Maximum likelihood estimation for a special exponential family under random double-truncation

Doubly-truncated data often appear in lifetime data analysis, where samples are collected under certain time constraints. Nonparametric methods for doubly-truncated data have been studied well in the literature. Alternatively, this paper considers parametric inference when samples are subject to dou...

Full description

Saved in:
Bibliographic Details
Published inComputational statistics Vol. 30; no. 4; pp. 1199 - 1229
Main Authors Hu, Ya-Hsuan, Emura, Takeshi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0943-4062
1613-9658
DOI10.1007/s00180-015-0564-z

Cover

Abstract Doubly-truncated data often appear in lifetime data analysis, where samples are collected under certain time constraints. Nonparametric methods for doubly-truncated data have been studied well in the literature. Alternatively, this paper considers parametric inference when samples are subject to double-truncation. Efron and Petrosian (J Am Stat Assoc 94:824–834, 1999 ) proposed to fit a parametric family, called the special exponential family, with doubly-truncated data. However, non-trivial technical aspects, such as parameter space, support of the density, and computational algorithms, have not been discussed in the literature. This paper fills this gap by providing the technical aspects, including adequate choices of parameter space as well as support, and reliable computational algorithms. Simulations are conducted to verify the suggested techniques, and real data are used for illustration.
AbstractList Doubly-truncated data often appear in lifetime data analysis, where samples are collected under certain time constraints. Nonparametric methods for doubly-truncated data have been studied well in the literature. Alternatively, this paper considers parametric inference when samples are subject to double-truncation. Efron and Petrosian (J Am Stat Assoc 94:824-834, 1999) proposed to fit a parametric family, called the special exponential family, with doubly-truncated data. However, non-trivial technical aspects, such as parameter space, support of the density, and computational algorithms, have not been discussed in the literature. This paper fills this gap by providing the technical aspects, including adequate choices of parameter space as well as support, and reliable computational algorithms. Simulations are conducted to verify the suggested techniques, and real data are used for illustration.
Doubly-truncated data often appear in lifetime data analysis, where samples are collected under certain time constraints. Nonparametric methods for doubly-truncated data have been studied well in the literature. Alternatively, this paper considers parametric inference when samples are subject to double-truncation. Efron and Petrosian (J Am Stat Assoc 94:824–834, 1999 ) proposed to fit a parametric family, called the special exponential family, with doubly-truncated data. However, non-trivial technical aspects, such as parameter space, support of the density, and computational algorithms, have not been discussed in the literature. This paper fills this gap by providing the technical aspects, including adequate choices of parameter space as well as support, and reliable computational algorithms. Simulations are conducted to verify the suggested techniques, and real data are used for illustration.
Author Hu, Ya-Hsuan
Emura, Takeshi
Author_xml – sequence: 1
  givenname: Ya-Hsuan
  surname: Hu
  fullname: Hu, Ya-Hsuan
  organization: Graduate Institute of Statistics, National Central University
– sequence: 2
  givenname: Takeshi
  surname: Emura
  fullname: Emura, Takeshi
  email: takeshiemura@gmail.com, emura@stat.ncu.edu.tw
  organization: Graduate Institute of Statistics, National Central University
BookMark eNp9kE1rHSEUhqWk0Jvb_IDuhGy6sTlHx_lYlpCPQkI3zTKI4zitt47e6gwk-fXx3ptFCDQrBZ_nnNf3mByFGCwhXxC-IUBzlgGwBQYoGci6Yk8fyAprFKyrZXtEVtBVglVQ80_kOOcNAOcNxxW5v9UPblom6t1f692fGAdq8-wmPbsY6BgT1TRvrXHaU_uwLVvDvLuPenL-kS5hsIkmHYY40SEuvbdsTkswe_8z-Thqn-3Jy7kmd5cXv86v2c3Pqx_n32-YqbCbGaLkvebQoxZGjNJIlNhKkNiJYeS9GKCFujdNa6zWI7RCNu2gUZiqLg-jWJOvh7nbFP8tJb-aXDbWex1sXLLCpmlBAO-6gp6-QTdxSaGkK1TV1VBDhYVqDpRJMedkR2XcvP_SnLTzCkHtaleH2lWpXe1qV0_FxDfmNpU20-O7Dj84ubDht02vMv1XegZFyZfJ
CitedBy_id crossref_primary_10_1007_s00362_017_0947_z
crossref_primary_10_1016_j_csda_2019_106862
crossref_primary_10_1080_02331888_2022_2105843
crossref_primary_10_1080_02331888_2024_2431737
crossref_primary_10_1007_s00180_018_0804_0
crossref_primary_10_1007_s00362_016_0870_8
crossref_primary_10_1016_j_csda_2024_108090
crossref_primary_10_1016_j_jkss_2018_12_003
crossref_primary_10_1016_j_aej_2022_05_007
crossref_primary_10_1007_s42952_020_00057_6
crossref_primary_10_1177_09622802221084133
crossref_primary_10_1080_03610926_2018_1425450
crossref_primary_10_1007_s00362_015_0730_y
crossref_primary_10_1007_s42952_021_00113_9
crossref_primary_10_1080_03610918_2015_1073303
crossref_primary_10_1007_s00180_020_01027_6
crossref_primary_10_1080_02664763_2024_2415412
crossref_primary_10_1080_02331888_2020_1772788
crossref_primary_10_3390_math12203264
crossref_primary_10_1007_s00362_017_0968_7
Cites_doi 10.1007/BF02778272
10.1371/journal.pone.0037025
10.1093/biomet/75.3.515
10.1007/BF00773592
10.1007/s00362-010-0321-x
10.1080/10485250903556102
10.1080/01621459.1999.10474187
10.1016/j.csda.2011.12.022
10.1007/s10463-008-0192-2
10.1201/b16946
10.1186/1471-2288-7-53
10.1016/j.csda.2012.11.017
10.1214/12-EJS683
10.1191/0962280203sm346oa
10.1007/s00180-014-0496-z
10.1007/s11749-013-0339-1
10.1191/0962280202sm279ra
10.1191/0962280202SM276ra
10.1007/BF02613687
10.1093/biomet/ass009
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
DBID AAYXX
CITATION
3V.
7SC
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8C1
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
KR7
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s00180-015-0564-z
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Proquest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest Business Suite) (LAB)
Computing Database
Research Library (Proquest)
Science Database (via ProQuest SciTech Premium Collection)
Engineering Database (Proquest)
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health & Medical Research Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Civil Engineering Abstracts
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1613-9658
EndPage 1229
ExternalDocumentID 3897205461
10_1007_s00180_015_0564_z
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2LR
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6NX
78A
7WY
88I
8C1
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
MK~
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Y
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c419t-1152ba20b1a3c3f5c51518505193df2b3d0806bc78ceaaf083578da13c46806f3
IEDL.DBID BENPR
ISSN 0943-4062
IngestDate Fri Sep 05 12:12:22 EDT 2025
Fri Jul 25 19:13:03 EDT 2025
Wed Oct 01 05:00:50 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Fri Feb 21 02:33:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Newton–Raphson algorithm
Survival analysis
Truncated data
Fixed point iteration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c419t-1152ba20b1a3c3f5c51518505193df2b3d0806bc78ceaaf083578da13c46806f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1749606041
PQPubID 54096
PageCount 31
ParticipantIDs proquest_miscellaneous_1778030299
proquest_journals_1749606041
crossref_citationtrail_10_1007_s00180_015_0564_z
crossref_primary_10_1007_s00180_015_0564_z
springer_journals_10_1007_s00180_015_0564_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Computational statistics
PublicationTitleAbbrev Comput Stat
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References LongTHEmuraTA control chart using copula-based Markov chain modelsJ Chin Stat Assoc201452466496
MandrekarSJNandrekarJNAre our data symmetric?Stat Methods Med Res200312505513200550510.1191/0962280203sm346oa
CasellaGBergerRLStatistical inference2002AustraliaDuxbury Thomson Learning
EfronBPetrosianRNonparametric methods for doubly truncated dataJ Am Stat Assoc199994824834172334310.1080/01621459.1999.104741871072.62552
EmuraTKonnoYMultivariate normal distribution approaches for dependently truncated dataStat Pap201253133149287859710.1007/s00362-010-0321-x1241.62094
RobertsonHTAllisonDBA novel generalized normal distribution for human longevity and other negatively skewed dataPLoS One20127e3702510.1371/journal.pone.0037025
StuteWGonzález-ManteigaWQuindimilMPBootstrap based goodness-of-fit-testsMetrika199340243256123508610.1007/BF026136870770.62016
CommengesDInference for multi-state models from interval-censored dataStat Methods Med Res20021116718210.1191/0962280202sm279ra1121.62589
KnightKMathematical statistics2000Boca RatonChapman and Hall0935.62002
MoreiraCVan KeilegomIBandwidth selection for kernel density estimation with doubly truncated dataComput Stat Data Anal20136110712310.1016/j.csda.2012.11.017
CohenACTruncated and censored samples1991New YorkMarcel Dekker10.1201/b169460742.62027
Moreira C, de Uña-Álvarez J (2012) Kernel density estimation with doubly-truncated data. Electron J Stat 6:501–521
AndersenPKKeidingNMulti-state models for event history analysisStat Methods Med Res2002119111510.1191/0962280202SM276ra1121.62568
ChenYHWeighted Breslow-type and maximum likelihood estimation in semiparametric transformation modelsBiometrika200996235251
Moreira C, de Uña-Álvarez J, Van Keilegom I (2014) Goodness-of-fit tests for a semiparametric model under random double truncation. Comput Stat. doi:10.1007/s00180-014-0496-z
ShenPSNonparametric analysis of doubly truncated dataAnn Inst Stat Math20106283585310.1007/s10463-008-0192-2
StovringHWangMCA new approach of nonparametric estimation of incidence and lifetime risk based on birth rates and incidence eventsBMC Med Res Methodol200775310.1186/1471-2288-7-53
MoreiraCde Uña-ÁlvarezJBootstrapping the NPMLE for doubly truncated dataJ Nonparametric Stati20102256758310.1080/104852509035561021263.62058
EmuraTKonnoYA goodness-of-fit tests for parametric models based on dependently truncated dataComput Stat Data Anal20125622372250289757610.1016/j.csda.2011.12.0221252.62052
Lagakos SW, Barraj LM, De Gruttola V (1988) Non-parametric analysis of truncated survival data with application to AIDS. Biometrika 75:515–523
EmuraTKonnoYMichimaeHStatistical inference based on the nonparametric maximum likelihood estimator under double-truncationLifetime Data Anal2014
Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F. In: Proceedings of the 2nd international symposium on information theory, Akademia Kiado, Budapest, pp 267–281
SankaranPGSunojSMIdentification of models using failure rate and mean residual life of doubly truncated random variablesStat Pap20044597109202805710.1007/BF027782721050.62017
ZhuHWangMCAnalyzing bivariate survival data with interval sampling and application to cancer epidemiologyBiometrika201299345361293125810.1093/biomet/ass00906047215
BurdenRLFairesJDNumerical analysis2011BostonCengage Learning
CastilloJDThe singly truncated normal distribution: a non-steep exponential familyAnn Inst Stat Math199446576610.1007/BF007735920802.62026
BalakrishnanNAsit BasuPThe exponential distribution: theory, methods and applications1996USATaylor & Francis Ltd
R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, R version 3:2
Strzalkowska-KominiakEStuteWEmpirical copulas for consequtive survival data: copulas in survival analysisTEST201322688714312232910.1007/s11749-013-0339-106234367
SJ Mandrekar (564_CR17) 2003; 12
HT Robertson (564_CR23) 2012; 7
H Zhu (564_CR29) 2012; 99
G Casella (564_CR7) 2002
PG Sankaran (564_CR24) 2004; 45
YH Chen (564_CR5) 2009; 96
T Emura (564_CR11) 2012; 53
564_CR1
K Knight (564_CR14) 2000
JD Castillo (564_CR8) 1994; 46
C Moreira (564_CR21) 2013; 61
PK Andersen (564_CR2) 2002; 11
H Stovring (564_CR26) 2007; 7
564_CR15
D Commenges (564_CR9) 2002; 11
PS Shen (564_CR25) 2010; 62
E Strzalkowska-Kominiak (564_CR27) 2013; 22
W Stute (564_CR28) 1993; 40
564_CR19
T Emura (564_CR13) 2014
TH Long (564_CR16) 2014; 52
N Balakrishnan (564_CR3) 1996
RL Burden (564_CR4) 2011
B Efron (564_CR10) 1999; 94
AC Cohen (564_CR6) 1991
C Moreira (564_CR18) 2010; 22
564_CR20
564_CR22
T Emura (564_CR12) 2012; 56
References_xml – reference: AndersenPKKeidingNMulti-state models for event history analysisStat Methods Med Res2002119111510.1191/0962280202SM276ra1121.62568
– reference: Moreira C, de Uña-Álvarez J, Van Keilegom I (2014) Goodness-of-fit tests for a semiparametric model under random double truncation. Comput Stat. doi:10.1007/s00180-014-0496-z
– reference: R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, R version 3:2
– reference: BurdenRLFairesJDNumerical analysis2011BostonCengage Learning
– reference: KnightKMathematical statistics2000Boca RatonChapman and Hall0935.62002
– reference: EmuraTKonnoYMichimaeHStatistical inference based on the nonparametric maximum likelihood estimator under double-truncationLifetime Data Anal2014
– reference: LongTHEmuraTA control chart using copula-based Markov chain modelsJ Chin Stat Assoc201452466496
– reference: EmuraTKonnoYA goodness-of-fit tests for parametric models based on dependently truncated dataComput Stat Data Anal20125622372250289757610.1016/j.csda.2011.12.0221252.62052
– reference: CohenACTruncated and censored samples1991New YorkMarcel Dekker10.1201/b169460742.62027
– reference: CasellaGBergerRLStatistical inference2002AustraliaDuxbury Thomson Learning
– reference: MoreiraCde Uña-ÁlvarezJBootstrapping the NPMLE for doubly truncated dataJ Nonparametric Stati20102256758310.1080/104852509035561021263.62058
– reference: ShenPSNonparametric analysis of doubly truncated dataAnn Inst Stat Math20106283585310.1007/s10463-008-0192-2
– reference: Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F. In: Proceedings of the 2nd international symposium on information theory, Akademia Kiado, Budapest, pp 267–281
– reference: StuteWGonzález-ManteigaWQuindimilMPBootstrap based goodness-of-fit-testsMetrika199340243256123508610.1007/BF026136870770.62016
– reference: ZhuHWangMCAnalyzing bivariate survival data with interval sampling and application to cancer epidemiologyBiometrika201299345361293125810.1093/biomet/ass00906047215
– reference: Lagakos SW, Barraj LM, De Gruttola V (1988) Non-parametric analysis of truncated survival data with application to AIDS. Biometrika 75:515–523
– reference: EfronBPetrosianRNonparametric methods for doubly truncated dataJ Am Stat Assoc199994824834172334310.1080/01621459.1999.104741871072.62552
– reference: CastilloJDThe singly truncated normal distribution: a non-steep exponential familyAnn Inst Stat Math199446576610.1007/BF007735920802.62026
– reference: RobertsonHTAllisonDBA novel generalized normal distribution for human longevity and other negatively skewed dataPLoS One20127e3702510.1371/journal.pone.0037025
– reference: EmuraTKonnoYMultivariate normal distribution approaches for dependently truncated dataStat Pap201253133149287859710.1007/s00362-010-0321-x1241.62094
– reference: Moreira C, de Uña-Álvarez J (2012) Kernel density estimation with doubly-truncated data. Electron J Stat 6:501–521
– reference: BalakrishnanNAsit BasuPThe exponential distribution: theory, methods and applications1996USATaylor & Francis Ltd
– reference: ChenYHWeighted Breslow-type and maximum likelihood estimation in semiparametric transformation modelsBiometrika200996235251
– reference: MoreiraCVan KeilegomIBandwidth selection for kernel density estimation with doubly truncated dataComput Stat Data Anal20136110712310.1016/j.csda.2012.11.017
– reference: CommengesDInference for multi-state models from interval-censored dataStat Methods Med Res20021116718210.1191/0962280202sm279ra1121.62589
– reference: SankaranPGSunojSMIdentification of models using failure rate and mean residual life of doubly truncated random variablesStat Pap20044597109202805710.1007/BF027782721050.62017
– reference: StovringHWangMCA new approach of nonparametric estimation of incidence and lifetime risk based on birth rates and incidence eventsBMC Med Res Methodol200775310.1186/1471-2288-7-53
– reference: MandrekarSJNandrekarJNAre our data symmetric?Stat Methods Med Res200312505513200550510.1191/0962280203sm346oa
– reference: Strzalkowska-KominiakEStuteWEmpirical copulas for consequtive survival data: copulas in survival analysisTEST201322688714312232910.1007/s11749-013-0339-106234367
– volume: 45
  start-page: 97
  year: 2004
  ident: 564_CR24
  publication-title: Stat Pap
  doi: 10.1007/BF02778272
– volume-title: Numerical analysis
  year: 2011
  ident: 564_CR4
– volume: 96
  start-page: 235
  year: 2009
  ident: 564_CR5
  publication-title: Biometrika
– ident: 564_CR22
– volume: 7
  start-page: e37025
  year: 2012
  ident: 564_CR23
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037025
– ident: 564_CR15
  doi: 10.1093/biomet/75.3.515
– volume: 46
  start-page: 57
  year: 1994
  ident: 564_CR8
  publication-title: Ann Inst Stat Math
  doi: 10.1007/BF00773592
– volume: 53
  start-page: 133
  year: 2012
  ident: 564_CR11
  publication-title: Stat Pap
  doi: 10.1007/s00362-010-0321-x
– volume: 22
  start-page: 567
  year: 2010
  ident: 564_CR18
  publication-title: J Nonparametric Stati
  doi: 10.1080/10485250903556102
– volume: 94
  start-page: 824
  year: 1999
  ident: 564_CR10
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1999.10474187
– volume: 56
  start-page: 2237
  year: 2012
  ident: 564_CR12
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2011.12.022
– volume: 62
  start-page: 835
  year: 2010
  ident: 564_CR25
  publication-title: Ann Inst Stat Math
  doi: 10.1007/s10463-008-0192-2
– volume-title: Truncated and censored samples
  year: 1991
  ident: 564_CR6
  doi: 10.1201/b16946
– volume: 7
  start-page: 53
  year: 2007
  ident: 564_CR26
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-7-53
– volume: 52
  start-page: 466
  year: 2014
  ident: 564_CR16
  publication-title: J Chin Stat Assoc
– volume-title: Statistical inference
  year: 2002
  ident: 564_CR7
– volume: 61
  start-page: 107
  year: 2013
  ident: 564_CR21
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2012.11.017
– ident: 564_CR20
  doi: 10.1214/12-EJS683
– volume-title: The exponential distribution: theory, methods and applications
  year: 1996
  ident: 564_CR3
– year: 2014
  ident: 564_CR13
  publication-title: Lifetime Data Anal
– volume-title: Mathematical statistics
  year: 2000
  ident: 564_CR14
– volume: 12
  start-page: 505
  year: 2003
  ident: 564_CR17
  publication-title: Stat Methods Med Res
  doi: 10.1191/0962280203sm346oa
– ident: 564_CR19
  doi: 10.1007/s00180-014-0496-z
– volume: 22
  start-page: 688
  year: 2013
  ident: 564_CR27
  publication-title: TEST
  doi: 10.1007/s11749-013-0339-1
– volume: 11
  start-page: 167
  year: 2002
  ident: 564_CR9
  publication-title: Stat Methods Med Res
  doi: 10.1191/0962280202sm279ra
– volume: 11
  start-page: 91
  year: 2002
  ident: 564_CR2
  publication-title: Stat Methods Med Res
  doi: 10.1191/0962280202SM276ra
– volume: 40
  start-page: 243
  year: 1993
  ident: 564_CR28
  publication-title: Metrika
  doi: 10.1007/BF02613687
– ident: 564_CR1
– volume: 99
  start-page: 345
  year: 2012
  ident: 564_CR29
  publication-title: Biometrika
  doi: 10.1093/biomet/ass009
SSID ssj0022721
Score 2.1441758
Snippet Doubly-truncated data often appear in lifetime data analysis, where samples are collected under certain time constraints. Nonparametric methods for...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1199
SubjectTerms Algorithms
Computation
Data processing
Density
Economic Theory/Quantitative Economics/Mathematical Methods
Mathematics and Statistics
Nonparametric statistics
Normal distribution
Original Paper
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Samples
Statistical analysis
Statistical methods
Statistics
Survival analysis
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vswH0alYnRLBJyXQps3aPg5xDGE-OdiLlCTNYLh1sg8Y--u965cfqOBbadO03CW53-XufgG4MUoGNlQ-j7xQ88DEOOeM63K8JwXq30iPCpwHT53-MHgcyVFZx72sst2rkGS-UtfFbnR-HCVRSY5GO-DbXdiTxOaFg3gourWXJcK82Ioy5tA56ogqlPlTF1-N0QfC_BYUzW1N7xAOSpDIuoVWj2DHZi3YH9QMq8sWNAklFiTLx_AyUJvJbD1j08mrnU6IqZgRe0ZRlsgQlzLFlsVJ88xu3uYZ5QjhdbG9waiQbMHQaqXzGUvnaz21fLVYZ8V23gkMew_P931enpvATeDFK44gT2glXO0p3_hjifKWaJZzsJaOhfZThIkdbcLIWKXGBMLCKFWeb4IOPhj7p9DI8E_OgHnWaCmUL0KjiKs-DnUao4_lp2kUG2sccCsBJqYkFaezLaZJTYecyzxBmSck82TrwG39ylvBqPFX43allaScXMsEnSjyu9zAc-C6fozTgmIdKrPzNbUJI1y_0Ng6cFdp81MXv33w_F-tL6ApaDTl6S1taKBq7CWClJW-ygflOyj63v8
  priority: 102
  providerName: Springer Nature
Title Maximum likelihood estimation for a special exponential family under random double-truncation
URI https://link.springer.com/article/10.1007/s00180-015-0564-z
https://www.proquest.com/docview/1749606041
https://www.proquest.com/docview/1778030299
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: AMVHM
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: AFBBN
  dateStart: 19990301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1613-9658
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: 8FG
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: 8C1
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: AGYKE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1613-9658
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0022721
  issn: 0943-4062
  databaseCode: U2A
  dateStart: 20040212
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a5GV7GN26saxt0GBPK2KWbMf2QylZSRo2HEpZRvcwjL4CYYmdNQmU_vW981e3wfpiG8u2zJ2k-0m6-x3AB6PCwEXK57GINA9Mgn3OeB7He6FE_ZtQUIBzOh1MZsGXm_BmD6ZNLAy5VTZjYjlQ28LQGvknRM4Etr1AnK9_c8oaRburTQoNVadWsGclxdg-dCUxY3Wg-3k0vbpup2AyKiOxyJ0OZ04D2exzeiWtqIjJSSvkCAoCfv-3pXqEn__smJaGaHwAL2oEyYaVyl_CnstfwfO0pV_dHMLPVN0tVrsVWy5-ueWCmIsZsWlUYYoMcSpTbFNlnmfubl3k5DOE19VyB6PAsluGVswWK2aLnV46vr3d5dXy3muYjUffLia8zqPATSCSLUfQJ7WSnhbKN_48RPmjjMISvNm51L5F2DjQJoqNU2pOoCyKrRK-CQZYMPffQCfHP3kLTDijQ6l8GRlF3PVJpG2Ccy7f2jgxzvTAa2SWmZpknHJdLLOWHrkUc4ZizkjM2X0PPravrCuGjacePm4UkdWdbZM9No0evG-LsZvQ3ofKXbGjZ6IYxzM0vj04bRT4xyf-V-G7pys8gmeSWkzp33IMHdSFO0GUstV92I8vBB3Hl33oDi9_fB3ROf0-Sft1s8TSmRw-ACKd6gM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RcGg5IOhDDc-t1F5arWqv7dg-IIR4KBTCCaRcKndfkaImdkhi8fhR_EZm_KIgNTdulr3eXc3M7ny78wL4qmXg21B6PHJDxX0d45rTjsPxXSCQ_zpwKcC5d9HpXvm_-kF_CR7qWBhyq6z3xGKjNpmmO_KfiJwJbDu-uz-55lQ1iqyrdQmNUizO7N0NHtlme6dHyN9vQpwcXx52eVVVgGvfjeccIZBQUjjKlZ72BgHOJkClVUAZMxDKMwiiOkqHkbZSDgiihJGRrqf9Dn4YeNjvG1j2PRHSRhAdNi4lQoRFnBc56-G5rCNqK6pTJC11I3IBCzhCDp_fP9eDT-D2hT22UHMna7Ba4VN2UArUOizZ9D2s9JrkrrMP8Lsnb4fjfMxGw792NKS8yIxydZRBkAxRMJNsVta1Z_Z2kqXkkYTP5WUKo7C1KUMdabIxM1muRpbPp3laXh5-hKtXoecnaKU4k8_AXKtVICRSVkvKjB-HysR4ovOMiWJtdRucmmaJrlKYUyWNUdIkXy7InCCZEyJzct-G780vkzJ_x6LGWzUjkmopz5InwWvDl-YzLkKyrMjUZjm1CSPcLVG1t-FHzcB_uvjfgBuLB9yFt93L3nlyfnpxtgnvBElP4UmzBS3ki91GPDRXO4UQMvjz2lL_CPjCGTE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQJSHulCokeACsprYSZwcEEJtVy1lqx5aqRcU_Iq0YjdZurui9Kfx65jJqy0SvfUWJU5izYw9n-2ZbwDeWh1HXmnJ01AZHtkMx5wNAo73YoH6t3FICc6jo2T_NPpyFp-twJ8uF4bCKrs5sZ6oXWVpj3wbkTOB7SAKt4s2LOJ4d_hp9pNTBSk6ae3KaTQmcuh__8Ll2_zjwS7q-p0Qw72TnX3eVhjgNgqzBUc4JIwWgQm1tLKIsWcxOrAa1rhCGOkQUCXGqtR6rQuCKyp1OpQ2SvBBIfG79-C-kklCvP3pTh9eIoSqc74ocA_XaInoTlSDmsA0TCkcLOYIPyJ-edMnXgHdf85ma5c3fAyPWqzKPjfGtQ4rvnwCD0c90ev8KXwb6YvxdDllk_EPPxkTRzIj3o4mIZIhImaazZsa98xfzKqSopPwutlYYZTCds7QX7pqyly1NBPPF-fLstlIfAandyLP57BaYk82gIXemlhoKZTVxJKfKeMyXN1J59LMejuAoJNZbls6c6qqMcl7IuZazDmKOScx55cDeN-_Mmu4PG5rvNkpIm-H9Ty_MsIBvOkf44CkUxZd-mpJbVSKMye6-QF86BR47RP_--GL23-4BWto7_nXg6PDl_BAkPHUQTWbsIpq8a8QGi3M69oGGXy_a6P_Cx_dHWs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+for+a+special+exponential+family+under+random+double-truncation&rft.jtitle=Computational+statistics&rft.au=Hu%2C+Ya-hsuan&rft.au=Emura%2C+Takeshi&rft.date=2015-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=30&rft.issue=4&rft.spage=1199&rft_id=info:doi/10.1007%2Fs00180-015-0564-z&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3897205461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon