Assessment of density functional theory for iron(II) molecules across the spin-crossover transition
Octahedral Fe2+ molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of...
Saved in:
Published in | The Journal of chemical physics Vol. 137; no. 12; p. 124303 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
28.09.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9606 1089-7690 1520-9032 1089-7690 |
DOI | 10.1063/1.4752411 |
Cover
Abstract | Octahedral Fe2+ molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of the various possible spin-states has not been identified yet. Here, we critically discuss the issues related to the theoretical description of this class of molecules from first principles. In particular, we present a comparison between different density functionals for four ions, namely, [Fe(H2O)6]2+, [Fe(NH3)6]2+, [Fe(NCH)6]2+, and [Fe(CO)6]2+. These are characterized by different ligand-field splittings and ground state spin multiplicities. Since no experimental data are available for the gas phase, the density functional theory results are benchmarked against those obtained with diffusion Monte Carlo, one of the most accurate methods available to compute ground state total energies of quantum systems. On the one hand, we show that most of the functionals considered provide a good description of the geometry and of the shape of the potential energy surfaces. On the other hand, the same functionals fail badly in predicting the energy differences between the various spin states. In the case of [Fe(H2O)6]2+, [Fe(NH3)6]2+, [Fe(NCH)6]2+, this failure is related to the drastic underestimation of the exchange energy. Therefore, quite accurate results can be achieved with hybrid functionals including about 50% of Hartree-Fock exchange. In contrast, in the case of [Fe(CO)6]2+, the failure is likely to be caused by the multiconfigurational character of the ground state wave-function and no suitable exchange and correlation functional has been identified. |
---|---|
AbstractList | Octahedral Fe2+ molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of the various possible spin-states has not been identified yet. Here, we critically discuss the issues related to the theoretical description of this class of molecules from first principles. In particular, we present a comparison between different density functionals for four ions, namely, [Fe(H2O)6]2+, [Fe(NH3)6]2+, [Fe(NCH)6]2+, and [Fe(CO)6]2+. These are characterized by different ligand-field splittings and ground state spin multiplicities. Since no experimental data are available for the gas phase, the density functional theory results are benchmarked against those obtained with diffusion Monte Carlo, one of the most accurate methods available to compute ground state total energies of quantum systems. On the one hand, we show that most of the functionals considered provide a good description of the geometry and of the shape of the potential energy surfaces. On the other hand, the same functionals fail badly in predicting the energy differences between the various spin states. In the case of [Fe(H2O)6]2+, [Fe(NH3)6]2+, [Fe(NCH)6]2+, this failure is related to the drastic underestimation of the exchange energy. Therefore, quite accurate results can be achieved with hybrid functionals including about 50% of Hartree-Fock exchange. In contrast, in the case of [Fe(CO)6]2+, the failure is likely to be caused by the multiconfigurational character of the ground state wave-function and no suitable exchange and correlation functional has been identified. Octahedral Fe(2+) molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of the various possible spin-states has not been identified yet. Here, we critically discuss the issues related to the theoretical description of this class of molecules from first principles. In particular, we present a comparison between different density functionals for four ions, namely, [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), and [Fe(CO)(6)](2+). These are characterized by different ligand-field splittings and ground state spin multiplicities. Since no experimental data are available for the gas phase, the density functional theory results are benchmarked against those obtained with diffusion Monte Carlo, one of the most accurate methods available to compute ground state total energies of quantum systems. On the one hand, we show that most of the functionals considered provide a good description of the geometry and of the shape of the potential energy surfaces. On the other hand, the same functionals fail badly in predicting the energy differences between the various spin states. In the case of [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), this failure is related to the drastic underestimation of the exchange energy. Therefore, quite accurate results can be achieved with hybrid functionals including about 50% of Hartree-Fock exchange. In contrast, in the case of [Fe(CO)(6)](2+), the failure is likely to be caused by the multiconfigurational character of the ground state wave-function and no suitable exchange and correlation functional has been identified. Octahedral Fe(2+) molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of the various possible spin-states has not been identified yet. Here, we critically discuss the issues related to the theoretical description of this class of molecules from first principles. In particular, we present a comparison between different density functionals for four ions, namely, [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), and [Fe(CO)(6)](2+). These are characterized by different ligand-field splittings and ground state spin multiplicities. Since no experimental data are available for the gas phase, the density functional theory results are benchmarked against those obtained with diffusion Monte Carlo, one of the most accurate methods available to compute ground state total energies of quantum systems. On the one hand, we show that most of the functionals considered provide a good description of the geometry and of the shape of the potential energy surfaces. On the other hand, the same functionals fail badly in predicting the energy differences between the various spin states. In the case of [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), this failure is related to the drastic underestimation of the exchange energy. Therefore, quite accurate results can be achieved with hybrid functionals including about 50% of Hartree-Fock exchange. In contrast, in the case of [Fe(CO)(6)](2+), the failure is likely to be caused by the multiconfigurational character of the ground state wave-function and no suitable exchange and correlation functional has been identified.Octahedral Fe(2+) molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the performances of density functional theory for such systems, an exchange-correlation functional able to account accurately for the energetic of the various possible spin-states has not been identified yet. Here, we critically discuss the issues related to the theoretical description of this class of molecules from first principles. In particular, we present a comparison between different density functionals for four ions, namely, [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), and [Fe(CO)(6)](2+). These are characterized by different ligand-field splittings and ground state spin multiplicities. Since no experimental data are available for the gas phase, the density functional theory results are benchmarked against those obtained with diffusion Monte Carlo, one of the most accurate methods available to compute ground state total energies of quantum systems. On the one hand, we show that most of the functionals considered provide a good description of the geometry and of the shape of the potential energy surfaces. On the other hand, the same functionals fail badly in predicting the energy differences between the various spin states. In the case of [Fe(H(2)O)(6)](2+), [Fe(NH(3))(6)](2+), [Fe(NCH)(6)](2+), this failure is related to the drastic underestimation of the exchange energy. Therefore, quite accurate results can be achieved with hybrid functionals including about 50% of Hartree-Fock exchange. In contrast, in the case of [Fe(CO)(6)](2+), the failure is likely to be caused by the multiconfigurational character of the ground state wave-function and no suitable exchange and correlation functional has been identified. |
Author | Sanvito, S. Alfè, D. Droghetti, A. |
Author_xml | – sequence: 1 givenname: A. surname: Droghetti fullname: Droghetti, A. – sequence: 2 givenname: D. surname: Alfè fullname: Alfè, D. – sequence: 3 givenname: S. surname: Sanvito fullname: Sanvito, S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23020327$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkE1r3DAQhkVJ6W6SHvIHio67AScafdjWMSxtshDIpTkbWR5TB1naSnbL_vvYu5seSmlOwwzPvDM85-TMB4-EXAG7AZaLW7iRheIS4ANZAit1VuSanZElYxwynbN8Qc5TemGMQcHlJ7LggnEmeLEk9i4lTKlHP9DQ0gZ96oY9bUdvhy544-jwA0OcJiHSLga_2m7XtA8O7egwUWNjSGmGaNp1Pju04RdGOkQzZ00hl-Rja1zCz6d6QZ6_ff2-ecgen-63m7vHzErQQyZR8BprPb2o0RatqE0t0ba6VcIUTZMroaUoG1Xz0mglLeRcIm9VAxyUQXFBro-5o9-Z_W_jXLWLXW_ivgJWzaYqqE6mJnh1hHcx_BwxDVXfJYvOGY9hTBUILjhIVor3Uc6ZKqBUM_rlhI51j82f-2_CJ2B9BA6iIrb_ffH2L9Z2g5mNTm4794-NV6oxnqE |
CitedBy_id | crossref_primary_10_1016_j_epsl_2013_08_012 crossref_primary_10_1021_acs_jctc_2c00059 crossref_primary_10_1039_C5DT03712C crossref_primary_10_3390_magnetochemistry2010012 crossref_primary_10_1021_acs_jctc_5b00327 crossref_primary_10_1016_j_cocom_2022_e00735 crossref_primary_10_1021_acs_jctc_6b00332 crossref_primary_10_1039_C8CP01283K crossref_primary_10_1007_s11244_021_01482_5 crossref_primary_10_1038_s41570_022_00424_3 crossref_primary_10_1002_jcc_24676 crossref_primary_10_1021_acs_jpclett_9b01650 crossref_primary_10_1021_acs_jctc_0c00628 crossref_primary_10_1021_acs_jctc_7b01196 crossref_primary_10_1021_acs_jctc_9b00842 crossref_primary_10_1039_C9NJ02462J crossref_primary_10_1063_5_0125700 crossref_primary_10_1063_5_0133999 crossref_primary_10_1021_acs_jpclett_1c00631 crossref_primary_10_1021_acs_jpclett_1c00796 crossref_primary_10_1021_acs_jctc_6b00937 crossref_primary_10_1016_j_mssp_2014_08_019 crossref_primary_10_1021_acs_jpca_7b08750 crossref_primary_10_1021_acs_jctc_1c00034 crossref_primary_10_1016_j_aej_2014_03_008 crossref_primary_10_1557_mrs_2014_112 crossref_primary_10_1063_1_4838016 crossref_primary_10_1039_C9CP00105K crossref_primary_10_1063_1_4922693 crossref_primary_10_1007_s00894_024_05839_x crossref_primary_10_1063_1_4921165 crossref_primary_10_1021_acs_jpca_6b11930 crossref_primary_10_1021_acs_jctc_9b01109 crossref_primary_10_1021_acs_jpclett_0c02288 crossref_primary_10_1063_1_5050037 crossref_primary_10_1016_j_checat_2023_100534 crossref_primary_10_1021_acs_inorgchem_9b00109 crossref_primary_10_1016_j_jmgm_2024_108867 crossref_primary_10_1021_acs_jctc_4c00042 crossref_primary_10_1021_acs_iecr_7b00808 crossref_primary_10_1021_acs_inorgchem_1c01838 crossref_primary_10_1002_chem_201704014 crossref_primary_10_1149_2_1041709jes crossref_primary_10_1039_C4CP01478B crossref_primary_10_1021_acs_jpca_7b12652 crossref_primary_10_1039_D2CP02733J crossref_primary_10_1021_acs_chemrev_1c00347 crossref_primary_10_1021_acs_jpclett_3c01551 crossref_primary_10_1016_j_commatsci_2021_111161 crossref_primary_10_1021_acs_jctc_7b00848 crossref_primary_10_1021_acs_inorgchem_3c03689 crossref_primary_10_1021_nl304304e crossref_primary_10_1103_PhysRevB_87_205114 crossref_primary_10_1140_epjp_i2013_13116_y crossref_primary_10_1063_5_0047386 crossref_primary_10_1021_acs_jpca_9b06490 crossref_primary_10_1021_acs_jctc_3c00600 crossref_primary_10_1021_acs_jpca_0c01458 crossref_primary_10_1021_ic401037x crossref_primary_10_1039_D2CE00895E crossref_primary_10_1039_C9ME00069K crossref_primary_10_3389_fchem_2019_00219 crossref_primary_10_1063_1_5124239 crossref_primary_10_1016_j_comptc_2015_09_011 crossref_primary_10_1063_5_0089460 crossref_primary_10_1063_5_0128950 crossref_primary_10_1063_5_0147313 crossref_primary_10_1063_5_0169105 crossref_primary_10_1103_PhysRevMaterials_3_086002 crossref_primary_10_1021_acs_jpclett_7b00570 crossref_primary_10_1080_08927022_2016_1258465 crossref_primary_10_1063_1_5091563 crossref_primary_10_1021_acs_jctc_2c00925 crossref_primary_10_1103_PhysRevB_91_241111 crossref_primary_10_1103_PhysRevB_88_020408 crossref_primary_10_1021_acs_jctc_2c00924 crossref_primary_10_1039_D0CP02977G crossref_primary_10_1039_D1NJ01849C crossref_primary_10_1063_1_4926836 crossref_primary_10_1021_acs_jctc_7b01061 crossref_primary_10_1021_acs_jpclett_8b00170 crossref_primary_10_1021_acs_inorgchem_0c00454 crossref_primary_10_1021_acs_jpca_4c05046 crossref_primary_10_1002_ejic_202200014 crossref_primary_10_1002_wcms_1439 crossref_primary_10_1021_acs_iecr_8b04015 crossref_primary_10_1039_C7SC01247K crossref_primary_10_1021_acscatal_0c04300 crossref_primary_10_1039_D1SC03701C crossref_primary_10_3390_molecules25215176 crossref_primary_10_1039_C7CP01263B |
Cites_doi | 10.1002/qua.22105 10.1063/1.477267 10.1002/anie.200905062 10.1007/3-540-37072-2 10.1103/PhysRevB.51.4014 10.1063/1.1829049 10.1063/1.476577 10.1103/PhysRevB.33.8822 10.1063/1.1839854 10.1021/jp803441m 10.1103/PhysRevLett.108.217201 10.1021/j100096a001 10.1007/b40394-9 10.1002/adma.201003821 10.1063/1.1888569 10.1063/1.467146 10.1088/0022-3719/18/5/005 10.1088/0953-8984/22/2/023201 10.1063/1.474864 10.1063/1.460849 10.1063/1.459851 10.1103/PhysRevB.70.161101 10.1063/1.478522 10.1063/1.2820786 10.1021/ja9031677 10.1063/1.448799 10.1103/PhysRevLett.77.3865 10.1021/ja2090096 10.1103/RevModPhys.73.33 10.1139/p80-159 10.1103/PhysRevB.74.161102 10.1038/nmat2133 10.1002/cpa.3160100201 10.1021/ja00526a026 10.1021/jp982759r 10.1039/b102907j 10.1021/ic060852l 10.1039/B908208E 10.1063/1.2406067 10.1063/1.1710046 10.1021/ic025891l 10.1126/science.268.5208.265 10.1080/00268970010018431 10.1039/c1cs15047b 10.1103/PhysRevB.37.785 10.1039/b709482p 10.1088/0953-8984/21/39/395502 10.1063/1.464913 10.1103/PhysRevB.79.094428 10.1063/1.478401 10.1063/1.2353829 10.1103/PhysRevB.83.245415 10.1007/s00214-001-0300-3 10.1088/0953-8984/21/8/084203 10.1088/0953-8984/19/34/343201 10.1016/j.cpc.2010.04.018 10.1063/1.1927081 10.1103/PhysRevA.38.3098 10.1103/PhysRevLett.95.100201 10.1021/jp049043i |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7U5 8FD H8D L7M ADTOC UNPAY |
DOI | 10.1063/1.4752411 |
DatabaseName | CrossRef PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Aerospace Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1089-7690 |
ExternalDocumentID | 10.1063/1.4752411 23020327 10_1063_1_4752411 |
Genre | Journal Article |
GroupedDBID | --- -DZ -ET -~X 123 1UP 2-P 29K 4.4 53G 5VS 85S AAAAW AABDS AAGWI AAPUP AAYIH AAYXX ABJGX ABPPZ ABRJW ABZEH ACBRY ACLYJ ACNCT ACZLF ADCTM ADMLS ADXHL AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BDMKI BPZLN CITATION CS3 D-I DU5 EBS EJD F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P0- P2P RIP RNS ROL RQS TN5 TWZ UPT UQL WH7 YQT YZZ ~02 NPM 7X8 7U5 8FD H8D L7M .GJ 0ZJ 186 2WC 3O- 41~ 6TJ 9M8 AAYJJ ABDPE ACBNA ADTOC AETEA AFFNX AI. H~9 MVM NEUPN NHB OHT QZG RDFOP T9H UBC UNPAY VH1 VOH X7L XJT XOL ZCG ZGI ZXP |
ID | FETCH-LOGICAL-c419t-4e32beb97249ec7f3bab4ecf9f53a7dd6539438d5b28a954c1624e2f5d1215ae3 |
IEDL.DBID | UNPAY |
ISSN | 0021-9606 1089-7690 1520-9032 |
IngestDate | Wed Aug 20 00:10:54 EDT 2025 Fri Jul 11 07:13:43 EDT 2025 Thu Jul 10 23:44:34 EDT 2025 Mon Jul 21 06:03:30 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 Tue Jul 01 00:44:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c419t-4e32beb97249ec7f3bab4ecf9f53a7dd6539438d5b28a954c1624e2f5d1215ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4752411/15452992/124303_1_online.pdf |
PMID | 23020327 |
PQID | 1220571853 |
PQPubID | 23479 |
ParticipantIDs | unpaywall_primary_10_1063_1_4752411 proquest_miscellaneous_1323214083 proquest_miscellaneous_1220571853 pubmed_primary_23020327 crossref_primary_10_1063_1_4752411 crossref_citationtrail_10_1063_1_4752411 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-09-28 |
PublicationDateYYYYMMDD | 2012-09-28 |
PublicationDate_xml | – month: 09 year: 2012 text: 2012-09-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of chemical physics |
PublicationTitleAlternate | J Chem Phys |
PublicationYear | 2012 |
References | (2023062602571126300_c27) 2001; 99 (2023062602571126300_c49) 2006; 128 (2023062602571126300_c14) 2011; 83 (2023062602571126300_c44) 2002; 31 (2023062602571126300_c38) 2008; 112 (2023062602571126300_c16) 2010; 22 (2023062602571126300_c19) 2007; 126 2023062602571126300_c56 2023062602571126300_c18 (2023062602571126300_c51) 2006 (2023062602571126300_c6) 2007; 17 (2023062602571126300_c10) 2012; 108 (2023062602571126300_c22) 2011 (2023062602571126300_c28) 2004; 120 (2023062602571126300_c36) 1999; 110 (2023062602571126300_c63) 2005; 95 (2023062602571126300_c71) 1997; 107 (2023062602571126300_c34) 1994; 98 (2023062602571126300_c64) 2006; 74 (2023062602571126300_c12) 2010; 49 (2023062602571126300_c70) 1998; 109 (2023062602571126300_c24) 1996; 77 (2023062602571126300_c58) 1994; 100 (2023062602571126300_c46) 2009; 131 Fiolhais (2023062602571126300_c23) 2003 (2023062602571126300_c37) 1996 (2023062602571126300_c32) 2002; 41 (2023062602571126300_c53) 1980; 58 (2023062602571126300_c13) 2011; 23 2023062602571126300_c68 (2023062602571126300_c26) 1988; 37 (2023062602571126300_c4) 1995; 268 (2023062602571126300_c50) 2007; 19 (2023062602571126300_c35) 1999; 110 (2023062602571126300_c47) 2009; 79 (2023062602571126300_c59) 1957; 10 (2023062602571126300_c11) 2006; 45 (2023062602571126300_c48) 2006; 125 (2023062602571126300_c17) 2011 (2023062602571126300_c52) 2010; 181 (2023062602571126300_c40) 1985; 18 (2023062602571126300_c9) 2011; 134 (2023062602571126300_c25) 1988; 38 (2023062602571126300_c15) 2001; 73 (2023062602571126300_c20) 2004; 108 (2023062602571126300_c3) 1980; 102 (2023062602571126300_c39) 2004 (2023062602571126300_c33) 2001; 107 (2023062602571126300_c2) 1991; 94 (2023062602571126300_c30) 1998; 109 (2023062602571126300_c45) 2009; 21 (2023062602571126300_c5); 2009 Van Doren (2023062602571126300_c21) 2001 (2023062602571126300_c67) 1998; 102 (2023062602571126300_c55) 1993; 98 (2023062602571126300_c61) 2005; 122 (2023062602571126300_c62) 1991; 95 2023062602571126300_c42 2023062602571126300_c43 Gütlich (2023062602571126300_c1) 2004 (2023062602571126300_c65) 2009; 21 (2023062602571126300_c69) 2010; 110 (2023062602571126300_c54) 1986; 33 (2023062602571126300_c29) 2005; 122 (2023062602571126300_c41) 1995; 51 (2023062602571126300_c31) 2005; 122 (2023062602571126300_c7) 2008; 7 (2023062602571126300_c57) 1985; 82 (2023062602571126300_c66) 2004; 70 (2023062602571126300_c8) 2011; 40 (2023062602571126300_c60) 2005; 122 |
References_xml | – volume: 110 start-page: 331 year: 2010 ident: 2023062602571126300_c69 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.22105 – volume: 109 start-page: 6264 year: 1998 ident: 2023062602571126300_c70 publication-title: J. Chem. Phys. doi: 10.1063/1.477267 – volume: 49 start-page: 1159 year: 2010 ident: 2023062602571126300_c12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200905062 – volume-title: A Primer in Density Functional Theory year: 2003 ident: 2023062602571126300_c23 doi: 10.1007/3-540-37072-2 – volume: 51 start-page: 4014 year: 1995 ident: 2023062602571126300_c41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.4014 – volume: 122 start-page: 014112 year: 2005 ident: 2023062602571126300_c61 publication-title: J. Chem. Phys. doi: 10.1063/1.1829049 – volume: 109 start-page: 400 year: 1998 ident: 2023062602571126300_c30 publication-title: J. Chem. Phys. doi: 10.1063/1.476577 – ident: 2023062602571126300_c68 – volume: 33 start-page: 8822 year: 1986 ident: 2023062602571126300_c54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.33.8822 – volume: 122 start-page: 044110 year: 2005 ident: 2023062602571126300_c29 publication-title: J. Chem. Phys. doi: 10.1063/1.1839854 – volume: 112 start-page: 6384 year: 2008 ident: 2023062602571126300_c38 publication-title: J. Phys. Chem. A doi: 10.1021/jp803441m – volume: 108 start-page: 217201 year: 2012 ident: 2023062602571126300_c10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.217201 – volume: 98 start-page: 11623 year: 1994 ident: 2023062602571126300_c34 publication-title: J. Phys. Chem. doi: 10.1021/j100096a001 – volume-title: Spin Crossover in Transition Metal Compounds year: 2004 ident: 2023062602571126300_c1 doi: 10.1007/b40394-9 – volume: 23 start-page: 1545 year: 2011 ident: 2023062602571126300_c13 publication-title: Adv. Mater. doi: 10.1002/adma.201003821 – volume: 122 start-page: 174109 year: 2005 ident: 2023062602571126300_c60 publication-title: J. Chem. Phys. doi: 10.1063/1.1888569 – volume: 100 start-page: 5829 year: 1994 ident: 2023062602571126300_c58 publication-title: J. Chem. Phys. doi: 10.1063/1.467146 – volume: 18 start-page: 973 year: 1985 ident: 2023062602571126300_c40 publication-title: J. Phys. C doi: 10.1088/0022-3719/18/5/005 – volume: 22 start-page: 023201 year: 2010 ident: 2023062602571126300_c16 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/22/2/023201 – volume: 107 start-page: 13 year: 1997 ident: 2023062602571126300_c71 publication-title: J. Chem. Phys. doi: 10.1063/1.474864 – volume: 95 start-page: 3467 year: 1991 ident: 2023062602571126300_c62 publication-title: J. Chem. Phys. doi: 10.1063/1.460849 – volume: 94 start-page: 2741 year: 1991 ident: 2023062602571126300_c2 publication-title: J. Chem. Phys. doi: 10.1063/1.459851 – volume: 70 start-page: 161101 year: 2004 ident: 2023062602571126300_c66 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.70.161101 – volume: 110 start-page: 6158 year: 1999 ident: 2023062602571126300_c36 publication-title: J. Chem. Phys. doi: 10.1063/1.478522 – ident: 2023062602571126300_c43 article-title: Density functional theory calculations for various spin-crossover compounds – volume: 128 start-page: 034104 year: 2006 ident: 2023062602571126300_c49 publication-title: J. Chem. Phys. doi: 10.1063/1.2820786 – ident: 2023062602571126300_c42 – volume: 131 start-page: 11498 year: 2009 ident: 2023062602571126300_c46 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9031677 – volume: 82 start-page: 270 year: 1985 ident: 2023062602571126300_c57 publication-title: J. Chem. Phys. doi: 10.1063/1.448799 – volume: 77 start-page: 3865 year: 1996 ident: 2023062602571126300_c24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 134 start-page: 777 year: 2011 ident: 2023062602571126300_c9 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2090096 – volume: 73 start-page: 33 year: 2001 ident: 2023062602571126300_c15 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.73.33 – volume: 58 start-page: 1200s year: 1980 ident: 2023062602571126300_c53 publication-title: Can. J. Phys. doi: 10.1139/p80-159 – volume: 74 start-page: 161102 year: 2006 ident: 2023062602571126300_c64 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.161102 – volume: 7 start-page: 179 year: 2008 ident: 2023062602571126300_c7 publication-title: Nature Mater. doi: 10.1038/nmat2133 – volume: 10 start-page: 151 year: 1957 ident: 2023062602571126300_c59 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160100201 – volume: 102 start-page: 1918 year: 1980 ident: 2023062602571126300_c3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00526a026 – volume: 102 start-page: 7525 year: 1998 ident: 2023062602571126300_c67 publication-title: J. Phys. Chem. A doi: 10.1021/jp982759r – volume: 31 start-page: 108 year: 2002 ident: 2023062602571126300_c44 publication-title: Chem. Soc. Rev. doi: 10.1039/b102907j – volume: 45 start-page: 5739 year: 2006 ident: 2023062602571126300_c11 publication-title: Inorg. Chem. doi: 10.1021/ic060852l – ident: 2023062602571126300_c56 – volume-title: Modern Quantum Chemistry year: 1996 ident: 2023062602571126300_c37 – volume: 2009 start-page: 7845 ident: 2023062602571126300_c5 publication-title: Dalton Trans. doi: 10.1039/B908208E – volume: 126 start-page: 014105 year: 2007 ident: 2023062602571126300_c19 publication-title: J. Chem. Phys. doi: 10.1063/1.2406067 – volume: 120 start-page: 9473 year: 2004 ident: 2023062602571126300_c28 publication-title: J. Chem. Phys. doi: 10.1063/1.1710046 – volume: 41 start-page: 6928 year: 2002 ident: 2023062602571126300_c32 publication-title: Inorg. Chem. doi: 10.1021/ic025891l – volume: 268 start-page: 265 year: 1995 ident: 2023062602571126300_c4 publication-title: Science doi: 10.1126/science.268.5208.265 – volume: 99 start-page: 403 year: 2001 ident: 2023062602571126300_c27 publication-title: Mol. Phys. doi: 10.1080/00268970010018431 – volume: 40 start-page: 3336 year: 2011 ident: 2023062602571126300_c8 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15047b – volume-title: Electronic Structure: Basic Theory and Practical Methods year: 2004 ident: 2023062602571126300_c39 – volume: 37 start-page: 785 year: 1988 ident: 2023062602571126300_c26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.37.785 – volume: 17 start-page: 4455 year: 2007 ident: 2023062602571126300_c6 publication-title: J. Mater. Chem. doi: 10.1039/b709482p – volume-title: Density Functional Theory and Its Applications to Materials year: 2001 ident: 2023062602571126300_c21 – ident: 2023062602571126300_c18 – volume: 21 start-page: 395502 year: 2009 ident: 2023062602571126300_c65 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 98 start-page: 5648 year: 1993 ident: 2023062602571126300_c55 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 79 start-page: 094428 year: 2009 ident: 2023062602571126300_c47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.79.094428 – volume-title: Psi-k Highlight of the Month year: 2011 ident: 2023062602571126300_c17 – volume: 110 start-page: 5029 year: 1999 ident: 2023062602571126300_c35 publication-title: J. Chem. Phys. doi: 10.1063/1.478401 – volume-title: Molecular Nanomagnets year: 2006 ident: 2023062602571126300_c51 – volume: 125 start-page: 124303 year: 2006 ident: 2023062602571126300_c48 publication-title: J. Chem. Phys. doi: 10.1063/1.2353829 – volume: 83 start-page: 245415 year: 2011 ident: 2023062602571126300_c14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.245415 – volume-title: Density Functional Theory: An Advanced Course year: 2011 ident: 2023062602571126300_c22 – volume: 107 start-page: 48 year: 2001 ident: 2023062602571126300_c33 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-001-0300-3 – volume: 21 start-page: 084203 year: 2009 ident: 2023062602571126300_c45 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/21/8/084203 – volume: 19 start-page: 343201 year: 2007 ident: 2023062602571126300_c50 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/19/34/343201 – volume: 181 start-page: 1477 year: 2010 ident: 2023062602571126300_c52 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2010.04.018 – volume: 122 start-page: 234321 year: 2005 ident: 2023062602571126300_c31 publication-title: J. Chem. Phys. doi: 10.1063/1.1927081 – volume: 38 start-page: 3098 year: 1988 ident: 2023062602571126300_c25 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.38.3098 – volume: 95 start-page: 100201 year: 2005 ident: 2023062602571126300_c63 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.100201 – volume: 108 start-page: 5479 year: 2004 ident: 2023062602571126300_c20 publication-title: J. Phys. Chem. A doi: 10.1021/jp049043i |
SSID | ssj0001724 |
Score | 2.430199 |
Snippet | Octahedral Fe2+ molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the... Octahedral Fe(2+) molecules are particularly interesting as they often exhibit a spin-crossover transition. In spite of the many efforts aimed at assessing the... |
SourceID | unpaywall proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 124303 |
SubjectTerms | Assessments Computer simulation Density Density functional theory Failure Functionals Ground state Monte Carlo methods |
Title | Assessment of density functional theory for iron(II) molecules across the spin-crossover transition |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23020327 https://www.proquest.com/docview/1220571853 https://www.proquest.com/docview/1323214083 https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/1.4752411/15452992/124303_1_online.pdf |
UnpaywallVersion | publishedVersion |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7690 dateEnd: 20241004 omitProxy: false ssIdentifier: ssj0001724 issn: 1520-9032 databaseCode: ADMLS dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VXaHCA0e5lqMyx0N5cHYdO4cfV4WqRVAhwUpFPESOD2lhyUZNVqiIH48nF-UUL7wl0SS2J5PM2P7mG4AnjplI5lrRmXGcCpsyqhQX1Eb-cGYt8scg2uI4PlyIFyfRyRa873NhfCeqQC3LliJ4WU4_6HLaKZGWxn1nHIj5lAUiibwLYtOmVLaU4dS7K_9TzljWEk0E_pYLMI5x92kE48Xx6_m7FvTBKMbuLfxe0iRuVmO8M5tROeNhz0F0vpEfPdcv4ehl2N4UpTr7rFarcy7q4Cp8HQbXIFM-Bps6D_SXn3gf_9Por8GVLrQl8_ZB12HLFjuwvd9XlNuBiw3cVFc3QM8HQlCydsQgir4-I-hk27VJ0iRY-ivrU4KJeHtHR0_Jp7aUr62IalSEQqQqlwVtThGMSmr0vQ0M7SYsDp6_3T-kXbkHqgWTtTcUHuY2l4mfEVqdOJ6rXFjtpIu4SoxBEl3BUxPlYapkJDSLQ2FDFxlkyFCW34JRsS7sHSA-phGpM1zGLvYTWJkaGSoTpYmMGVOMTWCvf5WZ7rjQsSTHKmv25GNUYafcCTwaRMuWAOR3Qg97e8i8TnHPRRV2vakyhonMCQZFf5HhIZaL8sHwBG63xjQ05WeIWOM-mcDjwbr-3I-7_yR1Dy75sC9E1EuY3odRfbqxD3xoVee7MJ4_e_XyzW73qXwDNyQZ4Q |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrVDLgUehsLxkHof24GRt5-XjqqJqOVQcWKmIQ-T4IS0s2ajJChXx4_HkRXmKC7ckmsT2ZJIZ2998A_DSMRPLQis6M07QyGaMKiUiamN_OLMW-WMQbXGWnCyi1-fx-Ra8H3JhfCfqQC2rjiJ4WYUfdBX2SqSVcd8ZBxIRsiBKY--CWNiWypaSh95d-Z9yzvKOaCLwt1yD7QR3nyawvTh7M3_XgT4Yxdi9g99Lmibtaox3ZjMqZ4IPHERXG_nRc_0Sjt6AnU1ZqcvParW64qKOb8HXcXAtMuVjsGmKQH_5iffxP43-NtzsQ1sy7x50B7ZsuQc7R0NFuT243sJNdX0X9HwkBCVrRwyi6JtLgk62W5skbYKlv7K-IJiId3B6ekg-daV8bU1UqyIUInW1LGl7imBU0qDvbWFo92Bx_Ort0Qntyz1QHTHZeEMRvLCFTP2M0OrUiUIVkdVOulio1Bgk0Y1EZuKCZ0rGkWYJjyx3sUGGDGXFPkzKdWkfAPExTZQ5I2TiEj-BlZmRXJk4S2XCmGJsCgfDq8x1z4WOJTlWebsnn6AKe-VO4fkoWnUEIL8TejbYQ-51insuqrTrTZ0zTGROMSj6i4zgWC7KB8NTuN8Z09iUnyFijft0Ci9G6_pzPx7-k9Qj2PVhH0fUC88ew6S52NgnPrRqiqf9J_INcFgYTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+density+functional+theory+for+iron%28II%29+molecules+across+the+spin-crossover+transition&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Droghetti%2C+A&rft.au=Alf%C3%A8%2C+D&rft.au=Sanvito%2C+S&rft.date=2012-09-28&rft.eissn=1089-7690&rft.volume=137&rft.issue=12&rft.spage=124303&rft_id=info:doi/10.1063%2F1.4752411&rft_id=info%3Apmid%2F23020327&rft.externalDocID=23020327 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon |