Variance misperception under skewed empirical noise statistics explains overconfidence in the visual periphery
Perceptual confidence typically corresponds to accuracy. However, observers can be overconfident relative to accuracy, termed “subjective inflation.” Inflation is stronger in the visual periphery relative to central vision, especially under conditions of peripheral inattention. Previous literature s...
Saved in:
| Published in | Attention, perception & psychophysics Vol. 84; no. 1; pp. 161 - 178 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.01.2022
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1943-3921 1943-393X 1943-393X |
| DOI | 10.3758/s13414-021-02358-2 |
Cover
| Abstract | Perceptual confidence typically corresponds to accuracy. However, observers can be overconfident relative to accuracy, termed “subjective inflation.” Inflation is stronger in the visual periphery relative to central vision, especially under conditions of peripheral inattention. Previous literature suggests inflation stems from errors in estimating noise (i.e., “variance misperception”). However, despite previous Bayesian hypotheses about metacognitive noise estimation, no work has systematically explored how noise estimation may critically depend on empirical noise statistics, which may differ across the visual field, with central noise distributed symmetrically but peripheral noise positively skewed. Here, we examined central and peripheral vision predictions from five Bayesian-inspired noise-estimation algorithms under varying usage of noise priors, including effects of attention. Models that failed to optimally estimate noise exhibited peripheral inflation, but only models that explicitly used peripheral noise priors—but used them incorrectly—showed increasing peripheral inflation under increasing peripheral inattention. Further, only one model successfully captured previous empirical results, which showed a selective increase in confidence in incorrect responses under performance reductions due to inattention accompanied by no change in confidence in correct responses; this was the model that implemented Bayesian estimation of peripheral noise, but using an (incorrect) symmetric rather than the correct positively skewed peripheral noise prior. Our findings explain peripheral inflation, especially under inattention, and suggest future experiments that might reveal the noise expectations used by the visual metacognitive system. |
|---|---|
| AbstractList | Perceptual confidence typically corresponds to accuracy. However, observers can be overconfident relative to accuracy, termed "subjective inflation." Inflation is stronger in the visual periphery relative to central vision, especially under conditions of peripheral inattention. Previous literature suggests inflation stems from errors in estimating noise (i.e., "variance misperception"). However, despite previous Bayesian hypotheses about metacognitive noise estimation, no work has systematically explored how noise estimation may critically depend on empirical noise statistics, which may differ across the visual field, with central noise distributed symmetrically but peripheral noise positively skewed. Here, we examined central and peripheral vision predictions from five Bayesian-inspired noise-estimation algorithms under varying usage of noise priors, including effects of attention. Models that failed to optimally estimate noise exhibited peripheral inflation, but only models that explicitly used peripheral noise priors-but used them incorrectly-showed increasing peripheral inflation under increasing peripheral inattention. Further, only one model successfully captured previous empirical results, which showed a selective increase in confidence in incorrect responses under performance reductions due to inattention accompanied by no change in confidence in correct responses; this was the model that implemented Bayesian estimation of peripheral noise, but using an (incorrect) symmetric rather than the correct positively skewed peripheral noise prior. Our findings explain peripheral inflation, especially under inattention, and suggest future experiments that might reveal the noise expectations used by the visual metacognitive system.Perceptual confidence typically corresponds to accuracy. However, observers can be overconfident relative to accuracy, termed "subjective inflation." Inflation is stronger in the visual periphery relative to central vision, especially under conditions of peripheral inattention. Previous literature suggests inflation stems from errors in estimating noise (i.e., "variance misperception"). However, despite previous Bayesian hypotheses about metacognitive noise estimation, no work has systematically explored how noise estimation may critically depend on empirical noise statistics, which may differ across the visual field, with central noise distributed symmetrically but peripheral noise positively skewed. Here, we examined central and peripheral vision predictions from five Bayesian-inspired noise-estimation algorithms under varying usage of noise priors, including effects of attention. Models that failed to optimally estimate noise exhibited peripheral inflation, but only models that explicitly used peripheral noise priors-but used them incorrectly-showed increasing peripheral inflation under increasing peripheral inattention. Further, only one model successfully captured previous empirical results, which showed a selective increase in confidence in incorrect responses under performance reductions due to inattention accompanied by no change in confidence in correct responses; this was the model that implemented Bayesian estimation of peripheral noise, but using an (incorrect) symmetric rather than the correct positively skewed peripheral noise prior. Our findings explain peripheral inflation, especially under inattention, and suggest future experiments that might reveal the noise expectations used by the visual metacognitive system. Perceptual confidence typically corresponds to accuracy. However, observers can be overconfident relative to accuracy, termed "subjective inflation." Inflation is stronger in the visual periphery relative to central vision, especially under conditions of peripheral inattention. Previous literature suggests inflation stems from errors in estimating noise (i.e., "variance misperception"). However, despite previous Bayesian hypotheses about metacognitive noise estimation, no work has systematically explored how noise estimation may critically depend on empirical noise statistics, which may differ across the visual field, with central noise distributed symmetrically but peripheral noise positively skewed. Here, we examined central and peripheral vision predictions from five Bayesian-inspired noise-estimation algorithms under varying usage of noise priors, including effects of attention. Models that failed to optimally estimate noise exhibited peripheral inflation, but only models that explicitly used peripheral noise priors-but used them incorrectly-showed increasing peripheral inflation under increasing peripheral inattention. Further, only one model successfully captured previous empirical results, which showed a selective increase in confidence in incorrect responses under performance reductions due to inattention accompanied by no change in confidence in correct responses; this was the model that implemented Bayesian estimation of peripheral noise, but using an (incorrect) symmetric rather than the correct positively skewed peripheral noise prior. Our findings explain peripheral inflation, especially under inattention, and suggest future experiments that might reveal the noise expectations used by the visual metacognitive system. |
| Author | Peters, Megan A. K. Winter, Charles J. |
| Author_xml | – sequence: 1 givenname: Charles J. surname: Winter fullname: Winter, Charles J. email: cjwinter@uci.edu organization: Department of Cognitive Sciences, University of California Irvine – sequence: 2 givenname: Megan A. K. orcidid: 0000-0002-0248-0816 surname: Peters fullname: Peters, Megan A. K. organization: Department of Cognitive Sciences, University of California Irvine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34426932$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctvFSEUh4mpsQ_9B1wYEjduxgKHebA0TX0kTdy0jTvCMAdLnQsjzLTe_17Ge61JF40LHgm_73D4OCYHIQYk5DVn76Gtu9PMQXJZMcHLgLqrxDNyxJWEChR8O3jYC35IjnO-ZayBpmUvyCFIKRoF4oiEa5O8CRbpxucJk8Vp9jHQJQyYaP6B9zhQ3Ew-eWtGGqLPSPNsZp9nbzPFX9NofMg03hU4BucHXKv5QOcbpHc-LwUrhf10g2n7kjx3Zsz4ar-ekKuP55dnn6uLr5--nH24qKzkaq6Acwatkn1nHbO9ZaoxzgK0nRoGg6apgYFEw7qhd1zW5azhzjI0vWvBCTghsKu7hMls78046in5jUlbzZle7emdPV3s6T_29Eq921FTij8XzLMuUiyOowkYl6xF3UgOZVqjbx9Fb-OSQnmTFo0AxZRUvKTe7FNLv8HhoYe__ktA7AI2xZwTuv9rs3sEWb_-SAxzMn58Gt17yeWe8B3Tv7afoH4DPXK7dg |
| CitedBy_id | crossref_primary_10_1016_j_cognition_2024_105938 crossref_primary_10_1038_s44271_025_00221_w crossref_primary_10_1162_opmi_a_00100 crossref_primary_10_1016_j_neubiorev_2022_104903 crossref_primary_10_1146_annurev_psych_022423_032425 crossref_primary_10_1093_cercor_bhae455 crossref_primary_10_1016_j_concog_2023_103532 |
| Cites_doi | 10.1167/8.3.24 10.1016/j.preteyeres.2013.01.005 10.1016/j.visres.2016.10.008 10.1371/journal.pone.0000943 10.31234/osf.io/7p8jg 10.1016/j.concog.2009.12.013 10.1038/nn741 10.1207/s15516709cog2802_3 10.31234/osf.io/5qrjn 10.1167/9.5.23 10.1177/0956797615595037 10.1152/jn.00184.2012 10.1167/16.5.9 10.1167/7.6.4 10.1038/s41562-017-0139 10.1523/JNEUROSCI.23-07-02522.2003 10.1037/0033-295X.115.1.44 10.1016/j.cortex.2017.05.017 10.1098/rstb.2017.0345 10.7717/peerj.5760 10.1038/35048669 10.3389/fncom.2013.00025 10.3758/s13414-014-0769-1 10.1152/jn.00985.2011 10.1093/brain/awz171 10.1073/pnas.1906787116 10.1016/j.neuron.2016.04.023 10.1016/j.tics.2010.01.003 10.1038/nn1669 10.1038/nn.2831 10.1167/15.9.10 10.1371/journal.pcbi.1000871 10.1167/12.4.14 10.1080/17588921003632529 10.1523/JNEUROSCI.6079-10.2011 10.1038/nn0602-508 10.1371/journal.pone.0117178 10.1016/j.concog.2014.04.009 10.1016/j.visres.2012.06.014 10.1038/nn.2948 10.1371/journal.pone.0096511 10.1037/rev0000045 10.1101/2020.09.17.299743 10.1016/S0042-6989(03)00003-8 10.3758/s13414-018-1554-3 10.1016/S0042-6989(97)00273-3 10.1146/annurev-vision-082114-035733 10.31234/osf.io/fhywz 10.1101/sqb.2014.79.024893 10.1371/journal.pone.0119794 10.1093/acprof:oso/9780195387247.003.0001 10.7554/eLife.17688 10.1126/science.1195870 10.1016/S0042-6989(03)00458-9 10.1523/JNEUROSCI.6427-09.2010 10.1073/pnas.1717720115 10.1017/CBO9780511984037.006 10.1038/nn0602-858 10.7554/eLife.54962 10.1038/s41467-019-09330-7 10.1037/rev0000080 10.3389/fpsyg.2012.00013 10.1038/nn1312 10.1016/j.concog.2014.05.012 10.1371/journal.pcbi.1006572 10.1098/rstb.2013.0204 10.1016/j.tics.2010.07.001 10.1093/acprof:oso/9780195387247.003.0002 10.3389/fnint.2012.00079 10.1017/CBO9780511984037 10.1038/nn.4240 10.3758/s13414-016-1059-x 10.1111/1467-9280.00229 10.1371/journal.pcbi.1004649 10.1016/j.cub.2004.01.029 10.7717/peerj.3143 10.31234/osf.io/8zhy3 10.3758/s13414-015-0843-3 10.1016/j.cub.2019.02.023 10.1167/7.7.5 10.1016/j.cub.2008.09.042 10.1146/annurev.psych.55.090902.142005 10.1146/annurev-vision-102016-061249 10.1371/journal.pcbi.1008779 10.7717/peerj.2124 10.7554/eLife.21761 10.1016/j.concog.2017.02.005 |
| ContentType | Journal Article |
| Copyright | The Psychonomic Society, Inc. 2021 2021. The Psychonomic Society, Inc. Copyright Springer Nature B.V. Jan 2022 |
| Copyright_xml | – notice: The Psychonomic Society, Inc. 2021 – notice: 2021. The Psychonomic Society, Inc. – notice: Copyright Springer Nature B.V. Jan 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 0-V 3V. 4T- 4U- 7X7 7XB 88B 88E 88G 88J 8AO 8FI 8FJ 8FK 8G5 ABUWG AFKRA ALSLI AN0 AZQEC BENPR CCPQU CJNVE DWQXO FYUFA GHDGH GNUQQ GUQSH K9. M0P M0S M1P M2M M2O M2R MBDVC PHGZM PHGZT PJZUB PKEHL POGQB PPXIY PQEDU PQEST PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U 7X8 ADTOC UNPAY |
| DOI | 10.3758/s13414-021-02358-2 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) Docstoc University Readers Health & Medical Collection ProQuest Central (purchase pre-March 2016) Education Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Social Science Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection British Nursing Database ProQuest Central Essentials ProQuest Central ProQuest One Education Collection ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep ProQuest Health & Medical Complete (Alumni) Education Database ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database (NIESG) Research Library Social Science Database Research Library (Corporate) Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest Sociology & Social Sciences Collection ProQuest One Health & Nursing ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Education ProQuest One Psychology University Readers Research Library Prep ProQuest Sociology & Social Sciences Collection ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Social Science Journals (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Pharma Collection Sociology & Social Sciences Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) Social Science Premium Collection Education Collection ProQuest One Social Sciences ProQuest Central Basic ProQuest Education Journals ProQuest One Academic Eastern Edition British Nursing Index with Full Text ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Social Science Journals ProQuest Medical Library ProQuest Psychology Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition Docstoc ProQuest One Academic ProQuest One Academic (New) ProQuest Education Journals (Alumni Edition) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Education |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1943-393X |
| EndPage | 178 |
| ExternalDocumentID | 10.3758/s13414-021-02358-2 34426932 10_3758_s13414_021_02358_2 |
| Genre | Journal Article |
| GroupedDBID | --- -55 -5G -BR -EM -~C -~X 0-V 06D 0R~ 0VY 186 199 1N0 203 23N 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 30V 3V. 4.4 406 408 40E 53G 6J9 7X7 875 88E 8AO 8FI 8FJ 8G5 8TC 8UJ 95. 96X AAAVM AABHQ AACDK AAFWJ AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABIVO ABJOX ABJUD ABKCH ABLLD ABMQK ABNWP ABPLI ABPPZ ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKIV ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADBBV ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFDYV AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AMKLP AMXSW AMYLF AN0 AOCGG ARALO ARMRJ ASPBG AVWKF AXYYD AYQZM AZFZN AZQEC BAWUL BENPR BGNMA BNQBC BPHCQ BVXVI C1A CCPQU CJNVE CSCUP D0L DDRTE DIK DNIVK DPUIP DWQXO EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GUQSH H13 HMCUK HMJXF HRMNR HVGLF HZ~ IKXTQ IRVIT ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M0P M1P M2M M2O M2R M4Y MQGED N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OHT OK1 P9L PF- PQEDU PQQKQ PROAC PSQYO PSYQQ PT4 R9I ROL RPV RSV S16 S1Z S27 S3B SBS SBU SCLPG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TN5 TSG TUC TUS U2A U9L UG4 UKHRP UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VXZ W48 WH7 WK8 XJT XKC Z7W Z81 Z83 Z92 ZMTXR ZOVNA AAPKM AAYXX ABBRH ABDBE ABRTQ ADHKG ADXHL AETEA AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PRQQA PUEGO CGR CUY CVF ECM EIF NPM 4T- 4U- 7XB 8FK K9. MBDVC PKEHL POGQB PQEST PQUKI PRINS Q9U 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c419t-31103794b8cf0cbc096afc33789ddaea653034ea08dbf145fc361fc0eabf73f23 |
| IEDL.DBID | BENPR |
| ISSN | 1943-3921 1943-393X |
| IngestDate | Tue Aug 19 22:17:42 EDT 2025 Thu Sep 04 16:21:12 EDT 2025 Tue Oct 07 06:11:18 EDT 2025 Wed Feb 19 02:27:29 EST 2025 Thu Apr 24 23:02:10 EDT 2025 Wed Oct 01 02:15:20 EDT 2025 Fri Feb 21 02:45:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Bayesian ideal observer Confidence Hierarchical inference Metacognition Perception Peripheral inflation Natural scene statistics Empirical priors |
| Language | English |
| License | 2021. The Psychonomic Society, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c419t-31103794b8cf0cbc096afc33789ddaea653034ea08dbf145fc361fc0eabf73f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0248-0816 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.3758/s13414-021-02358-2.pdf |
| PMID | 34426932 |
| PQID | 2623909491 |
| PQPubID | 976350 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_3758_s13414_021_02358_2 proquest_miscellaneous_2564135642 proquest_journals_2623909491 pubmed_primary_34426932 crossref_primary_10_3758_s13414_021_02358_2 crossref_citationtrail_10_3758_s13414_021_02358_2 springer_journals_10_3758_s13414_021_02358_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220100 2022-01-00 2022-Jan 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Austin |
| PublicationTitle | Attention, perception & psychophysics |
| PublicationTitleAbbrev | Atten Percept Psychophys |
| PublicationTitleAlternate | Atten Percept Psychophys |
| PublicationYear | 2022 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | DosherBALuZLVisual Perceptual Learning and ModelsAnnual Review of Vision Science20173343363287233116691499 KördingKPShamsLMaWJComparing Bayesian models for multisensory cue combination without mandatory integration2008Advances in Neural Information Processing Systems. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.1999&rep=rep1&type=pdf FlemingSMDawNDSelf-evaluation of decision-making: A general Bayesian framework for metacognitive computationPsychological Review2017124191114280049605178868 FetschCRKianiRShadlenMNPredicting the accuracy of a decision: A neural mechanism of confidenceCold Spring Harbor Symposia on Quantitative Biology20147918519725922477 Yuille, A. L., & Bülthoff, H. H. (1996). Bayesian decision theory and psychophysics (D. C. Knill & W. Richards (eds.); pp. 123–161). Cambridge University Press. ProvisJMDubisAMMaddessTCarrollJAdaptation of the central retina for high acuity vision: Cones, the fovea and the avascular zoneProgress in Retinal and Eye Research2013356381235000683658155 LandyMSBanksMSKnillDCTrommershäuserJKordingKLandyMSIdeal-observer models of cue integrationSensory cue integration (pp. 5–29)2011Oxford University Press10.1093/acprof:oso/9780195387247.003.0001 Ehinger, B. V., Häusser, K., Ossandón, J. P., & König, P. (2017). Humans treat unreliable filled-in percepts as more real than veridical ones. eLife, 6. https://doi.org/10.7554/eLife.21761 Körding, K. P., & Tenenbaum, J. B. (2007a). Causal inference in sensorimotor integration. NIPS. https://papers.nips.cc/paper/2006/file/92a08bf918f44ccd961477be30023da1-Paper.pdf Denison, R. N., Block, N., & Samaha, J. (2020). What do models of visual perception tell us about visual phenomenology?https://doi.org/10.31234/osf.io/7p8jg FiserJBerkesPOrbánGLengyelMStatistically optimal perception and learning: From behavior to neural representationsTrends in Cognitive Sciences2010143119130201536832939867 LeviDMKleinSANoise provides some new signals about the spatial vision of amblyopesThe Journal of Neuroscience: The Official Journal of the Society for Neuroscience200323725222526 RounisEManiscalcoBRothwellJCPassinghamRELauHTheta-burst transcranial magnetic stimulation to the prefrontal cortex impairs metacognitive visual awarenessCognitive Neuroscience20101316517524168333 ShamsLBeierholmUCausal inference in perceptionTrends in Cognitive Sciences20101442543220705502 Körding, K. P., & Wolpert, D. (2003). Probabilistic inference in human sensorimotor processing. Advances in Neural Information Processing Systems, 16. http://books.nips.cc/papers/files/nips16/NIPS2003_NS11.pdf KnillDCRobust cue integration: A Bayesian model and evidence from cue-conflict studies with stereoscopic and figure cues to slantJournal of Vision2007775:124 RatcliffRVoskuilenCMcKoonGInternal and external sources of variability in perceptual decision-makingPsychological Review20181251334629035076 GoreaASagiDDisentangling signal from noise in visual contrast discriminationNature Neuroscience20014111146114611687818 Samad, M., Chung, A. J., & Shams, L. (2015). Perception of body ownership is driven by Bayesian sensory inference. PLOS ONE, 10, Article e0117178. Odegaard, B., Chang, M. Y., Lau, H., & Cheung, S.-H. (2018). Inflation versus filling-in: why we feel we see more than we actually do in peripheral vision. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1755). https://doi.org/10.1098/rstb.2017.0345 BerkesPOrbánGLengyelMFiserJSpontaneous cortical activity reveals hallmarks of an optimal internal model of the environmentScience201133160138387212123563065813 Wozny, D. R., Beierholm, U., & Shams, L. (2008). Human trimodal perception follows optimal statistical inference. Journal of Vision, 8(3), 24:1–11. Samaha, J., Iemi, L., & Postle, B. R. (2017). Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy. Consciousness and Cognitionhttps://doi.org/10.1016/j.concog.2017.02.005 SerièsPSeitzARLearning what to expect (in visual perception)Frontiers in Human Neuroscience20137668114 Bertana, A., Chetverikov, A., van Bergen, R. S., Ling, S., & Jehee, J. F. M. (2020). Dual strategies in human confidence judgments. bioRxiv (p. 2020.09.17.299743). https://doi.org/10.1101/2020.09.17.299743 TeufelCSubramaniamNFletcherPCThe role of priors in Bayesian models of perceptionFrontiers in Computational Neuroscience2013725235650913615220 WeissYSimoncelliEPAdelsonEHMotion illusions as optimal perceptsNature Neuroscience20025659860412021763 StockerAASimoncelliEPNoise characteristics and prior expectations in human visual speed perceptionNature Neuroscience20069457858516547513 LandyMSGoutcherRTrommershäuserJMamassianPVisual estimation under riskJournal of Vision200776417685787 RahnevDManiscalcoBLuberBLauHLisanbySHDirect injection of noise to the visual cortex decreases accuracy but increases decision confidenceJournal of Neurophysiology20121071556156322170965 AlaisDBurrDThe ventriloquist effect results from near-optimal bimodal integrationCurrent Biology: CB200414325726214761661 RahnevDKoizumiAMcCurdyLYD’EspositoMLauHConfidence Leak in Perceptual Decision MakingPsychological Science201526111664168026408037 Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal Inference in Multisensory Perception. PLOS ONE, 2(9), Article e943. MacmillanNACreelmanCDDetection theory: A user’s guide20052Psychology Press GoldJMSekulerABBennettPJCharacterizing perceptual learning with external noiseCognitive Science2004282167207 BurgeJGirshickAVisual–haptic adaptation is determined by relative reliabilityThe Journal of Neuroscience: The Official Journal of the Society for Neuroscience201030227714772110.1523/JNEUROSCI.6427-09.2010 Odegaard, B., Wozny, D. R., & Shams, L. (2017). A simple and efficient method to enhance audiovisual binding tendencies. PeerJ, 5, Article e3143. SoloveyGGraneyGGLauHA decisional account of subjective inflation of visual perception at the peripheryAttention, Perception, & Psychophysics201477258271 Acerbi, L., Marius’t Hart, B., Behbahani, F. M. P., & Peters, M. A. K. (n.d.). Optimality under fire: Dissociating learning from Bayesian integration. http://compneurosci.com/wiki/images/2/28/OptimalityUnderFire_Acerbi_tHart_Behbahani_Peters.pdf VilidaiteGBakerDHIndividual differences in internal noise are consistent across two measurement techniquesVision Research2017141303927919675 WierzchońMPaulewiczBAsanowiczDTimmermansBCleeremansADifferent subjective awareness measures demonstrate the influence of visual identification on perceptual awareness ratingsConsciousness and Cognition201427C109120 PetersMAKFesiJAmendiNKnottsJDLauHRoTTranscranial magnetic stimulation to visual cortex induces suboptimal introspectionCortex; a Journal Devoted to the Study of the Nervous System and Behavior201793119132286466725541901 Knill, D. C., & Richards, W. (1996). Perception as Bayesian inference. Cambridge University Press. KnillDCSaundersJADo humans optimally integrate stereo and texture information for judgments of surface slant?Vision Research200343242539255813129541 SamahaJBarrettJJSheldonADLaRocqueJJPostleBRDissociating perceptual confidence from discrimination accuracy reveals no influence of metacognitive awareness on working memoryFrontiers in Psychology20167June851273755294893488 WoznyDRBeierholmUShamsLProbability Matching as a Computational Strategy Used in PerceptionPLOS Computational Biology201068e1000871e1000871207004932916852 AdamsWJGrafEWErnstMOExperience can change the ’light-from-above' priorNature Neuroscience20047101057105815361877 DenisonRNAdlerWTCarrascoMMaWJHumans incorporate attention-dependent uncertainty into perceptual decisions and confidenceProceedings of the National Academy of Sciences of the United States of America2018115431109011095302974306205425 Wei, K., & Körding, K. P. (2011). Causal Inference in Sensorimotor Learning. Sensory Cue Integration, 30–30. GlorianiAHSchützACHumans trust central vision more than peripheral vision even in the darkCurrent Biology: CB201929712061210.e430905606 AdamsRAStephanKEBrownHRFrithCDFristonKJThe computational anatomy of psychosisFrontiers in Psychiatry / Frontiers Research Foundation2013447 Adler, W. T., & Ma, W. J. (2018). Comparing Bayesian and non-Bayesian accounts of human confidence reports. PLOS Computational Biology, 14(11), Article e1006572. Maniscalco, B., Odegaard, B., Grimaldi, P., Cho, S. H., Basso, M. A., Lau, H., & Peters, M. A. K. (2021). Tuned inhibition in perceptual decision-making circuits can explain seemingly suboptimal confidence behavior. PLOS Computational Biology, 17(3), Article e1008779. GreenDMSwetsJASignal detection theory and psychophysics1966Wiley Herce CastañónSMoranRDingJEgnerTBangDSummerfieldCHuman noise blindness drives suboptimal cognitive inferenceNature Communications20191011719309798806461696 ZylberbergARoelfsemaPRSigmanMVariance misperception explains illusions of confidence in simple perceptual decisionsConsciousness and Cognition201427C246253 ManiscalcoBLauHThe signal processing architecture underlying subjective reports of sensory awarenessNeuroscience of Consciousness, November20162015141 Rosenholtz, R., Huang, J., Raj, A., Balas, B. J., & Ilie, L. (2012b). A summary statistic representation in peripheral vision explains visual search. Journal of Vision, 12(4). https://doi.org/10.1167/12.4.14 Maniscalco, B., Castaneda, O. G., Odegaard, B., Morales, J., Rajananda, S., & Peters, M. A. K. (2020). The metaperceptual function: Exploring dissociations between confidence and task performance with type 2 psychometric curves. PsyArXiv Preprints. https://doi.org/10.31234/osf.io/5qrjn LauHCA higher order Bayesian decision theory of consciousnessProgress in Brain Research2008168354818166384 KerstenDMamassianPYuilleAObject perception as Bayesian inferenceAnnual Review of Psychology20045527130414744217 Sandberg, K., Timmermans, B., Overgaard, M., & Cleeremans, A. (2010). Measuring consciousness: Is one measure better than the other. Consciousness and Cog 2358_CR4 2358_CR35 2358_CR38 2358_CR31 S Herce Castañón (2358_CR32) 2019; 10 DM Levi (2358_CR50) 2003; 23 DC Knill (2358_CR39) 2003; 43 2358_CR1 D Rahnev (2358_CR73) 2012; 107 WS Geisler (2358_CR24) 2002; 5 R Rosenholtz (2358_CR76) 2012; 3 D Rahnev (2358_CR70) 2012; 108 WJ Adams (2358_CR3) 2004; 7 KP Körding (2358_CR45) 2007 HC Lau (2358_CR49) 2008; 168 2358_CR46 2358_CR42 JM Gold (2358_CR28) 2004; 28 2358_CR44 AA Stocker (2358_CR87) 2006; 9 MAK Peters (2358_CR67) 2018; 6 2358_CR40 D Rahnev (2358_CR71) 2015; 26 J Fiser (2358_CR21) 2010; 14 2358_CR13 MS Landy (2358_CR47) 2011 2358_CR10 2358_CR97 A Koizumi (2358_CR41) 2015; 77 B Maniscalco (2358_CR58) 2016; 78 2358_CR99 2358_CR94 J Samaha (2358_CR80) 2016; 7 Y Weiss (2358_CR92) 2002; 5 2358_CR91 R Rosenholtz (2358_CR75) 2016; 2 2358_CR18 MS Landy (2358_CR48) 2007; 7 2358_CR19 DC Knill (2358_CR37) 2007; 7 B Awwad Shiekh Hasan (2358_CR6) 2012; 69 RN Denison (2358_CR12) 2018; 115 A Gorea (2358_CR29) 2001; 4 DR Wozny (2358_CR96) 2011; 31 P Seriès (2358_CR83) 2013; 7 U Beierholm (2358_CR7) 2009; 9 2358_CR79 B Maniscalco (2358_CR56) 2016; 2015 2358_CR77 SM Fleming (2358_CR23) 2017; 124 BA Dosher (2358_CR15) 2017; 3 G Vilidaite (2358_CR90) 2017; 141 D Alais (2358_CR5) 2004; 14 D Kersten (2358_CR34) 2004; 55 MAK Peters (2358_CR64) 2017; 93 M Wierzchoń (2358_CR93) 2014; 27C MK Li (2358_CR51) 2018; 80 E Rounis (2358_CR78) 2010; 1 C Teufel (2358_CR88) 2013; 7 2358_CR82 L Shams (2358_CR84) 2010; 14 DM Green (2358_CR30) 1966 2358_CR81 J Drugowitsch (2358_CR17) 2019; 116 VR Bejjanki (2358_CR8) 2016; 16 RF Hess (2358_CR33) 2008; 8 DC Knill (2358_CR36) 2003; 43 JR Flanagan (2358_CR22) 2008; 18 P Berkes (2358_CR9) 2011; 331 JM Provis (2358_CR69) 2013; 35 R Ratcliff (2358_CR74) 2018; 125 L Shams (2358_CR85) 2000; 408 2358_CR57 2358_CR59 AR Girshick (2358_CR26) 2011; 14 2358_CR55 J Drugowitsch (2358_CR16) 2016; 90 ZL Lu (2358_CR53) 2008; 115 A Zylberberg (2358_CR100) 2014; 27C 2358_CR52 N Gekas (2358_CR25) 2015; 15 A Pouget (2358_CR68) 2016; 19 MAK Peters (2358_CR65) 2016; 4 AH Gloriani (2358_CR27) 2019; 29 KP Körding (2358_CR43) 2008 D Rahnev (2358_CR72) 2011; 14 A Zylberberg (2358_CR98) 2012; 6 G Solovey (2358_CR86) 2014; 77 RA Adams (2358_CR2) 2013; 4 CR Fetsch (2358_CR20) 2014; 79 2358_CR66 NA Macmillan (2358_CR54) 2005 2358_CR61 2358_CR60 2358_CR63 2358_CR62 BA Dosher (2358_CR14) 2000; 11 DR Wozny (2358_CR95) 2010; 6 V Valton (2358_CR89) 2019; 142 J Burge (2358_CR11) 2010; 30 |
| References_xml | – reference: Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal Inference in Multisensory Perception. PLOS ONE, 2(9), Article e943. – reference: Drugowitsch, J., Moreno-Bote, R., & Pouget, A. (2014). Relation between belief and performance in perceptual decision making. PLOS ONE, 9(5), Article e96511. – reference: ShamsLBeierholmUCausal inference in perceptionTrends in Cognitive Sciences20101442543220705502 – reference: LandyMSBanksMSKnillDCTrommershäuserJKordingKLandyMSIdeal-observer models of cue integrationSensory cue integration (pp. 5–29)2011Oxford University Press10.1093/acprof:oso/9780195387247.003.0001 – reference: Sandberg, K., Timmermans, B., Overgaard, M., & Cleeremans, A. (2010). Measuring consciousness: Is one measure better than the other. Consciousness and Cognitionhttp://linkinghub.elsevier.com/retrieve/pii/S1053-8100(09)00199-8 – reference: Peters, M. A. K., Balzer, J., & Shams, L. (2015). Smaller = denser, and the brain knows it: Natural statistics of object density shape weight expectations. PLOS ONE. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358826/ – reference: DrugowitschJMendonçaAGMainenZFPougetALearning optimal decisions with confidenceProceedings of the National Academy of Sciences of the United States of America201911649248722488010.1073/pnas.1906787116317326716900530 – reference: WoznyDRBeierholmUShamsLProbability Matching as a Computational Strategy Used in PerceptionPLOS Computational Biology201068e1000871e1000871207004932916852 – reference: FetschCRKianiRShadlenMNPredicting the accuracy of a decision: A neural mechanism of confidenceCold Spring Harbor Symposia on Quantitative Biology20147918519725922477 – reference: RahnevDBahdoLde LangeFPLauHPrestimulus hemodynamic activity in dorsal attention network is negatively associated with decision confidence in visual perceptionJournal of Neurophysiology201210851529153622723670 – reference: DosherBALuZLVisual Perceptual Learning and ModelsAnnual Review of Vision Science20173343363287233116691499 – reference: Ehinger, B. V., Häusser, K., Ossandón, J. P., & König, P. (2017). Humans treat unreliable filled-in percepts as more real than veridical ones. eLife, 6. https://doi.org/10.7554/eLife.21761 – reference: GoreaASagiDDisentangling signal from noise in visual contrast discriminationNature Neuroscience20014111146114611687818 – reference: ProvisJMDubisAMMaddessTCarrollJAdaptation of the central retina for high acuity vision: Cones, the fovea and the avascular zoneProgress in Retinal and Eye Research2013356381235000683658155 – reference: Yuille, A. L., & Bülthoff, H. H. (1996). Bayesian decision theory and psychophysics (D. C. Knill & W. Richards (eds.); pp. 123–161). Cambridge University Press. – reference: Acerbi, L., Marius’t Hart, B., Behbahani, F. M. P., & Peters, M. A. K. (n.d.). Optimality under fire: Dissociating learning from Bayesian integration. http://compneurosci.com/wiki/images/2/28/OptimalityUnderFire_Acerbi_tHart_Behbahani_Peters.pdf – reference: Rosenholtz, R., Huang, J., Raj, A., Balas, B. J., & Ilie, L. (2012b). A summary statistic representation in peripheral vision explains visual search. Journal of Vision, 12(4). https://doi.org/10.1167/12.4.14 – reference: DosherBALuZLNoise exclusion in spatial attentionPsychological Science200011213914611273421 – reference: Wei, K., & Körding, K. P. (2011). Causal Inference in Sensorimotor Learning. Sensory Cue Integration, 30–30. – reference: AlaisDBurrDThe ventriloquist effect results from near-optimal bimodal integrationCurrent Biology: CB200414325726214761661 – reference: KnillDCMixture models and the probabilistic structure of depth cuesVision Research20034383185412639607 – reference: RahnevDKoizumiAMcCurdyLYD’EspositoMLauHConfidence Leak in Perceptual Decision MakingPsychological Science201526111664168026408037 – reference: MacmillanNACreelmanCDDetection theory: A user’s guide20052Psychology Press – reference: Körding, K. P., & Wolpert, D. (2003). Probabilistic inference in human sensorimotor processing. Advances in Neural Information Processing Systems, 16. http://books.nips.cc/papers/files/nips16/NIPS2003_NS11.pdf – reference: Odegaard, B., Wozny, D. R., & Shams, L. (2017). A simple and efficient method to enhance audiovisual binding tendencies. PeerJ, 5, Article e3143. – reference: Körding, K. P., & Tenenbaum, J. B. (2007a). Causal inference in sensorimotor integration. NIPS. https://papers.nips.cc/paper/2006/file/92a08bf918f44ccd961477be30023da1-Paper.pdf – reference: PetersMAKMaWJShamsLThe Size-Weight Illusion is not anti-Bayesian after all: a unifying Bayesian accountPeerJ20164e2124e2124273508994918219 – reference: Knotts, J. D., Michel, M., & Odegaard, B. (2020). Defending subjective inflation: An inference to the best explanation. PsyArXiv. https://doi.org/10.31234/osf.io/fhywz – reference: RosenholtzRCapabilities and Limitations of Peripheral VisionAnnual Review of Vision Science2016243745728532349 – reference: LiMKLauHOdegaardBAn investigation of detection biases in the unattended periphery during simulated drivingAttention, Perception & Psychophysics201880613251332 – reference: Odegaard, B., Wozny, D. R., & Shams, L. (2015). Biases in visual, auditory, and audiovisual perception of space. PLOS Computational Biology, 11(12), Article e1004649. – reference: AdamsWJGrafEWErnstMOExperience can change the ’light-from-above' priorNature Neuroscience20047101057105815361877 – reference: FlemingSMDawNDSelf-evaluation of decision-making: A general Bayesian framework for metacognitive computationPsychological Review2017124191114280049605178868 – reference: Awwad Shiekh HasanBJoostenENeriPEstimation of internal noise using double passes: Does it matter how the second pass is delivered?Vision Research2012691922835631 – reference: Maniscalco, B., Odegaard, B., Grimaldi, P., Cho, S. H., Basso, M. A., Lau, H., & Peters, M. A. K. (2021). Tuned inhibition in perceptual decision-making circuits can explain seemingly suboptimal confidence behavior. PLOS Computational Biology, 17(3), Article e1008779. – reference: WierzchońMPaulewiczBAsanowiczDTimmermansBCleeremansADifferent subjective awareness measures demonstrate the influence of visual identification on perceptual awareness ratingsConsciousness and Cognition201427C109120 – reference: RounisEManiscalcoBRothwellJCPassinghamRELauHTheta-burst transcranial magnetic stimulation to the prefrontal cortex impairs metacognitive visual awarenessCognitive Neuroscience20101316517524168333 – reference: Denison, R. N., Block, N., & Samaha, J. (2020). What do models of visual perception tell us about visual phenomenology?https://doi.org/10.31234/osf.io/7p8jg – reference: KerstenDMamassianPYuilleAObject perception as Bayesian inferenceAnnual Review of Psychology20045527130414744217 – reference: ZylberbergARoelfsemaPRSigmanMVariance misperception explains illusions of confidence in simple perceptual decisionsConsciousness and Cognition201427C246253 – reference: HessRFBakerDHMayKAWangJOn the decline of 1st and 2nd order sensitivity with eccentricityJournal of Vision20088119, 112 – reference: ManiscalcoBLauHThe signal processing architecture underlying subjective reports of sensory awarenessNeuroscience of Consciousness, November20162015141 – reference: Maniscalco, B., Castaneda, O. G., Odegaard, B., Morales, J., Rajananda, S., & Peters, M. A. K. (2020). The metaperceptual function: Exploring dissociations between confidence and task performance with type 2 psychometric curves. PsyArXiv Preprints. https://doi.org/10.31234/osf.io/5qrjn – reference: SoloveyGGraneyGGLauHA decisional account of subjective inflation of visual perception at the peripheryAttention, Perception, & Psychophysics201477258271 – reference: Wozny, D. R., Beierholm, U., & Shams, L. (2008). Human trimodal perception follows optimal statistical inference. Journal of Vision, 8(3), 24:1–11. – reference: LauHCA higher order Bayesian decision theory of consciousnessProgress in Brain Research2008168354818166384 – reference: LandyMSGoutcherRTrommershäuserJMamassianPVisual estimation under riskJournal of Vision200776417685787 – reference: FlanaganJRBittnerJJohanssonRSExperience can change distinct size–weight priors engaged in lifting objects and judging their weightsCurrent Biology: CB200818221742174719026545 – reference: KnillDCSaundersJADo humans optimally integrate stereo and texture information for judgments of surface slant?Vision Research200343242539255813129541 – reference: Odegaard, B., Chang, M. Y., Lau, H., & Cheung, S.-H. (2018). Inflation versus filling-in: why we feel we see more than we actually do in peripheral vision. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373(1755). https://doi.org/10.1098/rstb.2017.0345 – reference: GekasNSeitzARSerièsPExpectations developed over multiple timescales facilitate visual search performanceJournal of Vision20151591010.1167/15.9.10262008914511121 – reference: AdamsRAStephanKEBrownHRFrithCDFristonKJThe computational anatomy of psychosisFrontiers in Psychiatry / Frontiers Research Foundation2013447 – reference: King, J.-R., & Dehaene, S. (2014). A model of subjective report and objective discrimination as categorical decisions in a vast representational space. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1641), Article 20130204. – reference: GreenDMSwetsJASignal detection theory and psychophysics1966Wiley – reference: FiserJBerkesPOrbánGLengyelMStatistically optimal perception and learning: From behavior to neural representationsTrends in Cognitive Sciences2010143119130201536832939867 – reference: Samad, M., Chung, A. J., & Shams, L. (2015). Perception of body ownership is driven by Bayesian sensory inference. PLOS ONE, 10, Article e0117178. – reference: PetersMAKZhangL-QShamsLThe material-weight illusion is a Bayes-optimal percept under competing density priorsPeerJ20186e5760303240296186408 – reference: Peters, M. A. K., Thesen, T., Ko, Y. D., Maniscalco, B., Carlson, C., Davidson, M., Doyle, W., Kuzniecky, R., Devinsky, O., Halgren, E., & Lau, H. (2017b). Perceptual confidence neglects decision-incongruent evidence in the brain. Nature Human Behaviour. – reference: KördingKPShamsLMaWJComparing Bayesian models for multisensory cue combination without mandatory integration2008Advances in Neural Information Processing Systems. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.1999&rep=rep1&type=pdf – reference: BurgeJGirshickAVisual–haptic adaptation is determined by relative reliabilityThe Journal of Neuroscience: The Official Journal of the Society for Neuroscience201030227714772110.1523/JNEUROSCI.6427-09.2010 – reference: BerkesPOrbánGLengyelMFiserJSpontaneous cortical activity reveals hallmarks of an optimal internal model of the environmentScience201133160138387212123563065813 – reference: Bertana, A., Chetverikov, A., van Bergen, R. S., Ling, S., & Jehee, J. F. M. (2020). Dual strategies in human confidence judgments. bioRxiv (p. 2020.09.17.299743). https://doi.org/10.1101/2020.09.17.299743 – reference: BeierholmUQuartzSShamsLBayesian priors are encoded independently from likelihoods in human multisensory perceptionJournal of Vision2009951919757901 – reference: LuZLDosherBACharacterizing observers using external noise and observer models: assessing internal representations with external noisePsychological Review20081151448218211184 – reference: ValtonVKarvelisPRichardsKLSeitzARLawrieSMSerièsPAcquisition of visual priors and induced hallucinations in chronic schizophreniaBrain: A Journal of Neurology2019142825232537 – reference: LeviDMKleinSANoise provides some new signals about the spatial vision of amblyopesThe Journal of Neuroscience: The Official Journal of the Society for Neuroscience200323725222526 – reference: KnillDCRobust cue integration: A Bayesian model and evidence from cue-conflict studies with stereoscopic and figure cues to slantJournal of Vision2007775:124 – reference: Adler, W. T., & Ma, W. J. (2018). Comparing Bayesian and non-Bayesian accounts of human confidence reports. PLOS Computational Biology, 14(11), Article e1006572. – reference: KoizumiAManiscalcoBLauHDoes perceptual confidence facilitate cognitive control?Attention, Perception, & Psychophysics201577412951306 – reference: DenisonRNAdlerWTCarrascoMMaWJHumans incorporate attention-dependent uncertainty into perceptual decisions and confidenceProceedings of the National Academy of Sciences of the United States of America2018115431109011095302974306205425 – reference: GoldJMSekulerABBennettPJCharacterizing perceptual learning with external noiseCognitive Science2004282167207 – reference: Heng, J. A., Woodford, M., & Polania, R. (2020). Efficient sampling and noisy decisions. eLife, 9. https://doi.org/10.7554/eLife.54962 – reference: DrugowitschJBecoming confident in the statistical nature of human confidence judgmentsNeuron201690342542727151633 – reference: RahnevDManiscalcoBLuberBLauHLisanbySHDirect injection of noise to the visual cortex decreases accuracy but increases decision confidenceJournal of Neurophysiology20121071556156322170965 – reference: GlorianiAHSchützACHumans trust central vision more than peripheral vision even in the darkCurrent Biology: CB201929712061210.e430905606 – reference: KördingKPTenenbaumJBSchölkopfBPlattJCHoffmanTCausal inference in sensorimotor integrationAdvances in Neural Information Processing Systems 19 (pp. 737–744)2007MIT Press – reference: ShamsLKamitaniYShimojoSIllusions: What you see is what you hearNature2000408681478878811130706 – reference: VilidaiteGBakerDHIndividual differences in internal noise are consistent across two measurement techniquesVision Research2017141303927919675 – reference: ManiscalcoBPetersMAKLauHHeuristic use of perceptual evidence leads to dissociation between performance and metacognitive sensitivityAttention, Perception, & Psychophysics20167892393710.3758/s13414-016-1059-x – reference: PougetADrugowitschJKepecsAConfidence and certainty: Distinct probabilistic quantities for different goalsNature Neuroscience2016193366374269065035378479 – reference: StockerAASimoncelliEPNoise characteristics and prior expectations in human visual speed perceptionNature Neuroscience20069457858516547513 – reference: Herce CastañónSMoranRDingJEgnerTBangDSummerfieldCHuman noise blindness drives suboptimal cognitive inferenceNature Communications20191011719309798806461696 – reference: Knill, D. C., & Richards, W. (1996). Perception as Bayesian inference. Cambridge University Press. – reference: Lu, Z. L., & Dosher, B. (1998). External noise distinguishes attention mechanisms. Vision Research. http://linkinghub.elsevier.com/retrieve/pii/S0042698997002733 – reference: TeufelCSubramaniamNFletcherPCThe role of priors in Bayesian models of perceptionFrontiers in Computational Neuroscience2013725235650913615220 – reference: RatcliffRVoskuilenCMcKoonGInternal and external sources of variability in perceptual decision-makingPsychological Review20181251334629035076 – reference: SamahaJBarrettJJSheldonADLaRocqueJJPostleBRDissociating perceptual confidence from discrimination accuracy reveals no influence of metacognitive awareness on working memoryFrontiers in Psychology20167June851273755294893488 – reference: SerièsPSeitzARLearning what to expect (in visual perception)Frontiers in Human Neuroscience20137668114 – reference: BejjankiVRKnillDCAslinRNLearning and inference using complex generative models in a spatial localization taskJournal of Vision20161659269670154790422 – reference: Zylberberg, A., Fetsch, C. R., & Shadlen, M. N. (2016). The influence of evidence volatility on choice, reaction time and confidence in a perceptual decision. eLife, 5. https://doi.org/10.7554/eLife.17688 – reference: GeislerWSKerstenDIllusions, perception and Bayes [Review of Illusions, perception and Bayes]Nature Neuroscience20025650851012037517 – reference: WeissYSimoncelliEPAdelsonEHMotion illusions as optimal perceptsNature Neuroscience20025659860412021763 – reference: Morales, J., Odegaard, B., & Maniscalco, B. (2020). The neural substrates of conscious perception without performance confounds.https://philpapers.org/rec/MORTNS-4 – reference: RahnevDManiscalcoBGravesTHuangEde LangeFPLauHAttention induces conservative subjective biases in visual perceptionNature Neuroscience201114121513151522019729 – reference: PetersMAKFesiJAmendiNKnottsJDLauHRoTTranscranial magnetic stimulation to visual cortex induces suboptimal introspectionCortex; a Journal Devoted to the Study of the Nervous System and Behavior201793119132286466725541901 – reference: Samaha, J., Iemi, L., & Postle, B. R. (2017). Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy. Consciousness and Cognitionhttps://doi.org/10.1016/j.concog.2017.02.005 – reference: WoznyDRShamsLRecalibration of Auditory Space following Milliseconds of Cross-Modal DiscrepancyJournal of Neuroscience201131124607461221430160 – reference: GirshickARLandyMSSimoncelliEPCardinal rules: Visual orientation perception reflects knowledge of environmental statisticsNature Neuroscience2011147926932216429763125404 – reference: RosenholtzRHuangJEhingerKARethinking the role of top-down attention in vision: effects attributable to a lossy representation in peripheral visionFrontiers in Psychology2012313223472003272623 – reference: ZylberbergABarttfeldPSigmanMThe construction of confidence in a perceptual decisionFrontiers in Integrative Neuroscience201267979230495043448113 – ident: 2358_CR94 doi: 10.1167/8.3.24 – volume: 35 start-page: 63 year: 2013 ident: 2358_CR69 publication-title: Progress in Retinal and Eye Research doi: 10.1016/j.preteyeres.2013.01.005 – volume: 7 start-page: 851 issue: June year: 2016 ident: 2358_CR80 publication-title: Frontiers in Psychology – volume: 141 start-page: 30 year: 2017 ident: 2358_CR90 publication-title: Vision Research doi: 10.1016/j.visres.2016.10.008 – ident: 2358_CR42 doi: 10.1371/journal.pone.0000943 – ident: 2358_CR13 doi: 10.31234/osf.io/7p8jg – ident: 2358_CR82 doi: 10.1016/j.concog.2009.12.013 – volume: 4 start-page: 1146 issue: 11 year: 2001 ident: 2358_CR29 publication-title: Nature Neuroscience doi: 10.1038/nn741 – volume: 28 start-page: 167 issue: 2 year: 2004 ident: 2358_CR28 publication-title: Cognitive Science doi: 10.1207/s15516709cog2802_3 – ident: 2358_CR55 doi: 10.31234/osf.io/5qrjn – volume: 9 start-page: 1 issue: 5 year: 2009 ident: 2358_CR7 publication-title: Journal of Vision doi: 10.1167/9.5.23 – volume: 26 start-page: 1664 issue: 11 year: 2015 ident: 2358_CR71 publication-title: Psychological Science doi: 10.1177/0956797615595037 – volume: 108 start-page: 1529 issue: 5 year: 2012 ident: 2358_CR70 publication-title: Journal of Neurophysiology doi: 10.1152/jn.00184.2012 – volume: 16 start-page: 9 issue: 5 year: 2016 ident: 2358_CR8 publication-title: Journal of Vision doi: 10.1167/16.5.9 – volume: 7 start-page: 4 issue: 6 year: 2007 ident: 2358_CR48 publication-title: Journal of Vision doi: 10.1167/7.6.4 – ident: 2358_CR66 doi: 10.1038/s41562-017-0139 – volume: 2015 start-page: 1 year: 2016 ident: 2358_CR56 publication-title: Neuroscience of Consciousness, November – volume: 23 start-page: 2522 issue: 7 year: 2003 ident: 2358_CR50 publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.23-07-02522.2003 – volume: 115 start-page: 44 issue: 1 year: 2008 ident: 2358_CR53 publication-title: Psychological Review doi: 10.1037/0033-295X.115.1.44 – volume: 93 start-page: 119 year: 2017 ident: 2358_CR64 publication-title: Cortex; a Journal Devoted to the Study of the Nervous System and Behavior doi: 10.1016/j.cortex.2017.05.017 – ident: 2358_CR60 doi: 10.1098/rstb.2017.0345 – volume: 6 start-page: e5760 year: 2018 ident: 2358_CR67 publication-title: PeerJ doi: 10.7717/peerj.5760 – volume: 408 start-page: 788 issue: 6814 year: 2000 ident: 2358_CR85 publication-title: Nature doi: 10.1038/35048669 – volume: 7 start-page: 25 year: 2013 ident: 2358_CR88 publication-title: Frontiers in Computational Neuroscience doi: 10.3389/fncom.2013.00025 – volume: 77 start-page: 258 year: 2014 ident: 2358_CR86 publication-title: Attention, Perception, & Psychophysics doi: 10.3758/s13414-014-0769-1 – volume: 107 start-page: 1556 year: 2012 ident: 2358_CR73 publication-title: Journal of Neurophysiology doi: 10.1152/jn.00985.2011 – volume: 142 start-page: 2523 issue: 8 year: 2019 ident: 2358_CR89 publication-title: Brain: A Journal of Neurology doi: 10.1093/brain/awz171 – volume: 116 start-page: 24872 issue: 49 year: 2019 ident: 2358_CR17 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1906787116 – volume: 90 start-page: 425 issue: 3 year: 2016 ident: 2358_CR16 publication-title: Neuron doi: 10.1016/j.neuron.2016.04.023 – volume: 14 start-page: 119 issue: 3 year: 2010 ident: 2358_CR21 publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2010.01.003 – volume-title: Detection theory: A user’s guide year: 2005 ident: 2358_CR54 – volume: 9 start-page: 578 issue: 4 year: 2006 ident: 2358_CR87 publication-title: Nature Neuroscience doi: 10.1038/nn1669 – volume: 14 start-page: 926 issue: 7 year: 2011 ident: 2358_CR26 publication-title: Nature Neuroscience doi: 10.1038/nn.2831 – volume: 15 start-page: 10 issue: 9 year: 2015 ident: 2358_CR25 publication-title: Journal of Vision doi: 10.1167/15.9.10 – volume: 6 start-page: e1000871 issue: 8 year: 2010 ident: 2358_CR95 publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1000871 – ident: 2358_CR77 doi: 10.1167/12.4.14 – volume: 1 start-page: 165 issue: 3 year: 2010 ident: 2358_CR78 publication-title: Cognitive Neuroscience doi: 10.1080/17588921003632529 – volume: 31 start-page: 4607 issue: 12 year: 2011 ident: 2358_CR96 publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.6079-10.2011 – volume: 5 start-page: 508 issue: 6 year: 2002 ident: 2358_CR24 publication-title: Nature Neuroscience doi: 10.1038/nn0602-508 – volume-title: Signal detection theory and psychophysics year: 1966 ident: 2358_CR30 – ident: 2358_CR79 doi: 10.1371/journal.pone.0117178 – volume: 27C start-page: 109 year: 2014 ident: 2358_CR93 publication-title: Consciousness and Cognition doi: 10.1016/j.concog.2014.04.009 – volume: 69 start-page: 1 year: 2012 ident: 2358_CR6 publication-title: Vision Research doi: 10.1016/j.visres.2012.06.014 – volume: 14 start-page: 1513 issue: 12 year: 2011 ident: 2358_CR72 publication-title: Nature Neuroscience doi: 10.1038/nn.2948 – ident: 2358_CR18 doi: 10.1371/journal.pone.0096511 – volume: 124 start-page: 91 issue: 1 year: 2017 ident: 2358_CR23 publication-title: Psychological Review doi: 10.1037/rev0000045 – ident: 2358_CR10 doi: 10.1101/2020.09.17.299743 – volume: 4 start-page: 47 year: 2013 ident: 2358_CR2 publication-title: Frontiers in Psychiatry / Frontiers Research Foundation – volume: 43 start-page: 831 year: 2003 ident: 2358_CR36 publication-title: Vision Research doi: 10.1016/S0042-6989(03)00003-8 – volume: 80 start-page: 1325 issue: 6 year: 2018 ident: 2358_CR51 publication-title: Attention, Perception & Psychophysics doi: 10.3758/s13414-018-1554-3 – ident: 2358_CR52 doi: 10.1016/S0042-6989(97)00273-3 – volume: 2 start-page: 437 year: 2016 ident: 2358_CR75 publication-title: Annual Review of Vision Science doi: 10.1146/annurev-vision-082114-035733 – ident: 2358_CR40 doi: 10.31234/osf.io/fhywz – volume: 79 start-page: 185 year: 2014 ident: 2358_CR20 publication-title: Cold Spring Harbor Symposia on Quantitative Biology doi: 10.1101/sqb.2014.79.024893 – ident: 2358_CR63 doi: 10.1371/journal.pone.0119794 – volume-title: Sensory cue integration (pp. 5–29) year: 2011 ident: 2358_CR47 doi: 10.1093/acprof:oso/9780195387247.003.0001 – ident: 2358_CR99 doi: 10.7554/eLife.17688 – volume: 331 start-page: 83 issue: 6013 year: 2011 ident: 2358_CR9 publication-title: Science doi: 10.1126/science.1195870 – volume: 43 start-page: 2539 issue: 24 year: 2003 ident: 2358_CR39 publication-title: Vision Research doi: 10.1016/S0042-6989(03)00458-9 – ident: 2358_CR46 – ident: 2358_CR1 – volume: 30 start-page: 7714 issue: 22 year: 2010 ident: 2358_CR11 publication-title: The Journal of Neuroscience: The Official Journal of the Society for Neuroscience doi: 10.1523/JNEUROSCI.6427-09.2010 – volume: 115 start-page: 11090 issue: 43 year: 2018 ident: 2358_CR12 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1717720115 – ident: 2358_CR97 doi: 10.1017/CBO9780511984037.006 – volume: 5 start-page: 598 issue: 6 year: 2002 ident: 2358_CR92 publication-title: Nature Neuroscience doi: 10.1038/nn0602-858 – ident: 2358_CR31 doi: 10.7554/eLife.54962 – volume: 10 start-page: 1719 issue: 1 year: 2019 ident: 2358_CR32 publication-title: Nature Communications doi: 10.1038/s41467-019-09330-7 – volume: 125 start-page: 33 issue: 1 year: 2018 ident: 2358_CR74 publication-title: Psychological Review doi: 10.1037/rev0000080 – volume: 7 start-page: 1 issue: 668 year: 2013 ident: 2358_CR83 publication-title: Frontiers in Human Neuroscience – volume: 3 start-page: 13 year: 2012 ident: 2358_CR76 publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2012.00013 – volume: 7 start-page: 1057 issue: 10 year: 2004 ident: 2358_CR3 publication-title: Nature Neuroscience doi: 10.1038/nn1312 – volume: 27C start-page: 246 year: 2014 ident: 2358_CR100 publication-title: Consciousness and Cognition doi: 10.1016/j.concog.2014.05.012 – ident: 2358_CR4 doi: 10.1371/journal.pcbi.1006572 – ident: 2358_CR35 doi: 10.1098/rstb.2013.0204 – volume: 14 start-page: 425 year: 2010 ident: 2358_CR84 publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2010.07.001 – ident: 2358_CR91 doi: 10.1093/acprof:oso/9780195387247.003.0002 – volume: 6 start-page: 79 year: 2012 ident: 2358_CR98 publication-title: Frontiers in Integrative Neuroscience doi: 10.3389/fnint.2012.00079 – ident: 2358_CR38 doi: 10.1017/CBO9780511984037 – volume: 19 start-page: 366 issue: 3 year: 2016 ident: 2358_CR68 publication-title: Nature Neuroscience doi: 10.1038/nn.4240 – volume: 168 start-page: 35 year: 2008 ident: 2358_CR49 publication-title: Progress in Brain Research – volume: 78 start-page: 923 year: 2016 ident: 2358_CR58 publication-title: Attention, Perception, & Psychophysics doi: 10.3758/s13414-016-1059-x – volume: 11 start-page: 139 issue: 2 year: 2000 ident: 2358_CR14 publication-title: Psychological Science doi: 10.1111/1467-9280.00229 – ident: 2358_CR61 doi: 10.1371/journal.pcbi.1004649 – volume: 14 start-page: 257 issue: 3 year: 2004 ident: 2358_CR5 publication-title: Current Biology: CB doi: 10.1016/j.cub.2004.01.029 – ident: 2358_CR62 doi: 10.7717/peerj.3143 – ident: 2358_CR59 doi: 10.31234/osf.io/8zhy3 – volume: 77 start-page: 1295 issue: 4 year: 2015 ident: 2358_CR41 publication-title: Attention, Perception, & Psychophysics doi: 10.3758/s13414-015-0843-3 – volume: 29 start-page: 1206 issue: 7 year: 2019 ident: 2358_CR27 publication-title: Current Biology: CB doi: 10.1016/j.cub.2019.02.023 – volume: 7 start-page: 5:1 issue: 7 year: 2007 ident: 2358_CR37 publication-title: Journal of Vision doi: 10.1167/7.7.5 – volume: 18 start-page: 1742 issue: 22 year: 2008 ident: 2358_CR22 publication-title: Current Biology: CB doi: 10.1016/j.cub.2008.09.042 – volume: 55 start-page: 271 year: 2004 ident: 2358_CR34 publication-title: Annual Review of Psychology doi: 10.1146/annurev.psych.55.090902.142005 – volume-title: Advances in Neural Information Processing Systems 19 (pp. 737–744) year: 2007 ident: 2358_CR45 – volume: 3 start-page: 343 year: 2017 ident: 2358_CR15 publication-title: Annual Review of Vision Science doi: 10.1146/annurev-vision-102016-061249 – volume-title: Comparing Bayesian models for multisensory cue combination without mandatory integration year: 2008 ident: 2358_CR43 – ident: 2358_CR57 doi: 10.1371/journal.pcbi.1008779 – ident: 2358_CR44 – volume: 4 start-page: e2124 year: 2016 ident: 2358_CR65 publication-title: PeerJ doi: 10.7717/peerj.2124 – ident: 2358_CR19 doi: 10.7554/eLife.21761 – volume: 8 start-page: 19, 1 issue: 1 year: 2008 ident: 2358_CR33 publication-title: Journal of Vision – ident: 2358_CR81 doi: 10.1016/j.concog.2017.02.005 |
| SSID | ssj0063670 |
| Score | 2.3936253 |
| Snippet | Perceptual confidence typically corresponds to accuracy. However, observers can be overconfident relative to accuracy, termed “subjective inflation.” Inflation... Perceptual confidence typically corresponds to accuracy. However, observers can be overconfident relative to accuracy, termed "subjective inflation." Inflation... |
| SourceID | unpaywall proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 161 |
| SubjectTerms | Accuracy Algorithms Bayes Theorem Bayesian Statistics Behavioral Science and Psychology Beliefs Cognition Cognitive Psychology Estimates Heuristics Humans Hypotheses Inferences Metacognition Noise Psychology Stimuli Vision Vision, Ocular Visual Perception |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66HtSD-HZ9EcGbFps2fR1FFBH05Iq3kqQJFNdssbvq_ntn-nJFFL30kkdLvjQzXybzhZBjiTcuRjpwmIldICg6dmSUqSpXxs14JqJqQ__2Lrwe8JvH4LFJCivb0-5tSLJaqZFXglN7VqL0GHfwSAFqtAC-82QhQDkvmMUD77xdf0OUJKtiydx3wPqzOlXmhz6-mqNvPuZMfHSZLE5sIaZvYjicMUFXq2Sl8R3peQ32GpnTdp0sdUvYdIPYB6C-iCMF-IruzArFTLEXWj7pN51R_VzklTAItaO81BRzimq5Zqrfi6HIbUnxYCcwZVNfOUpzS8FRpK95OYFmKI6MagTTTTK4ury_uHaaGxUcxVkyhgUX0wITLmNlXCUV8BdhlO9HcZJlQoswAIvGtXDjTBrGAygLmVGuFtJEvvH8LdKzI6t3CA2Y5FzFJgsiYJQsEUZGYehKxUwkgXT2CWsHNlWN3DjeejFMgXYgGGkNRgpgpBUYqdcnJ12bohbb-LX2fotX2vx4ZeqBO5cAZU1Ynxx1xTDmGAcRVo8mUCcIwXTDA7rYrnHuXudzzO31oeS0Bf6z89--5bSbHH_49N3_9b5HljzMuqh2fvZJb_wy0QfgC43lYTX1PwA2ef6e priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48H4sapGRuNFs443zOla0VYVExYFFyynyU4q69UZNQll-PeM4SQsVFYhLFMmP2OOx_U088xngrXA3LqY6DqjJQjRQdBaIVMkuViZUTPG0-6H_8TQ5WbAPy3i5BYdDLEzn7T4cSfqYBsfSZJv9Shk3xSMEuPu1oyFjgXMvcHwtONYzTL4D20mMiHwC24vTTwdfuwNlFgUIAejVe7T0sTN_qOjX_ekG6Lx2YHof7ra24ptLvlpd25OOH4IeeuNdUc5mbSNm8sdvRI__291H8KAHreTAa9lj2NL2Cdwb187NU7Bf0OZ2CkRQb6rRWYa4ELULUp_pS62IPq_KjpGE2HVZa-KCmTxPNNHfqxUvbU2cRyk2zvi7TklpCSJU8q2sWyzmWJkdDcLmGSyOjz6_Pwn6qxwCyWje4Erv4hFzJjJpQikkGk7cyChKs1wprnkS41bKNA8zJQxlMaYl1MhQc2HSyMyj5zCxa6tfAompYExmRsUpmrI050akSRIKSU0q0NqdAh0GsJA9z7m7bmNVoL3jxFl4cRYozqITZzGfwruxTOVZPm7NvTPoRdHP-LqYI47M0VbO6RTejMkoc3cAw61et5gnThAz4AOreOH1afxcxFxQcYQpe4M-XFV-W1v2RiX8i6a_-rfsOzBpLlq9i7irEa_7afUTKwolQA priority: 102 providerName: Unpaywall |
| Title | Variance misperception under skewed empirical noise statistics explains overconfidence in the visual periphery |
| URI | https://link.springer.com/article/10.3758/s13414-021-02358-2 https://www.ncbi.nlm.nih.gov/pubmed/34426932 https://www.proquest.com/docview/2623909491 https://www.proquest.com/docview/2564135642 https://link.springer.com/content/pdf/10.3758/s13414-021-02358-2.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 84 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1943-393X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063670 issn: 1943-393X databaseCode: DIK dateStart: 19660101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 1943-393X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0063670 issn: 1943-393X databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1943-393X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0063670 issn: 1943-393X databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1943-393X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063670 issn: 1943-393X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1943-393X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063670 issn: 1943-393X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF61yYFyqHiWQIkWiRu16rXXXvuAUEApFYioQgSlJ2ufkkVwTJ205N8z41eLkCIuluz1Y7XfeB67O98Q8lphxUVhI4-5xIcAxSaeEkbXuTK-4UaKekL_yyw-n_NPi2ixR2ZdLgxuq-x0Yq2ozUrjHPlpAHY6hVgkZe_KXx5WjcLV1a6EhmxLK5i3NcXYPhkGyIw1IMP309nF1043x0hXVq8z89ADz4A1aTQhOM2nFVKbcQ-3LCAHDMjP36bqH__zztrpfXJvU5RyeyOXyzvm6ewBOWz9SjppBOEh2bPFI3LQq7ftY1J8h7AYMaYAbdnvZ6GYRXZFqx_2xhpqf5Z5TRpCi1VeWYr5Rg2VM7W_y6XMi4ripk-Iol1TjpTmBQUnkl7n1QYeQ-JkZCrYPiHzs-m3D-deW23B05yla1DGmDKYcpVo52ulIbaRToehSFJjpJVxBNaOW-knRjnGI2iLmdO-lcqJ0AXhUzIoVoV9RmjEFOc6cSYSEG2yVDol4thXmjmhICAdEdYNbKZbKnKsiLHMICRBMLIGjAzAyGowsmBE3vTPlA0Rx867jzu8svanrLJbERqRV30zjDmukcjCrjZwTxSDWYcDvOKowbn_XMgx7zeElpMO-NuX7-rLSS8c_9H157u7_oIcBJiBUc8CHZPB-mpjX4JftFZjsi8WYkyGk4-Xn6fjVvTh6jyYwNl8djG5_AOGvA1X |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9tByQJTnQgtGghONGifO61ChAq22tF0h1KLeUj-liMUbml2W_XP8ts7k1SKkFZdecnHsWJ7JPGx_3xDyRmLFxcREHrOpDwmKST2ZaFVjZXzNtUjqDf3TUTw8558voosV8qfDwuC1ys4m1oZaTxTuke8G4KczyEUy9r786WHVKDxd7UpoiLa0gt6rKcZaYMexWcwhhav2jj6BvN8GweHB2ceh11YZ8BRn2RSMEELlMi5TZX0lFcT0wqowTNJMa2FEHIGV50b4qZaW8QjaYmaVb4S0SWiR-ABcwBoPeQbJ39qHg9GXr50viJEerT7X5qEHkQhrYDshBOm7FVKpcQ-vSCDnDOjr367xn3j31lntPbI-c6VYzMV4fMsdHj4g99s4lu43irdJVox7SDZ6c7p4RNw3SMNRpyioUtnfn6GIWrui1XczN5qaH2VRk5RQNykqQxHf1FBHU_O7HIvCVRQvmULWbpvyp7RwFIJW-quoZtANiZqRGWHxmJzfybo_Iatu4swzQiMmOVep1VEC2S3LhJVJHPtSMZtISIAHhHULm6uW-hwrcIxzSIFQGHkjjByEkdfCyIMBedf3KRvij6Vvb3XyylsjUOU3Kjsgr_tmWHM8kxHOTGbwThRDGAEPGOJpI-f-cyFHnHEILTud4G8GXzaXnV45_mPqz5dP_RVZH56dnuQnR6PjF2QjQPRHvQO1RVanVzOzDTHZVL5sFZ-Sy7v-164BI_pGXw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIkE5IN4sFDASnGi0cezEyQEhRFm1FCoOFO0t2I4tRWy9abPLsn-NX8dMXi1CWnHpJRfHieUZj-ezZ74h5KXGiovSxgFzaQgAxaaBloVpcmXCQhRKNgf6n4-TgxPxcRpPt8jvPhcGwyp7m9gY6mJu8Ix8HME-nQEWydjYdWERX_Ynb6uzACtI4U1rX06jVZEju14BfKvfHO6DrF9F0eTD1_cHQVdhIDCCZQswQJgmlwmdGhcabcCfV85wLtOsKJRVSQwWXlgVpoV2TMTQljBnQqu0k9wh6QGY_2uS8wzDCeV0AHsJEqM1N9qCB-CDsDZhh4N7Pq6RRE0EGByBbDOgqX9viv94upduaW-SG0tfqfVKzWaXNsLJbXKr82Dpu1bl7pAt6--SncGQru8R_w0AOGoTBSWqhsgZivlq57T-YVe2oPa0Kht6EurnZW0pZja1pNHU_qpmqvQ1xfBSwOuuLXxKS0_BXaU_y3oJ3ZCiGTkR1vfJyZXM-gOy7efePiI0ZloIk7oiloBrWaaclkkSasOc1AB9R4T1E5ubjvQca2_McgA_KIy8FUYOwsgbYeTRiLwe-lQt5cfGt3d7eeXd8q_zC2UdkRdDM8w53sYob-dLeCdOwIGAB3ziYSvn4XdcYIYxh5a9XvAXH980lr1BOf5j6I83D_05uQ4rLP90eHz0hOxEmPbRHD3tku3F-dI-BWdsoZ81Wk_J96teZn8AK9pD-Q |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE48H4sapGRuNFs443zOla0VYVExYFFyynyU4q69UZNQll-PeM4SQsVFYhLFMmP2OOx_U088xngrXA3LqY6DqjJQjRQdBaIVMkuViZUTPG0-6H_8TQ5WbAPy3i5BYdDLEzn7T4cSfqYBsfSZJv9Shk3xSMEuPu1oyFjgXMvcHwtONYzTL4D20mMiHwC24vTTwdfuwNlFgUIAejVe7T0sTN_qOjX_ekG6Lx2YHof7ra24ptLvlpd25OOH4IeeuNdUc5mbSNm8sdvRI__291H8KAHreTAa9lj2NL2Cdwb187NU7Bf0OZ2CkRQb6rRWYa4ELULUp_pS62IPq_KjpGE2HVZa-KCmTxPNNHfqxUvbU2cRyk2zvi7TklpCSJU8q2sWyzmWJkdDcLmGSyOjz6_Pwn6qxwCyWje4Erv4hFzJjJpQikkGk7cyChKs1wprnkS41bKNA8zJQxlMaYl1MhQc2HSyMyj5zCxa6tfAompYExmRsUpmrI050akSRIKSU0q0NqdAh0GsJA9z7m7bmNVoL3jxFl4cRYozqITZzGfwruxTOVZPm7NvTPoRdHP-LqYI47M0VbO6RTejMkoc3cAw61et5gnThAz4AOreOH1afxcxFxQcYQpe4M-XFV-W1v2RiX8i6a_-rfsOzBpLlq9i7irEa_7afUTKwolQA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variance+misperception+under+skewed+empirical+noise+statistics+explains+overconfidence+in+the+visual+periphery&rft.jtitle=Attention%2C+perception+%26+psychophysics&rft.au=Winter%2C+Charles+J&rft.au=Peters%2C+Megan+A+K&rft.date=2022-01-01&rft.issn=1943-393X&rft.eissn=1943-393X&rft.volume=84&rft.issue=1&rft.spage=161&rft_id=info:doi/10.3758%2Fs13414-021-02358-2&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-3921&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-3921&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-3921&client=summon |