Machine learning-based methods for piecewise digital predistortion in mmW 5G NR systems

Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful tools to perform the automatic division of these pieces. Complexity reduction in the classification of piecewise digital predistortion is possi...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on advances in signal processing Vol. 2024; no. 1; pp. 97 - 24
Main Authors Bulusu, S. S. Krishna Chaitanya, Tervo, Nuutti, Susarla, Praneeth, Silvén, Olli, Sillanpää, Mikko. J., Leinonen, Marko E., Juntti, Markku, Pärssinen, Aarno
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2024
Springer
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1687-6180
1687-6172
1687-6180
DOI10.1186/s13634-024-01191-7

Cover

Abstract Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful tools to perform the automatic division of these pieces. Complexity reduction in the classification of piecewise digital predistortion is possible through carefully constructing features from both the signal statistics and the power amplifier (PA) characteristics. Our paper introduces two low-complex classical ML-based methods that facilitate the classification of baseband input data into distinct segments. These methods effectively linearize PA behavior by employing tailored Volterra models corresponding to each segment. Moreover, we perform an in-depth analysis of the proposed schemes to further optimize their classification and regression complexities. The two proposed low-complexity approaches are validated by laboratory experiments and show up to 4 dB error vector magnitude (EVM) improvement over the conventional approach for a class A PA at 28 GHz. Similarly, the EVM improvement is up to 2 dB over the vector-switched general memory polynomial scheme. With only one indirect learning architecture iteration, the two proposed schemes obey the 5G new radio standard up to 6.5 dB and 7 dB output backoff, respectively.
AbstractList Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful tools to perform the automatic division of these pieces. Complexity reduction in the classification of piecewise digital predistortion is possible through carefully constructing features from both the signal statistics and the power amplifier (PA) characteristics. Our paper introduces two low-complex classical ML-based methods that facilitate the classification of baseband input data into distinct segments. These methods effectively linearize PA behavior by employing tailored Volterra models corresponding to each segment. Moreover, we perform an in-depth analysis of the proposed schemes to further optimize their classification and regression complexities. The two proposed low-complexity approaches are validated by laboratory experiments and show up to 4 dB error vector magnitude (EVM) improvement over the conventional approach for a class A PA at 28 GHz. Similarly, the EVM improvement is up to 2 dB over the vector-switched general memory polynomial scheme. With only one indirect learning architecture iteration, the two proposed schemes obey the 5G new radio standard up to 6.5 dB and 7 dB output backoff, respectively.
Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful tools to perform the automatic division of these pieces. Complexity reduction in the classification of piecewise digital predistortion is possible through carefully constructing features from both the signal statistics and the power amplifier (PA) characteristics. Our paper introduces two low-complex classical ML-based methods that facilitate the classification of baseband input data into distinct segments. These methods effectively linearize PA behavior by employing tailored Volterra models corresponding to each segment. Moreover, we perform an in-depth analysis of the proposed schemes to further optimize their classification and regression complexities. The two proposed low-complexity approaches are validated by laboratory experiments and show up to 4 dB error vector magnitude (EVM) improvement over the conventional approach for a class A PA at 28 GHz. Similarly, the EVM improvement is up to 2 dB over the vector-switched general memory polynomial scheme. With only one indirect learning architecture iteration, the two proposed schemes obey the 5G new radio standard up to 6.5 dB and 7 dB output backoff, respectively.
Abstract Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful tools to perform the automatic division of these pieces. Complexity reduction in the classification of piecewise digital predistortion is possible through carefully constructing features from both the signal statistics and the power amplifier (PA) characteristics. Our paper introduces two low-complex classical ML-based methods that facilitate the classification of baseband input data into distinct segments. These methods effectively linearize PA behavior by employing tailored Volterra models corresponding to each segment. Moreover, we perform an in-depth analysis of the proposed schemes to further optimize their classification and regression complexities. The two proposed low-complexity approaches are validated by laboratory experiments and show up to 4 dB error vector magnitude (EVM) improvement over the conventional approach for a class A PA at 28 GHz. Similarly, the EVM improvement is up to 2 dB over the vector-switched general memory polynomial scheme. With only one indirect learning architecture iteration, the two proposed schemes obey the 5G new radio standard up to 6.5 dB and 7 dB output backoff, respectively.
ArticleNumber 97
Audience Academic
Author Susarla, Praneeth
Bulusu, S. S. Krishna Chaitanya
Leinonen, Marko E.
Tervo, Nuutti
Sillanpää, Mikko. J.
Juntti, Markku
Silvén, Olli
Pärssinen, Aarno
Author_xml – sequence: 1
  givenname: S. S. Krishna Chaitanya
  surname: Bulusu
  fullname: Bulusu, S. S. Krishna Chaitanya
  email: sri.bulusu@oulu.fi
  organization: Centre for Wireless Communications (CWC), University of Oulu
– sequence: 2
  givenname: Nuutti
  surname: Tervo
  fullname: Tervo, Nuutti
  organization: Centre for Wireless Communications (CWC), University of Oulu
– sequence: 3
  givenname: Praneeth
  surname: Susarla
  fullname: Susarla, Praneeth
  organization: Center for Machine Vision and Signal Analysis (CMVS), University of Oulu
– sequence: 4
  givenname: Olli
  surname: Silvén
  fullname: Silvén, Olli
  organization: Center for Machine Vision and Signal Analysis (CMVS), University of Oulu
– sequence: 5
  givenname: Mikko. J.
  surname: Sillanpää
  fullname: Sillanpää, Mikko. J.
  organization: Department of Mathematical Sciences (DMS), University of Oulu
– sequence: 6
  givenname: Marko E.
  surname: Leinonen
  fullname: Leinonen, Marko E.
  organization: Centre for Wireless Communications (CWC), University of Oulu
– sequence: 7
  givenname: Markku
  surname: Juntti
  fullname: Juntti, Markku
  organization: Centre for Wireless Communications (CWC), University of Oulu
– sequence: 8
  givenname: Aarno
  surname: Pärssinen
  fullname: Pärssinen, Aarno
  organization: Centre for Wireless Communications (CWC), University of Oulu
BookMark eNqNUU1r3TAQNCWFJmn-QE-Cnp1qLVsfxxDaNJC2EBJyFLK8cvSwJVfyI7x_HzUObU-lCLFimBlmRyfVUYgBq-oD0HMAyT9lYJy1NW3KBVBQizfVMXApag6SHv31fled5LyjtOMNbY6rh2_GPvqAZEKTgg9j3ZuMA5lxfYxDJi4msni0-OQzksGPfjUTWRIOPq8xrT4G4gOZ5wfSXZHvtyQf8opzfl-9dWbKePY6T6v7L5_vLr_WNz-uri8vbmrbglprJp3ixllGoW-lawRrOyqgKzi2ZRjbWedMpyhVKBwIKfrGOWGkkqKQ2Wl1vfkO0ez0kvxs0kFH4_ULENOoTUlpJ9TgessH0VonoeVKSRCdQmobAcD6HosX27z2YTGHJzNNvw2B6l89661nXXrWLz1rUVQfN9WS4s895lXv4j6FsrRm0EjKOi5YYZ1vrNGUKD64uCZjyxlw9rZ8pvMFv5DAKbRAZRE0m8CmmHNC939ZXjfIhRxGTH-y_EP1DCh3rLI
Cites_doi 10.1109/TSP.2006.879264
10.1109/TMTT.2021.3132347
10.1109/ICC.2003.1204371
10.1109/LMWC.2021.3139018
10.1109/TMTT.2006.883243
10.1109/TIT.1982.1056489
10.1109/TCS.1976.1084219
10.1109/TMTT.2020.2994311
10.1109/TMTT.2012.2184295
10.1007/978-0-387-84858-7
10.1109/TNNLS.2018.2838039
10.1109/CICN.2014.220
10.1109/MMM.2016.2616185
10.1109/COMST.2022.3199884
10.1109/ISWCS.2008.4726067
10.1109/TCSII.2021.3109973
10.1109/TMTT.2010.2047920
10.1038/nature14539
10.1007/s10489-014-0524-2
10.1109/BigData52589.2021.9671742
10.1109/TBC.2021.3132158
10.1109/IMS37964.2023.10188119
10.1007/978-1-4614-6849-3
10.1109/TMTT.2021.3081096
10.1109/LMWC.2020.3004003
10.1109/TCSI.2018.2872465
10.1109/TCSI.2022.3150408
10.1109/TMTT.2018.2855134
10.1109/TMTT.2018.2873331
10.1109/TMTT.2015.2480739
10.1109/ISWCS.2019.8877236
10.1109/TMTT.2022.3224192
10.1109/TMTT.2022.3187129
10.1109/MMM.2014.2356037
10.1201/9781003025672
10.1109/TMTT.2016.2642945
10.1109/LMWC.2018.2889004
10.1109/ICASSP49357.2023.10096989
10.1109/MMM.2009.934516
10.1109/JETCAS.2020.3000103
ContentType Journal Article
Copyright The Author(s) 2024
COPYRIGHT 2024 Springer
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: COPYRIGHT 2024 Springer
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1186/s13634-024-01191-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-6180
EndPage 24
ExternalDocumentID oai_doaj_org_article_1fbc6d74cf81469981759e0c27113bbe
10.1186/s13634-024-01191-7
A816014108
10_1186_s13634_024_01191_7
GrantInformation_xml – fundername: Research Council of Finland
  grantid: 346208; 346208; 346208; 346208; 346208; 346208; 346208; 346208
  funderid: http://dx.doi.org/10.13039/501100002341
– fundername: University of Oulu (including Oulu University Hospital)
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABEEZ
ABUWG
ACACY
ACGFO
ACGFS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ARCSS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
DU5
DWQXO
E3Z
EBLON
EBS
EDO
F5P
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
M0N
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RHW
RNS
RSV
SEG
SOJ
TUS
U2A
AASML
AAYXX
CITATION
OVT
PUEGO
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
2VQ
ADTOC
AFWIH
AHSBF
C1A
EJD
HGAVV
HZ~
IL9
IPNFZ
O9-
RIG
UNPAY
ID FETCH-LOGICAL-c419t-38f96afc301b48f27345071538fe4153ac5cffa59009e7f1787b2ff7a89877343
IEDL.DBID UNPAY
ISSN 1687-6180
1687-6172
IngestDate Tue Oct 14 18:52:23 EDT 2025
Sun Sep 07 11:06:45 EDT 2025
Sat Oct 11 06:11:58 EDT 2025
Mon Oct 20 16:53:31 EDT 2025
Wed Oct 01 02:37:58 EDT 2025
Fri Feb 21 02:40:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Machine learning
Behavioral modeling
Millimeter wave (mmW)
Digital predistortion (DPD)
5G new radio (NR)
Low complex
Power amplifier (PA)
Linearization
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-38f96afc301b48f27345071538fe4153ac5cffa59009e7f1787b2ff7a89877343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1186/s13634-024-01191-7
PQID 3128035673
PQPubID 237299
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_1fbc6d74cf81469981759e0c27113bbe
unpaywall_primary_10_1186_s13634_024_01191_7
proquest_journals_3128035673
gale_infotracacademiconefile_A816014108
crossref_primary_10_1186_s13634_024_01191_7
springer_journals_10_1186_s13634_024_01191_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on advances in signal processing
PublicationTitleAbbrev EURASIP J. Adv. Signal Process
PublicationYear 2024
Publisher Springer International Publishing
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References PedregosaFScikit-learn: machine Learning in PythonJ. Mach. Learn. Res.201112282528302854348
LiuZHuXXuLWangWGhannouchiFMLow computational complexity digital predistortion based on convolutional neural network for wideband power amplifiersIEEE Trans. Circuits Syst. II. Express Br.20226931702170610.1109/TCSII.2021.3109973
HanRQiaoWJiangCYangGTanJLiuFLow complexity adaptive model for digital predistortion of RF power amplifiers in time-varying configurationsIEEE Trans. Microw. Theory Techn.20237152004201510.1109/TMTT.2022.3224192
ChenWLiuXChuJWuHFengZGhannouchiFMA low complexity moving average nested gmp model for digital predistortion of broadband power amplifiersIEEE Trans. Circuits Syst. I Regul. Pap.20226952070208310.1109/TCSI.2022.3150408
BeltagyYMitranPBoumaizaSDirect learning algorithm for digital predistortion training using sub-nyquist intermediate frequency feedback signalIEEE Trans. Microw. Theory Techn.201967126727710.1109/TMTT.2018.2873331
WangHLiGZhouCTaoWLiuFZhuA1-bit observation for direct-learning-based digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.20176572465247510.1109/TMTT.2016.2642945
WangSLiZLiuCZhangXZhangHTraining data reduction to speed up SVM trainingSpringer Appl. Intell.201441240542010.1007/s10489-014-0524-2
Kumar, P. (2019, Dec.) Computational Complexity of ML Models. [Online]. Available: https://medium.com/analytics-vidhya/time-complexity-of-ml-models-4ec39fad2770
Le DucHFeuvrieBPastoreMWangYAn adaptive cascaded ILA- and DLA-based digital predistorter for linearizing an RF power amplifierIEEE Trans. Circuits Syst. I Regul. Pap.20196631031104110.1109/TCSI.2018.2872465
AfsardoostSErikssonTFagerCDigital predistortion using a vector-switched modelIEEE Trans. Microw. Theory Techn.20126041166117410.1109/TMTT.2012.2184295
KhanBTervoNJokinenMPärssinenAJunttiMStatistical digital predistortion of 5G millimeter-wave RF beamforming transmitter under random amplitude variationsIEEE Trans. Microw. Theory Techn.20227094284429610.1109/TMTT.2022.3187129
Pooria, V., Somayeh, M., Borhanuddin, M.A., S., N.: Power Efficiency in Broadband Wireless Communications, p. 83. Taylor & Francis, Boca Raton (2014)
The MathWorks, Inc. (2022) Power Amplifier. [ONLINE]. Available: https://www.mathworks.com/help/simrf/ref/poweramplifier.html
GhannouchiFMHammiOBehavioral modeling and predistortionIEEE Microw. Mag.2009107526410.1109/MMM.2009.934516
LiYWangXZhuAReducing power consumption of digital predistortion for RF power amplifiers using real-time model switchingIEEE Trans. Microw. Theory Techn.20227031500150810.1109/TMTT.2021.3132347
HanzoLKellerTOFDM and MC-CDMA2007New JerseyWiley4445
LiuZHuXWangWGhannouchiFMA joint PAPR reduction and digital predistortion based on real-valued neural networks for OFDM systemsIEEE Trans. Broadcasting202268122323110.1109/TBC.2021.3132158
L.1470: Greenhouse gas emissions trajectories for the information and communication technology sector compatible with the UNFCCC Paris Agreement, p. 49. Int. Telecommun. Union, Geneva, Switzerland (2020)
Turing: Deep Learning vs Machine Learning: The Ultimate Battle. https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning (2022)
ArangalaCLinear Algebra With Machine Learning and Data2023Boca RatonCRC Press21510.1201/9781003025672
MorganDRMaZKimJZierdtMGPastalanJA generalized memory polynomial model for digital predistortion of RF power amplifiersIEEE Trans. Signal Process.200654103852386010.1109/TSP.2006.879264
Bulusu, S.S.K.C., Khan, B., Nuutti, T., Leinonen, M.E., Sillanpää, M.J., Silvén, O., Juntti, M., Pärssinen, A.: Experimental demonstration of a machine learning-based piece-wise digital predistortion method in 5G NR systems. In: IEEE MTT-S Int. Microw. Symp Dig., pp. 1–5 (2023)
Will, J., Arslan, O., Bader, J., Scheinert, D., Thamsen, L.: Training data reduction for performance models of data analytics jobs in the cloud. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 3141–3146 (2021). 10.1109/BigData52589.2021.9671742
GershoAGrayRMVector Quantization and Signal Compression1991BostonSpringer428
ZhuAPedroJCBrazilTJDynamic deviation reduction-based volterra behavioral modeling of RF power amplifiersIEEE Trans. Microw. Theory Techn.200654124323433210.1109/TMTT.2006.883243
YuYCaiJZhuX-WChenPYuCSelf-sensing digital predistortion of RF power amplifiers for 6G intelligent radioIEEE Microw. Wirel. Compon. Lett.202232547547810.1109/LMWC.2021.3139018
LiYCaoWZhuAInstantaneous sample indexed magnitude-selective affine function-based behavioral model for digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.201866115000501010.1109/TMTT.2018.2855134
3GPP: 5G;NR; Base Station (BS) Radio Transmission and Reception (2020)
GéronAHands-on Machine Learning with Scikit-learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems2019BostonO’Reilly92
Paaso, H., Mammela, A.: Comparison of direct learning and indirect learning predistortion architectures. In: Proc. 5th Int. Symp. Wireless Commun. Syst. (ISWCS), pp. 309–313 (2008). https://doi.org/10.1109/ISWCS.2008.4726067
ZhangCUengY-LStuderCBurgAArtificial intelligence for 5G and beyond 5G: implementations, algorithms, and optimizationsIEEE J. Emerg. Sel.202010214916310.1109/JETCAS.2020.3000103
S.S.K.C. Bulusu, T. Nuutti, P. Susarla, M.J. Sillanpää, O. Silvén, M. Juntti, A. Pärssinen, Machine learning-aided piece-wise modeling technique of power amplifier for digital predistortion. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. 1–5 (2023)
KimJKonstantinouKDigital predistortion of wideband signals based on power amplifier model with memoryIEEE Trans. Circuits Syst.2001372314171418
BrihuegaAAnttilaLValkamaMNeural-network-based digital predistortion for active antenna arrays under load modulationIEEE Microw. Wirel. Compon. Lett.202030884384610.1109/LMWC.2020.3004003
HaiderMFYouFHeSRahkonenTAikioJPPredistortion-based linearization for 5G and beyond millimeter-wave transceiver systems: a comprehensive surveyIEEE Commun. Surv. Tutor.20222442029207210.1109/COMST.2022.3199884
GuanLZhuAGreen communications: digital predistortion for wideband RF power amplifiersIEEE Microw. Mag.2014157849910.1109/MMM.2014.2356037
TehraniASCaoHAfsardoostSErikssonTIsakssonMFagerCA comparative analysis of the complexity/accuracy tradeoff in power amplifier behavioral modelsIEEE Trans. Microw. Theory Techn.20105861510152010.1109/TMTT.2010.2047920
LloydSLeast squares quantization in PCMIEEE Trans. Inf. Theory198228212913765180710.1109/TIT.1982.1056489
Pakhira, M.K.: A linear time-complexity k-means algorithm using cluster shifting. In: 2014 International Conference on Computational Intelligence and Communication Networks, pp. 1047–1051 (2014). 10.1109/CICN.2014.220
SchetzenMTheory of pth-order inverses of nonlinear systemsIEEE Trans. Circuits Syst.197623528529145664410.1109/TCS.1976.1084219
BrihuegaAAbdelazizMAnttilaLTurunenMAllénMErikssonTValkamaMPiecewise digital predistortion for mmWave active antenna arrays: algorithms and measurementsIEEE Trans. Microw. Theory Techn.20206894000401710.1109/TMTT.2020.2994311
Morgan, D.R., Ma, Z., Ding, L.: Reducing measurement noise effects in digital predistortion of RF power amplifiers. In: IEEE Int. Conf. Commun. (ICC), vol. 4, pp. 2436–2439 (2003). https://doi.org/10.1109/ICC.2003.1204371
Abdelaziz, M., Anttila, L., Brihuega, A., Allen, M., Valkama, M.: Decorrelation-based Piecewise Digital Predistortion: Operating Principle and RF Measurements. In: Proc. 16th Int. Symp. Wireless Commun. Syst. (ISWCS), pp. 340–344 (2019). https://doi.org/10.1109/ISWCS.2019.8877236
GuoYYuCZhuAPower adaptive digital predistortion for wideband RF power amplifiers with dynamic power transmissionIEEE Trans. Microw. Theory Techn.201563113595360710.1109/TMTT.2015.2480739
HallPCurtisJPandeyPMachine Learning for High-Risk Applications2023SebastopolO’Reilly51
KuhnMJohnsonKApplied Predictive Modeling2013New YorkSpringer46310.1007/978-1-4614-6849-3
HadiMUTraversoPATartariniGVenardOBaudoinGPolleuxJ-LDigital predistortion for linearity improvement of VCSEL-SSMF-based radio-over-fiber linksIEEE Microw. Wirel. Compon. Lett.201929215515710.1109/LMWC.2018.2889004
LiYWangXPangJZhuABoosted model tree-based behavioral modeling for digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.20216993976398810.1109/TMTT.2021.3081096
LeCunYIBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
KellyNCaoWZhuAPreparing linearity and efficiency for 5G: digital predistortion for dual-band doherty power amplifiers with mixed-mode carrier aggregationIEEE Microw. Mag.2017181768410.1109/MMM.2016.2616185
HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning2009New YorkSpringer210.1007/978-0-387-84858-7
WangDAzizMHelaouiMGhannouchiFMAugmented real-valued time-delay neural network for compensation of distortions and impairments in wireless transmittersIEEE Trans. Neural Netw. Learn.201930124225410.1109/TNNLS.2018.2838039
(2017) The Ciao Wireless Website. [ONLINE]. Available: https://www.ciaowireless.com
W Chen (1191_CR26) 2022; 69
S Afsardoost (1191_CR7) 2012; 60
AS Tehrani (1191_CR28) 2010; 58
N Kelly (1191_CR4) 2017; 18
Z Liu (1191_CR41) 2022; 68
R Han (1191_CR16) 2023; 71
1191_CR18
1191_CR17
MU Hadi (1191_CR38) 2019; 29
1191_CR19
1191_CR53
A Brihuega (1191_CR20) 2020; 68
H Wang (1191_CR36) 2017; 65
Y Yu (1191_CR42) 2022; 32
1191_CR52
1191_CR51
A Brihuega (1191_CR12) 2020; 30
S Wang (1191_CR29) 2014; 41
D Wang (1191_CR11) 2019; 30
MF Haider (1191_CR5) 2022; 24
FM Ghannouchi (1191_CR3) 2009; 10
P Hall (1191_CR44) 2023
Y Li (1191_CR25) 2018; 66
DR Morgan (1191_CR23) 2006; 54
A Géron (1191_CR35) 2019
1191_CR40
A Zhu (1191_CR24) 2006; 54
F Pedregosa (1191_CR46) 2011; 12
S Lloyd (1191_CR49) 1982; 28
H Le Duc (1191_CR39) 2019; 66
B Khan (1191_CR14) 2022; 70
M Kuhn (1191_CR45) 2013
L Guan (1191_CR2) 2014; 15
Y Guo (1191_CR15) 2015; 63
1191_CR1
J Kim (1191_CR22) 2001; 37
C Arangala (1191_CR47) 2023
1191_CR32
1191_CR31
C Zhang (1191_CR6) 2020; 10
1191_CR34
A Gersho (1191_CR50) 1991
1191_CR30
L Hanzo (1191_CR43) 2007
M Schetzen (1191_CR21) 1976; 23
Z Liu (1191_CR13) 2022; 69
Y Li (1191_CR10) 2022; 70
1191_CR8
YI LeCun (1191_CR33) 2015; 521
1191_CR27
T Hastie (1191_CR48) 2009
Y Li (1191_CR9) 2021; 69
Y Beltagy (1191_CR37) 2019; 67
References_xml – reference: KellyNCaoWZhuAPreparing linearity and efficiency for 5G: digital predistortion for dual-band doherty power amplifiers with mixed-mode carrier aggregationIEEE Microw. Mag.2017181768410.1109/MMM.2016.2616185
– reference: MorganDRMaZKimJZierdtMGPastalanJA generalized memory polynomial model for digital predistortion of RF power amplifiersIEEE Trans. Signal Process.200654103852386010.1109/TSP.2006.879264
– reference: HaiderMFYouFHeSRahkonenTAikioJPPredistortion-based linearization for 5G and beyond millimeter-wave transceiver systems: a comprehensive surveyIEEE Commun. Surv. Tutor.20222442029207210.1109/COMST.2022.3199884
– reference: LiYWangXPangJZhuABoosted model tree-based behavioral modeling for digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.20216993976398810.1109/TMTT.2021.3081096
– reference: LiuZHuXWangWGhannouchiFMA joint PAPR reduction and digital predistortion based on real-valued neural networks for OFDM systemsIEEE Trans. Broadcasting202268122323110.1109/TBC.2021.3132158
– reference: HanRQiaoWJiangCYangGTanJLiuFLow complexity adaptive model for digital predistortion of RF power amplifiers in time-varying configurationsIEEE Trans. Microw. Theory Techn.20237152004201510.1109/TMTT.2022.3224192
– reference: HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning2009New YorkSpringer210.1007/978-0-387-84858-7
– reference: ChenWLiuXChuJWuHFengZGhannouchiFMA low complexity moving average nested gmp model for digital predistortion of broadband power amplifiersIEEE Trans. Circuits Syst. I Regul. Pap.20226952070208310.1109/TCSI.2022.3150408
– reference: YuYCaiJZhuX-WChenPYuCSelf-sensing digital predistortion of RF power amplifiers for 6G intelligent radioIEEE Microw. Wirel. Compon. Lett.202232547547810.1109/LMWC.2021.3139018
– reference: GuoYYuCZhuAPower adaptive digital predistortion for wideband RF power amplifiers with dynamic power transmissionIEEE Trans. Microw. Theory Techn.201563113595360710.1109/TMTT.2015.2480739
– reference: The MathWorks, Inc. (2022) Power Amplifier. [ONLINE]. Available: https://www.mathworks.com/help/simrf/ref/poweramplifier.html
– reference: ZhangCUengY-LStuderCBurgAArtificial intelligence for 5G and beyond 5G: implementations, algorithms, and optimizationsIEEE J. Emerg. Sel.202010214916310.1109/JETCAS.2020.3000103
– reference: WangSLiZLiuCZhangXZhangHTraining data reduction to speed up SVM trainingSpringer Appl. Intell.201441240542010.1007/s10489-014-0524-2
– reference: 3GPP: 5G;NR; Base Station (BS) Radio Transmission and Reception (2020)
– reference: Pakhira, M.K.: A linear time-complexity k-means algorithm using cluster shifting. In: 2014 International Conference on Computational Intelligence and Communication Networks, pp. 1047–1051 (2014). 10.1109/CICN.2014.220
– reference: KhanBTervoNJokinenMPärssinenAJunttiMStatistical digital predistortion of 5G millimeter-wave RF beamforming transmitter under random amplitude variationsIEEE Trans. Microw. Theory Techn.20227094284429610.1109/TMTT.2022.3187129
– reference: BrihuegaAAnttilaLValkamaMNeural-network-based digital predistortion for active antenna arrays under load modulationIEEE Microw. Wirel. Compon. Lett.202030884384610.1109/LMWC.2020.3004003
– reference: BeltagyYMitranPBoumaizaSDirect learning algorithm for digital predistortion training using sub-nyquist intermediate frequency feedback signalIEEE Trans. Microw. Theory Techn.201967126727710.1109/TMTT.2018.2873331
– reference: Bulusu, S.S.K.C., Khan, B., Nuutti, T., Leinonen, M.E., Sillanpää, M.J., Silvén, O., Juntti, M., Pärssinen, A.: Experimental demonstration of a machine learning-based piece-wise digital predistortion method in 5G NR systems. In: IEEE MTT-S Int. Microw. Symp Dig., pp. 1–5 (2023)
– reference: ZhuAPedroJCBrazilTJDynamic deviation reduction-based volterra behavioral modeling of RF power amplifiersIEEE Trans. Microw. Theory Techn.200654124323433210.1109/TMTT.2006.883243
– reference: ArangalaCLinear Algebra With Machine Learning and Data2023Boca RatonCRC Press21510.1201/9781003025672
– reference: KimJKonstantinouKDigital predistortion of wideband signals based on power amplifier model with memoryIEEE Trans. Circuits Syst.2001372314171418
– reference: Will, J., Arslan, O., Bader, J., Scheinert, D., Thamsen, L.: Training data reduction for performance models of data analytics jobs in the cloud. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 3141–3146 (2021). 10.1109/BigData52589.2021.9671742
– reference: TehraniASCaoHAfsardoostSErikssonTIsakssonMFagerCA comparative analysis of the complexity/accuracy tradeoff in power amplifier behavioral modelsIEEE Trans. Microw. Theory Techn.20105861510152010.1109/TMTT.2010.2047920
– reference: GuanLZhuAGreen communications: digital predistortion for wideband RF power amplifiersIEEE Microw. Mag.2014157849910.1109/MMM.2014.2356037
– reference: (2017) The Ciao Wireless Website. [ONLINE]. Available: https://www.ciaowireless.com/
– reference: LeCunYIBengioYHintonGDeep learningNature2015521755343644410.1038/nature14539
– reference: KuhnMJohnsonKApplied Predictive Modeling2013New YorkSpringer46310.1007/978-1-4614-6849-3
– reference: Abdelaziz, M., Anttila, L., Brihuega, A., Allen, M., Valkama, M.: Decorrelation-based Piecewise Digital Predistortion: Operating Principle and RF Measurements. In: Proc. 16th Int. Symp. Wireless Commun. Syst. (ISWCS), pp. 340–344 (2019). https://doi.org/10.1109/ISWCS.2019.8877236
– reference: LiuZHuXXuLWangWGhannouchiFMLow computational complexity digital predistortion based on convolutional neural network for wideband power amplifiersIEEE Trans. Circuits Syst. II. Express Br.20226931702170610.1109/TCSII.2021.3109973
– reference: LiYWangXZhuAReducing power consumption of digital predistortion for RF power amplifiers using real-time model switchingIEEE Trans. Microw. Theory Techn.20227031500150810.1109/TMTT.2021.3132347
– reference: Le DucHFeuvrieBPastoreMWangYAn adaptive cascaded ILA- and DLA-based digital predistorter for linearizing an RF power amplifierIEEE Trans. Circuits Syst. I Regul. Pap.20196631031104110.1109/TCSI.2018.2872465
– reference: GéronAHands-on Machine Learning with Scikit-learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems2019BostonO’Reilly92
– reference: HadiMUTraversoPATartariniGVenardOBaudoinGPolleuxJ-LDigital predistortion for linearity improvement of VCSEL-SSMF-based radio-over-fiber linksIEEE Microw. Wirel. Compon. Lett.201929215515710.1109/LMWC.2018.2889004
– reference: HallPCurtisJPandeyPMachine Learning for High-Risk Applications2023SebastopolO’Reilly51
– reference: PedregosaFScikit-learn: machine Learning in PythonJ. Mach. Learn. Res.201112282528302854348
– reference: Pooria, V., Somayeh, M., Borhanuddin, M.A., S., N.: Power Efficiency in Broadband Wireless Communications, p. 83. Taylor & Francis, Boca Raton (2014)
– reference: Kumar, P. (2019, Dec.) Computational Complexity of ML Models. [Online]. Available: https://medium.com/analytics-vidhya/time-complexity-of-ml-models-4ec39fad2770/
– reference: L.1470: Greenhouse gas emissions trajectories for the information and communication technology sector compatible with the UNFCCC Paris Agreement, p. 49. Int. Telecommun. Union, Geneva, Switzerland (2020)
– reference: Paaso, H., Mammela, A.: Comparison of direct learning and indirect learning predistortion architectures. In: Proc. 5th Int. Symp. Wireless Commun. Syst. (ISWCS), pp. 309–313 (2008). https://doi.org/10.1109/ISWCS.2008.4726067
– reference: GhannouchiFMHammiOBehavioral modeling and predistortionIEEE Microw. Mag.2009107526410.1109/MMM.2009.934516
– reference: SchetzenMTheory of pth-order inverses of nonlinear systemsIEEE Trans. Circuits Syst.197623528529145664410.1109/TCS.1976.1084219
– reference: S.S.K.C. Bulusu, T. Nuutti, P. Susarla, M.J. Sillanpää, O. Silvén, M. Juntti, A. Pärssinen, Machine learning-aided piece-wise modeling technique of power amplifier for digital predistortion. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), pp. 1–5 (2023)
– reference: WangHLiGZhouCTaoWLiuFZhuA1-bit observation for direct-learning-based digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.20176572465247510.1109/TMTT.2016.2642945
– reference: LloydSLeast squares quantization in PCMIEEE Trans. Inf. Theory198228212913765180710.1109/TIT.1982.1056489
– reference: AfsardoostSErikssonTFagerCDigital predistortion using a vector-switched modelIEEE Trans. Microw. Theory Techn.20126041166117410.1109/TMTT.2012.2184295
– reference: WangDAzizMHelaouiMGhannouchiFMAugmented real-valued time-delay neural network for compensation of distortions and impairments in wireless transmittersIEEE Trans. Neural Netw. Learn.201930124225410.1109/TNNLS.2018.2838039
– reference: Morgan, D.R., Ma, Z., Ding, L.: Reducing measurement noise effects in digital predistortion of RF power amplifiers. In: IEEE Int. Conf. Commun. (ICC), vol. 4, pp. 2436–2439 (2003). https://doi.org/10.1109/ICC.2003.1204371
– reference: GershoAGrayRMVector Quantization and Signal Compression1991BostonSpringer428
– reference: BrihuegaAAbdelazizMAnttilaLTurunenMAllénMErikssonTValkamaMPiecewise digital predistortion for mmWave active antenna arrays: algorithms and measurementsIEEE Trans. Microw. Theory Techn.20206894000401710.1109/TMTT.2020.2994311
– reference: Turing: Deep Learning vs Machine Learning: The Ultimate Battle. https://www.turing.com/kb/ultimate-battle-between-deep-learning-and-machine-learning (2022)
– reference: LiYCaoWZhuAInstantaneous sample indexed magnitude-selective affine function-based behavioral model for digital predistortion of RF power amplifiersIEEE Trans. Microw. Theory Techn.201866115000501010.1109/TMTT.2018.2855134
– reference: HanzoLKellerTOFDM and MC-CDMA2007New JerseyWiley4445
– volume: 54
  start-page: 3852
  issue: 10
  year: 2006
  ident: 1191_CR23
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.879264
– volume: 70
  start-page: 1500
  issue: 3
  year: 2022
  ident: 1191_CR10
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2021.3132347
– ident: 1191_CR53
  doi: 10.1109/ICC.2003.1204371
– volume: 32
  start-page: 475
  issue: 5
  year: 2022
  ident: 1191_CR42
  publication-title: IEEE Microw. Wirel. Compon. Lett.
  doi: 10.1109/LMWC.2021.3139018
– volume: 54
  start-page: 4323
  issue: 12
  year: 2006
  ident: 1191_CR24
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2006.883243
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 1191_CR49
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1982.1056489
– ident: 1191_CR18
– volume: 23
  start-page: 285
  issue: 5
  year: 1976
  ident: 1191_CR21
  publication-title: IEEE Trans. Circuits Syst.
  doi: 10.1109/TCS.1976.1084219
– volume: 68
  start-page: 4000
  issue: 9
  year: 2020
  ident: 1191_CR20
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2020.2994311
– volume: 60
  start-page: 1166
  issue: 4
  year: 2012
  ident: 1191_CR7
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2012.2184295
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1191_CR46
  publication-title: J. Mach. Learn. Res.
– ident: 1191_CR27
– ident: 1191_CR31
– ident: 1191_CR52
– start-page: 2
  volume-title: The Elements of Statistical Learning
  year: 2009
  ident: 1191_CR48
  doi: 10.1007/978-0-387-84858-7
– volume: 30
  start-page: 242
  issue: 1
  year: 2019
  ident: 1191_CR11
  publication-title: IEEE Trans. Neural Netw. Learn.
  doi: 10.1109/TNNLS.2018.2838039
– ident: 1191_CR32
  doi: 10.1109/CICN.2014.220
– volume: 18
  start-page: 76
  issue: 1
  year: 2017
  ident: 1191_CR4
  publication-title: IEEE Microw. Mag.
  doi: 10.1109/MMM.2016.2616185
– volume: 37
  start-page: 1417
  issue: 23
  year: 2001
  ident: 1191_CR22
  publication-title: IEEE Trans. Circuits Syst.
– start-page: 51
  volume-title: Machine Learning for High-Risk Applications
  year: 2023
  ident: 1191_CR44
– volume: 24
  start-page: 2029
  issue: 4
  year: 2022
  ident: 1191_CR5
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2022.3199884
– ident: 1191_CR40
  doi: 10.1109/ISWCS.2008.4726067
– volume: 69
  start-page: 1702
  issue: 3
  year: 2022
  ident: 1191_CR13
  publication-title: IEEE Trans. Circuits Syst. II. Express Br.
  doi: 10.1109/TCSII.2021.3109973
– volume: 58
  start-page: 1510
  issue: 6
  year: 2010
  ident: 1191_CR28
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2010.2047920
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 1191_CR33
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 1191_CR34
– ident: 1191_CR51
– volume: 41
  start-page: 405
  issue: 2
  year: 2014
  ident: 1191_CR29
  publication-title: Springer Appl. Intell.
  doi: 10.1007/s10489-014-0524-2
– ident: 1191_CR30
  doi: 10.1109/BigData52589.2021.9671742
– volume: 68
  start-page: 223
  issue: 1
  year: 2022
  ident: 1191_CR41
  publication-title: IEEE Trans. Broadcasting
  doi: 10.1109/TBC.2021.3132158
– start-page: 44
  volume-title: OFDM and MC-CDMA
  year: 2007
  ident: 1191_CR43
– ident: 1191_CR19
  doi: 10.1109/IMS37964.2023.10188119
– start-page: 463
  volume-title: Applied Predictive Modeling
  year: 2013
  ident: 1191_CR45
  doi: 10.1007/978-1-4614-6849-3
– volume: 69
  start-page: 3976
  issue: 9
  year: 2021
  ident: 1191_CR9
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2021.3081096
– volume: 30
  start-page: 843
  issue: 8
  year: 2020
  ident: 1191_CR12
  publication-title: IEEE Microw. Wirel. Compon. Lett.
  doi: 10.1109/LMWC.2020.3004003
– volume: 66
  start-page: 1031
  issue: 3
  year: 2019
  ident: 1191_CR39
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2018.2872465
– volume: 69
  start-page: 2070
  issue: 5
  year: 2022
  ident: 1191_CR26
  publication-title: IEEE Trans. Circuits Syst. I Regul. Pap.
  doi: 10.1109/TCSI.2022.3150408
– volume: 66
  start-page: 5000
  issue: 11
  year: 2018
  ident: 1191_CR25
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2018.2855134
– volume: 67
  start-page: 267
  issue: 1
  year: 2019
  ident: 1191_CR37
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2018.2873331
– ident: 1191_CR1
– volume: 63
  start-page: 3595
  issue: 11
  year: 2015
  ident: 1191_CR15
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2015.2480739
– ident: 1191_CR8
  doi: 10.1109/ISWCS.2019.8877236
– volume: 71
  start-page: 2004
  issue: 5
  year: 2023
  ident: 1191_CR16
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2022.3224192
– volume: 70
  start-page: 4284
  issue: 9
  year: 2022
  ident: 1191_CR14
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2022.3187129
– volume: 15
  start-page: 84
  issue: 7
  year: 2014
  ident: 1191_CR2
  publication-title: IEEE Microw. Mag.
  doi: 10.1109/MMM.2014.2356037
– start-page: 215
  volume-title: Linear Algebra With Machine Learning and Data
  year: 2023
  ident: 1191_CR47
  doi: 10.1201/9781003025672
– volume: 65
  start-page: 2465
  issue: 7
  year: 2017
  ident: 1191_CR36
  publication-title: IEEE Trans. Microw. Theory Techn.
  doi: 10.1109/TMTT.2016.2642945
– volume: 29
  start-page: 155
  issue: 2
  year: 2019
  ident: 1191_CR38
  publication-title: IEEE Microw. Wirel. Compon. Lett.
  doi: 10.1109/LMWC.2018.2889004
– ident: 1191_CR17
  doi: 10.1109/ICASSP49357.2023.10096989
– volume: 10
  start-page: 52
  issue: 7
  year: 2009
  ident: 1191_CR3
  publication-title: IEEE Microw. Mag.
  doi: 10.1109/MMM.2009.934516
– start-page: 92
  volume-title: Hands-on Machine Learning with Scikit-learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems
  year: 2019
  ident: 1191_CR35
– volume: 10
  start-page: 149
  issue: 2
  year: 2020
  ident: 1191_CR6
  publication-title: IEEE J. Emerg. Sel.
  doi: 10.1109/JETCAS.2020.3000103
– start-page: 428
  volume-title: Vector Quantization and Signal Compression
  year: 1991
  ident: 1191_CR50
SSID ssj0056202
Score 2.4044385
Snippet Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the useful...
Abstract Piecewise linearization techniques require dividing the signal into multiple pieces each linearized individually. Machine learning (ML) is one of the...
SourceID doaj
unpaywall
proquest
gale
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 97
SubjectTerms 5G mobile communication
5G new radio (NR)
Algorithms
Artificial intelligence
Behavioral modeling
Classification
Complexity
Decision trees
Deep learning
Digital predistortion (DPD)
Energy consumption
Engineering
Error analysis
Explicit knowledge
Linearization
Low complex
Machine learning
Methods
Polynomials
Power amplifiers
Quantum Information Technology
Receivers & amplifiers
Segments
Signal processing
Signal,Image and Speech Processing
Spintronics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTxUxEJ8YLsqBqGhYQNODCQdpeN12u90jGJGYwIFA4Na03Za8BJaXt48Q_3tmtvvwGRP14HW3h-l8Tzv9DcAn39B1Uim4105yhSEZTUpJjvqD6X-KqUp0oH96pk8u1ffr6npl1Bf1hGV44My4A5F80G2tQqLDKiwOMN41cRLKWgjpfSTvOzHNspjKPhiDOvXt5CcyRh_0QmqpOMYjThhngte_hKEBrf93n7xyOboOLx-6mfvx6G5vV-LP8WvYGBNHdpgJfgMvYvcW1lfgBDfh6nTojIxsHAVxwylGtSxPie4Z5qdsNo0hPk77yNrpDQ0MYbM5Pc3F0ptExKYdu7u7YtU3dnbOMsxz_w4uj79efDnh4-AEHpRoFlya1GiXAhqvVyYRgg2lfejbUsSALV2oQkqOBoY2sU4CjdaXKdXONKbGxfI9rHX3XdwCVsWWylivvExKTAKmk02rW1m2wiNLRQGfl3y0s4yPYYe6wmibuW6R63bguq0LOCJWP68kbOvhA0rcjhK3f5N4AXskKEsWuJi74MaHBEgwYVnZQ0NqhsSaAnaXsrSjafZWChrIVelaFrC_lO_P338ifv9ZB_5hr9v_Y6878KokrR36Z3ZhbTF_iB8wC1r4j4PCPwGXqP0Z
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SzaHNofRJ3KZFh0IPjUhkybJ9KCUpSUMhSwkNyU1IsrQsJF53vSH033fGj2RLIfRqCyzPW4_5PoAPrqTjpFRwp63kClMyupSSHO0Hy_8YYhZpQ_90qk_O1ffL7HIDpmMvDF2rHGNiF6irhac98j0piEcp07n80vzixBpFp6sjhYYdqBWqzx3E2CPYTAkZawKbh0fTH2djbMZk399C1EXXHJeObTSF3muF1FJxzFmccNAEz_9KVR2i_79xe-0AdQse39SN_X1rr67WctTxM3g6FJfsoLeG57AR6hewtQY5-BIuTrvbk4ENdBEzTnmsYj2TdMuwhmXNPPhwO28Dq-YzIhVhzZLad3F5Tmpk85pdX1-w7BubnrEeCrp9BefHRz-_nvCBXIF7JcoVl0UstY0eHdypIhLKDZWGGP9iwKQurc98jJZIRcuQR4GO7dIYc1uURY6D5WuY1Is6bAPLQkVLXaecjErseyw5y0pXMq2EQ5GKBD6NcjRNj6FhurVHoU0vdYNSN53UTZ7AIYn6biThX3cPFsuZGdzJiOi8rnLlI21h4pIRq6Ay7Ps0F0I6FxL4SIoy5KWrpfV2aDbACRPelTkoyBRxskUCO6MuzeC-rbk3tgR2R_3ev35o8rt3NvAf__rm4Y-_hScp2WN3e2YHJqvlTXiHNdDKvR8M-w-a5f0o
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB619NByqKAPNZQiH5B6KFZx7DjJcVsVEBIcUFdws2zHXq0EYbVZhPrvO-MkdKuqFb0mduTMe-zxNwD7rqbjpFxwp63kCl0yqpSSHOUHw_8YYhFpQ__sXJ9M1elVcTVcCuvGavfxSDJZ6qTWlf7cCaml4uhTOOGUCV4-hWcFwXmhFE_zyWh_0aFTzc7O3-f95oISUv-f9njtYHQTnt-1C_vj3l5fr_meoy14OQSNbNJzeRuehPYVbK5BCb6Gy7NUFRnY0AZixsk_NazvEN0xjE3ZYh58uJ93gTXzGTULYYslXcvFtJvYw-Ytu7m5ZMUxO79gPcRz9wamR9--fz3hQ9ME7pWoV1xWsdY2elRcp6pI6DUU8qFdiwGdtbS-8DFaahZahzIKVFiXx1jaqq5KHCzfwkZ724Z3wIrQUArrlJNRiUOPoWTd6EbmjXBIUpHBp5GOZtFjY5iUU1Ta9FQ3SHWTqG7KDL4QqR9GEq51enC7nJlBTYyIzuumVD7S1iSmghjd1OHQ56UQ0rmQwUdilCHtWy2tt8MlAlww4ViZSUUihoutMtgdeWkGteyMFNSMq9ClzOBg5O-v1_9a_MGDDDziX3f-7-vv4UVO8pmqZHZhY7W8Cx8w1lm5vSTaPwE2UvG8
  priority: 102
  providerName: Springer Nature
Title Machine learning-based methods for piecewise digital predistortion in mmW 5G NR systems
URI https://link.springer.com/article/10.1186/s13634-024-01191-7
https://www.proquest.com/docview/3128035673
https://doi.org/10.1186/s13634-024-01191-7
https://doaj.org/article/1fbc6d74cf81469981759e0c27113bbe
UnpaywallVersion publishedVersion
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: ADMLS
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: 8FG
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: AAJSJ
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: C6C
  dateStart: 20011201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: 40G
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: C24
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1687-6180
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0056202
  issn: 1687-6172
  databaseCode: U2A
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdY-wB7GN8iY0x-QOKBedSx4ziPXVk3IVpNg2rjyYode6rYQtW0muCv5y5Jt_IhNF4uUWJFzvnOd2f7fkfIa5vhdlLMmVW5YBJMMqiUFAzkB9z_4EMScEF_NFbHE_nhPDlvYXIwF2Z9_55r9a7iQgnJwJIwRCfjLN0gXZWA390h3cn4pP8FIyql61y3-PZe91YZMn_9yC9WqAbr_3NKXtsb3ST3l-Us_36dX16umZ_hw6aOUVWjFuKpk6_7y4Xddz9-w3S82589IlutF0r7jdg8Jvd8-YRsrmETPiVno_qYpadtXYkLhgavoE3J6YqCs0tnU-_89bTytJheYPUROptjni_E8TjedFrSq6szmhzR8SltMKOrZ2QyPPw8OGZtFQbmJM8WTOiQqTw4mAms1AHhcNCHhIkyeLD-IneJCyHH6qOZTwOHGcDGIaS5znQKjcVz0im_lf4FoYkvMCa20oogec-Bb5oVqhBxwS3wgkfk7WpUzKwB2zB1kKKVadhlgF2mZpdJI3KAA3fTEoGy6wfAZdPqneHBOlWk0gVc64TYEtylzPdcnHIurPUReYPDblCdF_Pc5W1WAnQYgbFMX6PMQmd1RHZWkmFaPa-M4FjdK1GpiMjeSlpuX_-r83s3EnWHf93-v-YvyYMYBas-drNDOov50r8C52lhd8mG7B0B1UOg3f770cdPcD04HJ-cwtNBLJGqwW69OAF0EgNtNO0nbzcQYw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5ROFAOVZ_qtrT1oVUPxQLHzuuAKmihS2FXFQLBzY0de7US7KaboBV_rr-tM3nAVpVQL1yTKHFmPs_D9swH8N6ktJ0UCG6iTHKFLhmnlJIc8YPhv3c-9LSgPxhG_VP1_Tw8X4LfXS0MHavsbGJtqPOppTXyTSmIRymMYvm5-MWJNYp2VzsKjaylVsi36xZjbWHHobueYwpXbh98RX1_CIL9vZMvfd6yDHCrRFpxmfg0yrxFpBuVeGr3QjESGgLv0LvJzIbW-4zYNVMXe4EIN4H3cZZguo4PS3zvA1hRUqWY_K3s7g1_HHe-AIOL5tRjlNTFeEFXtpNEm6WQkVQcfSSnvmuCx3-5xppB4F8_sbBhuwarV5Miu55nFxcLPnH_MTxqg1m206DvCSy5yVNYW2hx-AzOBvVpTcdaeooRJ7-Zs4a5umQYM7Ni7Kybj0vH8vGISExYMaNy4QpTA4QNG0_Y5eUZC7-x4TFrWk-Xz-H0XsT8ApYn04l7CSx0OaXWRhnpldiyGOKmeZTLIBcGRSp68KmToy6anh26znWSSDdS1yh1XUtdxz3YJVHfPEn9tusL09lIt9NXC29slMfKeloyxRQVo67UbdkgFkIa43rwkRSlySpUs8xmbXEDDpj6a-mdhKCPg016sN7pUrfmotS34O7BRqff29t3DX7jBgP_8a-v7v74O1jtnwyO9NHB8PA1PAwIm_XJnXVYrmZX7g3GX5V524Kcwc_7nld_ADJ5OLs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ4iUMAHEAdqbR0nTnJAqFC2LaUrhKjamxs79mqlNrtsUq361_h1zOTRLkKquPSaRIkz_jwPe2Y-gDcmo-OkUHCjcskjNMm4pCLJET_o_nvnY08b-gcjtXsYfT2Oj1fgd18LQ2mVvU5sFHUxtbRHPpCCeJRilciB79Iivm8PP85-cWKQopPWnk6jhci-u1hg-FZ92NvGuX4bhsMvPz_v8o5hgNtIZDWXqc9U7i2i3ESpp1Yv5B-hEvAOLZvMbWy9z4lZM3OJF4huE3qf5CmG6viwxPfegtsJdXGnKvXhTm8F0K1o8x1V2pThhX3BTqoGlZBKRhytI6eOa4InfxnFhjvgXwuxdFS7BnfPy1l-schPT5es4fAB3O_cWLbV4u4hrLjyEawtNTd8DEcHTZ6mYx0xxZiTxSxYy1ldMfSW2WzirFtMKseKyZjoS9hsToXCNQYFCBg2KdnZ2RGLd9joB2ubTldP4PBGhPwUVstp6Z4Bi11BQbWJjPSR2LTo3GaFKmRYCIMiFQG87-WoZ223Dt1EOanSrdQ1Sl03UtdJAJ9I1JdPUqft5sJ0PtbdwtXCG6uKJLKeNksxOEV_K3ObNkyEkMa4AN7RRGnSB_U8t3lX1oADps5aeisl0ONg0wDW-7nUnaKo9BWsA9jo5_fq9nWD37jEwH_86_PrP_4a7uBq0t_2Rvsv4F5I0GxSdtZhtZ6fu5foeNXmVYNwBic3vaT-AIM-NlU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gA98K4IFOQDEgfqso4dxzkuiFIhdYUQq5aTFTt2taINq01WFfx6ZpJsuzyEyi1KrMie99iebwBeuIKOk1LBnS4lV-iSUaWU5Cg_GP7HELNIG_pHU304Ux9OspMBJodqYTbP74XRrxshtVQcPQkndDLB85uwpTOMu0ewNZt-nHyhjEqbrtYtvXo243WFzF9_8osX6sD6_zTJG2ej23BrVS_K7xfl2dmG-zm42_cxajrUQrp18nV_1bp9_-M3TMfrrewe3BmiUDbpxeY-3Aj1A9jewCZ8CMdH3TXLwIa-EqecHF7F-pbTDcNgly3mwYeLeRNYNT-l7iNssaQ6X8zjid9sXrPz82OWvWfTT6zHjG4ewezg3ee3h3zowsC9EkXLpYmFLqNHS-CUiQSHQzEkGsoY0PvL0mc-xpK6jxYhjwItgEtjzEtTmBwHyx0Y1d_q8BhYFirKiZ1yMiox9hibFpWuZFoJh7QQCbxac8UuerAN2yUpRtueXBbJZTty2TyBN8S4y5EElN29QCrbQe-siM7rKlc-0l4n5pYYLhVh7NNcCOlcSOAlsd2SOrfL0pdDVQJOmICx7MSQzOJkTQK7a8mwg543Vgrq7pXpXCawt5aWq8__mvzepURdY61P_m_4U7idkmB11252YdQuV-EZBk-tez5ozU8MYAf-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-based+methods+for+piecewise+digital+predistortion+in+mmW+5G+NR+systems&rft.jtitle=EURASIP+journal+on+advances+in+signal+processing&rft.au=Bulusu%2C+S.+S.+Krishna+Chaitanya&rft.au=Tervo%2C+Nuutti&rft.au=Susarla%2C+Praneeth&rft.au=Silv%C3%A9n%2C+Olli&rft.date=2024-12-01&rft.issn=1687-6180&rft.eissn=1687-6180&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1186%2Fs13634-024-01191-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13634_024_01191_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-6180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-6180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-6180&client=summon