Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: A novel method based on bifurcation fractal law
Objectives We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis. Background Computation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibil...
Saved in:
| Published in | Catheterization and cardiovascular interventions Vol. 97; no. S2; pp. 1040 - 1047 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2021
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1522-1946 1522-726X 1522-726X |
| DOI | 10.1002/ccd.29592 |
Cover
| Abstract | Objectives
We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis.
Background
Computation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions.
Methods
An artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step‐down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law‐based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire‐derived FFR ≤0.80.
Results
The μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel‐level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra‐ and inter‐observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s.
Conclusions
Computation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory. |
|---|---|
| AbstractList | We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis.OBJECTIVESWe aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis.Computation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions.BACKGROUNDComputation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions.An artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step-down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law-based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire-derived FFR ≤0.80.METHODSAn artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step-down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law-based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire-derived FFR ≤0.80.The μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel-level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra- and inter-observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s.RESULTSThe μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel-level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra- and inter-observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s.Computation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory.CONCLUSIONSComputation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory. Objectives We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis. Background Computation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions. Methods An artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step‐down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law‐based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire‐derived FFR ≤0.80. Results The μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel‐level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra‐ and inter‐observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s. Conclusions Computation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory. ObjectivesWe aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis.BackgroundComputation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions.MethodsAn artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step‐down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law‐based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire‐derived FFR ≤0.80.ResultsThe μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel‐level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra‐ and inter‐observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s.ConclusionsComputation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory. We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis. Computation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions. An artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step-down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law-based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire-derived FFR ≤0.80. The μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel-level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra- and inter-observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s. Computation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory. |
| Author | Tu, Shengxian Xu, Bo Ding, Daixin Li, Chunming Wijns, William Chang, Yunxiao |
| Author_xml | – sequence: 1 givenname: Shengxian orcidid: 0000-0001-9681-1067 surname: Tu fullname: Tu, Shengxian email: sxtu@sjtu.edu.cn organization: Shanghai Jiao Tong University – sequence: 2 givenname: Daixin surname: Ding fullname: Ding, Daixin organization: National University of Ireland Galway – sequence: 3 givenname: Yunxiao surname: Chang fullname: Chang, Yunxiao organization: Pulse Medical Imaging Technology Co., Ltd – sequence: 4 givenname: Chunming surname: Li fullname: Li, Chunming organization: Shanghai Jiao Tong University – sequence: 5 givenname: William surname: Wijns fullname: Wijns, William organization: National University of Ireland Galway – sequence: 6 givenname: Bo surname: Xu fullname: Xu, Bo organization: Chinese Academy of Medical Sciences and Peking Union Medical College |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33660921$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhSNURH9gwQsgS2xgMa3tJJ6EXTXlT6rEBiR20c3NderKsae2M6N5Kx4RT2dgUQlWvrK_c651znlx4ryjongt-KXgXF4hDpeyrVv5rDgTtZSLpVQ_T46zaCt1WpzHeM85b5VsXxSnZakUb6U4K37dGBidj8kgA8Q5AO6Y1-xhBpdMgmQ2xLT1Wxby7Jn2gUGMFONELu1J9ME7CDsWE2UjE1k0ozPaIDjM2uAnBvnOjZYYuNH4McD6Lu_bGNp-YNfM-Q1ZNlG68wPrIdLAvGO90XPA_VKXTQATWGZh-7J4rsFGenU8L4ofnz5-X31Z3H77_HV1fbvASrRy0ehyqXkPgEri0HDV9ySXFcimRNIKGqjrstG1hHKoGqoaFPktZ6LEUvUay4vi3cF3HfzDTDF1k4lI1oIjP8dOVu0yx1mVPKNvn6D3fg4u_66TteRSqKYuM_XmSM39REO3DmbKsXV_usjA-wOAwccYSP9FBO_2PXe55-6x58xePWHxsSzvUgBj_6fYGku7f1t3q9XNQfEbQEC8QA |
| CitedBy_id | crossref_primary_10_1093_eurheartj_ehad318 crossref_primary_10_1016_j_heliyon_2024_e39335 crossref_primary_10_4244_EIJ_D_22_00537 crossref_primary_10_1016_j_ahj_2025_02_012 crossref_primary_10_3389_fneur_2024_1466864 crossref_primary_10_4244_AIJ_E_23_00002 crossref_primary_10_1093_eurheartj_ehad434 crossref_primary_10_1155_2024_4618868 crossref_primary_10_3390_jcm14062086 crossref_primary_10_4244_AIJ_D_22_00022 crossref_primary_10_1016_j_jscai_2022_100411 crossref_primary_10_3390_jcm14061958 crossref_primary_10_1038_s41746_024_01134_4 crossref_primary_10_1161_CIRCIMAGING_123_016046 crossref_primary_10_4244_EIJ_D_23_00516 crossref_primary_10_1002_ehf2_14452 crossref_primary_10_1016_j_ijcard_2024_132199 crossref_primary_10_1016_j_jtcvs_2023_03_032 crossref_primary_10_3389_fcvm_2023_1134623 crossref_primary_10_17264_stmarieng_15_27 crossref_primary_10_1002_ccd_31376 crossref_primary_10_1016_j_ccl_2023_07_001 crossref_primary_10_3389_fcvm_2024_1489403 crossref_primary_10_1002_ccd_30681 crossref_primary_10_1016_j_jacc_2022_04_024 crossref_primary_10_1016_j_jacasi_2023_09_012 crossref_primary_10_4244_EIJ_D_24_00336 crossref_primary_10_1002_clc_24196 crossref_primary_10_1080_14779072_2022_2098117 crossref_primary_10_1016_j_jcct_2024_01_004 crossref_primary_10_1161_CIRCINTERVENTIONS_123_013185 crossref_primary_10_1016_j_ijcard_2022_05_036 crossref_primary_10_1016_j_jacc_2022_11_056 crossref_primary_10_1016_j_biopha_2021_112196 crossref_primary_10_1016_j_ijcard_2024_132761 crossref_primary_10_1161_JAHA_123_029330 crossref_primary_10_1007_s10554_024_03152_5 crossref_primary_10_1016_j_jacc_2022_09_007 crossref_primary_10_4244_AIJ_D_24_00051 crossref_primary_10_1136_jnis_2024_022007 crossref_primary_10_3389_fcvm_2023_1164290 crossref_primary_10_1016_j_pcad_2024_08_002 crossref_primary_10_1136_openhrt_2023_002328 crossref_primary_10_1002_ccd_30078 crossref_primary_10_1007_s00380_024_02387_5 crossref_primary_10_3389_fcvm_2023_1217069 crossref_primary_10_1161_CIRCINTERVENTIONS_123_013191 crossref_primary_10_3390_jcm14030869 crossref_primary_10_1002_advs_202415961 crossref_primary_10_3389_fnagi_2022_813648 crossref_primary_10_4244_EIJ_D_23_00611 crossref_primary_10_4244_EIJ_E_22_00018 crossref_primary_10_4244_AIJ_D_22_00045 crossref_primary_10_1161_CIRCOUTCOMES_121_008055 crossref_primary_10_1186_s12872_024_04093_6 crossref_primary_10_1007_s10554_023_02974_z crossref_primary_10_1016_j_ijcard_2023_131685 crossref_primary_10_1161_CIRCINTERVENTIONS_124_014129 crossref_primary_10_1038_s41598_023_30991_4 crossref_primary_10_1016_j_jcin_2022_10_014 crossref_primary_10_1097_MCA_0000000000001299 crossref_primary_10_1111_jebm_12573 crossref_primary_10_1016_j_jscai_2023_101043 crossref_primary_10_1002_ccd_31314 crossref_primary_10_1002_ccd_30069 crossref_primary_10_1016_j_ijcard_2024_132949 crossref_primary_10_1016_j_jcct_2022_06_002 crossref_primary_10_1016_j_carrev_2024_09_015 crossref_primary_10_3389_fcvm_2023_1076049 crossref_primary_10_1016_j_amjcard_2024_11_021 crossref_primary_10_1016_j_jacasi_2023_07_003 crossref_primary_10_15212_CVIA_2023_0021 crossref_primary_10_1161_JAHA_123_031209 crossref_primary_10_1016_j_ijcha_2024_101409 crossref_primary_10_1016_j_wneu_2023_08_034 crossref_primary_10_1136_bmjopen_2023_074349 crossref_primary_10_1007_s00062_024_01395_2 crossref_primary_10_1016_j_jacc_2024_03_400 crossref_primary_10_3389_fcvm_2022_872498 crossref_primary_10_1177_00033197231218616 crossref_primary_10_1038_s41598_024_67979_7 crossref_primary_10_1016_j_jcin_2023_04_026 crossref_primary_10_1161_JAHA_124_035756 crossref_primary_10_3389_fcvm_2024_1468888 crossref_primary_10_1007_s12928_024_00988_5 crossref_primary_10_1161_JAHA_124_039346 crossref_primary_10_1007_s10554_024_03065_3 crossref_primary_10_1016_j_jcmg_2023_02_008 crossref_primary_10_1002_ccd_30361 crossref_primary_10_1016_j_iccl_2022_09_012 crossref_primary_10_1016_j_iccl_2022_02_002 crossref_primary_10_1016_j_ijcard_2023_131176 crossref_primary_10_1016_j_ahj_2021_05_004 crossref_primary_10_1016_j_jacasi_2024_10_019 crossref_primary_10_3390_jcm11175198 crossref_primary_10_1016_j_jacasi_2022_12_005 crossref_primary_10_1109_TBME_2024_3469289 crossref_primary_10_2147_IJGM_S444933 crossref_primary_10_4244_EIJ_D_21_00425 crossref_primary_10_4244_EIJV17I12A160 crossref_primary_10_1016_j_ijcha_2024_101349 crossref_primary_10_1038_s41598_025_85872_9 crossref_primary_10_1016_j_clinsp_2024_100429 crossref_primary_10_1097_MCA_0000000000001309 crossref_primary_10_1016_j_ijcard_2024_131805 crossref_primary_10_1080_14796678_2024_2416817 crossref_primary_10_1016_j_jscai_2022_100399 crossref_primary_10_1007_s00330_023_09682_1 crossref_primary_10_1016_j_ahj_2025_03_001 crossref_primary_10_1161_JAHA_122_027165 crossref_primary_10_1038_s41598_025_87828_5 crossref_primary_10_1016_j_jacbts_2022_06_021 crossref_primary_10_1016_S0140_6736_21_02248_0 crossref_primary_10_1136_bmjopen_2021_055481 crossref_primary_10_1186_s43044_024_00541_y crossref_primary_10_31083_j_rcm2510367 crossref_primary_10_3390_jpm12111798 crossref_primary_10_1161_JAHA_122_025663 crossref_primary_10_31083_j_rcm2408245 crossref_primary_10_1016_j_jcct_2024_10_001 crossref_primary_10_1016_j_jcin_2022_07_015 crossref_primary_10_1016_j_jcin_2024_09_045 crossref_primary_10_1016_j_jacasi_2021_07_002 crossref_primary_10_1016_j_jjcc_2022_02_015 crossref_primary_10_1152_ajpheart_00142_2024 crossref_primary_10_1097_CD9_0000000000000104 crossref_primary_10_1007_s00330_023_09557_5 crossref_primary_10_1016_j_future_2023_03_007 crossref_primary_10_1016_j_jcin_2023_02_012 crossref_primary_10_1161_CIRCINTERVENTIONS_123_013844 crossref_primary_10_1016_j_jacc_2021_05_024 |
| Cites_doi | 10.1016/j.jcin.2016.07.013 10.1016/j.jcin.2014.12.232 10.1016/j.jcin.2018.04.037 10.1093/eurheartj/ehy445 10.15420/usc.2020.09 10.1007/978-94-011-3726-3_11 10.4244/EIJ-D-19-00466 10.1093/eurheartj/ehz425 10.1016/j.jacc.2017.07.770 10.1161/CIRCIMAGING.117.007107 10.1093/eurheartj/ehz918 10.4244/EIJ-D-19-01034 10.1007/s10554-018-1506-y 10.1161/CIRCINTERVENTIONS.116.005259 10.1016/j.jcin.2014.12.221 10.1161/JAHA.118.009603 10.1073/pnas.12.3.207 10.1016/0735-1097(95)80003-Y 10.1016/j.jacc.2005.04.054 10.1016/j.jcin.2019.06.003 10.1007/978-3-319-24574-4_28 10.1016/j.jacc.2017.10.035 10.1007/s10554-020-02068-0 10.4244/EIJ-D-16-00932 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC. 2021 Wiley Periodicals LLC |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC. – notice: 2021 Wiley Periodicals LLC |
| DBID | AAYXX CITATION NPM 7T5 7U9 H94 K9. 7X8 |
| DOI | 10.1002/ccd.29592 |
| DatabaseName | CrossRef PubMed Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Virology and AIDS Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic AIDS and Cancer Research Abstracts PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1522-726X |
| EndPage | 1047 |
| ExternalDocumentID | 33660921 10_1002_ccd_29592 CCD29592 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Pulse Medical Imaging Technology (Shanghai) Co., Ltd. – fundername: Shanghai Science and Technology Commission funderid: 19DZ1930600 – fundername: National Key Research and Development Program of China – fundername: Shanghai Science and Technology Commission grantid: 19DZ1930600 |
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OC 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABQWH ABXGK ACAHQ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P FUBAC G-S G.N GNP GODZA H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WHWMO WIH WIJ WIK WJL WOHZO WQJ WRC WVDHM WXI WXSBR XG1 XPP XV2 ~IA ~WT .GJ .Y3 31~ 53G AAMMB AANHP AAQQT AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AZFZN CITATION EJD FEDTE HF~ HVGLF LW6 ZGI NPM 7T5 7U9 H94 K9. 7X8 |
| ID | FETCH-LOGICAL-c4192-8f37f0baac62cd806bbe274a283cef6a8a5538f52a3d48e48c1a280926176bfc3 |
| IEDL.DBID | DR2 |
| ISSN | 1522-1946 1522-726X |
| IngestDate | Thu Oct 02 15:17:49 EDT 2025 Tue Oct 07 06:26:19 EDT 2025 Wed Feb 19 02:28:35 EST 2025 Thu Apr 24 23:01:46 EDT 2025 Wed Oct 01 02:57:53 EDT 2025 Wed Jan 22 16:30:53 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | S2 |
| Keywords | quantitative flow ratio artificial intelligence coronary angiography fractional flow reserve |
| Language | English |
| License | 2021 Wiley Periodicals LLC. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4192-8f37f0baac62cd806bbe274a283cef6a8a5538f52a3d48e48c1a280926176bfc3 |
| Notes | Funding information National Key Research and Development Program of China; Pulse Medical Imaging Technology (Shanghai) Co., Ltd.; Shanghai Science and Technology Commission, Grant/Award Number: 19DZ1930600 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9681-1067 |
| PMID | 33660921 |
| PQID | 2520216853 |
| PQPubID | 986345 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2497096430 proquest_journals_2520216853 pubmed_primary_33660921 crossref_primary_10_1002_ccd_29592 crossref_citationtrail_10_1002_ccd_29592 wiley_primary_10_1002_ccd_29592_CCD29592 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 1, 2021 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 1, 2021 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Washington |
| PublicationTitle | Catheterization and cardiovascular interventions |
| PublicationTitleAlternate | Catheter Cardiovasc Interv |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2018; 7 2018; 39 2021; 37 2017; 70 2020; 41 1995; 26 2019; 35 2017; 10 2019; 12 2017; 13 2020; 16 1926; 12 2020; 14 2015 1991 2018; 11 2015; 8 2016; 9 2005; 46 e_1_2_9_20_1 e_1_2_9_11_1 e_1_2_9_22_1 e_1_2_9_10_1 e_1_2_9_21_1 e_1_2_9_13_1 e_1_2_9_24_1 e_1_2_9_12_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_25_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 |
| References_xml | – volume: 39 start-page: 3314 year: 2018 end-page: 3321 article-title: Diagnostic performance of angiography‐derived fractional flow reserve: a systematic review and Bayesian meta‐analysis publication-title: Eur Heart J – volume: 37 start-page: 755 year: 2021 end-page: 766 article-title: Clinical implication of QFR in patients with ST‐segment elevation myocardial infarction after drug‐eluting stent implantation publication-title: Int J Cardiovasc Imaging – volume: 7 year: 2018 article-title: Diagnostic performance of in‐procedure angiography‐derived quantitative flow reserve compared to pressure‐derived fractional flow reserve: the FAVOR II Europe‐Japan study publication-title: J Am Heart Assoc – volume: 12 start-page: 207 year: 1926 end-page: 214 article-title: The physiological principle of minimum work: I. the vascular system and the cost of blood volume publication-title: Proc Natl Acad Sci U S A – volume: 11 start-page: 1482 year: 2018 end-page: 1491 article-title: Evolving routine standards in invasive hemodynamic assessment of coronary stenosis: the nationwide Italian SICI‐GISE cross‐sectional ERIS study publication-title: J Am Coll Cardiol Intv – volume: 70 start-page: 1379 year: 2017 end-page: 1402 article-title: The evolving future of instantaneous wave‐free ratio and fractional flow reserve publication-title: J Am Coll Cardiol – volume: 10 year: 2017 article-title: Validation study of image‐based fractional flow reserve during coronary angiography publication-title: Circ Cardiovasc Interv – volume: 8 start-page: 564 year: 2015 end-page: 574 article-title: Fractional flow reserve and coronary bifurcation anatomy: a novel quantitative model to assess and report the stenosis severity of bifurcation lesions publication-title: J Am Coll Cardiol Intv – volume: 16 start-page: 568 year: 2020 end-page: 576 article-title: Comparison of diagnostic performance of intracoronary optical coherence tomography‐based and angiography‐based fractional flow reserve for evaluation of coronary stenosis publication-title: EuroIntervention – volume: 13 start-page: 115 year: 2017 end-page: 123 article-title: Quantitative angiography methods for bifurcation lesions: a consensus statement update from the European bifurcation Club publication-title: EuroIntervention – start-page: 229 year: 1991 end-page: 244 – volume: 9 start-page: 2024 year: 2016 end-page: 2035 article-title: Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study publication-title: J Am Coll Cardiol Intv – volume: 12 start-page: 2079 year: 2019 end-page: 2088 article-title: Prognostic value of QFR measured immediately after successful stent implantation publication-title: J Am Coll Cardiol Intv – volume: 14 year: 2020 article-title: Overview of quantitative flow ratio and optical flow ratio in the assessment of intermediate coronary lesions publication-title: US Cardiol Rev – volume: 35 start-page: 587 year: 2019 end-page: 595 article-title: Automatic coronary blood flow computation: validation in quantitative flow ratio from coronary angiography publication-title: Int J Cardiovasc Imaging – volume: 41 start-page: 407 year: 2020 end-page: 477 article-title: 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: the task force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC) publication-title: Eur Heart J – volume: 41 start-page: 3271 year: 2020 end-page: 3279 article-title: Fractional flow reserve in clinical practice: from wire‐based invasive measurement to image‐based computation publication-title: Eur Heart J – volume: 46 start-page: 633 year: 2005 end-page: 637 article-title: Physiologic assessment of jailed side branch lesions using fractional flow reserve publication-title: J Am Coll Cardiol – volume: 16 start-page: 591 year: 2020 end-page: 599 article-title: Validation of a three‐dimensional quantitative coronary angiography‐based software to calculate fractional flow reserve: the FAST study publication-title: EuroIntervention – volume: 26 start-page: 328 year: 1995 end-page: 334 article-title: Quantitative coronary angiography in predicting functional significance of stenoses in an unselected patient cohort publication-title: J Am Coll Cardiol – volume: 70 start-page: 3077 year: 2017 end-page: 3087 article-title: Diagnostic accuracy of angiography‐based quantitative flow ratio measurements for online assessment of coronary stenosis publication-title: J Am Coll Cardiol – year: 2015 – volume: 8 start-page: 536 year: 2015 end-page: 546 article-title: Randomized comparison of FFR‐guided and angiography‐guided provisional stenting of true coronary bifurcation lesions: the DKCRUSH‐VI trial (double kissing crush versus provisional stenting technique for treatment of coronary bifurcation lesions VI) publication-title: J Am Coll Cardiol Intv – volume: 11 year: 2018 article-title: Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II study (wire‐free functional imaging II) publication-title: Circ Cardiovasc Imaging – ident: e_1_2_9_5_1 doi: 10.1016/j.jcin.2016.07.013 – ident: e_1_2_9_15_1 doi: 10.1016/j.jcin.2014.12.232 – ident: e_1_2_9_4_1 doi: 10.1016/j.jcin.2018.04.037 – ident: e_1_2_9_8_1 doi: 10.1093/eurheartj/ehy445 – ident: e_1_2_9_9_1 doi: 10.15420/usc.2020.09 – ident: e_1_2_9_17_1 doi: 10.1007/978-94-011-3726-3_11 – ident: e_1_2_9_7_1 doi: 10.4244/EIJ-D-19-00466 – ident: e_1_2_9_2_1 doi: 10.1093/eurheartj/ehz425 – ident: e_1_2_9_3_1 doi: 10.1016/j.jacc.2017.07.770 – ident: e_1_2_9_11_1 doi: 10.1161/CIRCIMAGING.117.007107 – ident: e_1_2_9_22_1 doi: 10.1093/eurheartj/ehz918 – ident: e_1_2_9_20_1 doi: 10.4244/EIJ-D-19-01034 – ident: e_1_2_9_14_1 doi: 10.1007/s10554-018-1506-y – ident: e_1_2_9_6_1 doi: 10.1161/CIRCINTERVENTIONS.116.005259 – ident: e_1_2_9_25_1 doi: 10.1016/j.jcin.2014.12.221 – ident: e_1_2_9_23_1 doi: 10.1161/JAHA.118.009603 – ident: e_1_2_9_16_1 doi: 10.1073/pnas.12.3.207 – ident: e_1_2_9_19_1 doi: 10.1016/0735-1097(95)80003-Y – ident: e_1_2_9_24_1 doi: 10.1016/j.jacc.2005.04.054 – ident: e_1_2_9_12_1 doi: 10.1016/j.jcin.2019.06.003 – ident: e_1_2_9_18_1 doi: 10.1007/978-3-319-24574-4_28 – ident: e_1_2_9_10_1 doi: 10.1016/j.jacc.2017.10.035 – ident: e_1_2_9_13_1 doi: 10.1007/s10554-020-02068-0 – ident: e_1_2_9_21_1 doi: 10.4244/EIJ-D-16-00932 |
| SSID | ssj0009629 |
| Score | 2.6402209 |
| Snippet | Objectives
We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with... We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate... ObjectivesWe aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1040 |
| SubjectTerms | Accuracy Artificial intelligence Catheterization Computer applications coronary angiography Coronary artery Fractals fractional flow reserve Population studies quantitative flow ratio Stenosis |
| Title | Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: A novel method based on bifurcation fractal law |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fccd.29592 https://www.ncbi.nlm.nih.gov/pubmed/33660921 https://www.proquest.com/docview/2520216853 https://www.proquest.com/docview/2497096430 |
| Volume | 97 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-1946 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1522-726X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009629 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXKO-FggbEgUu2iZM4CZyqLVWFBAdEpR6QorFjoxVRArubVvCr-InM2NlU5SEhbpE88UOex2d7_FmI50yajhi7qFE6jygEFBEqXUWyKatSNhYL67Mt3qmT0-zNWX62I15t78IEfohpw40tw_trNnDU64NL0lBjmrms8or9b5Iqv5x6f0kdVSn_QhmFJxnRQl1tWYVieTD9eTUW_QYwr-JVH3COb4qP266GPJPP82Gj5-b7LyyO_zmWPXFjBKJwGDTnltix3W1x7e141H5H_DgKSXhUDGjMsELzDXoHXwfs_MU0cpPg2v4CvA4BgV_AieaTJQ2TI1CfgBSJKlqugZNFODWJNQ34Ygsg8F5FawG7T8vAnk3t8XHFSziErj-3LYRHroHjbQN9B3rphlXYaaRK0NDyAVq8uCtOj19_WJxE4_MOkeGj56h0aeFijWiUNE0ZK60trZGRAI-xTmGJOXljl0tMm6y0WWkSKosr5pBX2pn0ntjt-s4-EKAyl-gkLxLTZBkqV0okaCUTTb7ekJrOxIvtRNdm5D7nJzjaOrA2y5pmoPYzMBPPJtEvgfDjT0L7W22pR5tf1zKXBJgU4Z-ZeDoVk7XyEQx2th9IJquKmCnQ4pm4H7RsaiVNlaLRJdRZryt_b75eLI78x8N_F30krnP3Qq7mvtjdrAb7mPDURj_xhvMTgX8eeg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgEX3o-FAgPiwCXbxEmcBHGptlQLtD2gVuoFRWPHRiuiBLYbKvhV_ERm4k2q8pAQt0ie-CHP47M9_izEcyZNRwxdUCmdBhQCsgCVLgJZ5UUuK4uZ7bMtDtX8OHl7kp5siFfDXRjPDzFuuLFl9P6aDZw3pLfPWUONqaaySAtywJcSResUhkTvz8mjCtW_UUYBSga0VFcDr1Aot8dfL0aj3yDmRcTah5y96-LD0FmfafJp2q301Hz_hcfxf0dzQ1xbY1HY8cpzU2zY5pa4fLA-bb8tfuz6PDwqBjSmW6L5Bq2DLx02_d008pTg6vYMejUCwr-AI9MnSxrmR6BOAekSVbQ4Bc4X4ewkVjbguy2AwNsVtQVsPi48gTa1xycWL2EHmvarrcG_cw0ccitoG9AL1y39ZiNVgoZWEFDj2R1xvPf6aDYP1i88BIZPn4PcxZkLNaJR0lR5qLS2tExGwjzGOoU5puSQXSoxrpLcJrmJqCwsmEZeaWfiu2KzaRt7X4BKXKSjNItMlSSoXC6R0JWMNLl7Q5o6ES-GmS7Nmv6cX-GoS0_cLEuagbKfgYl4Nop-9pwffxLaGtSlXJv9aSlTSZhJEQSaiKdjMRksn8JgY9uOZJIiC5kFLZyIe17NxlbiWCkaXUSd7ZXl782Xs9lu__Hg30WfiCvzo4P9cv_N4buH4ip31adubonN1bKzjwherfTj3op-AlowIps |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIlVceEOXFhgQBy7ZJk7iJIhLtcuqvCqEqNQLisaOjVZESbvdUMGv4icytpNU5SEhbpE88UOex2d7_Jmxp5Y0HTE0QSVkGlAIyAIUsgh4lRc5rzRm2mVbHIqDo-T1cXq8wV4Md2E8P8S44WYtw_lra-D6pDJ7F6yhSlVTXqQFOeArSVrkNqFv_uGCPKoQ7o0yClA8oKW6GHiFQr43_no5Gv0GMS8jVhdyFtfZp6GzPtPky7Rby6n6_guP4_-O5ga71mNR2PfKc5Nt6OYW23rXn7bfZj_mPg-PigGV6laovkFr4LTDxt1NI08Jpm7PwakREP4FHJk-raSy_AjUKSBdooqWZ2DzRWx2klU2sHdbAMFuV9QasPm89ATa1J49sXgO-9C0X3UN_p1rsCG3grYBuTTdym82UiWoaAUBNZ7fYUeLlx9nB0H_wkOg7OlzkJs4M6FEVIKrKg-FlJqWyUiYR2kjMMeUHLJJOcZVkuskVxGVhYWlkRfSqPgu22zaRm8zEImJZJRmkaqSBIXJORK64pEkd69IUyfs2TDTperpz-0rHHXpiZt5STNQuhmYsCej6Inn_PiT0O6gLmVv9mclTzlhJkEQaMIej8VksPYUBhvddiSTFFloWdDCCbvn1WxsJY6FoNFF1FmnLH9vvpzN5u7j_r-LPmJb7-eL8u2rwzc77Krtqc_c3GWb61WnHxC6WsuHzoh-AtQPIh8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+accuracy+of+quantitative+flow+ratio+for+assessment+of+coronary+stenosis+significance+from+a+single+angiographic+view%3A+A+novel+method+based+on+bifurcation+fractal+law&rft.jtitle=Catheterization+and+cardiovascular+interventions&rft.au=Tu%2C+Shengxian&rft.au=Ding%2C+Daixin&rft.au=Chang%2C+Yunxiao&rft.au=Li%2C+Chunming&rft.date=2021-05-01&rft.issn=1522-726X&rft.eissn=1522-726X&rft.volume=97+Suppl+2&rft.spage=1040&rft_id=info:doi/10.1002%2Fccd.29592&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-1946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-1946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-1946&client=summon |