Machine learning-based methods for piecewise digital predistortion in mmW 5G NR systems
Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful tools to perform the automatic division of these pieces. Complexity reduction in the classification of piecewise digital predistortion is possi...
        Saved in:
      
    
          | Published in | EURASIP journal on advances in signal processing Vol. 2024; no. 1; pp. 97 - 24 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.12.2024
     Springer Springer Nature B.V SpringerOpen  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1687-6180 1687-6172 1687-6180  | 
| DOI | 10.1186/s13634-024-01191-7 | 
Cover
| Abstract | Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful tools to perform the automatic division of these pieces. Complexity reduction in the classification of piecewise digital predistortion is possible through carefully constructing features from both the signal statistics and the power amplifier (PA) characteristics. Our paper introduces two low-complex classical ML-based methods that facilitate the classification of baseband input data into distinct segments. These methods effectively linearize PA behavior by employing tailored Volterra models corresponding to each segment. Moreover, we perform an in-depth analysis of the proposed schemes to further optimize their classification and regression complexities. The two proposed low-complexity approaches are validated by laboratory experiments and show up to 4 dB error vector magnitude (EVM) improvement over the conventional approach for a class A PA at 28 GHz. Similarly, the EVM improvement is up to 2 dB over the vector-switched general memory polynomial scheme. With only one indirect learning architecture iteration, the two proposed schemes obey the 5G new radio standard up to 6.5 dB and 7 dB output backoff, respectively. | 
    
|---|---|
| AbstractList | Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful tools to perform the automatic division of these pieces. Complexity reduction in the classification of piecewise digital predistortion is possible through carefully constructing features from both the signal statistics and the power amplifier (PA) characteristics. Our paper introduces two low-complex classical ML-based methods that facilitate the classification of baseband input data into distinct segments. These methods effectively linearize PA behavior by employing tailored Volterra models corresponding to each segment. Moreover, we perform an in-depth analysis of the proposed schemes to further optimize their classification and regression complexities. The two proposed low-complexity approaches are validated by laboratory experiments and show up to 4 dB error vector magnitude (EVM) improvement over the conventional approach for a class A PA at 28 GHz. Similarly, the EVM improvement is up to 2 dB over the vector-switched general memory polynomial scheme. With only one indirect learning architecture iteration, the two proposed schemes obey the 5G new radio standard up to 6.5 dB and 7 dB output backoff, respectively. Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful tools to perform the automatic division of these pieces. Complexity reduction in the classification of piecewise digital predistortion is possible through carefully constructing features from both the signal statistics and the power amplifier (PA) characteristics. Our paper introduces two low-complex classical ML-based methods that facilitate the classification of baseband input data into distinct segments. These methods effectively linearize PA behavior by employing tailored Volterra models corresponding to each segment. Moreover, we perform an in-depth analysis of the proposed schemes to further optimize their classification and regression complexities. The two proposed low-complexity approaches are validated by laboratory experiments and show up to 4 dB error vector magnitude (EVM) improvement over the conventional approach for a class A PA at 28 GHz. Similarly, the EVM improvement is up to 2 dB over the vector-switched general memory polynomial scheme. With only one indirect learning architecture iteration, the two proposed schemes obey the 5G new radio standard up to 6.5 dB and 7 dB output backoff, respectively. Abstract Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful tools to perform the automatic division of these pieces. Complexity reduction in the classification of piecewise digital predistortion is possible through carefully constructing features from both the signal statistics and the power amplifier (PA) characteristics. Our paper introduces two low-complex classical ML-based methods that facilitate the classification of baseband input data into distinct segments. These methods effectively linearize PA behavior by employing tailored Volterra models corresponding to each segment. Moreover, we perform an in-depth analysis of the proposed schemes to further optimize their classification and regression complexities. The two proposed low-complexity approaches are validated by laboratory experiments and show up to 4 dB error vector magnitude (EVM) improvement over the conventional approach for a class A PA at 28 GHz. Similarly, the EVM improvement is up to 2 dB over the vector-switched general memory polynomial scheme. With only one indirect learning architecture iteration, the two proposed schemes obey the 5G new radio standard up to 6.5 dB and 7 dB output backoff, respectively.  | 
    
| ArticleNumber | 97 | 
    
| Audience | Academic | 
    
| Author | Susarla, Praneeth Bulusu, S. S. Krishna Chaitanya Leinonen, Marko E. Tervo, Nuutti Sillanpää, Mikko. J. Juntti, Markku Silvén, Olli Pärssinen, Aarno  | 
    
| Author_xml | – sequence: 1 givenname: S. S. Krishna Chaitanya surname: Bulusu fullname: Bulusu, S. S. Krishna Chaitanya email: sri.bulusu@oulu.fi organization: Centre for Wireless Communications (CWC), University of Oulu – sequence: 2 givenname: Nuutti surname: Tervo fullname: Tervo, Nuutti organization: Centre for Wireless Communications (CWC), University of Oulu – sequence: 3 givenname: Praneeth surname: Susarla fullname: Susarla, Praneeth organization: Center for Machine Vision and Signal Analysis (CMVS), University of Oulu – sequence: 4 givenname: Olli surname: Silvén fullname: Silvén, Olli organization: Center for Machine Vision and Signal Analysis (CMVS), University of Oulu – sequence: 5 givenname: Mikko. J. surname: Sillanpää fullname: Sillanpää, Mikko. J. organization: Department of Mathematical Sciences (DMS), University of Oulu – sequence: 6 givenname: Marko E. surname: Leinonen fullname: Leinonen, Marko E. organization: Centre for Wireless Communications (CWC), University of Oulu – sequence: 7 givenname: Markku surname: Juntti fullname: Juntti, Markku organization: Centre for Wireless Communications (CWC), University of Oulu – sequence: 8 givenname: Aarno surname: Pärssinen fullname: Pärssinen, Aarno organization: Centre for Wireless Communications (CWC), University of Oulu  | 
    
| BookMark | eNqNUU1r3TAQNCWFJmn-QE-Cnp1qLVsfxxDaNJC2EBJyFLK8cvSwJVfyI7x_HzUObU-lCLFimBlmRyfVUYgBq-oD0HMAyT9lYJy1NW3KBVBQizfVMXApag6SHv31fled5LyjtOMNbY6rh2_GPvqAZEKTgg9j3ZuMA5lxfYxDJi4msni0-OQzksGPfjUTWRIOPq8xrT4G4gOZ5wfSXZHvtyQf8opzfl-9dWbKePY6T6v7L5_vLr_WNz-uri8vbmrbglprJp3ixllGoW-lawRrOyqgKzi2ZRjbWedMpyhVKBwIKfrGOWGkkqKQ2Wl1vfkO0ez0kvxs0kFH4_ULENOoTUlpJ9TgessH0VonoeVKSRCdQmobAcD6HosX27z2YTGHJzNNvw2B6l89661nXXrWLz1rUVQfN9WS4s895lXv4j6FsrRm0EjKOi5YYZ1vrNGUKD64uCZjyxlw9rZ8pvMFv5DAKbRAZRE0m8CmmHNC939ZXjfIhRxGTH-y_EP1DCh3rLI | 
    
| Cites_doi | 10.1109/TSP.2006.879264 10.1109/TMTT.2021.3132347 10.1109/ICC.2003.1204371 10.1109/LMWC.2021.3139018 10.1109/TMTT.2006.883243 10.1109/TIT.1982.1056489 10.1109/TCS.1976.1084219 10.1109/TMTT.2020.2994311 10.1109/TMTT.2012.2184295 10.1007/978-0-387-84858-7 10.1109/TNNLS.2018.2838039 10.1109/CICN.2014.220 10.1109/MMM.2016.2616185 10.1109/COMST.2022.3199884 10.1109/ISWCS.2008.4726067 10.1109/TCSII.2021.3109973 10.1109/TMTT.2010.2047920 10.1038/nature14539 10.1007/s10489-014-0524-2 10.1109/BigData52589.2021.9671742 10.1109/TBC.2021.3132158 10.1109/IMS37964.2023.10188119 10.1007/978-1-4614-6849-3 10.1109/TMTT.2021.3081096 10.1109/LMWC.2020.3004003 10.1109/TCSI.2018.2872465 10.1109/TCSI.2022.3150408 10.1109/TMTT.2018.2855134 10.1109/TMTT.2018.2873331 10.1109/TMTT.2015.2480739 10.1109/ISWCS.2019.8877236 10.1109/TMTT.2022.3224192 10.1109/TMTT.2022.3187129 10.1109/MMM.2014.2356037 10.1201/9781003025672 10.1109/TMTT.2016.2642945 10.1109/LMWC.2018.2889004 10.1109/ICASSP49357.2023.10096989 10.1109/MMM.2009.934516 10.1109/JETCAS.2020.3000103  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 COPYRIGHT 2024 Springer The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2024 – notice: COPYRIGHT 2024 Springer – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/s13634-024-01191-7 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1687-6180 | 
    
| EndPage | 24 | 
    
| ExternalDocumentID | oai_doaj_org_article_1fbc6d74cf81469981759e0c27113bbe 10.1186/s13634-024-01191-7 A816014108 10_1186_s13634_024_01191_7  | 
    
| GrantInformation_xml | – fundername: Research Council of Finland grantid: 346208; 346208; 346208; 346208; 346208; 346208; 346208; 346208 funderid: http://dx.doi.org/10.13039/501100002341 – fundername: University of Oulu (including Oulu University Hospital)  | 
    
| GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABEEZ ABUWG ACACY ACGFO ACGFS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ARCSS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU DU5 DWQXO E3Z EBLON EBS EDO F5P GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 M0N M~E OK1 P62 PIMPY PQQKQ PROAC Q2X RHU RHW RNS RSV SEG SOJ TUS U2A AASML AAYXX CITATION OVT PUEGO 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U 2VQ ADTOC AFWIH AHSBF C1A EJD HGAVV HZ~ IL9 IPNFZ O9- RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c419t-38f96afc301b48f27345071538fe4153ac5cffa59009e7f1787b2ff7a89877343 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1687-6180 1687-6172  | 
    
| IngestDate | Tue Oct 14 18:52:23 EDT 2025 Sun Sep 07 11:06:45 EDT 2025 Sat Oct 11 06:11:58 EDT 2025 Mon Oct 20 16:53:31 EDT 2025 Wed Oct 01 02:37:58 EDT 2025 Fri Feb 21 02:40:45 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Machine learning Behavioral modeling Millimeter wave (mmW) Digital predistortion (DPD) 5G new radio (NR) Low complex Power amplifier (PA) Linearization  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c419t-38f96afc301b48f27345071538fe4153ac5cffa59009e7f1787b2ff7a89877343 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1186/s13634-024-01191-7 | 
    
| PQID | 3128035673 | 
    
| PQPubID | 237299 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1fbc6d74cf81469981759e0c27113bbe unpaywall_primary_10_1186_s13634_024_01191_7 proquest_journals_3128035673 gale_infotracacademiconefile_A816014108 crossref_primary_10_1186_s13634_024_01191_7 springer_journals_10_1186_s13634_024_01191_7  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-12-01 | 
    
| PublicationDateYYYYMMDD | 2024-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham – name: New York  | 
    
| PublicationTitle | EURASIP journal on advances in signal processing | 
    
| PublicationTitleAbbrev | EURASIP J. Adv. Signal Process | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer International Publishing Springer Springer Nature B.V SpringerOpen  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V – name: SpringerOpen  | 
    
| References | PedregosaFScikit-learn: machine Learning in PythonJ. Mach. Learn. Res.201112282528302854348 LiuZHuXXuLWangWGhannouchiFMLow computational complexity digital predistortion based on convolutional neural network for wideband power amplifiersIEEE Trans. Circuits Syst. II. Express Br.20226931702170610.1109/TCSII.2021.3109973 HanRQiaoWJiangCYangGTanJLiuFLow complexity adaptive model for digital predistortion of RF power amplifiers in time-varying configurationsIEEE Trans. Microw. Theory Techn.20237152004201510.1109/TMTT.2022.3224192 ChenWLiuXChuJWuHFengZGhannouchiFMA low complexity moving average nested gmp model for digital predistortion of broadband power amplifiersIEEE Trans. Circuits Syst. I Regul. Pap.20226952070208310.1109/TCSI.2022.3150408 BeltagyYMitranPBoumaizaSDirect learning algorithm for digital predistortion training using sub-nyquist intermediate frequency feedback signalIEEE Trans. Microw. Theory Techn.201967126727710.1109/TMTT.2018.2873331 WangHLiGZhouCTaoWLiuFZhuA1-bit observation for direct-learning-based digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.20176572465247510.1109/TMTT.2016.2642945 WangSLiZLiuCZhangXZhangHTraining data reduction to speed up SVM trainingSpringer Appl. Intell.201441240542010.1007/s10489-014-0524-2 Kumar, P. (2019, Dec.) Computational Complexity of ML Models. [Online]. Available: https://medium.com/analytics-vidhya/time-complexity-of-ml-models-4ec39fad2770 Le DucHFeuvrieBPastoreMWangYAn adaptive cascaded ILA- and DLA-based digital predistorter for linearizing an RF power amplifierIEEE Trans. Circuits Syst. I Regul. Pap.20196631031104110.1109/TCSI.2018.2872465 AfsardoostSErikssonTFagerCDigital predistortion using a vector-switched modelIEEE Trans. Microw. Theory Techn.20126041166117410.1109/TMTT.2012.2184295 KhanBTervoNJokinenMPärssinenAJunttiMStatistical digital predistortion of 5G millimeter-wave RF beamforming transmitter under random amplitude variationsIEEE Trans. Microw. Theory Techn.20227094284429610.1109/TMTT.2022.3187129 Pooria, V., Somayeh, M., Borhanuddin, M.A., S., N.: Power Efficiency in Broadband Wireless Communications, p. 83. Taylor & Francis, Boca Raton (2014) The MathWorks, Inc. (2022) Power Amplifier. [ONLINE]. Available: https://www.mathworks.com/help/simrf/ref/poweramplifier.html GhannouchiFMHammiOBehavioral modeling and predistortionIEEE Microw. Mag.2009107526410.1109/MMM.2009.934516 LiYWangXZhuAReducing power consumption of digital predistortion for RF power amplifiers using real-time model switchingIEEE Trans. Microw. Theory Techn.20227031500150810.1109/TMTT.2021.3132347 HanzoLKellerTOFDM and MC-CDMA2007New JerseyWiley4445 LiuZHuXWangWGhannouchiFMA joint PAPR reduction and digital predistortion based on real-valued neural networks for OFDM systemsIEEE Trans. Broadcasting202268122323110.1109/TBC.2021.3132158 L.1470: Greenhouse gas emissions trajectories for the information and communication technology sector compatible with the UNFCCC Paris Agreement, p. 49. Int. Telecommun. Union, Geneva, Switzerland (2020) Turing: Deep Learning vs Machine Learning: The Ultimate Battle. https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning (2022) ArangalaCLinear Algebra With Machine Learning and Data2023Boca RatonCRC Press21510.1201/9781003025672 MorganDRMaZKimJZierdtMGPastalanJA generalized memory polynomial model for digital predistortion of RF power amplifiersIEEE Trans. Signal Process.200654103852386010.1109/TSP.2006.879264 Bulusu, S.S.K.C., Khan, B., Nuutti, T., Leinonen, M.E., Sillanpää, M.J., Silvén, O., Juntti, M., Pärssinen, A.: Experimental demonstration of a machine learning-based piece-wise digital predistortion method in 5G NR systems. In: IEEE MTT-S Int. Microw. Symp Dig., pp. 1–5 (2023) Will, J., Arslan, O., Bader, J., Scheinert, D., Thamsen, L.: Training data reduction for performance models of data analytics jobs in the cloud. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 3141–3146 (2021). 10.1109/BigData52589.2021.9671742 GershoAGrayRMVector Quantization and Signal Compression1991BostonSpringer428 ZhuAPedroJCBrazilTJDynamic deviation reduction-based volterra behavioral modeling of RF power amplifiersIEEE Trans. Microw. Theory Techn.200654124323433210.1109/TMTT.2006.883243 YuYCaiJZhuX-WChenPYuCSelf-sensing digital predistortion of RF power amplifiers for 6G intelligent radioIEEE Microw. Wirel. Compon. Lett.202232547547810.1109/LMWC.2021.3139018 LiYCaoWZhuAInstantaneous sample indexed magnitude-selective affine function-based behavioral model for digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.201866115000501010.1109/TMTT.2018.2855134 3GPP: 5G;NR; Base Station (BS) Radio Transmission and Reception (2020) GéronAHands-on Machine Learning with Scikit-learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems2019BostonO’Reilly92 Paaso, H., Mammela, A.: Comparison of direct learning and indirect learning predistortion architectures. In: Proc. 5th Int. Symp. Wireless Commun. Syst. (ISWCS), pp. 309–313 (2008). https://doi.org/10.1109/ISWCS.2008.4726067 ZhangCUengY-LStuderCBurgAArtificial intelligence for 5G and beyond 5G: implementations, algorithms, and optimizationsIEEE J. Emerg. Sel.202010214916310.1109/JETCAS.2020.3000103 S.S.K.C. Bulusu, T. Nuutti, P. Susarla, M.J. Sillanpää, O. Silvén, M. Juntti, A. Pärssinen, Machine learning-aided piece-wise modeling technique of power amplifier for digital predistortion. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. 1–5 (2023) KimJKonstantinouKDigital predistortion of wideband signals based on power amplifier model with memoryIEEE Trans. Circuits Syst.2001372314171418 BrihuegaAAnttilaLValkamaMNeural-network-based digital predistortion for active antenna arrays under load modulationIEEE Microw. Wirel. Compon. Lett.202030884384610.1109/LMWC.2020.3004003 HaiderMFYouFHeSRahkonenTAikioJPPredistortion-based linearization for 5G and beyond millimeter-wave transceiver systems: a comprehensive surveyIEEE Commun. Surv. Tutor.20222442029207210.1109/COMST.2022.3199884 GuanLZhuAGreen communications: digital predistortion for wideband RF power amplifiersIEEE Microw. Mag.2014157849910.1109/MMM.2014.2356037 TehraniASCaoHAfsardoostSErikssonTIsakssonMFagerCA comparative analysis of the complexity/accuracy tradeoff in power amplifier behavioral modelsIEEE Trans. Microw. Theory Techn.20105861510152010.1109/TMTT.2010.2047920 LloydSLeast squares quantization in PCMIEEE Trans. Inf. Theory198228212913765180710.1109/TIT.1982.1056489 Pakhira, M.K.: A linear time-complexity k-means algorithm using cluster shifting. In: 2014 International Conference on Computational Intelligence and Communication Networks, pp. 1047–1051 (2014). 10.1109/CICN.2014.220 SchetzenMTheory of pth-order inverses of nonlinear systemsIEEE Trans. Circuits Syst.197623528529145664410.1109/TCS.1976.1084219 BrihuegaAAbdelazizMAnttilaLTurunenMAllénMErikssonTValkamaMPiecewise digital predistortion for mmWave active antenna arrays: algorithms and measurementsIEEE Trans. Microw. Theory Techn.20206894000401710.1109/TMTT.2020.2994311 Morgan, D.R., Ma, Z., Ding, L.: Reducing measurement noise effects in digital predistortion of RF power amplifiers. In: IEEE Int. Conf. Commun. (ICC), vol. 4, pp. 2436–2439 (2003). https://doi.org/10.1109/ICC.2003.1204371 Abdelaziz, M., Anttila, L., Brihuega, A., Allen, M., Valkama, M.: Decorrelation-based Piecewise Digital Predistortion: Operating Principle and RF Measurements. In: Proc. 16th Int. Symp. Wireless Commun. Syst. (ISWCS), pp. 340–344 (2019). https://doi.org/10.1109/ISWCS.2019.8877236 GuoYYuCZhuAPower adaptive digital predistortion for wideband RF power amplifiers with dynamic power transmissionIEEE Trans. Microw. Theory Techn.201563113595360710.1109/TMTT.2015.2480739 HallPCurtisJPandeyPMachine Learning for High-Risk Applications2023SebastopolO’Reilly51 KuhnMJohnsonKApplied Predictive Modeling2013New YorkSpringer46310.1007/978-1-4614-6849-3 HadiMUTraversoPATartariniGVenardOBaudoinGPolleuxJ-LDigital predistortion for linearity improvement of VCSEL-SSMF-based radio-over-fiber linksIEEE Microw. Wirel. Compon. Lett.201929215515710.1109/LMWC.2018.2889004 LiYWangXPangJZhuABoosted model tree-based behavioral modeling for digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.20216993976398810.1109/TMTT.2021.3081096 LeCunYIBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539 KellyNCaoWZhuAPreparing linearity and efficiency for 5G: digital predistortion for dual-band doherty power amplifiers with mixed-mode carrier aggregationIEEE Microw. Mag.2017181768410.1109/MMM.2016.2616185 HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning2009New YorkSpringer210.1007/978-0-387-84858-7 WangDAzizMHelaouiMGhannouchiFMAugmented real-valued time-delay neural network for compensation of distortions and impairments in wireless transmittersIEEE Trans. Neural Netw. Learn.201930124225410.1109/TNNLS.2018.2838039 (2017) The Ciao Wireless Website. [ONLINE]. Available: https://www.ciaowireless.com W Chen (1191_CR26) 2022; 69 S Afsardoost (1191_CR7) 2012; 60 AS Tehrani (1191_CR28) 2010; 58 N Kelly (1191_CR4) 2017; 18 Z Liu (1191_CR41) 2022; 68 R Han (1191_CR16) 2023; 71 1191_CR18 1191_CR17 MU Hadi (1191_CR38) 2019; 29 1191_CR19 1191_CR53 A Brihuega (1191_CR20) 2020; 68 H Wang (1191_CR36) 2017; 65 Y Yu (1191_CR42) 2022; 32 1191_CR52 1191_CR51 A Brihuega (1191_CR12) 2020; 30 S Wang (1191_CR29) 2014; 41 D Wang (1191_CR11) 2019; 30 MF Haider (1191_CR5) 2022; 24 FM Ghannouchi (1191_CR3) 2009; 10 P Hall (1191_CR44) 2023 Y Li (1191_CR25) 2018; 66 DR Morgan (1191_CR23) 2006; 54 A Géron (1191_CR35) 2019 1191_CR40 A Zhu (1191_CR24) 2006; 54 F Pedregosa (1191_CR46) 2011; 12 S Lloyd (1191_CR49) 1982; 28 H Le Duc (1191_CR39) 2019; 66 B Khan (1191_CR14) 2022; 70 M Kuhn (1191_CR45) 2013 L Guan (1191_CR2) 2014; 15 Y Guo (1191_CR15) 2015; 63 1191_CR1 J Kim (1191_CR22) 2001; 37 C Arangala (1191_CR47) 2023 1191_CR32 1191_CR31 C Zhang (1191_CR6) 2020; 10 1191_CR34 A Gersho (1191_CR50) 1991 1191_CR30 L Hanzo (1191_CR43) 2007 M Schetzen (1191_CR21) 1976; 23 Z Liu (1191_CR13) 2022; 69 Y Li (1191_CR10) 2022; 70 1191_CR8 YI LeCun (1191_CR33) 2015; 521 1191_CR27 T Hastie (1191_CR48) 2009 Y Li (1191_CR9) 2021; 69 Y Beltagy (1191_CR37) 2019; 67  | 
    
| References_xml | – reference: KellyNCaoWZhuAPreparing linearity and efficiency for 5G: digital predistortion for dual-band doherty power amplifiers with mixed-mode carrier aggregationIEEE Microw. Mag.2017181768410.1109/MMM.2016.2616185 – reference: MorganDRMaZKimJZierdtMGPastalanJA generalized memory polynomial model for digital predistortion of RF power amplifiersIEEE Trans. Signal Process.200654103852386010.1109/TSP.2006.879264 – reference: HaiderMFYouFHeSRahkonenTAikioJPPredistortion-based linearization for 5G and beyond millimeter-wave transceiver systems: a comprehensive surveyIEEE Commun. Surv. Tutor.20222442029207210.1109/COMST.2022.3199884 – reference: LiYWangXPangJZhuABoosted model tree-based behavioral modeling for digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.20216993976398810.1109/TMTT.2021.3081096 – reference: LiuZHuXWangWGhannouchiFMA joint PAPR reduction and digital predistortion based on real-valued neural networks for OFDM systemsIEEE Trans. Broadcasting202268122323110.1109/TBC.2021.3132158 – reference: HanRQiaoWJiangCYangGTanJLiuFLow complexity adaptive model for digital predistortion of RF power amplifiers in time-varying configurationsIEEE Trans. Microw. Theory Techn.20237152004201510.1109/TMTT.2022.3224192 – reference: HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning2009New YorkSpringer210.1007/978-0-387-84858-7 – reference: ChenWLiuXChuJWuHFengZGhannouchiFMA low complexity moving average nested gmp model for digital predistortion of broadband power amplifiersIEEE Trans. Circuits Syst. I Regul. Pap.20226952070208310.1109/TCSI.2022.3150408 – reference: YuYCaiJZhuX-WChenPYuCSelf-sensing digital predistortion of RF power amplifiers for 6G intelligent radioIEEE Microw. Wirel. Compon. Lett.202232547547810.1109/LMWC.2021.3139018 – reference: GuoYYuCZhuAPower adaptive digital predistortion for wideband RF power amplifiers with dynamic power transmissionIEEE Trans. Microw. Theory Techn.201563113595360710.1109/TMTT.2015.2480739 – reference: The MathWorks, Inc. (2022) Power Amplifier. [ONLINE]. Available: https://www.mathworks.com/help/simrf/ref/poweramplifier.html – reference: ZhangCUengY-LStuderCBurgAArtificial intelligence for 5G and beyond 5G: implementations, algorithms, and optimizationsIEEE J. Emerg. Sel.202010214916310.1109/JETCAS.2020.3000103 – reference: WangSLiZLiuCZhangXZhangHTraining data reduction to speed up SVM trainingSpringer Appl. Intell.201441240542010.1007/s10489-014-0524-2 – reference: 3GPP: 5G;NR; Base Station (BS) Radio Transmission and Reception (2020) – reference: Pakhira, M.K.: A linear time-complexity k-means algorithm using cluster shifting. In: 2014 International Conference on Computational Intelligence and Communication Networks, pp. 1047–1051 (2014). 10.1109/CICN.2014.220 – reference: KhanBTervoNJokinenMPärssinenAJunttiMStatistical digital predistortion of 5G millimeter-wave RF beamforming transmitter under random amplitude variationsIEEE Trans. Microw. Theory Techn.20227094284429610.1109/TMTT.2022.3187129 – reference: BrihuegaAAnttilaLValkamaMNeural-network-based digital predistortion for active antenna arrays under load modulationIEEE Microw. Wirel. Compon. Lett.202030884384610.1109/LMWC.2020.3004003 – reference: BeltagyYMitranPBoumaizaSDirect learning algorithm for digital predistortion training using sub-nyquist intermediate frequency feedback signalIEEE Trans. Microw. Theory Techn.201967126727710.1109/TMTT.2018.2873331 – reference: Bulusu, S.S.K.C., Khan, B., Nuutti, T., Leinonen, M.E., Sillanpää, M.J., Silvén, O., Juntti, M., Pärssinen, A.: Experimental demonstration of a machine learning-based piece-wise digital predistortion method in 5G NR systems. In: IEEE MTT-S Int. Microw. Symp Dig., pp. 1–5 (2023) – reference: ZhuAPedroJCBrazilTJDynamic deviation reduction-based volterra behavioral modeling of RF power amplifiersIEEE Trans. Microw. Theory Techn.200654124323433210.1109/TMTT.2006.883243 – reference: ArangalaCLinear Algebra With Machine Learning and Data2023Boca RatonCRC Press21510.1201/9781003025672 – reference: KimJKonstantinouKDigital predistortion of wideband signals based on power amplifier model with memoryIEEE Trans. Circuits Syst.2001372314171418 – reference: Will, J., Arslan, O., Bader, J., Scheinert, D., Thamsen, L.: Training data reduction for performance models of data analytics jobs in the cloud. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 3141–3146 (2021). 10.1109/BigData52589.2021.9671742 – reference: TehraniASCaoHAfsardoostSErikssonTIsakssonMFagerCA comparative analysis of the complexity/accuracy tradeoff in power amplifier behavioral modelsIEEE Trans. Microw. Theory Techn.20105861510152010.1109/TMTT.2010.2047920 – reference: GuanLZhuAGreen communications: digital predistortion for wideband RF power amplifiersIEEE Microw. Mag.2014157849910.1109/MMM.2014.2356037 – reference: (2017) The Ciao Wireless Website. [ONLINE]. Available: https://www.ciaowireless.com/ – reference: LeCunYIBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539 – reference: KuhnMJohnsonKApplied Predictive Modeling2013New YorkSpringer46310.1007/978-1-4614-6849-3 – reference: Abdelaziz, M., Anttila, L., Brihuega, A., Allen, M., Valkama, M.: Decorrelation-based Piecewise Digital Predistortion: Operating Principle and RF Measurements. In: Proc. 16th Int. Symp. Wireless Commun. Syst. (ISWCS), pp. 340–344 (2019). https://doi.org/10.1109/ISWCS.2019.8877236 – reference: LiuZHuXXuLWangWGhannouchiFMLow computational complexity digital predistortion based on convolutional neural network for wideband power amplifiersIEEE Trans. Circuits Syst. II. Express Br.20226931702170610.1109/TCSII.2021.3109973 – reference: LiYWangXZhuAReducing power consumption of digital predistortion for RF power amplifiers using real-time model switchingIEEE Trans. Microw. Theory Techn.20227031500150810.1109/TMTT.2021.3132347 – reference: Le DucHFeuvrieBPastoreMWangYAn adaptive cascaded ILA- and DLA-based digital predistorter for linearizing an RF power amplifierIEEE Trans. Circuits Syst. I Regul. Pap.20196631031104110.1109/TCSI.2018.2872465 – reference: GéronAHands-on Machine Learning with Scikit-learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems2019BostonO’Reilly92 – reference: HadiMUTraversoPATartariniGVenardOBaudoinGPolleuxJ-LDigital predistortion for linearity improvement of VCSEL-SSMF-based radio-over-fiber linksIEEE Microw. Wirel. Compon. Lett.201929215515710.1109/LMWC.2018.2889004 – reference: HallPCurtisJPandeyPMachine Learning for High-Risk Applications2023SebastopolO’Reilly51 – reference: PedregosaFScikit-learn: machine Learning in PythonJ. Mach. Learn. Res.201112282528302854348 – reference: Pooria, V., Somayeh, M., Borhanuddin, M.A., S., N.: Power Efficiency in Broadband Wireless Communications, p. 83. Taylor & Francis, Boca Raton (2014) – reference: Kumar, P. (2019, Dec.) Computational Complexity of ML Models. [Online]. Available: https://medium.com/analytics-vidhya/time-complexity-of-ml-models-4ec39fad2770/ – reference: L.1470: Greenhouse gas emissions trajectories for the information and communication technology sector compatible with the UNFCCC Paris Agreement, p. 49. Int. Telecommun. Union, Geneva, Switzerland (2020) – reference: Paaso, H., Mammela, A.: Comparison of direct learning and indirect learning predistortion architectures. In: Proc. 5th Int. Symp. Wireless Commun. Syst. (ISWCS), pp. 309–313 (2008). https://doi.org/10.1109/ISWCS.2008.4726067 – reference: GhannouchiFMHammiOBehavioral modeling and predistortionIEEE Microw. Mag.2009107526410.1109/MMM.2009.934516 – reference: SchetzenMTheory of pth-order inverses of nonlinear systemsIEEE Trans. Circuits Syst.197623528529145664410.1109/TCS.1976.1084219 – reference: S.S.K.C. Bulusu, T. Nuutti, P. Susarla, M.J. Sillanpää, O. Silvén, M. Juntti, A. Pärssinen, Machine learning-aided piece-wise modeling technique of power amplifier for digital predistortion. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. 1–5 (2023) – reference: WangHLiGZhouCTaoWLiuFZhuA1-bit observation for direct-learning-based digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.20176572465247510.1109/TMTT.2016.2642945 – reference: LloydSLeast squares quantization in PCMIEEE Trans. Inf. Theory198228212913765180710.1109/TIT.1982.1056489 – reference: AfsardoostSErikssonTFagerCDigital predistortion using a vector-switched modelIEEE Trans. Microw. Theory Techn.20126041166117410.1109/TMTT.2012.2184295 – reference: WangDAzizMHelaouiMGhannouchiFMAugmented real-valued time-delay neural network for compensation of distortions and impairments in wireless transmittersIEEE Trans. Neural Netw. Learn.201930124225410.1109/TNNLS.2018.2838039 – reference: Morgan, D.R., Ma, Z., Ding, L.: Reducing measurement noise effects in digital predistortion of RF power amplifiers. In: IEEE Int. Conf. Commun. (ICC), vol. 4, pp. 2436–2439 (2003). https://doi.org/10.1109/ICC.2003.1204371 – reference: GershoAGrayRMVector Quantization and Signal Compression1991BostonSpringer428 – reference: BrihuegaAAbdelazizMAnttilaLTurunenMAllénMErikssonTValkamaMPiecewise digital predistortion for mmWave active antenna arrays: algorithms and measurementsIEEE Trans. Microw. Theory Techn.20206894000401710.1109/TMTT.2020.2994311 – reference: Turing: Deep Learning vs Machine Learning: The Ultimate Battle. https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning (2022) – reference: LiYCaoWZhuAInstantaneous sample indexed magnitude-selective affine function-based behavioral model for digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.201866115000501010.1109/TMTT.2018.2855134 – reference: HanzoLKellerTOFDM and MC-CDMA2007New JerseyWiley4445 – volume: 54 start-page: 3852 issue: 10 year: 2006 ident: 1191_CR23 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.879264 – volume: 70 start-page: 1500 issue: 3 year: 2022 ident: 1191_CR10 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2021.3132347 – ident: 1191_CR53 doi: 10.1109/ICC.2003.1204371 – volume: 32 start-page: 475 issue: 5 year: 2022 ident: 1191_CR42 publication-title: IEEE Microw. Wirel. Compon. Lett. doi: 10.1109/LMWC.2021.3139018 – volume: 54 start-page: 4323 issue: 12 year: 2006 ident: 1191_CR24 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2006.883243 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 1191_CR49 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1982.1056489 – ident: 1191_CR18 – volume: 23 start-page: 285 issue: 5 year: 1976 ident: 1191_CR21 publication-title: IEEE Trans. Circuits Syst. doi: 10.1109/TCS.1976.1084219 – volume: 68 start-page: 4000 issue: 9 year: 2020 ident: 1191_CR20 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2020.2994311 – volume: 60 start-page: 1166 issue: 4 year: 2012 ident: 1191_CR7 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2012.2184295 – volume: 12 start-page: 2825 year: 2011 ident: 1191_CR46 publication-title: J. Mach. Learn. Res. – ident: 1191_CR27 – ident: 1191_CR31 – ident: 1191_CR52 – start-page: 2 volume-title: The Elements of Statistical Learning year: 2009 ident: 1191_CR48 doi: 10.1007/978-0-387-84858-7 – volume: 30 start-page: 242 issue: 1 year: 2019 ident: 1191_CR11 publication-title: IEEE Trans. Neural Netw. Learn. doi: 10.1109/TNNLS.2018.2838039 – ident: 1191_CR32 doi: 10.1109/CICN.2014.220 – volume: 18 start-page: 76 issue: 1 year: 2017 ident: 1191_CR4 publication-title: IEEE Microw. Mag. doi: 10.1109/MMM.2016.2616185 – volume: 37 start-page: 1417 issue: 23 year: 2001 ident: 1191_CR22 publication-title: IEEE Trans. Circuits Syst. – start-page: 51 volume-title: Machine Learning for High-Risk Applications year: 2023 ident: 1191_CR44 – volume: 24 start-page: 2029 issue: 4 year: 2022 ident: 1191_CR5 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2022.3199884 – ident: 1191_CR40 doi: 10.1109/ISWCS.2008.4726067 – volume: 69 start-page: 1702 issue: 3 year: 2022 ident: 1191_CR13 publication-title: IEEE Trans. Circuits Syst. II. Express Br. doi: 10.1109/TCSII.2021.3109973 – volume: 58 start-page: 1510 issue: 6 year: 2010 ident: 1191_CR28 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2010.2047920 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 1191_CR33 publication-title: Nature doi: 10.1038/nature14539 – ident: 1191_CR34 – ident: 1191_CR51 – volume: 41 start-page: 405 issue: 2 year: 2014 ident: 1191_CR29 publication-title: Springer Appl. Intell. doi: 10.1007/s10489-014-0524-2 – ident: 1191_CR30 doi: 10.1109/BigData52589.2021.9671742 – volume: 68 start-page: 223 issue: 1 year: 2022 ident: 1191_CR41 publication-title: IEEE Trans. Broadcasting doi: 10.1109/TBC.2021.3132158 – start-page: 44 volume-title: OFDM and MC-CDMA year: 2007 ident: 1191_CR43 – ident: 1191_CR19 doi: 10.1109/IMS37964.2023.10188119 – start-page: 463 volume-title: Applied Predictive Modeling year: 2013 ident: 1191_CR45 doi: 10.1007/978-1-4614-6849-3 – volume: 69 start-page: 3976 issue: 9 year: 2021 ident: 1191_CR9 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2021.3081096 – volume: 30 start-page: 843 issue: 8 year: 2020 ident: 1191_CR12 publication-title: IEEE Microw. Wirel. Compon. Lett. doi: 10.1109/LMWC.2020.3004003 – volume: 66 start-page: 1031 issue: 3 year: 2019 ident: 1191_CR39 publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2018.2872465 – volume: 69 start-page: 2070 issue: 5 year: 2022 ident: 1191_CR26 publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2022.3150408 – volume: 66 start-page: 5000 issue: 11 year: 2018 ident: 1191_CR25 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2018.2855134 – volume: 67 start-page: 267 issue: 1 year: 2019 ident: 1191_CR37 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2018.2873331 – ident: 1191_CR1 – volume: 63 start-page: 3595 issue: 11 year: 2015 ident: 1191_CR15 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2015.2480739 – ident: 1191_CR8 doi: 10.1109/ISWCS.2019.8877236 – volume: 71 start-page: 2004 issue: 5 year: 2023 ident: 1191_CR16 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2022.3224192 – volume: 70 start-page: 4284 issue: 9 year: 2022 ident: 1191_CR14 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2022.3187129 – volume: 15 start-page: 84 issue: 7 year: 2014 ident: 1191_CR2 publication-title: IEEE Microw. Mag. doi: 10.1109/MMM.2014.2356037 – start-page: 215 volume-title: Linear Algebra With Machine Learning and Data year: 2023 ident: 1191_CR47 doi: 10.1201/9781003025672 – volume: 65 start-page: 2465 issue: 7 year: 2017 ident: 1191_CR36 publication-title: IEEE Trans. Microw. Theory Techn. doi: 10.1109/TMTT.2016.2642945 – volume: 29 start-page: 155 issue: 2 year: 2019 ident: 1191_CR38 publication-title: IEEE Microw. Wirel. Compon. Lett. doi: 10.1109/LMWC.2018.2889004 – ident: 1191_CR17 doi: 10.1109/ICASSP49357.2023.10096989 – volume: 10 start-page: 52 issue: 7 year: 2009 ident: 1191_CR3 publication-title: IEEE Microw. Mag. doi: 10.1109/MMM.2009.934516 – start-page: 92 volume-title: Hands-on Machine Learning with Scikit-learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems year: 2019 ident: 1191_CR35 – volume: 10 start-page: 149 issue: 2 year: 2020 ident: 1191_CR6 publication-title: IEEE J. Emerg. Sel. doi: 10.1109/JETCAS.2020.3000103 – start-page: 428 volume-title: Vector Quantization and Signal Compression year: 1991 ident: 1191_CR50  | 
    
| SSID | ssj0056202 | 
    
| Score | 2.4044385 | 
    
| Snippet | Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful... Abstract Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the...  | 
    
| SourceID | doaj unpaywall proquest gale crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 97 | 
    
| SubjectTerms | 5G mobile communication 5G new radio (NR) Algorithms Artificial intelligence Behavioral modeling Classification Complexity Decision trees Deep learning Digital predistortion (DPD) Energy consumption Engineering Error analysis Explicit knowledge Linearization Low complex Machine learning Methods Polynomials Power amplifiers Quantum Information Technology Receivers & amplifiers Segments Signal processing Signal,Image and Speech Processing Spintronics  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxUxEJ8YLsqBqGhYQNODCQdpeN12u90jGJGYwIFA4Na03Za8BJaXt48Q_3tmtvvwGRP14HW3h-l8Tzv9DcAn39B1Uim4105yhSEZTUpJjvqD6X-KqUp0oH96pk8u1ffr6npl1Bf1hGV44My4A5F80G2tQqLDKiwOMN41cRLKWgjpfSTvOzHNspjKPhiDOvXt5CcyRh_0QmqpOMYjThhngte_hKEBrf93n7xyOboOLx-6mfvx6G5vV-LP8WvYGBNHdpgJfgMvYvcW1lfgBDfh6nTojIxsHAVxwylGtSxPie4Z5qdsNo0hPk77yNrpDQ0MYbM5Pc3F0ptExKYdu7u7YtU3dnbOMsxz_w4uj79efDnh4-AEHpRoFlya1GiXAhqvVyYRgg2lfejbUsSALV2oQkqOBoY2sU4CjdaXKdXONKbGxfI9rHX3XdwCVsWWylivvExKTAKmk02rW1m2wiNLRQGfl3y0s4yPYYe6wmibuW6R63bguq0LOCJWP68kbOvhA0rcjhK3f5N4AXskKEsWuJi74MaHBEgwYVnZQ0NqhsSaAnaXsrSjafZWChrIVelaFrC_lO_P338ifv9ZB_5hr9v_Y6878KokrR36Z3ZhbTF_iB8wC1r4j4PCPwGXqP0Z priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SzaHNofRJ3KZFh0IPjUhkybJ9KCUpSUMhSwkNyU1IsrQsJF53vSH033fGj2RLIfRqCyzPW4_5PoAPrqTjpFRwp63kClMyupSSHO0Hy_8YYhZpQ_90qk_O1ffL7HIDpmMvDF2rHGNiF6irhac98j0piEcp07n80vzixBpFp6sjhYYdqBWqzx3E2CPYTAkZawKbh0fTH2djbMZk399C1EXXHJeObTSF3muF1FJxzFmccNAEz_9KVR2i_79xe-0AdQse39SN_X1rr67WctTxM3g6FJfsoLeG57AR6hewtQY5-BIuTrvbk4ENdBEzTnmsYj2TdMuwhmXNPPhwO28Dq-YzIhVhzZLad3F5Tmpk85pdX1-w7BubnrEeCrp9BefHRz-_nvCBXIF7JcoVl0UstY0eHdypIhLKDZWGGP9iwKQurc98jJZIRcuQR4GO7dIYc1uURY6D5WuY1Is6bAPLQkVLXaecjErseyw5y0pXMq2EQ5GKBD6NcjRNj6FhurVHoU0vdYNSN53UTZ7AIYn6biThX3cPFsuZGdzJiOi8rnLlI21h4pIRq6Ay7Ps0F0I6FxL4SIoy5KWrpfV2aDbACRPelTkoyBRxskUCO6MuzeC-rbk3tgR2R_3ev35o8rt3NvAf__rm4Y-_hScp2WN3e2YHJqvlTXiHNdDKvR8M-w-a5f0o priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB619NByqKAPNZQiH5B6KFZx7DjJcVsVEBIcUFdws2zHXq0EYbVZhPrvO-MkdKuqFb0mduTMe-zxNwD7rqbjpFxwp63kCl0yqpSSHOUHw_8YYhFpQ__sXJ9M1elVcTVcCuvGavfxSDJZ6qTWlf7cCaml4uhTOOGUCV4-hWcFwXmhFE_zyWh_0aFTzc7O3-f95oISUv-f9njtYHQTnt-1C_vj3l5fr_meoy14OQSNbNJzeRuehPYVbK5BCb6Gy7NUFRnY0AZixsk_NazvEN0xjE3ZYh58uJ93gTXzGTULYYslXcvFtJvYw-Ytu7m5ZMUxO79gPcRz9wamR9--fz3hQ9ME7pWoV1xWsdY2elRcp6pI6DUU8qFdiwGdtbS-8DFaahZahzIKVFiXx1jaqq5KHCzfwkZ724Z3wIrQUArrlJNRiUOPoWTd6EbmjXBIUpHBp5GOZtFjY5iUU1Ta9FQ3SHWTqG7KDL4QqR9GEq51enC7nJlBTYyIzuumVD7S1iSmghjd1OHQ56UQ0rmQwUdilCHtWy2tt8MlAlww4ViZSUUihoutMtgdeWkGteyMFNSMq9ClzOBg5O-v1_9a_MGDDDziX3f-7-vv4UVO8pmqZHZhY7W8Cx8w1lm5vSTaPwE2UvG8 priority: 102 providerName: Springer Nature  | 
    
| Title | Machine learning-based methods for piecewise digital predistortion in mmW 5G NR systems | 
    
| URI | https://link.springer.com/article/10.1186/s13634-024-01191-7 https://www.proquest.com/docview/3128035673 https://doi.org/10.1186/s13634-024-01191-7 https://doaj.org/article/1fbc6d74cf81469981759e0c27113bbe  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2024 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: ADMLS dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: 8FG dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: AAJSJ dateStart: 20011201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: C6C dateStart: 20011201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: 40G dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: C24 dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1687-6180 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0056202 issn: 1687-6172 databaseCode: U2A dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdY-wB7GN8iY0x-QOKBedSx4ziPXVk3IVpNg2rjyYode6rYQtW0muCv5y5Jt_IhNF4uUWJFzvnOd2f7fkfIa5vhdlLMmVW5YBJMMqiUFAzkB9z_4EMScEF_NFbHE_nhPDlvYXIwF2Z9_55r9a7iQgnJwJIwRCfjLN0gXZWA390h3cn4pP8FIyql61y3-PZe91YZMn_9yC9WqAbr_3NKXtsb3ST3l-Us_36dX16umZ_hw6aOUVWjFuKpk6_7y4Xddz9-w3S82589IlutF0r7jdg8Jvd8-YRsrmETPiVno_qYpadtXYkLhgavoE3J6YqCs0tnU-_89bTytJheYPUROptjni_E8TjedFrSq6szmhzR8SltMKOrZ2QyPPw8OGZtFQbmJM8WTOiQqTw4mAms1AHhcNCHhIkyeLD-IneJCyHH6qOZTwOHGcDGIaS5znQKjcVz0im_lf4FoYkvMCa20oogec-Bb5oVqhBxwS3wgkfk7WpUzKwB2zB1kKKVadhlgF2mZpdJI3KAA3fTEoGy6wfAZdPqneHBOlWk0gVc64TYEtylzPdcnHIurPUReYPDblCdF_Pc5W1WAnQYgbFMX6PMQmd1RHZWkmFaPa-M4FjdK1GpiMjeSlpuX_-r83s3EnWHf93-v-YvyYMYBas-drNDOov50r8C52lhd8mG7B0B1UOg3f770cdPcD04HJ-cwtNBLJGqwW69OAF0EgNtNO0nbzcQYw | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ_qtrT1oVUPxQLHzuuAKmihS2FXFQLBzY0de7US7KaboBV_rr-tM3nAVpVQL1yTKHFmPs_D9swH8N6ktJ0UCG6iTHKFLhmnlJIc8YPhv3c-9LSgPxhG_VP1_Tw8X4LfXS0MHavsbGJtqPOppTXyTSmIRymMYvm5-MWJNYp2VzsKjaylVsi36xZjbWHHobueYwpXbh98RX1_CIL9vZMvfd6yDHCrRFpxmfg0yrxFpBuVeGr3QjESGgLv0LvJzIbW-4zYNVMXe4EIN4H3cZZguo4PS3zvA1hRUqWY_K3s7g1_HHe-AIOL5tRjlNTFeEFXtpNEm6WQkVQcfSSnvmuCx3-5xppB4F8_sbBhuwarV5Miu55nFxcLPnH_MTxqg1m206DvCSy5yVNYW2hx-AzOBvVpTcdaeooRJ7-Zs4a5umQYM7Ni7Kybj0vH8vGISExYMaNy4QpTA4QNG0_Y5eUZC7-x4TFrWk-Xz-H0XsT8ApYn04l7CSx0OaXWRhnpldiyGOKmeZTLIBcGRSp68KmToy6anh26znWSSDdS1yh1XUtdxz3YJVHfPEn9tusL09lIt9NXC29slMfKeloyxRQVo67UbdkgFkIa43rwkRSlySpUs8xmbXEDDpj6a-mdhKCPg016sN7pUrfmotS34O7BRqff29t3DX7jBgP_8a-v7v74O1jtnwyO9NHB8PA1PAwIm_XJnXVYrmZX7g3GX5V524Kcwc_7nld_ADJ5OLs | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ4iUMAHEAdqbR0nTnJAqFC2LaUrhKjamxs79mqlNrtsUq361_h1zOTRLkKquPSaRIkz_jwPe2Y-gDcmo-OkUHCjcskjNMm4pCLJET_o_nvnY08b-gcjtXsYfT2Oj1fgd18LQ2mVvU5sFHUxtbRHPpCCeJRilciB79Iivm8PP85-cWKQopPWnk6jhci-u1hg-FZ92NvGuX4bhsMvPz_v8o5hgNtIZDWXqc9U7i2i3ESpp1Yv5B-hEvAOLZvMbWy9z4lZM3OJF4huE3qf5CmG6viwxPfegtsJdXGnKvXhTm8F0K1o8x1V2pThhX3BTqoGlZBKRhytI6eOa4InfxnFhjvgXwuxdFS7BnfPy1l-schPT5es4fAB3O_cWLbV4u4hrLjyEawtNTd8DEcHTZ6mYx0xxZiTxSxYy1ldMfSW2WzirFtMKseKyZjoS9hsToXCNQYFCBg2KdnZ2RGLd9joB2ubTldP4PBGhPwUVstp6Z4Bi11BQbWJjPSR2LTo3GaFKmRYCIMiFQG87-WoZ223Dt1EOanSrdQ1Sl03UtdJAJ9I1JdPUqft5sJ0PtbdwtXCG6uKJLKeNksxOEV_K3ObNkyEkMa4AN7RRGnSB_U8t3lX1oADps5aeisl0ONg0wDW-7nUnaKo9BWsA9jo5_fq9nWD37jEwH_86_PrP_4a7uBq0t_2Rvsv4F5I0GxSdtZhtZ6fu5foeNXmVYNwBic3vaT-AIM-NlU | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gA98K4IFOQDEgfqso4dxzkuiFIhdYUQq5aTFTt2taINq01WFfx6ZpJsuzyEyi1KrMie99iebwBeuIKOk1LBnS4lV-iSUaWU5Cg_GP7HELNIG_pHU304Ux9OspMBJodqYTbP74XRrxshtVQcPQkndDLB85uwpTOMu0ewNZt-nHyhjEqbrtYtvXo243WFzF9_8osX6sD6_zTJG2ej23BrVS_K7xfl2dmG-zm42_cxajrUQrp18nV_1bp9_-M3TMfrrewe3BmiUDbpxeY-3Aj1A9jewCZ8CMdH3TXLwIa-EqecHF7F-pbTDcNgly3mwYeLeRNYNT-l7iNssaQ6X8zjid9sXrPz82OWvWfTT6zHjG4ewezg3ee3h3zowsC9EkXLpYmFLqNHS-CUiQSHQzEkGsoY0PvL0mc-xpK6jxYhjwItgEtjzEtTmBwHyx0Y1d_q8BhYFirKiZ1yMiox9hibFpWuZFoJh7QQCbxac8UuerAN2yUpRtueXBbJZTty2TyBN8S4y5EElN29QCrbQe-siM7rKlc-0l4n5pYYLhVh7NNcCOlcSOAlsd2SOrfL0pdDVQJOmICx7MSQzOJkTQK7a8mwg543Vgrq7pXpXCawt5aWq8__mvzepURdY61P_m_4U7idkmB11252YdQuV-EZBk-tez5ozU8MYAf- | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+methods+for+piecewise+digital+predistortion+in+mmW+5G+NR+systems&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Bulusu%2C+S.+S.+Krishna+Chaitanya&rft.au=Tervo%2C+Nuutti&rft.au=Susarla%2C+Praneeth&rft.au=Silv%C3%A9n%2C+Olli&rft.date=2024-12-01&rft.issn=1687-6180&rft.eissn=1687-6180&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-024-01191-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13634_024_01191_7 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon |