Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: A novel method based on bifurcation fractal law

Objectives We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis. Background Computation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibil...

Full description

Saved in:
Bibliographic Details
Published inCatheterization and cardiovascular interventions Vol. 97; no. S2; pp. 1040 - 1047
Main Authors Tu, Shengxian, Ding, Daixin, Chang, Yunxiao, Li, Chunming, Wijns, William, Xu, Bo
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1522-1946
1522-726X
1522-726X
DOI10.1002/ccd.29592

Cover

Abstract Objectives We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis. Background Computation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions. Methods An artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step‐down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law‐based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire‐derived FFR ≤0.80. Results The μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel‐level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra‐ and inter‐observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s. Conclusions Computation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory.
AbstractList We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis.OBJECTIVESWe aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis.Computation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions.BACKGROUNDComputation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions.An artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step-down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law-based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire-derived FFR ≤0.80.METHODSAn artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step-down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law-based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire-derived FFR ≤0.80.The μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel-level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra- and inter-observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s.RESULTSThe μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel-level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra- and inter-observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s.Computation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory.CONCLUSIONSComputation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory.
Objectives We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis. Background Computation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions. Methods An artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step‐down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law‐based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire‐derived FFR ≤0.80. Results The μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel‐level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra‐ and inter‐observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s. Conclusions Computation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory.
ObjectivesWe aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis.BackgroundComputation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions.MethodsAn artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step‐down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law‐based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire‐derived FFR ≤0.80.ResultsThe μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel‐level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra‐ and inter‐observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s.ConclusionsComputation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory.
We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate coronary stenosis. Computation of quantitative flow ratio (QFR) from a single angiographic view might increase the feasibility of routine use of computational FFR. In addition, current QFR solutions assume a linear tapering of the reference vessel size, which might decrease the diagnostic accuracy in the presence of the physiologically significant bifurcation lesions. An artificial intelligence algorithm was proposed for automatic delineation of lumen contours of major epicardial coronary arteries including their side branches. A step-down reference diameter function was reconstructed based on the Murray bifurcation fractal law and used for QFR computation. Validation of this Murray law-based QFR (μQFR) was performed on the FAVOR II China study population. The μQFR was computed separately in two angiographic projections, starting with the one with optimal angiographic image quality. Hemodynamically significant coronary stenosis was defined by pressure wire-derived FFR ≤0.80. The μQFR was successfully computed in all 330 vessels of 306 patients. There was excellent correlation (r = 0.90, p < .001) and agreement (mean difference = 0.00 ± 0.05, p = .378) between μQFR and FFR. The vessel-level diagnostic accuracy for μQFR to identify hemodynamically significant stenosis was 93.0% (95% CI: 90.3 to 95.8%), with sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of 87.5% (95% CI: 80.2 to 92.8%), 96.2% (95% CI: 92.6 to 98.3%), 92.9% (95% CI: 86.5 to 96.9%), 93.1% (95% CI: 88.9 to 96.1%), 23.0 (95% CI: 11.6 to 45.5), 0.13 (95% CI: 0.08 to 0.20), respectively. Use of suboptimal angiographic image view slightly decreased the diagnostic accuracy of μQFR (AUC = 0.97 versus 0.92, difference = 0.05, p < .001). Intra- and inter-observer variability for μQFR computation was 0.00 ± 0.03, and 0.00 ± 0.03, respectively. Average analysis time for μQFR was 67 ± 22 s. Computation of μQFR from a single angiographic view has high feasibility and excellent diagnostic accuracy in identifying hemodynamically significant coronary stenosis. The short analysis time and good reproducibility of μQFR bear potential of wider adoption of physiological assessment in the catheterization laboratory.
Author Tu, Shengxian
Xu, Bo
Ding, Daixin
Li, Chunming
Wijns, William
Chang, Yunxiao
Author_xml – sequence: 1
  givenname: Shengxian
  orcidid: 0000-0001-9681-1067
  surname: Tu
  fullname: Tu, Shengxian
  email: sxtu@sjtu.edu.cn
  organization: Shanghai Jiao Tong University
– sequence: 2
  givenname: Daixin
  surname: Ding
  fullname: Ding, Daixin
  organization: National University of Ireland Galway
– sequence: 3
  givenname: Yunxiao
  surname: Chang
  fullname: Chang, Yunxiao
  organization: Pulse Medical Imaging Technology Co., Ltd
– sequence: 4
  givenname: Chunming
  surname: Li
  fullname: Li, Chunming
  organization: Shanghai Jiao Tong University
– sequence: 5
  givenname: William
  surname: Wijns
  fullname: Wijns, William
  organization: National University of Ireland Galway
– sequence: 6
  givenname: Bo
  surname: Xu
  fullname: Xu, Bo
  organization: Chinese Academy of Medical Sciences and Peking Union Medical College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33660921$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhSNURH9gwQsgS2xgMa3tJJ6EXTXlT6rEBiR20c3NderKsae2M6N5Kx4RT2dgUQlWvrK_c651znlx4ryjongt-KXgXF4hDpeyrVv5rDgTtZSLpVQ_T46zaCt1WpzHeM85b5VsXxSnZakUb6U4K37dGBidj8kgA8Q5AO6Y1-xhBpdMgmQ2xLT1Wxby7Jn2gUGMFONELu1J9ME7CDsWE2UjE1k0ozPaIDjM2uAnBvnOjZYYuNH4McD6Lu_bGNp-YNfM-Q1ZNlG68wPrIdLAvGO90XPA_VKXTQATWGZh-7J4rsFGenU8L4ofnz5-X31Z3H77_HV1fbvASrRy0ehyqXkPgEri0HDV9ySXFcimRNIKGqjrstG1hHKoGqoaFPktZ6LEUvUay4vi3cF3HfzDTDF1k4lI1oIjP8dOVu0yx1mVPKNvn6D3fg4u_66TteRSqKYuM_XmSM39REO3DmbKsXV_usjA-wOAwccYSP9FBO_2PXe55-6x58xePWHxsSzvUgBj_6fYGku7f1t3q9XNQfEbQEC8QA
CitedBy_id crossref_primary_10_1093_eurheartj_ehad318
crossref_primary_10_1016_j_heliyon_2024_e39335
crossref_primary_10_4244_EIJ_D_22_00537
crossref_primary_10_1016_j_ahj_2025_02_012
crossref_primary_10_3389_fneur_2024_1466864
crossref_primary_10_4244_AIJ_E_23_00002
crossref_primary_10_1093_eurheartj_ehad434
crossref_primary_10_1155_2024_4618868
crossref_primary_10_3390_jcm14062086
crossref_primary_10_4244_AIJ_D_22_00022
crossref_primary_10_1016_j_jscai_2022_100411
crossref_primary_10_3390_jcm14061958
crossref_primary_10_1038_s41746_024_01134_4
crossref_primary_10_1161_CIRCIMAGING_123_016046
crossref_primary_10_4244_EIJ_D_23_00516
crossref_primary_10_1002_ehf2_14452
crossref_primary_10_1016_j_ijcard_2024_132199
crossref_primary_10_1016_j_jtcvs_2023_03_032
crossref_primary_10_3389_fcvm_2023_1134623
crossref_primary_10_17264_stmarieng_15_27
crossref_primary_10_1002_ccd_31376
crossref_primary_10_1016_j_ccl_2023_07_001
crossref_primary_10_3389_fcvm_2024_1489403
crossref_primary_10_1002_ccd_30681
crossref_primary_10_1016_j_jacc_2022_04_024
crossref_primary_10_1016_j_jacasi_2023_09_012
crossref_primary_10_4244_EIJ_D_24_00336
crossref_primary_10_1002_clc_24196
crossref_primary_10_1080_14779072_2022_2098117
crossref_primary_10_1016_j_jcct_2024_01_004
crossref_primary_10_1161_CIRCINTERVENTIONS_123_013185
crossref_primary_10_1016_j_ijcard_2022_05_036
crossref_primary_10_1016_j_jacc_2022_11_056
crossref_primary_10_1016_j_biopha_2021_112196
crossref_primary_10_1016_j_ijcard_2024_132761
crossref_primary_10_1161_JAHA_123_029330
crossref_primary_10_1007_s10554_024_03152_5
crossref_primary_10_1016_j_jacc_2022_09_007
crossref_primary_10_4244_AIJ_D_24_00051
crossref_primary_10_1136_jnis_2024_022007
crossref_primary_10_3389_fcvm_2023_1164290
crossref_primary_10_1016_j_pcad_2024_08_002
crossref_primary_10_1136_openhrt_2023_002328
crossref_primary_10_1002_ccd_30078
crossref_primary_10_1007_s00380_024_02387_5
crossref_primary_10_3389_fcvm_2023_1217069
crossref_primary_10_1161_CIRCINTERVENTIONS_123_013191
crossref_primary_10_3390_jcm14030869
crossref_primary_10_1002_advs_202415961
crossref_primary_10_3389_fnagi_2022_813648
crossref_primary_10_4244_EIJ_D_23_00611
crossref_primary_10_4244_EIJ_E_22_00018
crossref_primary_10_4244_AIJ_D_22_00045
crossref_primary_10_1161_CIRCOUTCOMES_121_008055
crossref_primary_10_1186_s12872_024_04093_6
crossref_primary_10_1007_s10554_023_02974_z
crossref_primary_10_1016_j_ijcard_2023_131685
crossref_primary_10_1161_CIRCINTERVENTIONS_124_014129
crossref_primary_10_1038_s41598_023_30991_4
crossref_primary_10_1016_j_jcin_2022_10_014
crossref_primary_10_1097_MCA_0000000000001299
crossref_primary_10_1111_jebm_12573
crossref_primary_10_1016_j_jscai_2023_101043
crossref_primary_10_1002_ccd_31314
crossref_primary_10_1002_ccd_30069
crossref_primary_10_1016_j_ijcard_2024_132949
crossref_primary_10_1016_j_jcct_2022_06_002
crossref_primary_10_1016_j_carrev_2024_09_015
crossref_primary_10_3389_fcvm_2023_1076049
crossref_primary_10_1016_j_amjcard_2024_11_021
crossref_primary_10_1016_j_jacasi_2023_07_003
crossref_primary_10_15212_CVIA_2023_0021
crossref_primary_10_1161_JAHA_123_031209
crossref_primary_10_1016_j_ijcha_2024_101409
crossref_primary_10_1016_j_wneu_2023_08_034
crossref_primary_10_1136_bmjopen_2023_074349
crossref_primary_10_1007_s00062_024_01395_2
crossref_primary_10_1016_j_jacc_2024_03_400
crossref_primary_10_3389_fcvm_2022_872498
crossref_primary_10_1177_00033197231218616
crossref_primary_10_1038_s41598_024_67979_7
crossref_primary_10_1016_j_jcin_2023_04_026
crossref_primary_10_1161_JAHA_124_035756
crossref_primary_10_3389_fcvm_2024_1468888
crossref_primary_10_1007_s12928_024_00988_5
crossref_primary_10_1161_JAHA_124_039346
crossref_primary_10_1007_s10554_024_03065_3
crossref_primary_10_1016_j_jcmg_2023_02_008
crossref_primary_10_1002_ccd_30361
crossref_primary_10_1016_j_iccl_2022_09_012
crossref_primary_10_1016_j_iccl_2022_02_002
crossref_primary_10_1016_j_ijcard_2023_131176
crossref_primary_10_1016_j_ahj_2021_05_004
crossref_primary_10_1016_j_jacasi_2024_10_019
crossref_primary_10_3390_jcm11175198
crossref_primary_10_1016_j_jacasi_2022_12_005
crossref_primary_10_1109_TBME_2024_3469289
crossref_primary_10_2147_IJGM_S444933
crossref_primary_10_4244_EIJ_D_21_00425
crossref_primary_10_4244_EIJV17I12A160
crossref_primary_10_1016_j_ijcha_2024_101349
crossref_primary_10_1038_s41598_025_85872_9
crossref_primary_10_1016_j_clinsp_2024_100429
crossref_primary_10_1097_MCA_0000000000001309
crossref_primary_10_1016_j_ijcard_2024_131805
crossref_primary_10_1080_14796678_2024_2416817
crossref_primary_10_1016_j_jscai_2022_100399
crossref_primary_10_1007_s00330_023_09682_1
crossref_primary_10_1016_j_ahj_2025_03_001
crossref_primary_10_1161_JAHA_122_027165
crossref_primary_10_1038_s41598_025_87828_5
crossref_primary_10_1016_j_jacbts_2022_06_021
crossref_primary_10_1016_S0140_6736_21_02248_0
crossref_primary_10_1136_bmjopen_2021_055481
crossref_primary_10_1186_s43044_024_00541_y
crossref_primary_10_31083_j_rcm2510367
crossref_primary_10_3390_jpm12111798
crossref_primary_10_1161_JAHA_122_025663
crossref_primary_10_31083_j_rcm2408245
crossref_primary_10_1016_j_jcct_2024_10_001
crossref_primary_10_1016_j_jcin_2022_07_015
crossref_primary_10_1016_j_jcin_2024_09_045
crossref_primary_10_1016_j_jacasi_2021_07_002
crossref_primary_10_1016_j_jjcc_2022_02_015
crossref_primary_10_1152_ajpheart_00142_2024
crossref_primary_10_1097_CD9_0000000000000104
crossref_primary_10_1007_s00330_023_09557_5
crossref_primary_10_1016_j_future_2023_03_007
crossref_primary_10_1016_j_jcin_2023_02_012
crossref_primary_10_1161_CIRCINTERVENTIONS_123_013844
crossref_primary_10_1016_j_jacc_2021_05_024
Cites_doi 10.1016/j.jcin.2016.07.013
10.1016/j.jcin.2014.12.232
10.1016/j.jcin.2018.04.037
10.1093/eurheartj/ehy445
10.15420/usc.2020.09
10.1007/978-94-011-3726-3_11
10.4244/EIJ-D-19-00466
10.1093/eurheartj/ehz425
10.1016/j.jacc.2017.07.770
10.1161/CIRCIMAGING.117.007107
10.1093/eurheartj/ehz918
10.4244/EIJ-D-19-01034
10.1007/s10554-018-1506-y
10.1161/CIRCINTERVENTIONS.116.005259
10.1016/j.jcin.2014.12.221
10.1161/JAHA.118.009603
10.1073/pnas.12.3.207
10.1016/0735-1097(95)80003-Y
10.1016/j.jacc.2005.04.054
10.1016/j.jcin.2019.06.003
10.1007/978-3-319-24574-4_28
10.1016/j.jacc.2017.10.035
10.1007/s10554-020-02068-0
10.4244/EIJ-D-16-00932
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC.
2021 Wiley Periodicals LLC
Copyright_xml – notice: 2021 Wiley Periodicals LLC.
– notice: 2021 Wiley Periodicals LLC
DBID AAYXX
CITATION
NPM
7T5
7U9
H94
K9.
7X8
DOI 10.1002/ccd.29592
DatabaseName CrossRef
PubMed
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Virology and AIDS Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

AIDS and Cancer Research Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-726X
EndPage 1047
ExternalDocumentID 33660921
10_1002_ccd_29592
CCD29592
Genre article
Journal Article
GrantInformation_xml – fundername: Pulse Medical Imaging Technology (Shanghai) Co., Ltd.
– fundername: Shanghai Science and Technology Commission
  funderid: 19DZ1930600
– fundername: National Key Research and Development Program of China
– fundername: Shanghai Science and Technology Commission
  grantid: 19DZ1930600
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OC
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
XPP
XV2
~IA
~WT
.GJ
.Y3
31~
53G
AAMMB
AANHP
AAQQT
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AZFZN
CITATION
EJD
FEDTE
HF~
HVGLF
LW6
ZGI
NPM
7T5
7U9
H94
K9.
7X8
ID FETCH-LOGICAL-c4192-8f37f0baac62cd806bbe274a283cef6a8a5538f52a3d48e48c1a280926176bfc3
IEDL.DBID DR2
ISSN 1522-1946
1522-726X
IngestDate Thu Oct 02 15:17:49 EDT 2025
Tue Oct 07 06:26:19 EDT 2025
Wed Feb 19 02:28:35 EST 2025
Thu Apr 24 23:01:46 EDT 2025
Wed Oct 01 02:57:53 EDT 2025
Wed Jan 22 16:30:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue S2
Keywords quantitative flow ratio
artificial intelligence
coronary angiography
fractional flow reserve
Language English
License 2021 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4192-8f37f0baac62cd806bbe274a283cef6a8a5538f52a3d48e48c1a280926176bfc3
Notes Funding information
National Key Research and Development Program of China; Pulse Medical Imaging Technology (Shanghai) Co., Ltd.; Shanghai Science and Technology Commission, Grant/Award Number: 19DZ1930600
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9681-1067
PMID 33660921
PQID 2520216853
PQPubID 986345
PageCount 8
ParticipantIDs proquest_miscellaneous_2497096430
proquest_journals_2520216853
pubmed_primary_33660921
crossref_primary_10_1002_ccd_29592
crossref_citationtrail_10_1002_ccd_29592
wiley_primary_10_1002_ccd_29592_CCD29592
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 1, 2021
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 1, 2021
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Washington
PublicationTitle Catheterization and cardiovascular interventions
PublicationTitleAlternate Catheter Cardiovasc Interv
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 7
2018; 39
2021; 37
2017; 70
2020; 41
1995; 26
2019; 35
2017; 10
2019; 12
2017; 13
2020; 16
1926; 12
2020; 14
2015
1991
2018; 11
2015; 8
2016; 9
2005; 46
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_22_1
e_1_2_9_10_1
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_24_1
e_1_2_9_12_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_25_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – volume: 39
  start-page: 3314
  year: 2018
  end-page: 3321
  article-title: Diagnostic performance of angiography‐derived fractional flow reserve: a systematic review and Bayesian meta‐analysis
  publication-title: Eur Heart J
– volume: 37
  start-page: 755
  year: 2021
  end-page: 766
  article-title: Clinical implication of QFR in patients with ST‐segment elevation myocardial infarction after drug‐eluting stent implantation
  publication-title: Int J Cardiovasc Imaging
– volume: 7
  year: 2018
  article-title: Diagnostic performance of in‐procedure angiography‐derived quantitative flow reserve compared to pressure‐derived fractional flow reserve: the FAVOR II Europe‐Japan study
  publication-title: J Am Heart Assoc
– volume: 12
  start-page: 207
  year: 1926
  end-page: 214
  article-title: The physiological principle of minimum work: I. the vascular system and the cost of blood volume
  publication-title: Proc Natl Acad Sci U S A
– volume: 11
  start-page: 1482
  year: 2018
  end-page: 1491
  article-title: Evolving routine standards in invasive hemodynamic assessment of coronary stenosis: the nationwide Italian SICI‐GISE cross‐sectional ERIS study
  publication-title: J Am Coll Cardiol Intv
– volume: 70
  start-page: 1379
  year: 2017
  end-page: 1402
  article-title: The evolving future of instantaneous wave‐free ratio and fractional flow reserve
  publication-title: J Am Coll Cardiol
– volume: 10
  year: 2017
  article-title: Validation study of image‐based fractional flow reserve during coronary angiography
  publication-title: Circ Cardiovasc Interv
– volume: 8
  start-page: 564
  year: 2015
  end-page: 574
  article-title: Fractional flow reserve and coronary bifurcation anatomy: a novel quantitative model to assess and report the stenosis severity of bifurcation lesions
  publication-title: J Am Coll Cardiol Intv
– volume: 16
  start-page: 568
  year: 2020
  end-page: 576
  article-title: Comparison of diagnostic performance of intracoronary optical coherence tomography‐based and angiography‐based fractional flow reserve for evaluation of coronary stenosis
  publication-title: EuroIntervention
– volume: 13
  start-page: 115
  year: 2017
  end-page: 123
  article-title: Quantitative angiography methods for bifurcation lesions: a consensus statement update from the European bifurcation Club
  publication-title: EuroIntervention
– start-page: 229
  year: 1991
  end-page: 244
– volume: 9
  start-page: 2024
  year: 2016
  end-page: 2035
  article-title: Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study
  publication-title: J Am Coll Cardiol Intv
– volume: 12
  start-page: 2079
  year: 2019
  end-page: 2088
  article-title: Prognostic value of QFR measured immediately after successful stent implantation
  publication-title: J Am Coll Cardiol Intv
– volume: 14
  year: 2020
  article-title: Overview of quantitative flow ratio and optical flow ratio in the assessment of intermediate coronary lesions
  publication-title: US Cardiol Rev
– volume: 35
  start-page: 587
  year: 2019
  end-page: 595
  article-title: Automatic coronary blood flow computation: validation in quantitative flow ratio from coronary angiography
  publication-title: Int J Cardiovasc Imaging
– volume: 41
  start-page: 407
  year: 2020
  end-page: 477
  article-title: 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes: the task force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC)
  publication-title: Eur Heart J
– volume: 41
  start-page: 3271
  year: 2020
  end-page: 3279
  article-title: Fractional flow reserve in clinical practice: from wire‐based invasive measurement to image‐based computation
  publication-title: Eur Heart J
– volume: 46
  start-page: 633
  year: 2005
  end-page: 637
  article-title: Physiologic assessment of jailed side branch lesions using fractional flow reserve
  publication-title: J Am Coll Cardiol
– volume: 16
  start-page: 591
  year: 2020
  end-page: 599
  article-title: Validation of a three‐dimensional quantitative coronary angiography‐based software to calculate fractional flow reserve: the FAST study
  publication-title: EuroIntervention
– volume: 26
  start-page: 328
  year: 1995
  end-page: 334
  article-title: Quantitative coronary angiography in predicting functional significance of stenoses in an unselected patient cohort
  publication-title: J Am Coll Cardiol
– volume: 70
  start-page: 3077
  year: 2017
  end-page: 3087
  article-title: Diagnostic accuracy of angiography‐based quantitative flow ratio measurements for online assessment of coronary stenosis
  publication-title: J Am Coll Cardiol
– year: 2015
– volume: 8
  start-page: 536
  year: 2015
  end-page: 546
  article-title: Randomized comparison of FFR‐guided and angiography‐guided provisional stenting of true coronary bifurcation lesions: the DKCRUSH‐VI trial (double kissing crush versus provisional stenting technique for treatment of coronary bifurcation lesions VI)
  publication-title: J Am Coll Cardiol Intv
– volume: 11
  year: 2018
  article-title: Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II study (wire‐free functional imaging II)
  publication-title: Circ Cardiovasc Imaging
– ident: e_1_2_9_5_1
  doi: 10.1016/j.jcin.2016.07.013
– ident: e_1_2_9_15_1
  doi: 10.1016/j.jcin.2014.12.232
– ident: e_1_2_9_4_1
  doi: 10.1016/j.jcin.2018.04.037
– ident: e_1_2_9_8_1
  doi: 10.1093/eurheartj/ehy445
– ident: e_1_2_9_9_1
  doi: 10.15420/usc.2020.09
– ident: e_1_2_9_17_1
  doi: 10.1007/978-94-011-3726-3_11
– ident: e_1_2_9_7_1
  doi: 10.4244/EIJ-D-19-00466
– ident: e_1_2_9_2_1
  doi: 10.1093/eurheartj/ehz425
– ident: e_1_2_9_3_1
  doi: 10.1016/j.jacc.2017.07.770
– ident: e_1_2_9_11_1
  doi: 10.1161/CIRCIMAGING.117.007107
– ident: e_1_2_9_22_1
  doi: 10.1093/eurheartj/ehz918
– ident: e_1_2_9_20_1
  doi: 10.4244/EIJ-D-19-01034
– ident: e_1_2_9_14_1
  doi: 10.1007/s10554-018-1506-y
– ident: e_1_2_9_6_1
  doi: 10.1161/CIRCINTERVENTIONS.116.005259
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jcin.2014.12.221
– ident: e_1_2_9_23_1
  doi: 10.1161/JAHA.118.009603
– ident: e_1_2_9_16_1
  doi: 10.1073/pnas.12.3.207
– ident: e_1_2_9_19_1
  doi: 10.1016/0735-1097(95)80003-Y
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jacc.2005.04.054
– ident: e_1_2_9_12_1
  doi: 10.1016/j.jcin.2019.06.003
– ident: e_1_2_9_18_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jacc.2017.10.035
– ident: e_1_2_9_13_1
  doi: 10.1007/s10554-020-02068-0
– ident: e_1_2_9_21_1
  doi: 10.4244/EIJ-D-16-00932
SSID ssj0009629
Score 2.6402209
Snippet Objectives We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with...
We aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with intermediate...
ObjectivesWe aimed to evaluate the diagnostic accuracy of computation of fractional flow reserve (FFR) from a single angiographic view in patients with...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1040
SubjectTerms Accuracy
Artificial intelligence
Catheterization
Computer applications
coronary angiography
Coronary artery
Fractals
fractional flow reserve
Population studies
quantitative flow ratio
Stenosis
Title Diagnostic accuracy of quantitative flow ratio for assessment of coronary stenosis significance from a single angiographic view: A novel method based on bifurcation fractal law
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fccd.29592
https://www.ncbi.nlm.nih.gov/pubmed/33660921
https://www.proquest.com/docview/2520216853
https://www.proquest.com/docview/2497096430
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-1946
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1522-726X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009629
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAXKO-FggbEgUu2iZM4CZyqLVWFBAdEpR6QorFjoxVRArubVvCr-InM2NlU5SEhbpE88UOex2d7_FmI50yajhi7qFE6jygEFBEqXUWyKatSNhYL67Mt3qmT0-zNWX62I15t78IEfohpw40tw_trNnDU64NL0lBjmrms8or9b5Iqv5x6f0kdVSn_QhmFJxnRQl1tWYVieTD9eTUW_QYwr-JVH3COb4qP266GPJPP82Gj5-b7LyyO_zmWPXFjBKJwGDTnltix3W1x7e141H5H_DgKSXhUDGjMsELzDXoHXwfs_MU0cpPg2v4CvA4BgV_AieaTJQ2TI1CfgBSJKlqugZNFODWJNQ34Ygsg8F5FawG7T8vAnk3t8XHFSziErj-3LYRHroHjbQN9B3rphlXYaaRK0NDyAVq8uCtOj19_WJxE4_MOkeGj56h0aeFijWiUNE0ZK60trZGRAI-xTmGJOXljl0tMm6y0WWkSKosr5pBX2pn0ntjt-s4-EKAyl-gkLxLTZBkqV0okaCUTTb7ekJrOxIvtRNdm5D7nJzjaOrA2y5pmoPYzMBPPJtEvgfDjT0L7W22pR5tf1zKXBJgU4Z-ZeDoVk7XyEQx2th9IJquKmCnQ4pm4H7RsaiVNlaLRJdRZryt_b75eLI78x8N_F30krnP3Qq7mvtjdrAb7mPDURj_xhvMTgX8eeg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgEX3o-FAgPiwCXbxEmcBHGptlQLtD2gVuoFRWPHRiuiBLYbKvhV_ERm4k2q8pAQt0ie-CHP47M9_izEcyZNRwxdUCmdBhQCsgCVLgJZ5UUuK4uZ7bMtDtX8OHl7kp5siFfDXRjPDzFuuLFl9P6aDZw3pLfPWUONqaaySAtywJcSResUhkTvz8mjCtW_UUYBSga0VFcDr1Aot8dfL0aj3yDmRcTah5y96-LD0FmfafJp2q301Hz_hcfxf0dzQ1xbY1HY8cpzU2zY5pa4fLA-bb8tfuz6PDwqBjSmW6L5Bq2DLx02_d008pTg6vYMejUCwr-AI9MnSxrmR6BOAekSVbQ4Bc4X4ewkVjbguy2AwNsVtQVsPi48gTa1xycWL2EHmvarrcG_cw0ccitoG9AL1y39ZiNVgoZWEFDj2R1xvPf6aDYP1i88BIZPn4PcxZkLNaJR0lR5qLS2tExGwjzGOoU5puSQXSoxrpLcJrmJqCwsmEZeaWfiu2KzaRt7X4BKXKSjNItMlSSoXC6R0JWMNLl7Q5o6ES-GmS7Nmv6cX-GoS0_cLEuagbKfgYl4Nop-9pwffxLaGtSlXJv9aSlTSZhJEQSaiKdjMRksn8JgY9uOZJIiC5kFLZyIe17NxlbiWCkaXUSd7ZXl782Xs9lu__Hg30WfiCvzo4P9cv_N4buH4ip31adubonN1bKzjwherfTj3op-AlowIps
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIlVceEOXFhgQBy7ZJk7iJIhLtcuqvCqEqNQLisaOjVZESbvdUMGv4icytpNU5SEhbpE88UOex2d7_Jmxp5Y0HTE0QSVkGlAIyAIUsgh4lRc5rzRm2mVbHIqDo-T1cXq8wV4Md2E8P8S44WYtw_lra-D6pDJ7F6yhSlVTXqQFOeArSVrkNqFv_uGCPKoQ7o0yClA8oKW6GHiFQr43_no5Gv0GMS8jVhdyFtfZp6GzPtPky7Rby6n6_guP4_-O5ga71mNR2PfKc5Nt6OYW23rXn7bfZj_mPg-PigGV6laovkFr4LTDxt1NI08Jpm7PwakREP4FHJk-raSy_AjUKSBdooqWZ2DzRWx2klU2sHdbAMFuV9QasPm89ATa1J49sXgO-9C0X3UN_p1rsCG3grYBuTTdym82UiWoaAUBNZ7fYUeLlx9nB0H_wkOg7OlzkJs4M6FEVIKrKg-FlJqWyUiYR2kjMMeUHLJJOcZVkuskVxGVhYWlkRfSqPgu22zaRm8zEImJZJRmkaqSBIXJORK64pEkd69IUyfs2TDTperpz-0rHHXpiZt5STNQuhmYsCej6Inn_PiT0O6gLmVv9mclTzlhJkEQaMIej8VksPYUBhvddiSTFFloWdDCCbvn1WxsJY6FoNFF1FmnLH9vvpzN5u7j_r-LPmJb7-eL8u2rwzc77Krtqc_c3GWb61WnHxC6WsuHzoh-AtQPIh8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+accuracy+of+quantitative+flow+ratio+for+assessment+of+coronary+stenosis+significance+from+a+single+angiographic+view%3A+A+novel+method+based+on+bifurcation+fractal+law&rft.jtitle=Catheterization+and+cardiovascular+interventions&rft.au=Tu%2C+Shengxian&rft.au=Ding%2C+Daixin&rft.au=Chang%2C+Yunxiao&rft.au=Li%2C+Chunming&rft.date=2021-05-01&rft.issn=1522-726X&rft.eissn=1522-726X&rft.volume=97+Suppl+2&rft.spage=1040&rft_id=info:doi/10.1002%2Fccd.29592&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-1946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-1946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-1946&client=summon