Analysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model

In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital prior to completion of the study or the death of the subject, resulting in non‐ignorable missing data. In addition to non‐ignorable missi...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 30; no. 27; pp. 3167 - 3180
Main Authors Sattar, Abdus, Weissfeld, Lisa A., Molenberghs, Geert
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 30.11.2011
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.4344

Cover

Abstract In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital prior to completion of the study or the death of the subject, resulting in non‐ignorable missing data. In addition to non‐ignorable missingness, there is left‐censoring in the response measurements because of the inherent limit of detection. For analyzing non‐ignorable missing and left‐censored longitudinal data, we have proposed to extend the theory of random effects tobit regression model to weighted random effects tobit regression model. The weights are computed on the basis of inverse probability weighted augmented methodology. An extensive simulation study was performed to compare the performance of the proposed model with a number of competitive models. The simulation study shows that the estimates are consistent and that the root mean square errors of the estimates are minimal for the use of augmented inverse probability weights in the random effects tobit model. The proposed method is also applied to the non‐ignorable missing and left‐censored interleukin‐6 biomarker data obtained from the Genetic and Inflammatory Markers of Sepsis study. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital prior to completion of the study or the death of the subject, resulting in non‐ignorable missing data. In addition to non‐ignorable missingness, there is left‐censoring in the response measurements because of the inherent limit of detection. For analyzing non‐ignorable missing and left‐censored longitudinal data, we have proposed to extend the theory of random effects tobit regression model to weighted random effects tobit regression model. The weights are computed on the basis of inverse probability weighted augmented methodology. An extensive simulation study was performed to compare the performance of the proposed model with a number of competitive models. The simulation study shows that the estimates are consistent and that the root mean square errors of the estimates are minimal for the use of augmented inverse probability weights in the random effects tobit model. The proposed method is also applied to the non‐ignorable missing and left‐censored interleukin‐6 biomarker data obtained from the Genetic and Inflammatory Markers of Sepsis study. Copyright © 2011 John Wiley & Sons, Ltd.
In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital prior to completion of the study or the death of the subject, resulting in non-ignorable missing data. In addition to non-ignorable missingness, there is left-censoring in the response measurements because of the inherent limit of detection. For analyzing non-ignorable missing and left-censored longitudinal data, we have proposed to extend the theory of random effects tobit regression model to weighted random effects tobit regression model. The weights are computed on the basis of inverse probability weighted augmented methodology. An extensive simulation study was performed to compare the performance of the proposed model with a number of competitive models. The simulation study shows that the estimates are consistent and that the root mean square errors of the estimates are minimal for the use of augmented inverse probability weights in the random effects tobit model. The proposed method is also applied to the non-ignorable missing and left-censored interleukin-6 biomarker data obtained from the Genetic and Inflammatory Markers of Sepsis study.
In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital prior to completion of the study or the death of the subject, resulting in non-ignorable missing data. In addition to non-ignorable missingness, there is left-censoring in the response measurements because of the inherent limit of detection. For analyzing non-ignorable missing and left-censored longitudinal data, we have proposed to extend the theory of random effects tobit regression model to weighted random effects tobit regression model. The weights are computed on the basis of inverse probability weighted augmented methodology. An extensive simulation study was performed to compare the performance of the proposed model with a number of competitive models. The simulation study shows that the estimates are consistent and that the root mean square errors of the estimates are minimal for the use of augmented inverse probability weights in the random effects tobit model. The proposed method is also applied to the non-ignorable missing and left-censored interleukin-6 biomarker data obtained from the Genetic and Inflammatory Markers of Sepsis study. [PUBLICATION ABSTRACT]
In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital prior to completion of the study or the death of the subject, resulting in non-ignorable missing data. In addition to non-ignorable missingness, there is left-censoring in the response measurements because of the inherent limit of detection. For analyzing non-ignorable missing and left-censored longitudinal data, we have proposed to extend the theory of random effects tobit regression model to weighted random effects tobit regression model. The weights are computed on the basis of inverse probability weighted augmented methodology. An extensive simulation study was performed to compare the performance of the proposed model with a number of competitive models. The simulation study shows that the estimates are consistent and that the root mean square errors of the estimates are minimal for the use of augmented inverse probability weights in the random effects tobit model. The proposed method is also applied to the non-ignorable missing and left-censored interleukin-6 biomarker data obtained from the Genetic and Inflammatory Markers of Sepsis study.In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital prior to completion of the study or the death of the subject, resulting in non-ignorable missing data. In addition to non-ignorable missingness, there is left-censoring in the response measurements because of the inherent limit of detection. For analyzing non-ignorable missing and left-censored longitudinal data, we have proposed to extend the theory of random effects tobit regression model to weighted random effects tobit regression model. The weights are computed on the basis of inverse probability weighted augmented methodology. An extensive simulation study was performed to compare the performance of the proposed model with a number of competitive models. The simulation study shows that the estimates are consistent and that the root mean square errors of the estimates are minimal for the use of augmented inverse probability weights in the random effects tobit model. The proposed method is also applied to the non-ignorable missing and left-censored interleukin-6 biomarker data obtained from the Genetic and Inflammatory Markers of Sepsis study.
Author Molenberghs, Geert
Sattar, Abdus
Weissfeld, Lisa A.
Author_xml – sequence: 1
  givenname: Abdus
  surname: Sattar
  fullname: Sattar, Abdus
  email: sattar@case.edu, Abdus Sattar, Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA., sattar@case.edu
  organization: Department of Epidemiology and Biostatistics, Case Western Reserve University, OH, Cleveland, USA
– sequence: 2
  givenname: Lisa A.
  surname: Weissfeld
  fullname: Weissfeld, Lisa A.
  organization: Department of Biostatistics, University of Pittsburgh, PA, Pittsburgh, USA
– sequence: 3
  givenname: Geert
  surname: Molenberghs
  fullname: Molenberghs, Geert
  organization: I-BioStat, Universiteit Hasselt, B-3590, Diepenbeek, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21898524$$D View this record in MEDLINE/PubMed
BookMark eNp10U1rFTEUBuAgFXtbBX-BBDe6mWuSycdkWYrWQlWkFcFNyGSSa2omaZMM9f57U28rWHQVDjzvgZP3AOzFFC0AzzFaY4TIm-LnNe0pfQRWGEnRIcKGPbBCRIiOC8z2wUEplwhhzIh4AvYJHuTACF2B66Oow7b4ApODbWvnNzFlPQYLZ1-Kjxuo4wSDdbUzNpaUbZtS3Pi6TL5l4aSrhstOwhvrN99rI7ml0gytc9bUAmsafYVzmmx4Ch47HYp9dvcegi_v3l4cv-_OPp2cHh-ddYZiSTtsBocMdVQS10vNRsyJIJYSJtxgDOGTG8eJaDM5OghLe8e55FJywiQaHO8Pwavd3qucrhdbqmoHGRuCjjYtRUnEuKAMyyZfPpCXacnttt9IYIERa-jFHVrG2U7qKvtZ5626_8oG1jtgciolW6eMr7r6FGvWPiiM1G1XqnWlbrtqgdcPAvc7_0G7Hb3xwW7_69T56Ye_vS_V_vzjdf6huOgFU18_nqhz0Q_fPuMLhftffNOxwA
CODEN SMEDDA
CitedBy_id crossref_primary_10_1016_j_ijcard_2022_04_044
crossref_primary_10_1161_JAHA_122_026684
crossref_primary_10_1177_0962280217729573
crossref_primary_10_3389_fpubh_2025_1418999
crossref_primary_10_1186_s12882_020_01963_x
crossref_primary_10_1360_SSM_2022_0113
crossref_primary_10_1016_j_csda_2014_11_011
crossref_primary_10_1016_j_jacc_2021_03_320
crossref_primary_10_1177_0962280215602716
crossref_primary_10_7326_M20_0336
crossref_primary_10_1002_sim_6466
crossref_primary_10_1016_S1441_2772_23_01430_8
crossref_primary_10_1002_cjs_11229
crossref_primary_10_1016_j_ajpc_2024_100871
Cites_doi 10.1080/01621459.1952.10483446
10.1002/sim.2560
10.2307/1907382
10.1111/j.0006-341X.2004.00240.x
10.1214/aos/1176345526
10.1080/01621459.1998.10473795
10.2307/2529876
10.1007/978-1-4757-1229-2_14
10.1111/1467-9876.00207
10.1111/1467-9876.00119
10.1111/j.0006-341X.1999.00625.x
10.1214/07-STS227D
10.1086/367924
10.1214/07-STS227
10.1111/1467-9868.00318
10.1111/1467-9868.00185
10.1111/j.0006-341X.2001.00007.x
10.1002/sim.3450
10.6339/JDS.2009.07(1).418
10.1111/j.1541-0420.2008.01102.x
10.1093/biostatistics/1.4.355
10.1001/archinte.167.15.1655
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Nov 30, 2011
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Nov 30, 2011
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.4344
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3180
ExternalDocumentID 2518189271
21898524
10_1002_sim_4344
SIM4344
ark_67375_WNG_S738ZQ1T_1
Genre article
Journal Article
Comparative Study
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM61992
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c4194-1c8f0c4f492f39a5b16272e4257f8cc26dfbbd2acdf487e43f669699625908f63
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 03:25:11 EDT 2025
Fri Jul 25 08:03:51 EDT 2025
Mon Jul 21 06:06:04 EDT 2025
Tue Jul 01 03:28:02 EDT 2025
Thu Apr 24 23:05:49 EDT 2025
Wed Jan 22 16:28:39 EST 2025
Tue Sep 09 05:32:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2011 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4194-1c8f0c4f492f39a5b16272e4257f8cc26dfbbd2acdf487e43f669699625908f63
Notes istex:82253469A69185296FD8DEB083DFE7D4A8D97014
ArticleID:SIM4344
ark:/67375/WNG-S738ZQ1T-1
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink http://hdl.handle.net/1942/13001
PMID 21898524
PQID 905717105
PQPubID 48361
PageCount 14
ParticipantIDs proquest_miscellaneous_905674519
proquest_journals_905717105
pubmed_primary_21898524
crossref_citationtrail_10_1002_sim_4344
crossref_primary_10_1002_sim_4344
wiley_primary_10_1002_sim_4344_SIM4344
istex_primary_ark_67375_WNG_S738ZQ1T_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-30
30 November 2011
2011-Nov-30
20111130
PublicationDateYYYYMMDD 2011-11-30
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-30
  day: 30
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2011
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Kang JDY, Schafer JL. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 2007;22:523-539.
Philipson PM, Ho WK, Henderson R. Comparative review of methods for handling drop-out in longitudinal studies. Statics in Medicine 2008;27:6276-6298.
Wu L. Mixed Effects Models for Complex Data, CRC Press:New York, 2010.
Rotnitzky A, Robins JM, Scharfstein DO. Semiparametric regression for repeated outcomes with nonignorable nonresponse. Journal of the American Statistical Association 1998;93:1321-1339.
Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 1952;47:663-685.
Lawless JF, Kalbfleisch JD, Wild CJ. Semiparametric methods for response-selective and missing data problems in regression. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 1999;61:413-438.
Yuan Y, Little RJA. Mixed-effect hybrid models for longitudinal data with nonignorable dropout. Biometrics 2009;65:478-486.
Copas J, Eguchi S. Local sensitivity approximations for selectivity bias. Journal of the Royal Statistical Society Series B-Statistical Methodology 2001;63:871-895.
Gong G, Samaniego FJ. Pseudo maximum likelihood estimation: theory and applications. The Annals of Statistics 1981;9:861-869.
Jacqmin-Gadda H, Thiebaut R, Chene G, Commenges D. Analysis of left-censored longitudinal data with application to viral load in HIV infection. Biostatistics 2000;1:355-368.
Robins J, Sued M, Lei-Gomez Q, Rotnitzky A. Comment: performance of double-robust estimators when "inverse probability" weights are highly variable. Statistical Science 2007;22:544-559.
Hogan JW, Lin X, Herman B. Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout. Biometrics 2004;60:854-864.
Tobin J. Estimation of relationship for limited dependent variables. Econometrica 1958;26:24-36.
Demirtas H, Hedeker D. Gaussianization-based quasi-imputation and expansion strategies for incomplete correlated binary responses. Statistics in Medicine 2007;26:782-799.
Verbeke G, Molenberghs G, Thijs H, Lesaffre E, Kenward MG. Sensitivity analysis for nonrandom dropout: a local influence approach. Biometrics 2001;57:7-14.
Gao S, Thiebaut R. Mixed effect models for truncated longitudinal outcomes with nonignorable missing data. Journal of Data Science 2009;7:13-25.
Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR, Fine J, Krichevsky A, Delude RL, Angus DC. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Archives of Internal Medicine 2007;167:1655-1663.
Epstein MP, Lin X, Boehnke M. A tobit variance-component method for linkage analysis of censored trait data. American Journal of Human Genetics 2003;72:611-620.
Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982;38:963-974.
Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G. Longitudinal Data Analysis, Chapman & Hall/CRC:Boca Raton, FL, 2009.
Troxel AB, Harrington DP, Lipsitz SR. Analysis of longitudinal data with non-ignorable non-monotone missing values. Journal of the Royal Statistical Society Series C-Applied Statistics 1998;47:425-438.
Huges J. Mixed effects models with censored data with applications to HIV RNA levels. Biometrics 1999;55:625-629.
Lyles RH, Lyles CM, Taylor DJ. Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop-outs. Journal of the Royal Statistical Society. Series C (Applied Statistics) 2000;49:485-497.
2007; 167
1952; 47
1982; 38
2009; 65
2000; 49
2004; 60
2010
1958; 26
2008; 27
2009
1999; 55
1981; 9
2009; 7
2000; 1
1992
1998; 93
1999; 61
2003; 72
2007; 22
2001; 57
2001; 63
2007; 26
1998; 47
e_1_2_7_4_1
Kenward MG (e_1_2_7_2_1) 2009
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
Little RJ (e_1_2_7_5_1) 2009
Albert PS (e_1_2_7_6_1) 2009
e_1_2_7_13_1
e_1_2_7_12_1
Fitzmaurice G (e_1_2_7_8_1) 2009
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Wu L (e_1_2_7_11_1) 2010
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Gao S (e_1_2_7_17_1) 2009; 7
Rotnitzky A (e_1_2_7_3_1) 2009
References_xml – reference: Wu L. Mixed Effects Models for Complex Data, CRC Press:New York, 2010.
– reference: Demirtas H, Hedeker D. Gaussianization-based quasi-imputation and expansion strategies for incomplete correlated binary responses. Statistics in Medicine 2007;26:782-799.
– reference: Kellum JA, Kong L, Fink MP, Weissfeld LA, Yealy DM, Pinsky MR, Fine J, Krichevsky A, Delude RL, Angus DC. Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study. Archives of Internal Medicine 2007;167:1655-1663.
– reference: Verbeke G, Molenberghs G, Thijs H, Lesaffre E, Kenward MG. Sensitivity analysis for nonrandom dropout: a local influence approach. Biometrics 2001;57:7-14.
– reference: Gao S, Thiebaut R. Mixed effect models for truncated longitudinal outcomes with nonignorable missing data. Journal of Data Science 2009;7:13-25.
– reference: Hogan JW, Lin X, Herman B. Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout. Biometrics 2004;60:854-864.
– reference: Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982;38:963-974.
– reference: Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite universe. Journal of the American Statistical Association 1952;47:663-685.
– reference: Rotnitzky A, Robins JM, Scharfstein DO. Semiparametric regression for repeated outcomes with nonignorable nonresponse. Journal of the American Statistical Association 1998;93:1321-1339.
– reference: Lawless JF, Kalbfleisch JD, Wild CJ. Semiparametric methods for response-selective and missing data problems in regression. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 1999;61:413-438.
– reference: Troxel AB, Harrington DP, Lipsitz SR. Analysis of longitudinal data with non-ignorable non-monotone missing values. Journal of the Royal Statistical Society Series C-Applied Statistics 1998;47:425-438.
– reference: Jacqmin-Gadda H, Thiebaut R, Chene G, Commenges D. Analysis of left-censored longitudinal data with application to viral load in HIV infection. Biostatistics 2000;1:355-368.
– reference: Gong G, Samaniego FJ. Pseudo maximum likelihood estimation: theory and applications. The Annals of Statistics 1981;9:861-869.
– reference: Epstein MP, Lin X, Boehnke M. A tobit variance-component method for linkage analysis of censored trait data. American Journal of Human Genetics 2003;72:611-620.
– reference: Philipson PM, Ho WK, Henderson R. Comparative review of methods for handling drop-out in longitudinal studies. Statics in Medicine 2008;27:6276-6298.
– reference: Yuan Y, Little RJA. Mixed-effect hybrid models for longitudinal data with nonignorable dropout. Biometrics 2009;65:478-486.
– reference: Tobin J. Estimation of relationship for limited dependent variables. Econometrica 1958;26:24-36.
– reference: Lyles RH, Lyles CM, Taylor DJ. Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop-outs. Journal of the Royal Statistical Society. Series C (Applied Statistics) 2000;49:485-497.
– reference: Copas J, Eguchi S. Local sensitivity approximations for selectivity bias. Journal of the Royal Statistical Society Series B-Statistical Methodology 2001;63:871-895.
– reference: Huges J. Mixed effects models with censored data with applications to HIV RNA levels. Biometrics 1999;55:625-629.
– reference: Kang JDY, Schafer JL. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Statistical Science 2007;22:523-539.
– reference: Robins J, Sued M, Lei-Gomez Q, Rotnitzky A. Comment: performance of double-robust estimators when "inverse probability" weights are highly variable. Statistical Science 2007;22:544-559.
– reference: Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G. Longitudinal Data Analysis, Chapman & Hall/CRC:Boca Raton, FL, 2009.
– volume: 47
  start-page: 425
  year: 1998
  end-page: 438
  article-title: Analysis of longitudinal data with non‐ignorable non‐monotone missing values
  publication-title: Journal of the Royal Statistical Society Series C‐Applied Statistics
– year: 2009
– volume: 63
  start-page: 871
  year: 2001
  end-page: 895
  article-title: Local sensitivity approximations for selectivity bias
  publication-title: Journal of the Royal Statistical Society Series B‐Statistical Methodology
– volume: 22
  start-page: 523
  year: 2007
  end-page: 539
  article-title: Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data
  publication-title: Statistical Science
– volume: 57
  start-page: 7
  year: 2001
  end-page: 14
  article-title: Sensitivity analysis for nonrandom dropout: a local influence approach
  publication-title: Biometrics
– volume: 26
  start-page: 24
  year: 1958
  end-page: 36
  article-title: Estimation of relationship for limited dependent variables
  publication-title: Econometrica
– volume: 26
  start-page: 782
  year: 2007
  end-page: 799
  article-title: Gaussianization‐based quasi‐imputation and expansion strategies for incomplete correlated binary responses
  publication-title: Statistics in Medicine
– volume: 65
  start-page: 478
  year: 2009
  end-page: 486
  article-title: Mixed‐effect hybrid models for longitudinal data with nonignorable dropout
  publication-title: Biometrics
– volume: 7
  start-page: 13
  year: 2009
  end-page: 25
  article-title: Mixed effect models for truncated longitudinal outcomes with nonignorable missing data
  publication-title: Journal of Data Science
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  article-title: Random‐effects models for longitudinal data
  publication-title: Biometrics
– volume: 60
  start-page: 854
  year: 2004
  end-page: 864
  article-title: Mixtures of varying coefficient models for longitudinal data with discrete or continuous nonignorable dropout
  publication-title: Biometrics
– volume: 49
  start-page: 485
  year: 2000
  end-page: 497
  article-title: Random regression models for human immunodeficiency virus ribonucleic acid data subject to left censoring and informative drop‐outs
  publication-title: Journal of the Royal Statistical Society. Series C (Applied Statistics)
– volume: 47
  start-page: 663
  year: 1952
  end-page: 685
  article-title: A generalization of sampling without replacement from a finite universe
  publication-title: Journal of the American Statistical Association
– volume: 22
  start-page: 544
  year: 2007
  end-page: 559
  article-title: Comment: performance of double‐robust estimators when “inverse probability” weights are highly variable
  publication-title: Statistical Science
– volume: 93
  start-page: 1321
  year: 1998
  end-page: 1339
  article-title: Semiparametric regression for repeated outcomes with nonignorable nonresponse
  publication-title: Journal of the American Statistical Association
– volume: 1
  start-page: 355
  year: 2000
  end-page: 368
  article-title: Analysis of left‐censored longitudinal data with application to viral load in HIV infection
  publication-title: Biostatistics
– volume: 27
  start-page: 6276
  year: 2008
  end-page: 6298
  article-title: Comparative review of methods for handling drop‐out in longitudinal studies
  publication-title: Statics in Medicine
– year: 1992
– volume: 167
  start-page: 1655
  year: 2007
  end-page: 1663
  article-title: Understanding the inflammatory cytokine response in pneumonia and sepsis: results of the Genetic and Inflammatory Markers of Sepsis (GenIMS) Study
  publication-title: Archives of Internal Medicine
– volume: 55
  start-page: 625
  year: 1999
  end-page: 629
  article-title: Mixed effects models with censored data with applications to HIV RNA levels
  publication-title: Biometrics
– volume: 9
  start-page: 861
  year: 1981
  end-page: 869
  article-title: Pseudo maximum likelihood estimation: theory and applications
  publication-title: The Annals of Statistics
– volume: 61
  start-page: 413
  year: 1999
  end-page: 438
  article-title: Semiparametric methods for response‐selective and missing data problems in regression
  publication-title: Journal of the Royal Statistical Society. Series B (Statistical Methodology)
– year: 2010
– volume: 72
  start-page: 611
  year: 2003
  end-page: 620
  article-title: A tobit variance‐component method for linkage analysis of censored trait data
  publication-title: American Journal of Human Genetics
– ident: e_1_2_7_9_1
  doi: 10.1080/01621459.1952.10483446
– ident: e_1_2_7_24_1
  doi: 10.1002/sim.2560
– ident: e_1_2_7_12_1
  doi: 10.2307/1907382
– ident: e_1_2_7_26_1
  doi: 10.1111/j.0006-341X.2004.00240.x
– volume-title: Longitudinal Data Analysis
  year: 2009
  ident: e_1_2_7_3_1
– volume-title: Longitudinal Data Analysis
  year: 2009
  ident: e_1_2_7_5_1
– ident: e_1_2_7_19_1
  doi: 10.1214/aos/1176345526
– ident: e_1_2_7_20_1
  doi: 10.1080/01621459.1998.10473795
– ident: e_1_2_7_18_1
  doi: 10.2307/2529876
– ident: e_1_2_7_10_1
  doi: 10.1007/978-1-4757-1229-2_14
– ident: e_1_2_7_16_1
  doi: 10.1111/1467-9876.00207
– volume-title: Longitudinal Data Analysis
  year: 2009
  ident: e_1_2_7_2_1
– ident: e_1_2_7_29_1
  doi: 10.1111/1467-9876.00119
– ident: e_1_2_7_14_1
  doi: 10.1111/j.0006-341X.1999.00625.x
– ident: e_1_2_7_23_1
  doi: 10.1214/07-STS227D
– volume-title: Longitudinal Data Analysis
  year: 2009
  ident: e_1_2_7_6_1
– ident: e_1_2_7_13_1
  doi: 10.1086/367924
– ident: e_1_2_7_22_1
  doi: 10.1214/07-STS227
– volume-title: Mixed Effects Models for Complex Data
  year: 2010
  ident: e_1_2_7_11_1
– ident: e_1_2_7_28_1
  doi: 10.1111/1467-9868.00318
– ident: e_1_2_7_21_1
  doi: 10.1111/1467-9868.00185
– ident: e_1_2_7_27_1
  doi: 10.1111/j.0006-341X.2001.00007.x
– ident: e_1_2_7_4_1
  doi: 10.1002/sim.3450
– volume: 7
  start-page: 13
  year: 2009
  ident: e_1_2_7_17_1
  article-title: Mixed effect models for truncated longitudinal outcomes with nonignorable missing data
  publication-title: Journal of Data Science
  doi: 10.6339/JDS.2009.07(1).418
– volume-title: Longitudinal Data Analysis
  year: 2009
  ident: e_1_2_7_8_1
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1541-0420.2008.01102.x
– ident: e_1_2_7_15_1
  doi: 10.1093/biostatistics/1.4.355
– ident: e_1_2_7_25_1
  doi: 10.1001/archinte.167.15.1655
SSID ssj0011527
Score 2.104997
Snippet In a longitudinal study with response data collected during a hospital stay, observations may be missing because of the subject's discharge from the hospital...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3167
SubjectTerms Biomarkers
Biomarkers - blood
Computer Simulation
Data collection
Data Interpretation, Statistical
Humans
Interleukin-6 - blood
inverse probability weighting
left-censoring
longitudinal data
Longitudinal Studies
Mean square errors
Medical statistics
Models, Statistical
non-ignorable missing
pseudo-likelihood method
Regression analysis
Sepsis - blood
Sepsis - genetics
Sepsis - immunology
Title Analysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model
URI https://api.istex.fr/ark:/67375/WNG-S738ZQ1T-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.4344
https://www.ncbi.nlm.nih.gov/pubmed/21898524
https://www.proquest.com/docview/905717105
https://www.proquest.com/docview/905674519
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9UwFA4yQQbi9Kqzm0oE0afe3aRt2jyKOqdwB7oNhz6EpknksrtW7m1RfPIn-Bv9JZ6TtJXJBPGplJ7SJP1ycs7JyXcIeQyK0eKZ87gqjI5Tx_O45LKMheNGcs2FMXg4eX4oDk7SN6fZaZ9ViWdhAj_EGHDDmeH1NU7wUq_3fpOGrhfn0zRJkQqUJQJp81-8G5mj2FCtFXcoRc6ygXd2xveGFy-sRFdxUL9eZmZetFr9srO_RT4ODQ7ZJmfTrtXT6tsfXI7_16Ob5EZvjdJnAT63yBVbT8i1eb_fPiHXQ1SPhsNKE7KJtmmgdr5NuoHQhDaO1k398_uPxacaIKWXlgJ8MApBy9rQpXUtPKzAY25WFu4bLJLUGSzIRTFFlXZBln7xgVoQgRXUNOe0zzahoHUWLfVVe-6Qk_2Xx88P4r6KQ1ylTKYxqwo3q1KXSu4SWWaaCZ5zi7rCFVUFaHBaG15WxoHzZNPECSEFuGEcy7E7kdwlG9AHe49QIQqdJeBgMTdLneCFNaXNpGMzwJg0OiJPhz-qqp7iHCttLFUgZ-YKhljhEEfk0Sj5OdB6XCLzxINiFChXZ5gGl2fq_eErdZQnxYe37FixiOwOqFG9BlgrCYYwA_Mtiwgdn8LY435MWdum8yIiR3qfiGwHrI2fAsNLFhnHNnjE_LWR6uj1HK87_yq4SzZ9WNyzV94nG-2qsw_Armr1Qz-DfgFpCCFN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7UFrQgXlatsV5GEH3KdjOZTBJ8ErFutbug3WIRYUgyM2XpNpHtBsUnf4K_0V_iOZOLVCqITyHkhMxMvjnzzZmZ7wA8Qcdo6My5XyQ694XlsZ_xNPOl5TrlOZda0-HkyVSOD8Wbo-hoDZ53Z2EafYg-4EY9w_lr6uAUkN75rRp6Nj8dilCIS7DhlueIEb3vtaOCLl8rrVHKOIg65dkR3-nePDcWbVCzfr2IaJ7nrW7g2b0On7oiN_tNTob1Kh8W3_5Qc_zPOt2Aay0hZS8aBN2ENVMO4PKkXXIfwNUmsMea80oD2CR62qg734K60zRhlWVlVf78_mN-XCKq8oVhiCAKRLCs1Gxh7AofFjhprpYG7yvKk1RrysnFaJcqqxtb9sXFatEEB1FdnbJ2wwlDxzNfMZe45zYc7r6avRz7bSIHvxBBKvygSOyoEFak3IZpFuWB5DE35C5sUhQICJvnmmeFtjh_MiK0UqYSZ2KcMrJbGd6BdayDuQtMyiSPQpxjBXYkrOSJ0ZmJUhuMEGapzj141v1SVbQq55RsY6EafWausIkVNbEHj3vLz42yxwU2Tx0qeoNseUI74eJIfZi-VgdxmHx8F8xU4MF2BxvVOoEzlSIXDpDBRR6w_im2PS3JZKWpamciY1L48WCrAVv_KeReaRJxKoODzF8LqQ72JnS996-Gj-DKeDbZV_t707fbsOmi5E7M8j6sr5a1eYA0a5U_dN3pF2Q1JWs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1BK1WVEJflFsrFSAiest04jpM8ImBpgV0BbUUFD1Yc22jVbVJtE4F44hP4Rr6EmdxQUZEQT6soE63jHI-Px-MzAI_QMVo6c-7nidG-cDz2M55mvnTcpFxzaQwdTp7N5c6BeHUYHXZZlXQWptWHGAJuNDIaf00D_MS47d-ioaeL47EIhbgI60LiLEmE6P0gHRX05Vppi1LGQdQLz074dv_kmalonXr163k88yxtbead6RX41Le4TTc5GteVHuff_hBz_L9XugqXOzrKnrb4uQYXbDGCjVm34T6CS21Yj7WnlUawSeS01Xa-DnWvaMJKx4qy-Pn9x-JzgZjSS8sQPxSGYFlh2NK6Cm_muGQuVxavS6qSVBuqyMUoR5XVrS370kRq0QSnUFMesy7dhKHbWVSsKdtzAw6mL_af7fhdGQc_F0Eq_CBP3CQXTqTchWkW6UDymFtyFi7Jc4SD09rwLDcOV09WhE7KVOI6jFM9difDm7CG72BvA5My0VGIK6zATYSTPLEms1HqggmCLDXagyf9F1V5p3FOpTaWqlVn5gq7WFEXe_BwsDxpdT3OsXncgGIwyFZHlAcXR-rD_KXai8Pk47tgXwUebPWoUZ0LOFUpMuEA-VvkARvuYt_ThkxW2LJuTGRM-j4e3GqxNvwVMq80iTi1oUHMXxup9nZn9HvnXw0fwMbb51P1Znf-egs2mxB5o2R5F9aqVW3vIceq9P1mMP0C4eckGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+non%E2%80%90ignorable+missing+and+left%E2%80%90censored+longitudinal+data+using+a+weighted+random+effects+tobit+model&rft.jtitle=Statistics+in+medicine&rft.au=Sattar%2C+Abdus&rft.au=Weissfeld%2C+Lisa+A.&rft.au=Molenberghs%2C+Geert&rft.date=2011-11-30&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=30&rft.issue=27&rft.spage=3167&rft.epage=3180&rft_id=info:doi/10.1002%2Fsim.4344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_4344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon