Synthetic generation of DSC‐MRI‐derived relative CBV maps from DCE MRI of brain tumors

Purpose Perfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium‐based contrast agent perfusion imaging techniques that provide c...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 85; no. 1; pp. 469 - 479
Main Authors Sanders, Jeremiah W., Chen, Henry Szu‐Meng, Johnson, Jason M., Schomer, Donald F., Jimenez, Jorge E., Ma, Jingfei, Liu, Ho‐Ling
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2021
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.28432

Cover

Abstract Purpose Perfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium‐based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium‐based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors. Methods One hundred nine brain‐tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor–to–white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared. Results Pearson correlation analysis showed that both the tumor rCBV and tumor–to–white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland‐Altman analysis showed a mean difference between the synthetic and real rCBV tumor–to–white matter ratios of 0.20 with a 95% confidence interval of ±0.47. Conclusion Realistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain‐tumor perfusion imaging of DSC and DCE parameters with a single gadolinium‐based contrast agent administration.
AbstractList Perfusion MRI with gadolinium-based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium-based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium-based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors.PURPOSEPerfusion MRI with gadolinium-based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium-based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium-based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors.One hundred nine brain-tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor-to-white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared.METHODSOne hundred nine brain-tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor-to-white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared.Pearson correlation analysis showed that both the tumor rCBV and tumor-to-white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland-Altman analysis showed a mean difference between the synthetic and real rCBV tumor-to-white matter ratios of 0.20 with a 95% confidence interval of ±0.47.RESULTSPearson correlation analysis showed that both the tumor rCBV and tumor-to-white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland-Altman analysis showed a mean difference between the synthetic and real rCBV tumor-to-white matter ratios of 0.20 with a 95% confidence interval of ±0.47.Realistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain-tumor perfusion imaging of DSC and DCE parameters with a single gadolinium-based contrast agent administration.CONCLUSIONRealistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain-tumor perfusion imaging of DSC and DCE parameters with a single gadolinium-based contrast agent administration.
Perfusion MRI with gadolinium-based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium-based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium-based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors. One hundred nine brain-tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor-to-white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared. Pearson correlation analysis showed that both the tumor rCBV and tumor-to-white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland-Altman analysis showed a mean difference between the synthetic and real rCBV tumor-to-white matter ratios of 0.20 with a 95% confidence interval of ±0.47. Realistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain-tumor perfusion imaging of DSC and DCE parameters with a single gadolinium-based contrast agent administration.
PurposePerfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium‐based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium‐based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors.MethodsOne hundred nine brain‐tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor–to–white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared.ResultsPearson correlation analysis showed that both the tumor rCBV and tumor–to–white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland‐Altman analysis showed a mean difference between the synthetic and real rCBV tumor–to–white matter ratios of 0.20 with a 95% confidence interval of ±0.47.ConclusionRealistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain‐tumor perfusion imaging of DSC and DCE parameters with a single gadolinium‐based contrast agent administration.
Purpose Perfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium‐based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium‐based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors. Methods One hundred nine brain‐tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor–to–white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared. Results Pearson correlation analysis showed that both the tumor rCBV and tumor–to–white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland‐Altman analysis showed a mean difference between the synthetic and real rCBV tumor–to–white matter ratios of 0.20 with a 95% confidence interval of ±0.47. Conclusion Realistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain‐tumor perfusion imaging of DSC and DCE parameters with a single gadolinium‐based contrast agent administration.
Author Ma, Jingfei
Chen, Henry Szu‐Meng
Schomer, Donald F.
Liu, Ho‐Ling
Jimenez, Jorge E.
Johnson, Jason M.
Sanders, Jeremiah W.
Author_xml – sequence: 1
  givenname: Jeremiah W.
  orcidid: 0000-0002-5342-4128
  surname: Sanders
  fullname: Sanders, Jeremiah W.
  organization: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences
– sequence: 2
  givenname: Henry Szu‐Meng
  orcidid: 0000-0003-3455-0222
  surname: Chen
  fullname: Chen, Henry Szu‐Meng
  organization: The University of Texas MD Anderson Cancer Center
– sequence: 3
  givenname: Jason M.
  surname: Johnson
  fullname: Johnson, Jason M.
  organization: The University of Texas MD Anderson Cancer Center
– sequence: 4
  givenname: Donald F.
  surname: Schomer
  fullname: Schomer, Donald F.
  organization: The University of Texas MD Anderson Cancer Center
– sequence: 5
  givenname: Jorge E.
  surname: Jimenez
  fullname: Jimenez, Jorge E.
  organization: The University of Texas MD Anderson Cancer Center
– sequence: 6
  givenname: Jingfei
  surname: Ma
  fullname: Ma, Jingfei
  organization: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences
– sequence: 7
  givenname: Ho‐Ling
  orcidid: 0000-0002-0284-5889
  surname: Liu
  fullname: Liu, Ho‐Ling
  email: hlaliu@mdanderson.org
  organization: The University of Texas MD Anderson Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32726488$$D View this record in MEDLINE/PubMed
BookMark eNp10b1OHDEQB3ALgeAgKXgBZClNUiz487wuk-UjSJwiQZKCxvLac7Bod32xd4muyyPwjDxJDHc0CBq78O8_8szsos0-9IDQPiWHlBB21MXukJWCsw00oZKxgkktNtGEKEEKTrXYQbsp3RFCtFZiG-1wpthUlOUEXV8t--EWhsbhG-gh2qEJPQ5zfHxVPf57mF2e59NDbO7B4whtfr8HXH37jTu7SHgeQ4ePqxOc4VOqjrbp8TB2IaYPaGtu2wQf1_ce-nV68rP6Xlz8ODuvvl4UTlDNCs61sl4zV4Og1Nc1Y2wqifRQKu2FVIx5XtZC-VI460s-dVxmroRVRJeO76HPq7qLGP6MkAbTNclB29oewpgME0wTKZScZvrpFb0LY-zz77KSlBKuCM3qYK3GugNvFrHpbFyal6llcLQCLoaUIsyNa4bnyQ25_9ZQYp72YvJezPNecuLLq8RL0bfsuvrfpoXl-9DMLmerxH_b-prc
CitedBy_id crossref_primary_10_1016_j_nic_2020_08_008
crossref_primary_10_1148_radiol_222471
crossref_primary_10_1155_2021_1194186
crossref_primary_10_13104_imri_2022_26_4_246
crossref_primary_10_1007_s11060_022_03974_0
crossref_primary_10_1088_1361_6560_ac46dd
crossref_primary_10_1053_j_ro_2023_02_003
crossref_primary_10_1186_s13244_022_01237_0
crossref_primary_10_4103_1673_5374_332131
crossref_primary_10_3390_fi14120351
crossref_primary_10_1016_j_jnrt_2024_100175
crossref_primary_10_2463_mrms_mp_2023_0125
crossref_primary_10_3389_fradi_2022_883293
Cites_doi 10.1186/s13014-019-1271-7
10.1080/02841850500539033
10.1002/jmri.1880070113
10.1148/radiology.191.1.8134596
10.1148/radiol.2492071659
10.1016/j.acra.2013.09.003
10.1200/JCO.2009.26.3541
10.3174/ajnr.A4405
10.1016/j.ejrad.2016.03.020
10.1007/s11060-017-2617-3
10.1148/radiol.2393042031
10.2214/AJR.17.18890
10.1016/j.compmedimag.2019.101684
10.2967/jnumed.117.199414
10.1002/jmri.25970
10.1109/CVPR.2016.265
10.1002/mrm.10080
10.1093/neuonc/nos112
10.1186/s13244-019-0771-1
10.3348/kjr.2001.2.1.1
10.1016/j.mri.2012.03.008
10.1007/978-3-319-46475-6_43
10.1371/journal.pone.0161807
10.1002/mp.13047
10.3174/ajnr.A4231
10.1002/jmri.26306
10.3174/ajnr.A4341
10.1088/1361-6560/aada6d
10.1109/TPAMI.2016.2572683
10.1007/s11547-018-0866-7
10.1007/s00234-015-1518-4
10.1093/neuonc/nov179
10.2214/ajr.171.6.9843274
10.1371/journal.pone.0141438
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.28432
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Biochemistry Abstracts 1

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 479
ExternalDocumentID 32726488
10_1002_mrm_28432
MRM28432
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Pauline Altman‐Goldstein Foundation
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c4192-3397ad92cbe411dbb2226505de879d45722d38b47d84cad836c3592c74a7098c3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Jul 10 19:26:11 EDT 2025
Fri Jul 25 09:26:04 EDT 2025
Mon Jul 21 05:56:28 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Wed Oct 01 05:05:33 EDT 2025
Wed Jan 22 16:33:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
perfusion MRI
brain tumors
dynamic contrast enhanced
dynamic susceptibility contrast
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4192-3397ad92cbe411dbb2226505de879d45722d38b47d84cad836c3592c74a7098c3
Notes Funding information
Fellowship from the Pauline Altman‐Goldstein Foundation (to J.W.S.)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3455-0222
0000-0002-5342-4128
0000-0002-0284-5889
PMID 32726488
PQID 2451103701
PQPubID 1016391
PageCount 11
ParticipantIDs proquest_miscellaneous_2429054756
proquest_journals_2451103701
pubmed_primary_32726488
crossref_citationtrail_10_1002_mrm_28432
crossref_primary_10_1002_mrm_28432
wiley_primary_10_1002_mrm_28432_MRM28432
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 57
2015; 36
1994; 279
2015; 18
1994; 191
2019; 10
2000; 21
2004; 25
2018; 123
2013; 20
2019; 14
2014; 27
2008; 249
2018; 63
2020; 79
2012; 14
2018; 45
2005; 26
2016; 39
2006; 239
2018; 48
1997; 7
2012; 30
2016; 11
2002; 47
1998; 171
2002; 29
2019; 40
2010; 28
2006; 27
2018; 211
2006; 47
2018; 136
2014; 15
2019
2019; 49
2016; 85
2016
2001; 2
2018; 59
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
Srivastava N (e_1_2_8_28_1) 2014; 15
e_1_2_8_7_1
e_1_2_8_9_1
Kremer S (e_1_2_8_3_1) 2002; 29
e_1_2_8_20_1
e_1_2_8_22_1
Harvey HB (e_1_2_8_33_1) 2019
e_1_2_8_45_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Mills SJ (e_1_2_8_43_1) 2006; 27
Schmainda KM (e_1_2_8_52_1) 2019; 40
Schmainda KM (e_1_2_8_5_1) 2004; 25
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Boxerman JL (e_1_2_8_26_1) 2006; 27
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
Law M (e_1_2_8_42_1) 2004; 25
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
Bulakbasi N (e_1_2_8_41_1) 2005; 26
Roberts HC (e_1_2_8_4_1) 2000; 21
e_1_2_8_12_1
Goodfellow IJ (e_1_2_8_16_1) 2014; 27
e_1_2_8_54_1
e_1_2_8_50_1
References_xml – volume: 27
  year: 2014
  article-title: Generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– volume: 279
  year: 1994
– volume: 30
  start-page: 944
  year: 2012
  end-page: 953
  article-title: Comparison of dual‐echo DSC‐MRI‐ and DCE‐MRI‐derived contrast agent kinetic parameters
  publication-title: Magn Reson Imaging
– volume: 249
  start-page: 601
  year: 2008
  end-page: 613
  article-title: Comparison of dynamic susceptibility‐weighted contrast‐enhanced MR methods: Recommendations for measuring relative cerebral blood volume in brain tumors
  publication-title: Radiology
– volume: 191
  start-page: 41
  year: 1994
  end-page: 51
  article-title: Cerebral blood volume maps of gliomas: Comparison with tumor grade and histologic findings
  publication-title: Radiology
– volume: 59
  start-page: 1111
  year: 2018
  end-page: 1117
  article-title: Generation of structural MR images from amyloid PET: Application to MR‐less quantification
  publication-title: J Nucl Med
– volume: 39
  start-page: 640
  year: 2016
  end-page: 651
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 14
  start-page: 65
  year: 2019
  article-title: DCE and DSC perfusion MRI diagnostic accuracy in the follow‐up of primary and metastatic intra‐axial brain tumors treated by radiosurgery with cyberknife
  publication-title: Radiat Oncol
– volume: 29
  start-page: 105
  year: 2002
  end-page: 113
  article-title: Cerebral blood volume mapping by MR imaging in the initial evaluation of brain tumors
  publication-title: J Neuroradiol
– volume: 136
  start-page: 13
  year: 2018
  end-page: 21
  article-title: Spatial discrimination of glioblastoma and treatment effect with histologically‐validated perfusion and diffusion magnetic resonance imaging metrics
  publication-title: J Neurooncol
– volume: 85
  start-page: 1147
  year: 2016
  end-page: 1156
  article-title: Dynamic contrast‐enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: Preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis
  publication-title: Eur J Radiol
– volume: 47
  start-page: 303
  year: 2006
  end-page: 310
  article-title: Glioma assessment using quantitative blood volume maps generated by T1‐weighted dynamic contrast‐enhanced magnetic resonance imaging: A receiver operating characteristic study
  publication-title: Acta Radiol
– volume: 27
  start-page: 853
  year: 2006
  end-page: 858
  article-title: Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma?
  publication-title: Am J Neuroradiol
– volume: 123
  start-page: 545
  year: 2018
  end-page: 552
  article-title: Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2
  publication-title: Radiol Med
– volume: 11
  year: 2016
  article-title: Differentiating radiation‐induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta‐analysis
  publication-title: PLoS One
– volume: 36
  start-page: E41
  year: 2015
  end-page: E51
  article-title: American society of functional neuroradiology MR perfusion standards and practice subcommittee of the ASFNR clinical practice committee. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain
  publication-title: AJNR Am J Neuroradiol
– volume: 28
  start-page: 1963
  year: 2010
  end-page: 1972
  article-title: Updated response assessment criteria for high‐grade gliomas: Response assessment in neuro‐oncology working group
  publication-title: J Clin Oncol
– volume: 36
  start-page: 2030
  year: 2015
  end-page: 2035
  article-title: Glioma angiogenesis and perfusion imaging: Understanding the relationship between tumor blood volume and leakiness with increasing glioma grade
  publication-title: AJNR Am J Neuroradiol
– volume: 171
  start-page: 1479
  year: 1998
  end-page: 1486
  article-title: Correlation of MR imaging‐determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas
  publication-title: AJR Am J Roentgenol
– volume: 57
  start-page: 671
  year: 2015
  end-page: 678
  article-title: Human cerebral blood volume measurements using dynamic contrast enhancement in comparison to dynamic susceptibility contrast MRI
  publication-title: Neuroradiology
– year: 2019
  article-title: Gadolinium deposition disease: A new risk management threat
  publication-title: J Am Coll Radiol
– volume: 26
  start-page: 2187
  year: 2005
  end-page: 2199
  article-title: Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors
  publication-title: AJNR Am J Neuroradiol
– volume: 211
  start-page: 168
  year: 2018
  end-page: 175
  article-title: Interval change in diffusion and perfusion MRI parameters for the assessment of pseudoprogression in cerebral metastases treated with stereotactic radiation
  publication-title: AJR Am J Roentgenol
– volume: 21
  start-page: 891
  year: 2000
  end-page: 899
  article-title: Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast‐enhanced MR imaging: Correlation with histologic grade
  publication-title: Am J Neuroradiol
– volume: 7
  start-page: 91
  year: 1997
  end-page: 101
  article-title: Modeling tracer kinetics in dynamic Gd‐DTPA MR imaging
  publication-title: J Magn Reson Imaging
– volume: 45
  start-page: 3627
  year: 2018
  end-page: 3636
  article-title: Generating synthetic CTs from magnetic resonance images using generative adversarial networks
  publication-title: Med Phys
– volume: 25
  start-page: 1524
  year: 2004
  end-page: 1532
  article-title: Characterization of a first‐pass gradient‐echo spin‐echo method to predict brain tumor grade and angiogenesis
  publication-title: AJNR Am J Neuroradiol
– start-page: 2414
  year: 2016
  end-page: 2423
– volume: 2
  start-page: 1
  year: 2001
  end-page: 7
  article-title: Perfusion MR imaging in gliomas: Comparison with histologic tumor grade
  publication-title: Korean J Radiol
– volume: 36
  start-page: 871
  year: 2015
  end-page: 876
  article-title: Pixel‐by‐pixel comparison of volume transfer constant and estimates of cerebral blood volume from dynamic contrast‐enhanced and dynamic susceptibility contrast‐enhanced MR imaging in high‐grade glioma
  publication-title: AJNR Am J Neuroradiol
– volume: 239
  start-page: 632
  year: 2006
  end-page: 649
  article-title: Diffusion‐weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response
  publication-title: Radiology
– start-page: 694
  year: 2016
  end-page: 711
– volume: 20
  start-page: 1557
  year: 2013
  end-page: 1565
  article-title: Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high‐grade gliomas from stable disease
  publication-title: Acad Radiol
– volume: 63
  start-page: 185001
  year: 2018
  article-title: Dose evaluation of fast synthetic‐CT generation using a generative adversarial network for general pelvis MR‐only radiotherapy
  publication-title: Phys Med Biol
– volume: 49
  start-page: 11
  year: 2019
  end-page: 22
  article-title: Perfusion MRI in treatment evaluation of glioblastomas: Clinical relevance of current and future techniques
  publication-title: J Magn Reson Imaging
– volume: 27
  start-page: 859
  year: 2006
  end-page: 867
  article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not
  publication-title: AJNR Am J Neuroradiol
– volume: 40
  start-page: 626
  year: 2019
  end-page: 633
  article-title: Moving toward a consensus DSC‐MRI protocol: Validation of a low‐flip angle single‐dose option as a reference standard for brain tumors
  publication-title: AJNR Am J Neuroradiol
– volume: 25
  start-page: 746
  year: 2004
  end-page: 755
  article-title: Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast‐enhanced perfusion MR imaging with glioma grade
  publication-title: Am J Neuroradiol
– volume: 18
  start-page: 467
  year: 2015
  end-page: 478
  article-title: Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma
  publication-title: Neuro‐Oncology
– volume: 47
  start-page: 601
  year: 2002
  end-page: 606
  article-title: Uncertainty in the analysis of tracer kinetics using dynamic contrast‐enhanced T1‐weighted MRI
  publication-title: Magn Reson Med
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learning Res
– volume: 48
  start-page: 330
  year: 2018
  end-page: 340
  article-title: Deep learning enables reduced gadolinium dose for contrast‐enhanced brain MRI
  publication-title: J Magn Reson Imaging
– volume: 10
  start-page: 84
  year: 2019
  article-title: Diagnostic value of alternative techniques to gadolinium‐based contrast agents in MR neuroimaging—A comprehensive overview
  publication-title: Insights Imaging
– volume: 79
  start-page: 101684
  year: 2020
  article-title: MedGAN: Medical image translation using GANs
  publication-title: Comput Med Imag Grap
– volume: 11
  year: 2016
  article-title: Comparison of cerebral blood volume and plasma volume in untreated intracranial tumors
  publication-title: PLoS One
– volume: 14
  start-page: 919
  year: 2012
  end-page: 930
  article-title: Reevaluating the imaging definition of tumor progression: Perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival
  publication-title: Neuro Oncol
– volume: 25
  start-page: 1524
  year: 2004
  ident: e_1_2_8_5_1
  article-title: Characterization of a first‐pass gradient‐echo spin‐echo method to predict brain tumor grade and angiogenesis
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_8_31_1
– volume: 40
  start-page: 626
  year: 2019
  ident: e_1_2_8_52_1
  article-title: Moving toward a consensus DSC‐MRI protocol: Validation of a low‐flip angle single‐dose option as a reference standard for brain tumors
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_8_10_1
  doi: 10.1186/s13014-019-1271-7
– volume: 27
  start-page: 859
  year: 2006
  ident: e_1_2_8_26_1
  article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not
  publication-title: AJNR Am J Neuroradiol
– ident: e_1_2_8_12_1
  doi: 10.1080/02841850500539033
– ident: e_1_2_8_24_1
  doi: 10.1002/jmri.1880070113
– ident: e_1_2_8_2_1
  doi: 10.1148/radiology.191.1.8134596
– ident: e_1_2_8_51_1
  doi: 10.1148/radiol.2492071659
– ident: e_1_2_8_14_1
  doi: 10.1016/j.acra.2013.09.003
– ident: e_1_2_8_36_1
  doi: 10.1148/radiology.191.1.8134596
– volume: 21
  start-page: 891
  year: 2000
  ident: e_1_2_8_4_1
  article-title: Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast‐enhanced MR imaging: Correlation with histologic grade
  publication-title: Am J Neuroradiol
– ident: e_1_2_8_23_1
  doi: 10.1200/JCO.2009.26.3541
– ident: e_1_2_8_8_1
  doi: 10.3174/ajnr.A4405
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_2_8_28_1
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learning Res
– ident: e_1_2_8_15_1
  doi: 10.1016/j.ejrad.2016.03.020
– volume: 27
  start-page: 853
  year: 2006
  ident: e_1_2_8_43_1
  article-title: Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma?
  publication-title: Am J Neuroradiol
– ident: e_1_2_8_7_1
  doi: 10.1007/s11060-017-2617-3
– ident: e_1_2_8_44_1
  doi: 10.1148/radiol.2393042031
– ident: e_1_2_8_9_1
  doi: 10.2214/AJR.17.18890
– ident: e_1_2_8_55_1
  doi: 10.1016/j.compmedimag.2019.101684
– ident: e_1_2_8_18_1
– ident: e_1_2_8_20_1
  doi: 10.2967/jnumed.117.199414
– ident: e_1_2_8_34_1
  doi: 10.1002/jmri.25970
– ident: e_1_2_8_29_1
– ident: e_1_2_8_53_1
  doi: 10.1109/CVPR.2016.265
– ident: e_1_2_8_13_1
  doi: 10.1002/mrm.10080
– ident: e_1_2_8_6_1
  doi: 10.1093/neuonc/nos112
– ident: e_1_2_8_32_1
  doi: 10.1186/s13244-019-0771-1
– ident: e_1_2_8_38_1
  doi: 10.3348/kjr.2001.2.1.1
– ident: e_1_2_8_35_1
  doi: 10.1016/j.mri.2012.03.008
– ident: e_1_2_8_54_1
  doi: 10.1007/978-3-319-46475-6_43
– ident: e_1_2_8_17_1
– ident: e_1_2_8_40_1
  doi: 10.1371/journal.pone.0161807
– ident: e_1_2_8_22_1
  doi: 10.1002/mp.13047
– ident: e_1_2_8_39_1
  doi: 10.3174/ajnr.A4231
– ident: e_1_2_8_25_1
– volume: 26
  start-page: 2187
  year: 2005
  ident: e_1_2_8_41_1
  article-title: Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors
  publication-title: AJNR Am J Neuroradiol
– year: 2019
  ident: e_1_2_8_33_1
  article-title: Gadolinium deposition disease: A new risk management threat
  publication-title: J Am Coll Radiol
– ident: e_1_2_8_46_1
  doi: 10.1002/jmri.26306
– ident: e_1_2_8_21_1
– ident: e_1_2_8_50_1
  doi: 10.3174/ajnr.A4341
– ident: e_1_2_8_19_1
  doi: 10.1088/1361-6560/aada6d
– ident: e_1_2_8_27_1
– ident: e_1_2_8_30_1
  doi: 10.1109/TPAMI.2016.2572683
– volume: 27
  year: 2014
  ident: e_1_2_8_16_1
  article-title: Generative adversarial nets
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_8_47_1
  doi: 10.1007/s11547-018-0866-7
– ident: e_1_2_8_11_1
  doi: 10.1007/s00234-015-1518-4
– ident: e_1_2_8_45_1
  doi: 10.1093/neuonc/nov179
– ident: e_1_2_8_37_1
  doi: 10.2214/ajr.171.6.9843274
– ident: e_1_2_8_48_1
  doi: 10.1371/journal.pone.0141438
– ident: e_1_2_8_49_1
– volume: 25
  start-page: 746
  year: 2004
  ident: e_1_2_8_42_1
  article-title: Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast‐enhanced perfusion MR imaging with glioma grade
  publication-title: Am J Neuroradiol
– volume: 29
  start-page: 105
  year: 2002
  ident: e_1_2_8_3_1
  article-title: Cerebral blood volume mapping by MR imaging in the initial evaluation of brain tumors
  publication-title: J Neuroradiol
SSID ssj0009974
Score 2.4271774
Snippet Purpose Perfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility...
Perfusion MRI with gadolinium-based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast...
PurposePerfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 469
SubjectTerms Blood plasma
Blood volume
Brain
Brain cancer
Brain mapping
Brain Neoplasms - diagnostic imaging
Brain tumors
Cerebral blood flow
Cerebral Blood Volume
Cerebrovascular Circulation
Computation
Confidence intervals
Contrast agents
Contrast Media
Correlation analysis
deep learning
dynamic contrast enhanced
dynamic susceptibility contrast
Gadolinium
Humans
Imaging techniques
Magnetic Resonance Imaging
Medical imaging
Neuroimaging
Perfusion
perfusion MRI
Retrospective Studies
Substantia alba
Substantia grisea
Synthesis
Tumors
Title Synthetic generation of DSC‐MRI‐derived relative CBV maps from DCE MRI of brain tumors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28432
https://www.ncbi.nlm.nih.gov/pubmed/32726488
https://www.proquest.com/docview/2451103701
https://www.proquest.com/docview/2429054756
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD6IYOlLa-3FbbWkxYe-zDqbZCYTfKqrooXxYa1FSmHIbX2wOys7u0L75E_wN_pLepK5iK2F0pdhYE5IJueSj5yTLwBbHrQyo-JIMi4i7ijGQalFZJ1WY6qdTQNZdX6cHp7yT2fJ2RLstGdhan6IbsPNe0aI197Bla6270hDJ7NJH2Mr8_F3wJKQoh3dUUdJWTMwC-7jjOQtq1BMt7uW99eiPwDmfbwaFpyDp_CtHWpdZ3LRX8x13_z8jcXxP_9lFZ40QJR8rC3nGSy5cg0e5U2qfQ1WQm2oqZ7D15MfJcJElCPngaTa65JMx2TvZHh7fZOPjvBp0ZKvnCX12ZgrR4a7X8hEXVbEH2Ahe8N9goK-lfaXUpD5YjKdVS_g9GD_8_Awaq5kiIxPF0cM4Yuykhrt-GBgtUZ4gRgvsS4T0vJEUGpZprmwGTfKZiw1LEFxwZWIZWbYS1gup6VbB5LgssicG4uxirlNM2kz6QQqzhmOGM_14EOrnMI0fOX-2ozvRc20TAuctSLMWg_ed6KXNUnHQ0IbrYaLxk-rgnp6tpiJeNCDd91n9DCfNlGlmy68DJUIbEWS9uBVbRldL4wKXyKY4WCDfv_efZGP8vDy-t9F38Bj6ktowo7PBizPZwu3iRhort8GY_8FAnIAew
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qilguLGUbKGAQBy6ZZmxnHEtcYKbVFJoepi2qkFAUL8OhnUw1SyU48RP4jfwS3nOWqiwS4hJFyrPs-C3-5Pf8GeAlgVZhizjSQqpIeo5xUBsVOW-KCTfe9QNZdbbfHx3Jd8fJ8Rq8bs7CVPwQ7YYbeUaI1-TgtCG9dcEaOp1PuxhcBQbgK5SfI7ccji_Io7SuOJiVpEijZcMrFPOttunl1eg3iHkZsYYlZ-cWfGoGW1WanHRXS9O1X3_hcfzfv7kNN2ssyt5UxnMH1ny5AdeyOtu-AVdDeahd3IWPB19KRIooxz4HnmpSJ5tN2PBg8OPb92y8i0-HxnzuHauOx5x7Nnj7gU2LswWjMyxsONhmKEitDN1LwZar6Wy-uAdHO9uHg1FU38oQWcoYRwIRTOE0t8bLXs8ZgwgDYV7ifKq0k4ni3InUSOVSaQuXir4VCYorWahYp1bch_VyVvqHwBJcGYX3EzUpYun6qXap9go1561EmOc78KrRTm5rynK6OeM0r8iWeY6zlodZ68CLVvSs4un4k9Bmo-K8dtVFzomhLRYq7nXgefsZnYwyJ0XpZyuS4RqxrUr6HXhQmUbbi-CKqgRTHGxQ8N-7z7NxFl4e_bvoM7g-Osz28r3d_feP4QanipqwAbQJ68v5yj9BSLQ0T4Pl_wQIPwSX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qiqi4sJQCAwUM4tBLZjK2E8fiVGY6aoFUaEpRVSFF8RIOMJnRLJXgxE_ob-wv6bOzVGWREJcoUp5lx2_xZ_v5M8ArB1qZzsNAMi4CbinGQalEYKzKC6qsiT1ZdXoY7x_ztyfRyRq8bs7CVPwQ7YKb8wwfr52Dz0zRuyINncwnXYytDOPvDR7j7MohovEVd5SUFQWz4C7QSN7QCoW01xa9Phj9hjCvA1Y_4ozuwOemrVWiydfuaqm6-scvNI7_-TN34XaNRMluZTr3YM2Wm7CR1nvtm3DTJ4fqxX04PfpeIk5EOfLFs1Q7ZZJpQYZHg4uf5-n4AJ8GTfnMGlIdjjmzZPDmE5nkswVxJ1jIcLBHUNCVUu5WCrJcTabzxRYcj_Y-DvaD-k6GQLv94oAhfsmNpFpZ3u8bpRBfIMiLjE2ENDwSlBqWKC5MwnVuEhZrFqG44LkIZaLZA1gvp6V9BCTCcZFZW4giD7mJE2kSaQUqzmqOIM92YKdRTqZrwnJ3b8a3rKJaphn2WuZ7rQMvW9FZxdLxJ6HtRsNZ7aiLjDp-tpCJsN-BF-1ndDG3b5KXdrpyMlQishVR3IGHlWW0tTAqXI5ggo31-v179Vk6Tv3L438XfQ4bH4aj7P3B4bsncIu6dBq_-rMN68v5yj5FPLRUz7zdXwL3KANG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+generation+of+DSC%E2%80%90MRI%E2%80%90derived+relative+CBV+maps+from+DCE+MRI+of+brain+tumors&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Sanders%2C+Jeremiah+W&rft.au=Henry+Szu%E2%80%90Meng+Chen&rft.au=Johnson%2C+Jason+M&rft.au=Schomer%2C+Donald+F&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=1&rft.spage=469&rft.epage=479&rft_id=info:doi/10.1002%2Fmrm.28432&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon