c68
– volume: 33
  start-page: 8822
  year: 1986
  ident: 2023062602571126300_c54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.33.8822
– volume: 122
  start-page: 044110
  year: 2005
  ident: 2023062602571126300_c29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1839854
– volume: 112
  start-page: 6384
  year: 2008
  ident: 2023062602571126300_c38
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp803441m
– volume: 108
  start-page: 217201
  year: 2012
  ident: 2023062602571126300_c10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.217201
– volume: 98
  start-page: 11623
  year: 1994
  ident: 2023062602571126300_c34
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100096a001
– volume-title: Spin Crossover in Transition Metal Compounds
  year: 2004
  ident: 2023062602571126300_c1
  doi: 10.1007/b40394-9
– volume: 23
  start-page: 1545
  year: 2011
  ident: 2023062602571126300_c13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003821
– volume: 122
  start-page: 174109
  year: 2005
  ident: 2023062602571126300_c60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1888569
– volume: 100
  start-page: 5829
  year: 1994
  ident: 2023062602571126300_c58
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467146
– volume: 18
  start-page: 973
  year: 1985
  ident: 2023062602571126300_c40
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/18/5/005
– volume: 22
  start-page: 023201
  year: 2010
  ident: 2023062602571126300_c16
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/22/2/023201
– volume: 107
  start-page: 13
  year: 1997
  ident: 2023062602571126300_c71
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.474864
– volume: 95
  start-page: 3467
  year: 1991
  ident: 2023062602571126300_c62
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460849
– volume: 94
  start-page: 2741
  year: 1991
  ident: 2023062602571126300_c2
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.459851
– volume: 70
  start-page: 161101
  year: 2004
  ident: 2023062602571126300_c66
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.161101
– volume: 110
  start-page: 6158
  year: 1999
  ident: 2023062602571126300_c36
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478522
– ident: 2023062602571126300_c43
  article-title: Density functional theory calculations for various spin-crossover compounds
– volume: 128
  start-page: 034104
  year: 2006
  ident: 2023062602571126300_c49
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2820786
– ident: 2023062602571126300_c42
– volume: 131
  start-page: 11498
  year: 2009
  ident: 2023062602571126300_c46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9031677
– volume: 82
  start-page: 270
  year: 1985
  ident: 2023062602571126300_c57
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448799
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2023062602571126300_c24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 134
  start-page: 777
  year: 2011
  ident: 2023062602571126300_c9
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2090096
– volume: 73
  start-page: 33
  year: 2001
  ident: 2023062602571126300_c15
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.73.33
– volume: 58
  start-page: 1200s
  year: 1980
  ident: 2023062602571126300_c53
  publication-title: Can. J. Phys.
  doi: 10.1139/p80-159
– volume: 74
  start-page: 161102
  year: 2006
  ident: 2023062602571126300_c64
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.161102
– volume: 7
  start-page: 179
  year: 2008
  ident: 2023062602571126300_c7
  publication-title: Nature Mater.
  doi: 10.1038/nmat2133
– volume: 10
  start-page: 151
  year: 1957
  ident: 2023062602571126300_c59
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160100201
– volume: 102
  start-page: 1918
  year: 1980
  ident: 2023062602571126300_c3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00526a026
– volume: 102
  start-page: 7525
  year: 1998
  ident: 2023062602571126300_c67
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp982759r
– volume: 31
  start-page: 108
  year: 2002
  ident: 2023062602571126300_c44
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b102907j
– volume: 45
  start-page: 5739
  year: 2006
  ident: 2023062602571126300_c11
  publication-title: Inorg. Chem.
  doi: 10.1021/ic060852l
– ident: 2023062602571126300_c56
– volume-title: Modern Quantum Chemistry
  year: 1996
  ident: 2023062602571126300_c37
– volume: 2009
  start-page: 7845
  ident: 2023062602571126300_c5
  publication-title: Dalton Trans.
  doi: 10.1039/B908208E
– volume: 126
  start-page: 014105
  year: 2007
  ident: 2023062602571126300_c19
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2406067
– volume: 120
  start-page: 9473
  year: 2004
  ident: 2023062602571126300_c28
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1710046
– volume: 41
  start-page: 6928
  year: 2002
  ident: 2023062602571126300_c32
  publication-title: Inorg. Chem.
  doi: 10.1021/ic025891l
– volume: 268
  start-page: 265
  year: 1995
  ident: 2023062602571126300_c4
  publication-title: Science
  doi: 10.1126/science.268.5208.265
– volume: 99
  start-page: 403
  year: 2001
  ident: 2023062602571126300_c27
  publication-title: Mol. Phys.
  doi: 10.1080/00268970010018431
– volume: 40
  start-page: 3336
  year: 2011
  ident: 2023062602571126300_c8
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15047b
– volume-title: Electronic Structure: Basic Theory and Practical Methods
  year: 2004
  ident: 2023062602571126300_c39
– volume: 37
  start-page: 785
  year: 1988
  ident: 2023062602571126300_c26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.37.785
– volume: 17
  start-page: 4455
  year: 2007
  ident: 2023062602571126300_c6
  publication-title: J. Mater. Chem.
  doi: 10.1039/b709482p
– volume-title: Density Functional Theory and Its Applications to Materials
  year: 2001
  ident: 2023062602571126300_c21
– ident: 2023062602571126300_c18
– volume: 21
  start-page: 395502
  year: 2009
  ident: 2023062602571126300_c65
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 98
  start-page: 5648
  year: 1993
  ident: 2023062602571126300_c55
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 79
  start-page: 094428
  year: 2009
  ident: 2023062602571126300_c47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.094428
– volume-title: Psi-k Highlight of the Month
  year: 2011
  ident: 2023062602571126300_c17
– volume: 110
  start-page: 5029
  year: 1999
  ident: 2023062602571126300_c35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.478401
– volume-title: Molecular Nanomagnets
  year: 2006
  ident: 2023062602571126300_c51
– volume: 125
  start-page: 124303
  year: 2006
  ident: 2023062602571126300_c48
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2353829
– volume: 83
  start-page: 245415
  year: 2011
  ident: 2023062602571126300_c14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.245415
– volume-title: Density Functional Theory: An Advanced Course
  year: 2011
  ident: 2023062602571126300_c22
– volume: 107
  start-page: 48
  year: 2001
  ident: 2023062602571126300_c33
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-001-0300-3
– volume: 21
  start-page: 084203
  year: 2009
  ident: 2023062602571126300_c45
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/21/8/084203
– volume: 19
  start-page: 343201
  year: 2007
  ident: 2023062602571126300_c50
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/19/34/343201
– volume: 181
  start-page: 1477
  year: 2010
  ident: 2023062602571126300_c52
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2010.04.018
– volume: 122
  start-page: 234321
  year: 2005
  ident: 2023062602571126300_c31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1927081
– volume: 38
  start-page: 3098
  year: 1988
  ident: 2023062602571126300_c25
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.38.3098
– volume: 95
  start-page: 100201
  year: 2005
  ident: 2023062602571126300_c63
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.100201
– volume: 108
  start-page: 5479
  year: 2004
  ident: 2023062602571126300_c20
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp049043i
SSID ssj0001724
Score 2.430199
Snippet Octahedral Fe2+ molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the...
Octahedral Fe(2+) molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the...
SourceID unpaywall
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 124303
SubjectTerms Assessments
Computer simulation
Density
Density functional theory
Failure
Functionals
Ground state
Monte Carlo methods
Title Assessment of density functional theory for iron(II) molecules across the spin-crossover transition
URI https://www.ncbi.nlm.nih.gov/pubmed/23020327
https://www.proquest.com/docview/1220571853
https://www.proquest.com/docview/1323214083
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4752411/15452992/124303_1_online.pdf
UnpaywallVersion publishedVersion
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7690
  dateEnd: 20241004
  omitProxy: false
  ssIdentifier: ssj0001724
  issn: 1520-9032
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VXaHCA0e5lqMyx0N5cHYdO4cfV4WqRVAhwUpFPESOD2lhyUZNVqiIH48nF-UUL7wl0SS2J5PM2P7mG4AnjplI5lrRmXGcCpsyqhQX1Eb-cGYt8scg2uI4PlyIFyfRyRa873NhfCeqQC3LliJ4WU4_6HLaKZGWxn1nHIj5lAUiibwLYtOmVLaU4dS7K_9TzljWEk0E_pYLMI5x92kE48Xx6_m7FvTBKMbuLfxe0iRuVmO8M5tROeNhz0F0vpEfPdcv4ehl2N4UpTr7rFarcy7q4Cp8HQbXIFM-Bps6D_SXn3gf_9Por8GVLrQl8_ZB12HLFjuwvd9XlNuBiw3cVFc3QM8HQlCydsQgir4-I-hk27VJ0iRY-ivrU4KJeHtHR0_Jp7aUr62IalSEQqQqlwVtThGMSmr0vQ0M7SYsDp6_3T-kXbkHqgWTtTcUHuY2l4mfEVqdOJ6rXFjtpIu4SoxBEl3BUxPlYapkJDSLQ2FDFxlkyFCW34JRsS7sHSA-phGpM1zGLvYTWJkaGSoTpYmMGVOMTWCvf5WZ7rjQsSTHKmv25GNUYafcCTwaRMuWAOR3Qg97e8i8TnHPRRV2vakyhonMCQZFf5HhIZaL8sHwBG63xjQ05WeIWOM-mcDjwbr-3I-7_yR1Dy75sC9E1EuY3odRfbqxD3xoVee7MJ4_e_XyzW73qXwDNyQZ4Q
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVDLgUehsLxkHof24GRt5-XjqqJqOVQcWKmIQ-T4IS0s2ajJChXx4_HkRXmKC7ckmsT2ZJIZ2998A_DSMRPLQis6M07QyGaMKiUiamN_OLMW-WMQbXGWnCyi1-fx-Ra8H3JhfCfqQC2rjiJ4WYUfdBX2SqSVcd8ZBxIRsiBKY--CWNiWypaSh95d-Z9yzvKOaCLwt1yD7QR3nyawvTh7M3_XgT4Yxdi9g99Lmibtaox3ZjMqZ4IPHERXG_nRc_0Sjt6AnU1ZqcvParW64qKOb8HXcXAtMuVjsGmKQH_5iffxP43-NtzsQ1sy7x50B7ZsuQc7R0NFuT243sJNdX0X9HwkBCVrRwyi6JtLgk62W5skbYKlv7K-IJiId3B6ekg-daV8bU1UqyIUInW1LGl7imBU0qDvbWFo92Bx_Ort0Qntyz1QHTHZeEMRvLCFTP2M0OrUiUIVkdVOulio1Bgk0Y1EZuKCZ0rGkWYJjyx3sUGGDGXFPkzKdWkfAPExTZQ5I2TiEj-BlZmRXJk4S2XCmGJsCgfDq8x1z4WOJTlWebsnn6AKe-VO4fkoWnUEIL8TejbYQ-51insuqrTrTZ0zTGROMSj6i4zgWC7KB8NTuN8Z09iUnyFijft0Ci9G6_pzPx7-k9Qj2PVhH0fUC88ew6S52NgnPrRqiqf9J_INcFgYTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+density+functional+theory+for+iron%28II%29+molecules+across+the+spin-crossover+transition&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Droghetti%2C+A&rft.au=Alf%C3%A8%2C+D&rft.au=Sanvito%2C+S&rft.date=2012-09-28&rft.eissn=1089-7690&rft.volume=137&rft.issue=12&rft.spage=124303&rft_id=info:doi/10.1063%2F1.4752411&rft_id=info%3Apmid%2F23020327&rft.externalDocID=23020327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon