Maximum likelihood estimation for a special exponential family under random double-truncation
Doubly-truncated data often appear in lifetime data analysis, where samples are collected under certain time constraints. Nonparametric methods for doubly-truncated data have been studied well in the literature. Alternatively, this paper considers parametric inference when samples are subject to dou...
        Saved in:
      
    
          | Published in | Computational statistics Vol. 30; no. 4; pp. 1199 - 1229 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.12.2015
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0943-4062 1613-9658  | 
| DOI | 10.1007/s00180-015-0564-z | 
Cover
| Abstract | Doubly-truncated data often appear in lifetime data analysis, where samples are collected under certain time constraints. Nonparametric methods for doubly-truncated data have been studied well in the literature. Alternatively, this paper considers parametric inference when samples are subject to double-truncation. Efron and Petrosian (J Am Stat Assoc 94:824–834,
1999
) proposed to fit a parametric family, called the special exponential family, with doubly-truncated data. However, non-trivial technical aspects, such as parameter space, support of the density, and computational algorithms, have not been discussed in the literature. This paper fills this gap by providing the technical aspects, including adequate choices of parameter space as well as support, and reliable computational algorithms. Simulations are conducted to verify the suggested techniques, and real data are used for illustration. | 
    
|---|---|
| AbstractList | Doubly-truncated data often appear in lifetime data analysis, where samples are collected under certain time constraints. Nonparametric methods for doubly-truncated data have been studied well in the literature. Alternatively, this paper considers parametric inference when samples are subject to double-truncation. Efron and Petrosian (J Am Stat Assoc 94:824-834, 1999) proposed to fit a parametric family, called the special exponential family, with doubly-truncated data. However, non-trivial technical aspects, such as parameter space, support of the density, and computational algorithms, have not been discussed in the literature. This paper fills this gap by providing the technical aspects, including adequate choices of parameter space as well as support, and reliable computational algorithms. Simulations are conducted to verify the suggested techniques, and real data are used for illustration. Doubly-truncated data often appear in lifetime data analysis, where samples are collected under certain time constraints. Nonparametric methods for doubly-truncated data have been studied well in the literature. Alternatively, this paper considers parametric inference when samples are subject to double-truncation. Efron and Petrosian (J Am Stat Assoc 94:824–834, 1999 ) proposed to fit a parametric family, called the special exponential family, with doubly-truncated data. However, non-trivial technical aspects, such as parameter space, support of the density, and computational algorithms, have not been discussed in the literature. This paper fills this gap by providing the technical aspects, including adequate choices of parameter space as well as support, and reliable computational algorithms. Simulations are conducted to verify the suggested techniques, and real data are used for illustration.  | 
    
| Author | Hu, Ya-Hsuan Emura, Takeshi  | 
    
| Author_xml | – sequence: 1 givenname: Ya-Hsuan surname: Hu fullname: Hu, Ya-Hsuan organization: Graduate Institute of Statistics, National Central University – sequence: 2 givenname: Takeshi surname: Emura fullname: Emura, Takeshi email: takeshiemura@gmail.com, emura@stat.ncu.edu.tw organization: Graduate Institute of Statistics, National Central University  | 
    
| BookMark | eNp9kE1rHSEUhqWk0Jvb_IDuhGy6sTlHx_lYlpCPQkI3zTKI4zitt47e6gwk-fXx3ptFCDQrBZ_nnNf3mByFGCwhXxC-IUBzlgGwBQYoGci6Yk8fyAprFKyrZXtEVtBVglVQ80_kOOcNAOcNxxW5v9UPblom6t1f692fGAdq8-wmPbsY6BgT1TRvrXHaU_uwLVvDvLuPenL-kS5hsIkmHYY40SEuvbdsTkswe_8z-Thqn-3Jy7kmd5cXv86v2c3Pqx_n32-YqbCbGaLkvebQoxZGjNJIlNhKkNiJYeS9GKCFujdNa6zWI7RCNu2gUZiqLg-jWJOvh7nbFP8tJb-aXDbWex1sXLLCpmlBAO-6gp6-QTdxSaGkK1TV1VBDhYVqDpRJMedkR2XcvP_SnLTzCkHtaleH2lWpXe1qV0_FxDfmNpU20-O7Dj84ubDht02vMv1XegZFyZfJ | 
    
| CitedBy_id | crossref_primary_10_1007_s00362_017_0947_z crossref_primary_10_1016_j_csda_2019_106862 crossref_primary_10_1080_02331888_2022_2105843 crossref_primary_10_1080_02331888_2024_2431737 crossref_primary_10_1007_s00180_018_0804_0 crossref_primary_10_1007_s00362_016_0870_8 crossref_primary_10_1016_j_csda_2024_108090 crossref_primary_10_1016_j_jkss_2018_12_003 crossref_primary_10_1016_j_aej_2022_05_007 crossref_primary_10_1007_s42952_020_00057_6 crossref_primary_10_1177_09622802221084133 crossref_primary_10_1080_03610926_2018_1425450 crossref_primary_10_1007_s00362_015_0730_y crossref_primary_10_1007_s42952_021_00113_9 crossref_primary_10_1080_03610918_2015_1073303 crossref_primary_10_1007_s00180_020_01027_6 crossref_primary_10_1080_02664763_2024_2415412 crossref_primary_10_1080_02331888_2020_1772788 crossref_primary_10_3390_math12203264 crossref_primary_10_1007_s00362_017_0968_7  | 
    
| Cites_doi | 10.1007/BF02778272 10.1371/journal.pone.0037025 10.1093/biomet/75.3.515 10.1007/BF00773592 10.1007/s00362-010-0321-x 10.1080/10485250903556102 10.1080/01621459.1999.10474187 10.1016/j.csda.2011.12.022 10.1007/s10463-008-0192-2 10.1201/b16946 10.1186/1471-2288-7-53 10.1016/j.csda.2012.11.017 10.1214/12-EJS683 10.1191/0962280203sm346oa 10.1007/s00180-014-0496-z 10.1007/s11749-013-0339-1 10.1191/0962280202sm279ra 10.1191/0962280202SM276ra 10.1007/BF02613687 10.1093/biomet/ass009  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag Berlin Heidelberg 2015 | 
    
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 | 
    
| DBID | AAYXX CITATION 3V. 7SC 7TB 7WY 7WZ 7XB 87Z 88I 8AL 8C1 8FD 8FE 8FG 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FR3 FRNLG FYUFA F~G GHDGH GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KR7 L.- L6V L7M L~C L~D M0C M0N M2O M2P M7S MBDVC P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U  | 
    
| DOI | 10.1007/s00180-015-0564-z | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) Proquest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (ProQuest Business Suite) (LAB) Computing Database Research Library (Proquest) Science Database (via ProQuest SciTech Premium Collection) Engineering Database (Proquest) Research Library (Corporate) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic  | 
    
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ABI/INFORM Complete ProQuest One Applied & Life Sciences Health Research Premium Collection Health & Medical Research Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest Business Collection ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ProQuest Computing ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | Civil Engineering Abstracts ProQuest Business Collection (Alumni Edition)  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Mathematics  | 
    
| EISSN | 1613-9658 | 
    
| EndPage | 1229 | 
    
| ExternalDocumentID | 3897205461 10_1007_s00180_015_0564_z  | 
    
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2LR 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6NX 78A 7WY 88I 8C1 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- MK~ N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Y Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U  | 
    
| ID | FETCH-LOGICAL-c419t-1152ba20b1a3c3f5c51518505193df2b3d0806bc78ceaaf083578da13c46806f3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0943-4062 | 
    
| IngestDate | Fri Sep 05 12:12:22 EDT 2025 Fri Jul 25 19:13:03 EDT 2025 Wed Oct 01 05:00:50 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Fri Feb 21 02:33:34 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Newton–Raphson algorithm Survival analysis Truncated data Fixed point iteration  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c419t-1152ba20b1a3c3f5c51518505193df2b3d0806bc78ceaaf083578da13c46806f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 1749606041 | 
    
| PQPubID | 54096 | 
    
| PageCount | 31 | 
    
| ParticipantIDs | proquest_miscellaneous_1778030299 proquest_journals_1749606041 crossref_citationtrail_10_1007_s00180_015_0564_z crossref_primary_10_1007_s00180_015_0564_z springer_journals_10_1007_s00180_015_0564_z  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-12-01 | 
    
| PublicationDateYYYYMMDD | 2015-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg  | 
    
| PublicationTitle | Computational statistics | 
    
| PublicationTitleAbbrev | Comput Stat | 
    
| PublicationYear | 2015 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | LongTHEmuraTA control chart using copula-based Markov chain modelsJ Chin Stat Assoc201452466496 MandrekarSJNandrekarJNAre our data symmetric?Stat Methods Med Res200312505513200550510.1191/0962280203sm346oa CasellaGBergerRLStatistical inference2002AustraliaDuxbury Thomson Learning EfronBPetrosianRNonparametric methods for doubly truncated dataJ Am Stat Assoc199994824834172334310.1080/01621459.1999.104741871072.62552 EmuraTKonnoYMultivariate normal distribution approaches for dependently truncated dataStat Pap201253133149287859710.1007/s00362-010-0321-x1241.62094 RobertsonHTAllisonDBA novel generalized normal distribution for human longevity and other negatively skewed dataPLoS One20127e3702510.1371/journal.pone.0037025 StuteWGonzález-ManteigaWQuindimilMPBootstrap based goodness-of-fit-testsMetrika199340243256123508610.1007/BF026136870770.62016 CommengesDInference for multi-state models from interval-censored dataStat Methods Med Res20021116718210.1191/0962280202sm279ra1121.62589 KnightKMathematical statistics2000Boca RatonChapman and Hall0935.62002 MoreiraCVan KeilegomIBandwidth selection for kernel density estimation with doubly truncated dataComput Stat Data Anal20136110712310.1016/j.csda.2012.11.017 CohenACTruncated and censored samples1991New YorkMarcel Dekker10.1201/b169460742.62027 Moreira C, de Uña-Álvarez J (2012) Kernel density estimation with doubly-truncated data. Electron J Stat 6:501–521 AndersenPKKeidingNMulti-state models for event history analysisStat Methods Med Res2002119111510.1191/0962280202SM276ra1121.62568 ChenYHWeighted Breslow-type and maximum likelihood estimation in semiparametric transformation modelsBiometrika200996235251 Moreira C, de Uña-Álvarez J, Van Keilegom I (2014) Goodness-of-fit tests for a semiparametric model under random double truncation. Comput Stat. doi:10.1007/s00180-014-0496-z ShenPSNonparametric analysis of doubly truncated dataAnn Inst Stat Math20106283585310.1007/s10463-008-0192-2 StovringHWangMCA new approach of nonparametric estimation of incidence and lifetime risk based on birth rates and incidence eventsBMC Med Res Methodol200775310.1186/1471-2288-7-53 MoreiraCde Uña-ÁlvarezJBootstrapping the NPMLE for doubly truncated dataJ Nonparametric Stati20102256758310.1080/104852509035561021263.62058 EmuraTKonnoYA goodness-of-fit tests for parametric models based on dependently truncated dataComput Stat Data Anal20125622372250289757610.1016/j.csda.2011.12.0221252.62052 Lagakos SW, Barraj LM, De Gruttola V (1988) Non-parametric analysis of truncated survival data with application to AIDS. Biometrika 75:515–523 EmuraTKonnoYMichimaeHStatistical inference based on the nonparametric maximum likelihood estimator under double-truncationLifetime Data Anal2014 Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F. In: Proceedings of the 2nd international symposium on information theory, Akademia Kiado, Budapest, pp 267–281 SankaranPGSunojSMIdentification of models using failure rate and mean residual life of doubly truncated random variablesStat Pap20044597109202805710.1007/BF027782721050.62017 ZhuHWangMCAnalyzing bivariate survival data with interval sampling and application to cancer epidemiologyBiometrika201299345361293125810.1093/biomet/ass00906047215 BurdenRLFairesJDNumerical analysis2011BostonCengage Learning CastilloJDThe singly truncated normal distribution: a non-steep exponential familyAnn Inst Stat Math199446576610.1007/BF007735920802.62026 BalakrishnanNAsit BasuPThe exponential distribution: theory, methods and applications1996USATaylor & Francis Ltd R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, R version 3:2 Strzalkowska-KominiakEStuteWEmpirical copulas for consequtive survival data: copulas in survival analysisTEST201322688714312232910.1007/s11749-013-0339-106234367 SJ Mandrekar (564_CR17) 2003; 12 HT Robertson (564_CR23) 2012; 7 H Zhu (564_CR29) 2012; 99 G Casella (564_CR7) 2002 PG Sankaran (564_CR24) 2004; 45 YH Chen (564_CR5) 2009; 96 T Emura (564_CR11) 2012; 53 564_CR1 K Knight (564_CR14) 2000 JD Castillo (564_CR8) 1994; 46 C Moreira (564_CR21) 2013; 61 PK Andersen (564_CR2) 2002; 11 H Stovring (564_CR26) 2007; 7 564_CR15 D Commenges (564_CR9) 2002; 11 PS Shen (564_CR25) 2010; 62 E Strzalkowska-Kominiak (564_CR27) 2013; 22 W Stute (564_CR28) 1993; 40 564_CR19 T Emura (564_CR13) 2014 TH Long (564_CR16) 2014; 52 N Balakrishnan (564_CR3) 1996 RL Burden (564_CR4) 2011 B Efron (564_CR10) 1999; 94 AC Cohen (564_CR6) 1991 C Moreira (564_CR18) 2010; 22 564_CR20 564_CR22 T Emura (564_CR12) 2012; 56  | 
    
| References_xml | – reference: AndersenPKKeidingNMulti-state models for event history analysisStat Methods Med Res2002119111510.1191/0962280202SM276ra1121.62568 – reference: Moreira C, de Uña-Álvarez J, Van Keilegom I (2014) Goodness-of-fit tests for a semiparametric model under random double truncation. Comput Stat. doi:10.1007/s00180-014-0496-z – reference: R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, R version 3:2 – reference: BurdenRLFairesJDNumerical analysis2011BostonCengage Learning – reference: KnightKMathematical statistics2000Boca RatonChapman and Hall0935.62002 – reference: EmuraTKonnoYMichimaeHStatistical inference based on the nonparametric maximum likelihood estimator under double-truncationLifetime Data Anal2014 – reference: LongTHEmuraTA control chart using copula-based Markov chain modelsJ Chin Stat Assoc201452466496 – reference: EmuraTKonnoYA goodness-of-fit tests for parametric models based on dependently truncated dataComput Stat Data Anal20125622372250289757610.1016/j.csda.2011.12.0221252.62052 – reference: CohenACTruncated and censored samples1991New YorkMarcel Dekker10.1201/b169460742.62027 – reference: CasellaGBergerRLStatistical inference2002AustraliaDuxbury Thomson Learning – reference: MoreiraCde Uña-ÁlvarezJBootstrapping the NPMLE for doubly truncated dataJ Nonparametric Stati20102256758310.1080/104852509035561021263.62058 – reference: ShenPSNonparametric analysis of doubly truncated dataAnn Inst Stat Math20106283585310.1007/s10463-008-0192-2 – reference: Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F. In: Proceedings of the 2nd international symposium on information theory, Akademia Kiado, Budapest, pp 267–281 – reference: StuteWGonzález-ManteigaWQuindimilMPBootstrap based goodness-of-fit-testsMetrika199340243256123508610.1007/BF026136870770.62016 – reference: ZhuHWangMCAnalyzing bivariate survival data with interval sampling and application to cancer epidemiologyBiometrika201299345361293125810.1093/biomet/ass00906047215 – reference: Lagakos SW, Barraj LM, De Gruttola V (1988) Non-parametric analysis of truncated survival data with application to AIDS. Biometrika 75:515–523 – reference: EfronBPetrosianRNonparametric methods for doubly truncated dataJ Am Stat Assoc199994824834172334310.1080/01621459.1999.104741871072.62552 – reference: CastilloJDThe singly truncated normal distribution: a non-steep exponential familyAnn Inst Stat Math199446576610.1007/BF007735920802.62026 – reference: RobertsonHTAllisonDBA novel generalized normal distribution for human longevity and other negatively skewed dataPLoS One20127e3702510.1371/journal.pone.0037025 – reference: EmuraTKonnoYMultivariate normal distribution approaches for dependently truncated dataStat Pap201253133149287859710.1007/s00362-010-0321-x1241.62094 – reference: Moreira C, de Uña-Álvarez J (2012) Kernel density estimation with doubly-truncated data. Electron J Stat 6:501–521 – reference: BalakrishnanNAsit BasuPThe exponential distribution: theory, methods and applications1996USATaylor & Francis Ltd – reference: ChenYHWeighted Breslow-type and maximum likelihood estimation in semiparametric transformation modelsBiometrika200996235251 – reference: MoreiraCVan KeilegomIBandwidth selection for kernel density estimation with doubly truncated dataComput Stat Data Anal20136110712310.1016/j.csda.2012.11.017 – reference: CommengesDInference for multi-state models from interval-censored dataStat Methods Med Res20021116718210.1191/0962280202sm279ra1121.62589 – reference: SankaranPGSunojSMIdentification of models using failure rate and mean residual life of doubly truncated random variablesStat Pap20044597109202805710.1007/BF027782721050.62017 – reference: StovringHWangMCA new approach of nonparametric estimation of incidence and lifetime risk based on birth rates and incidence eventsBMC Med Res Methodol200775310.1186/1471-2288-7-53 – reference: MandrekarSJNandrekarJNAre our data symmetric?Stat Methods Med Res200312505513200550510.1191/0962280203sm346oa – reference: Strzalkowska-KominiakEStuteWEmpirical copulas for consequtive survival data: copulas in survival analysisTEST201322688714312232910.1007/s11749-013-0339-106234367 – volume: 45 start-page: 97 year: 2004 ident: 564_CR24 publication-title: Stat Pap doi: 10.1007/BF02778272 – volume-title: Numerical analysis year: 2011 ident: 564_CR4 – volume: 96 start-page: 235 year: 2009 ident: 564_CR5 publication-title: Biometrika – ident: 564_CR22 – volume: 7 start-page: e37025 year: 2012 ident: 564_CR23 publication-title: PLoS One doi: 10.1371/journal.pone.0037025 – ident: 564_CR15 doi: 10.1093/biomet/75.3.515 – volume: 46 start-page: 57 year: 1994 ident: 564_CR8 publication-title: Ann Inst Stat Math doi: 10.1007/BF00773592 – volume: 53 start-page: 133 year: 2012 ident: 564_CR11 publication-title: Stat Pap doi: 10.1007/s00362-010-0321-x – volume: 22 start-page: 567 year: 2010 ident: 564_CR18 publication-title: J Nonparametric Stati doi: 10.1080/10485250903556102 – volume: 94 start-page: 824 year: 1999 ident: 564_CR10 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1999.10474187 – volume: 56 start-page: 2237 year: 2012 ident: 564_CR12 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2011.12.022 – volume: 62 start-page: 835 year: 2010 ident: 564_CR25 publication-title: Ann Inst Stat Math doi: 10.1007/s10463-008-0192-2 – volume-title: Truncated and censored samples year: 1991 ident: 564_CR6 doi: 10.1201/b16946 – volume: 7 start-page: 53 year: 2007 ident: 564_CR26 publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-7-53 – volume: 52 start-page: 466 year: 2014 ident: 564_CR16 publication-title: J Chin Stat Assoc – volume-title: Statistical inference year: 2002 ident: 564_CR7 – volume: 61 start-page: 107 year: 2013 ident: 564_CR21 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2012.11.017 – ident: 564_CR20 doi: 10.1214/12-EJS683 – volume-title: The exponential distribution: theory, methods and applications year: 1996 ident: 564_CR3 – year: 2014 ident: 564_CR13 publication-title: Lifetime Data Anal – volume-title: Mathematical statistics year: 2000 ident: 564_CR14 – volume: 12 start-page: 505 year: 2003 ident: 564_CR17 publication-title: Stat Methods Med Res doi: 10.1191/0962280203sm346oa – ident: 564_CR19 doi: 10.1007/s00180-014-0496-z – volume: 22 start-page: 688 year: 2013 ident: 564_CR27 publication-title: TEST doi: 10.1007/s11749-013-0339-1 – volume: 11 start-page: 167 year: 2002 ident: 564_CR9 publication-title: Stat Methods Med Res doi: 10.1191/0962280202sm279ra – volume: 11 start-page: 91 year: 2002 ident: 564_CR2 publication-title: Stat Methods Med Res doi: 10.1191/0962280202SM276ra – volume: 40 start-page: 243 year: 1993 ident: 564_CR28 publication-title: Metrika doi: 10.1007/BF02613687 – ident: 564_CR1 – volume: 99 start-page: 345 year: 2012 ident: 564_CR29 publication-title: Biometrika doi: 10.1093/biomet/ass009  | 
    
| SSID | ssj0022721 | 
    
| Score | 2.1441758 | 
    
| Snippet | Doubly-truncated data often appear in lifetime data analysis, where samples are collected under certain time constraints. Nonparametric methods for... | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1199 | 
    
| SubjectTerms | Algorithms Computation Data processing Density Economic Theory/Quantitative Economics/Mathematical Methods Mathematics and Statistics Nonparametric statistics Normal distribution Original Paper Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Samples Statistical analysis Statistical methods Statistics Survival analysis  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90vswH0alYnRLBJyXQps3aPg5xDGE-OdiLlCTNYLh1sg8Y--u965cfqOBbadO03CW53-XufgG4MUoGNlQ-j7xQ88DEOOeM63K8JwXq30iPCpwHT53-MHgcyVFZx72sst2rkGS-UtfFbnR-HCVRSY5GO-DbXdiTxOaFg3gourWXJcK82Ioy5tA56ogqlPlTF1-N0QfC_BYUzW1N7xAOSpDIuoVWj2DHZi3YH9QMq8sWNAklFiTLx_AyUJvJbD1j08mrnU6IqZgRe0ZRlsgQlzLFlsVJ88xu3uYZ5QjhdbG9waiQbMHQaqXzGUvnaz21fLVYZ8V23gkMew_P931enpvATeDFK44gT2glXO0p3_hjifKWaJZzsJaOhfZThIkdbcLIWKXGBMLCKFWeb4IOPhj7p9DI8E_OgHnWaCmUL0KjiKs-DnUao4_lp2kUG2sccCsBJqYkFaezLaZJTYecyzxBmSck82TrwG39ylvBqPFX43allaScXMsEnSjyu9zAc-C6fozTgmIdKrPzNbUJI1y_0Ng6cFdp81MXv33w_F-tL6ApaDTl6S1taKBq7CWClJW-ygflOyj63v8 priority: 102 providerName: Springer Nature  | 
    
| Title | Maximum likelihood estimation for a special exponential family under random double-truncation | 
    
| URI | https://link.springer.com/article/10.1007/s00180-015-0564-z https://www.proquest.com/docview/1749606041 https://www.proquest.com/docview/1778030299  | 
    
| Volume | 30 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1613-9658 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: AMVHM dateStart: 20110301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1613-9658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: AFBBN dateStart: 19990301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1613-9658 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1613-9658 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: 8FG dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1613-9658 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: 8C1 dateStart: 19990301 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1613-9658 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: AGYKE dateStart: 19990101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1613-9658 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0022721 issn: 0943-4062 databaseCode: U2A dateStart: 20040212 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a5GV7GN26saxt0GBPK2KWbMf2QylZSRo2HEpZRvcwjL4CYYmdNQmU_vW981e3wfpiG8u2zJ2k-0m6-x3AB6PCwEXK57GINA9Mgn3OeB7He6FE_ZtQUIBzOh1MZsGXm_BmD6ZNLAy5VTZjYjlQ28LQGvknRM4Etr1AnK9_c8oaRburTQoNVadWsGclxdg-dCUxY3Wg-3k0vbpup2AyKiOxyJ0OZ04D2exzeiWtqIjJSSvkCAoCfv-3pXqEn__smJaGaHwAL2oEyYaVyl_CnstfwfO0pV_dHMLPVN0tVrsVWy5-ueWCmIsZsWlUYYoMcSpTbFNlnmfubl3k5DOE19VyB6PAsluGVswWK2aLnV46vr3d5dXy3muYjUffLia8zqPATSCSLUfQJ7WSnhbKN_48RPmjjMISvNm51L5F2DjQJoqNU2pOoCyKrRK-CQZYMPffQCfHP3kLTDijQ6l8GRlF3PVJpG2Ccy7f2jgxzvTAa2SWmZpknHJdLLOWHrkUc4ZizkjM2X0PPravrCuGjacePm4UkdWdbZM9No0evG-LsZvQ3ofKXbGjZ6IYxzM0vj04bRT4xyf-V-G7pys8gmeSWkzp33IMHdSFO0GUstV92I8vBB3Hl33oDi9_fB3ROf0-Sft1s8TSmRw-ACKd6gM | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7RcGg5IOhDDc-t1F5arWqv7dg-IIR4KBTCCaRcKndfkaImdkhi8fhR_EZm_KIgNTdulr3eXc3M7ny78wL4qmXg21B6PHJDxX0d45rTjsPxXSCQ_zpwKcC5d9HpXvm_-kF_CR7qWBhyq6z3xGKjNpmmO_KfiJwJbDu-uz-55lQ1iqyrdQmNUizO7N0NHtlme6dHyN9vQpwcXx52eVVVgGvfjeccIZBQUjjKlZ72BgHOJkClVUAZMxDKMwiiOkqHkbZSDgiihJGRrqf9Dn4YeNjvG1j2PRHSRhAdNi4lQoRFnBc56-G5rCNqK6pTJC11I3IBCzhCDp_fP9eDT-D2hT22UHMna7Ba4VN2UArUOizZ9D2s9JrkrrMP8Lsnb4fjfMxGw792NKS8yIxydZRBkAxRMJNsVta1Z_Z2kqXkkYTP5WUKo7C1KUMdabIxM1muRpbPp3laXh5-hKtXoecnaKU4k8_AXKtVICRSVkvKjB-HysR4ovOMiWJtdRucmmaJrlKYUyWNUdIkXy7InCCZEyJzct-G780vkzJ_x6LGWzUjkmopz5InwWvDl-YzLkKyrMjUZjm1CSPcLVG1t-FHzcB_uvjfgBuLB9yFt93L3nlyfnpxtgnvBElP4UmzBS3ki91GPDRXO4UQMvjz2lL_CPjCGTE | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVwQJSHulCokeACsprYSZwcEEJtVy1lqx5aqRcU_Iq0YjdZurui9Kfx65jJqy0SvfUWJU5izYw9n-2ZbwDeWh1HXmnJ01AZHtkMx5wNAo73YoH6t3FICc6jo2T_NPpyFp-twJ8uF4bCKrs5sZ6oXWVpj3wbkTOB7SAKt4s2LOJ4d_hp9pNTBSk6ae3KaTQmcuh__8Ll2_zjwS7q-p0Qw72TnX3eVhjgNgqzBUc4JIwWgQm1tLKIsWcxOrAa1rhCGOkQUCXGqtR6rQuCKyp1OpQ2SvBBIfG79-C-kklCvP3pTh9eIoSqc74ocA_XaInoTlSDmsA0TCkcLOYIPyJ-edMnXgHdf85ma5c3fAyPWqzKPjfGtQ4rvnwCD0c90ev8KXwb6YvxdDllk_EPPxkTRzIj3o4mIZIhImaazZsa98xfzKqSopPwutlYYZTCds7QX7pqyly1NBPPF-fLstlIfAandyLP57BaYk82gIXemlhoKZTVxJKfKeMyXN1J59LMejuAoJNZbls6c6qqMcl7IuZazDmKOScx55cDeN-_Mmu4PG5rvNkpIm-H9Ty_MsIBvOkf44CkUxZd-mpJbVSKMye6-QF86BR47RP_--GL23-4BWto7_nXg6PDl_BAkPHUQTWbsIpq8a8QGi3M69oGGXy_a6P_Cx_dHWs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+for+a+special+exponential+family+under+random+double-truncation&rft.jtitle=Computational+statistics&rft.au=Hu%2C+Ya-hsuan&rft.au=Emura%2C+Takeshi&rft.date=2015-12-01&rft.pub=Springer+Nature+B.V&rft.issn=0943-4062&rft.eissn=1613-9658&rft.volume=30&rft.issue=4&rft.spage=1199&rft_id=info:doi/10.1007%2Fs00180-015-0564-z&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3897205461 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0943-4062&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0943-4062&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0943-4062&client=summon |