Synthetic generation of DSC‐MRI‐derived relative CBV maps from DCE MRI of brain tumors
Purpose Perfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium‐based contrast agent perfusion imaging techniques that provide c...
Saved in:
Published in | Magnetic resonance in medicine Vol. 85; no. 1; pp. 469 - 479 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.28432 |
Cover
Abstract | Purpose
Perfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium‐based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium‐based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors.
Methods
One hundred nine brain‐tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor–to–white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared.
Results
Pearson correlation analysis showed that both the tumor rCBV and tumor–to–white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland‐Altman analysis showed a mean difference between the synthetic and real rCBV tumor–to–white matter ratios of 0.20 with a 95% confidence interval of ±0.47.
Conclusion
Realistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain‐tumor perfusion imaging of DSC and DCE parameters with a single gadolinium‐based contrast agent administration. |
---|---|
AbstractList | Perfusion MRI with gadolinium-based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium-based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium-based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors.PURPOSEPerfusion MRI with gadolinium-based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium-based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium-based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors.One hundred nine brain-tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor-to-white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared.METHODSOne hundred nine brain-tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor-to-white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared.Pearson correlation analysis showed that both the tumor rCBV and tumor-to-white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland-Altman analysis showed a mean difference between the synthetic and real rCBV tumor-to-white matter ratios of 0.20 with a 95% confidence interval of ±0.47.RESULTSPearson correlation analysis showed that both the tumor rCBV and tumor-to-white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland-Altman analysis showed a mean difference between the synthetic and real rCBV tumor-to-white matter ratios of 0.20 with a 95% confidence interval of ±0.47.Realistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain-tumor perfusion imaging of DSC and DCE parameters with a single gadolinium-based contrast agent administration.CONCLUSIONRealistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain-tumor perfusion imaging of DSC and DCE parameters with a single gadolinium-based contrast agent administration. Perfusion MRI with gadolinium-based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium-based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium-based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors. One hundred nine brain-tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor-to-white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared. Pearson correlation analysis showed that both the tumor rCBV and tumor-to-white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland-Altman analysis showed a mean difference between the synthetic and real rCBV tumor-to-white matter ratios of 0.20 with a 95% confidence interval of ±0.47. Realistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain-tumor perfusion imaging of DSC and DCE parameters with a single gadolinium-based contrast agent administration. PurposePerfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium‐based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium‐based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors.MethodsOne hundred nine brain‐tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor–to–white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared.ResultsPearson correlation analysis showed that both the tumor rCBV and tumor–to–white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland‐Altman analysis showed a mean difference between the synthetic and real rCBV tumor–to–white matter ratios of 0.20 with a 95% confidence interval of ±0.47.ConclusionRealistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain‐tumor perfusion imaging of DSC and DCE parameters with a single gadolinium‐based contrast agent administration. Purpose Perfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are two gadolinium‐based contrast agent perfusion imaging techniques that provide complementary information about the tumor vasculature. However, each requires a separate administration of a gadolinium‐based contrast agent. The purpose of this retrospective study was to determine the feasibility of synthesizing relative cerebral blood volume (rCBV) maps, as computed from DSC MRI, from DCE MRI of brain tumors. Methods One hundred nine brain‐tumor patients underwent both DCE and DSC MRI. Relative CBV maps were computed from the DSC MRI, and blood plasma volume fraction maps were computed from the DCE MRIs. Conditional generative adversarial networks were developed to synthesize rCBV maps from the DCE MRIs. Tumor–to–white matter ratios were calculated from real rCBV, synthetic rCBV, and plasma volume fraction maps and compared using correlation analysis. Real and synthetic rCBV in white and gray matter regions were also compared. Results Pearson correlation analysis showed that both the tumor rCBV and tumor–to–white matter ratios in the synthetic and real rCBV maps were strongly correlated (ρ = 0.87, P < .05 and ρ = 0.86, P < .05, respectively). Tumor plasma volume fraction and real rCBV were not strongly correlated (ρ = 0.47). Bland‐Altman analysis showed a mean difference between the synthetic and real rCBV tumor–to–white matter ratios of 0.20 with a 95% confidence interval of ±0.47. Conclusion Realistic rCBV maps can be synthesized from DCE MRI and contain quantitative information, enabling robust brain‐tumor perfusion imaging of DSC and DCE parameters with a single gadolinium‐based contrast agent administration. |
Author | Ma, Jingfei Chen, Henry Szu‐Meng Schomer, Donald F. Liu, Ho‐Ling Jimenez, Jorge E. Johnson, Jason M. Sanders, Jeremiah W. |
Author_xml | – sequence: 1 givenname: Jeremiah W. orcidid: 0000-0002-5342-4128 surname: Sanders fullname: Sanders, Jeremiah W. organization: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences – sequence: 2 givenname: Henry Szu‐Meng orcidid: 0000-0003-3455-0222 surname: Chen fullname: Chen, Henry Szu‐Meng organization: The University of Texas MD Anderson Cancer Center – sequence: 3 givenname: Jason M. surname: Johnson fullname: Johnson, Jason M. organization: The University of Texas MD Anderson Cancer Center – sequence: 4 givenname: Donald F. surname: Schomer fullname: Schomer, Donald F. organization: The University of Texas MD Anderson Cancer Center – sequence: 5 givenname: Jorge E. surname: Jimenez fullname: Jimenez, Jorge E. organization: The University of Texas MD Anderson Cancer Center – sequence: 6 givenname: Jingfei surname: Ma fullname: Ma, Jingfei organization: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences – sequence: 7 givenname: Ho‐Ling orcidid: 0000-0002-0284-5889 surname: Liu fullname: Liu, Ho‐Ling email: hlaliu@mdanderson.org organization: The University of Texas MD Anderson Cancer Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32726488$$D View this record in MEDLINE/PubMed |
BookMark | eNp10b1OHDEQB3ALgeAgKXgBZClNUiz487wuk-UjSJwiQZKCxvLac7Bod32xd4muyyPwjDxJDHc0CBq78O8_8szsos0-9IDQPiWHlBB21MXukJWCsw00oZKxgkktNtGEKEEKTrXYQbsp3RFCtFZiG-1wpthUlOUEXV8t--EWhsbhG-gh2qEJPQ5zfHxVPf57mF2e59NDbO7B4whtfr8HXH37jTu7SHgeQ4ePqxOc4VOqjrbp8TB2IaYPaGtu2wQf1_ce-nV68rP6Xlz8ODuvvl4UTlDNCs61sl4zV4Og1Nc1Y2wqifRQKu2FVIx5XtZC-VI460s-dVxmroRVRJeO76HPq7qLGP6MkAbTNclB29oewpgME0wTKZScZvrpFb0LY-zz77KSlBKuCM3qYK3GugNvFrHpbFyal6llcLQCLoaUIsyNa4bnyQ25_9ZQYp72YvJezPNecuLLq8RL0bfsuvrfpoXl-9DMLmerxH_b-prc |
CitedBy_id | crossref_primary_10_1016_j_nic_2020_08_008 crossref_primary_10_1148_radiol_222471 crossref_primary_10_1155_2021_1194186 crossref_primary_10_13104_imri_2022_26_4_246 crossref_primary_10_1007_s11060_022_03974_0 crossref_primary_10_1088_1361_6560_ac46dd crossref_primary_10_1053_j_ro_2023_02_003 crossref_primary_10_1186_s13244_022_01237_0 crossref_primary_10_4103_1673_5374_332131 crossref_primary_10_3390_fi14120351 crossref_primary_10_1016_j_jnrt_2024_100175 crossref_primary_10_2463_mrms_mp_2023_0125 crossref_primary_10_3389_fradi_2022_883293 |
Cites_doi | 10.1186/s13014-019-1271-7 10.1080/02841850500539033 10.1002/jmri.1880070113 10.1148/radiology.191.1.8134596 10.1148/radiol.2492071659 10.1016/j.acra.2013.09.003 10.1200/JCO.2009.26.3541 10.3174/ajnr.A4405 10.1016/j.ejrad.2016.03.020 10.1007/s11060-017-2617-3 10.1148/radiol.2393042031 10.2214/AJR.17.18890 10.1016/j.compmedimag.2019.101684 10.2967/jnumed.117.199414 10.1002/jmri.25970 10.1109/CVPR.2016.265 10.1002/mrm.10080 10.1093/neuonc/nos112 10.1186/s13244-019-0771-1 10.3348/kjr.2001.2.1.1 10.1016/j.mri.2012.03.008 10.1007/978-3-319-46475-6_43 10.1371/journal.pone.0161807 10.1002/mp.13047 10.3174/ajnr.A4231 10.1002/jmri.26306 10.3174/ajnr.A4341 10.1088/1361-6560/aada6d 10.1109/TPAMI.2016.2572683 10.1007/s11547-018-0866-7 10.1007/s00234-015-1518-4 10.1093/neuonc/nov179 10.2214/ajr.171.6.9843274 10.1371/journal.pone.0141438 |
ContentType | Journal Article |
Copyright | 2020 International Society for Magnetic Resonance in Medicine 2020 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2020 International Society for Magnetic Resonance in Medicine – notice: 2020 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.28432 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biochemistry Abstracts 1 |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 479 |
ExternalDocumentID | 32726488 10_1002_mrm_28432 MRM28432 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Pauline Altman‐Goldstein Foundation |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c4192-3397ad92cbe411dbb2226505de879d45722d38b47d84cad836c3592c74a7098c3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Jul 10 19:26:11 EDT 2025 Fri Jul 25 09:26:04 EDT 2025 Mon Jul 21 05:56:28 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Wed Oct 01 05:05:33 EDT 2025 Wed Jan 22 16:33:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | deep learning perfusion MRI brain tumors dynamic contrast enhanced dynamic susceptibility contrast |
Language | English |
License | 2020 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4192-3397ad92cbe411dbb2226505de879d45722d38b47d84cad836c3592c74a7098c3 |
Notes | Funding information Fellowship from the Pauline Altman‐Goldstein Foundation (to J.W.S.) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3455-0222 0000-0002-5342-4128 0000-0002-0284-5889 |
PMID | 32726488 |
PQID | 2451103701 |
PQPubID | 1016391 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2429054756 proquest_journals_2451103701 pubmed_primary_32726488 crossref_citationtrail_10_1002_mrm_28432 crossref_primary_10_1002_mrm_28432 wiley_primary_10_1002_mrm_28432_MRM28432 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 57 2015; 36 1994; 279 2015; 18 1994; 191 2019; 10 2000; 21 2004; 25 2018; 123 2013; 20 2019; 14 2014; 27 2008; 249 2018; 63 2020; 79 2012; 14 2018; 45 2005; 26 2016; 39 2006; 239 2018; 48 1997; 7 2012; 30 2016; 11 2002; 47 1998; 171 2002; 29 2019; 40 2010; 28 2006; 27 2018; 211 2006; 47 2018; 136 2014; 15 2019 2019; 49 2016; 85 2016 2001; 2 2018; 59 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 Srivastava N (e_1_2_8_28_1) 2014; 15 e_1_2_8_7_1 e_1_2_8_9_1 Kremer S (e_1_2_8_3_1) 2002; 29 e_1_2_8_20_1 e_1_2_8_22_1 Harvey HB (e_1_2_8_33_1) 2019 e_1_2_8_45_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 Mills SJ (e_1_2_8_43_1) 2006; 27 Schmainda KM (e_1_2_8_52_1) 2019; 40 Schmainda KM (e_1_2_8_5_1) 2004; 25 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 Boxerman JL (e_1_2_8_26_1) 2006; 27 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 Law M (e_1_2_8_42_1) 2004; 25 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 Bulakbasi N (e_1_2_8_41_1) 2005; 26 Roberts HC (e_1_2_8_4_1) 2000; 21 e_1_2_8_12_1 Goodfellow IJ (e_1_2_8_16_1) 2014; 27 e_1_2_8_54_1 e_1_2_8_50_1 |
References_xml | – volume: 27 year: 2014 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Syst – volume: 279 year: 1994 – volume: 30 start-page: 944 year: 2012 end-page: 953 article-title: Comparison of dual‐echo DSC‐MRI‐ and DCE‐MRI‐derived contrast agent kinetic parameters publication-title: Magn Reson Imaging – volume: 249 start-page: 601 year: 2008 end-page: 613 article-title: Comparison of dynamic susceptibility‐weighted contrast‐enhanced MR methods: Recommendations for measuring relative cerebral blood volume in brain tumors publication-title: Radiology – volume: 191 start-page: 41 year: 1994 end-page: 51 article-title: Cerebral blood volume maps of gliomas: Comparison with tumor grade and histologic findings publication-title: Radiology – volume: 59 start-page: 1111 year: 2018 end-page: 1117 article-title: Generation of structural MR images from amyloid PET: Application to MR‐less quantification publication-title: J Nucl Med – volume: 39 start-page: 640 year: 2016 end-page: 651 article-title: Fully convolutional networks for semantic segmentation publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 14 start-page: 65 year: 2019 article-title: DCE and DSC perfusion MRI diagnostic accuracy in the follow‐up of primary and metastatic intra‐axial brain tumors treated by radiosurgery with cyberknife publication-title: Radiat Oncol – volume: 29 start-page: 105 year: 2002 end-page: 113 article-title: Cerebral blood volume mapping by MR imaging in the initial evaluation of brain tumors publication-title: J Neuroradiol – volume: 136 start-page: 13 year: 2018 end-page: 21 article-title: Spatial discrimination of glioblastoma and treatment effect with histologically‐validated perfusion and diffusion magnetic resonance imaging metrics publication-title: J Neurooncol – volume: 85 start-page: 1147 year: 2016 end-page: 1156 article-title: Dynamic contrast‐enhanced and dynamic susceptibility contrast perfusion MR imaging for glioma grading: Preliminary comparison of vessel compartment and permeability parameters using hotspot and histogram analysis publication-title: Eur J Radiol – volume: 47 start-page: 303 year: 2006 end-page: 310 article-title: Glioma assessment using quantitative blood volume maps generated by T1‐weighted dynamic contrast‐enhanced magnetic resonance imaging: A receiver operating characteristic study publication-title: Acta Radiol – volume: 27 start-page: 853 year: 2006 end-page: 858 article-title: Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma? publication-title: Am J Neuroradiol – volume: 123 start-page: 545 year: 2018 end-page: 552 article-title: Dynamic susceptibility contrast (DSC) perfusion MRI in differential diagnosis between radionecrosis and neoangiogenesis in cerebral metastases using rCBV, rCBF and K2 publication-title: Radiol Med – volume: 11 year: 2016 article-title: Differentiating radiation‐induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta‐analysis publication-title: PLoS One – volume: 36 start-page: E41 year: 2015 end-page: E51 article-title: American society of functional neuroradiology MR perfusion standards and practice subcommittee of the ASFNR clinical practice committee. ASFNR recommendations for clinical performance of MR dynamic susceptibility contrast perfusion imaging of the brain publication-title: AJNR Am J Neuroradiol – volume: 28 start-page: 1963 year: 2010 end-page: 1972 article-title: Updated response assessment criteria for high‐grade gliomas: Response assessment in neuro‐oncology working group publication-title: J Clin Oncol – volume: 36 start-page: 2030 year: 2015 end-page: 2035 article-title: Glioma angiogenesis and perfusion imaging: Understanding the relationship between tumor blood volume and leakiness with increasing glioma grade publication-title: AJNR Am J Neuroradiol – volume: 171 start-page: 1479 year: 1998 end-page: 1486 article-title: Correlation of MR imaging‐determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas publication-title: AJR Am J Roentgenol – volume: 57 start-page: 671 year: 2015 end-page: 678 article-title: Human cerebral blood volume measurements using dynamic contrast enhancement in comparison to dynamic susceptibility contrast MRI publication-title: Neuroradiology – year: 2019 article-title: Gadolinium deposition disease: A new risk management threat publication-title: J Am Coll Radiol – volume: 26 start-page: 2187 year: 2005 end-page: 2199 article-title: Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors publication-title: AJNR Am J Neuroradiol – volume: 211 start-page: 168 year: 2018 end-page: 175 article-title: Interval change in diffusion and perfusion MRI parameters for the assessment of pseudoprogression in cerebral metastases treated with stereotactic radiation publication-title: AJR Am J Roentgenol – volume: 21 start-page: 891 year: 2000 end-page: 899 article-title: Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast‐enhanced MR imaging: Correlation with histologic grade publication-title: Am J Neuroradiol – volume: 7 start-page: 91 year: 1997 end-page: 101 article-title: Modeling tracer kinetics in dynamic Gd‐DTPA MR imaging publication-title: J Magn Reson Imaging – volume: 45 start-page: 3627 year: 2018 end-page: 3636 article-title: Generating synthetic CTs from magnetic resonance images using generative adversarial networks publication-title: Med Phys – volume: 25 start-page: 1524 year: 2004 end-page: 1532 article-title: Characterization of a first‐pass gradient‐echo spin‐echo method to predict brain tumor grade and angiogenesis publication-title: AJNR Am J Neuroradiol – start-page: 2414 year: 2016 end-page: 2423 – volume: 2 start-page: 1 year: 2001 end-page: 7 article-title: Perfusion MR imaging in gliomas: Comparison with histologic tumor grade publication-title: Korean J Radiol – volume: 36 start-page: 871 year: 2015 end-page: 876 article-title: Pixel‐by‐pixel comparison of volume transfer constant and estimates of cerebral blood volume from dynamic contrast‐enhanced and dynamic susceptibility contrast‐enhanced MR imaging in high‐grade glioma publication-title: AJNR Am J Neuroradiol – volume: 239 start-page: 632 year: 2006 end-page: 649 article-title: Diffusion‐weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response publication-title: Radiology – start-page: 694 year: 2016 end-page: 711 – volume: 20 start-page: 1557 year: 2013 end-page: 1565 article-title: Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high‐grade gliomas from stable disease publication-title: Acad Radiol – volume: 63 start-page: 185001 year: 2018 article-title: Dose evaluation of fast synthetic‐CT generation using a generative adversarial network for general pelvis MR‐only radiotherapy publication-title: Phys Med Biol – volume: 49 start-page: 11 year: 2019 end-page: 22 article-title: Perfusion MRI in treatment evaluation of glioblastomas: Clinical relevance of current and future techniques publication-title: J Magn Reson Imaging – volume: 27 start-page: 859 year: 2006 end-page: 867 article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not publication-title: AJNR Am J Neuroradiol – volume: 40 start-page: 626 year: 2019 end-page: 633 article-title: Moving toward a consensus DSC‐MRI protocol: Validation of a low‐flip angle single‐dose option as a reference standard for brain tumors publication-title: AJNR Am J Neuroradiol – volume: 25 start-page: 746 year: 2004 end-page: 755 article-title: Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast‐enhanced perfusion MR imaging with glioma grade publication-title: Am J Neuroradiol – volume: 18 start-page: 467 year: 2015 end-page: 478 article-title: Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma publication-title: Neuro‐Oncology – volume: 47 start-page: 601 year: 2002 end-page: 606 article-title: Uncertainty in the analysis of tracer kinetics using dynamic contrast‐enhanced T1‐weighted MRI publication-title: Magn Reson Med – volume: 15 start-page: 1929 year: 2014 end-page: 1958 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learning Res – volume: 48 start-page: 330 year: 2018 end-page: 340 article-title: Deep learning enables reduced gadolinium dose for contrast‐enhanced brain MRI publication-title: J Magn Reson Imaging – volume: 10 start-page: 84 year: 2019 article-title: Diagnostic value of alternative techniques to gadolinium‐based contrast agents in MR neuroimaging—A comprehensive overview publication-title: Insights Imaging – volume: 79 start-page: 101684 year: 2020 article-title: MedGAN: Medical image translation using GANs publication-title: Comput Med Imag Grap – volume: 11 year: 2016 article-title: Comparison of cerebral blood volume and plasma volume in untreated intracranial tumors publication-title: PLoS One – volume: 14 start-page: 919 year: 2012 end-page: 930 article-title: Reevaluating the imaging definition of tumor progression: Perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival publication-title: Neuro Oncol – volume: 25 start-page: 1524 year: 2004 ident: e_1_2_8_5_1 article-title: Characterization of a first‐pass gradient‐echo spin‐echo method to predict brain tumor grade and angiogenesis publication-title: AJNR Am J Neuroradiol – ident: e_1_2_8_31_1 – volume: 40 start-page: 626 year: 2019 ident: e_1_2_8_52_1 article-title: Moving toward a consensus DSC‐MRI protocol: Validation of a low‐flip angle single‐dose option as a reference standard for brain tumors publication-title: AJNR Am J Neuroradiol – ident: e_1_2_8_10_1 doi: 10.1186/s13014-019-1271-7 – volume: 27 start-page: 859 year: 2006 ident: e_1_2_8_26_1 article-title: Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not publication-title: AJNR Am J Neuroradiol – ident: e_1_2_8_12_1 doi: 10.1080/02841850500539033 – ident: e_1_2_8_24_1 doi: 10.1002/jmri.1880070113 – ident: e_1_2_8_2_1 doi: 10.1148/radiology.191.1.8134596 – ident: e_1_2_8_51_1 doi: 10.1148/radiol.2492071659 – ident: e_1_2_8_14_1 doi: 10.1016/j.acra.2013.09.003 – ident: e_1_2_8_36_1 doi: 10.1148/radiology.191.1.8134596 – volume: 21 start-page: 891 year: 2000 ident: e_1_2_8_4_1 article-title: Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast‐enhanced MR imaging: Correlation with histologic grade publication-title: Am J Neuroradiol – ident: e_1_2_8_23_1 doi: 10.1200/JCO.2009.26.3541 – ident: e_1_2_8_8_1 doi: 10.3174/ajnr.A4405 – volume: 15 start-page: 1929 year: 2014 ident: e_1_2_8_28_1 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learning Res – ident: e_1_2_8_15_1 doi: 10.1016/j.ejrad.2016.03.020 – volume: 27 start-page: 853 year: 2006 ident: e_1_2_8_43_1 article-title: Do cerebral blood volume and contrast transfer coefficient predict prognosis in human glioma? publication-title: Am J Neuroradiol – ident: e_1_2_8_7_1 doi: 10.1007/s11060-017-2617-3 – ident: e_1_2_8_44_1 doi: 10.1148/radiol.2393042031 – ident: e_1_2_8_9_1 doi: 10.2214/AJR.17.18890 – ident: e_1_2_8_55_1 doi: 10.1016/j.compmedimag.2019.101684 – ident: e_1_2_8_18_1 – ident: e_1_2_8_20_1 doi: 10.2967/jnumed.117.199414 – ident: e_1_2_8_34_1 doi: 10.1002/jmri.25970 – ident: e_1_2_8_29_1 – ident: e_1_2_8_53_1 doi: 10.1109/CVPR.2016.265 – ident: e_1_2_8_13_1 doi: 10.1002/mrm.10080 – ident: e_1_2_8_6_1 doi: 10.1093/neuonc/nos112 – ident: e_1_2_8_32_1 doi: 10.1186/s13244-019-0771-1 – ident: e_1_2_8_38_1 doi: 10.3348/kjr.2001.2.1.1 – ident: e_1_2_8_35_1 doi: 10.1016/j.mri.2012.03.008 – ident: e_1_2_8_54_1 doi: 10.1007/978-3-319-46475-6_43 – ident: e_1_2_8_17_1 – ident: e_1_2_8_40_1 doi: 10.1371/journal.pone.0161807 – ident: e_1_2_8_22_1 doi: 10.1002/mp.13047 – ident: e_1_2_8_39_1 doi: 10.3174/ajnr.A4231 – ident: e_1_2_8_25_1 – volume: 26 start-page: 2187 year: 2005 ident: e_1_2_8_41_1 article-title: Assessment of diagnostic accuracy of perfusion MR imaging in primary and metastatic solitary malignant brain tumors publication-title: AJNR Am J Neuroradiol – year: 2019 ident: e_1_2_8_33_1 article-title: Gadolinium deposition disease: A new risk management threat publication-title: J Am Coll Radiol – ident: e_1_2_8_46_1 doi: 10.1002/jmri.26306 – ident: e_1_2_8_21_1 – ident: e_1_2_8_50_1 doi: 10.3174/ajnr.A4341 – ident: e_1_2_8_19_1 doi: 10.1088/1361-6560/aada6d – ident: e_1_2_8_27_1 – ident: e_1_2_8_30_1 doi: 10.1109/TPAMI.2016.2572683 – volume: 27 year: 2014 ident: e_1_2_8_16_1 article-title: Generative adversarial nets publication-title: Adv Neural Inf Process Syst – ident: e_1_2_8_47_1 doi: 10.1007/s11547-018-0866-7 – ident: e_1_2_8_11_1 doi: 10.1007/s00234-015-1518-4 – ident: e_1_2_8_45_1 doi: 10.1093/neuonc/nov179 – ident: e_1_2_8_37_1 doi: 10.2214/ajr.171.6.9843274 – ident: e_1_2_8_48_1 doi: 10.1371/journal.pone.0141438 – ident: e_1_2_8_49_1 – volume: 25 start-page: 746 year: 2004 ident: e_1_2_8_42_1 article-title: Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast‐enhanced perfusion MR imaging with glioma grade publication-title: Am J Neuroradiol – volume: 29 start-page: 105 year: 2002 ident: e_1_2_8_3_1 article-title: Cerebral blood volume mapping by MR imaging in the initial evaluation of brain tumors publication-title: J Neuroradiol |
SSID | ssj0009974 |
Score | 2.4271774 |
Snippet | Purpose
Perfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility... Perfusion MRI with gadolinium-based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility contrast... PurposePerfusion MRI with gadolinium‐based contrast agents is useful for diagnosis and treatment response evaluation of brain tumors. Dynamic susceptibility... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 469 |
SubjectTerms | Blood plasma Blood volume Brain Brain cancer Brain mapping Brain Neoplasms - diagnostic imaging Brain tumors Cerebral blood flow Cerebral Blood Volume Cerebrovascular Circulation Computation Confidence intervals Contrast agents Contrast Media Correlation analysis deep learning dynamic contrast enhanced dynamic susceptibility contrast Gadolinium Humans Imaging techniques Magnetic Resonance Imaging Medical imaging Neuroimaging Perfusion perfusion MRI Retrospective Studies Substantia alba Substantia grisea Synthesis Tumors |
Title | Synthetic generation of DSC‐MRI‐derived relative CBV maps from DCE MRI of brain tumors |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.28432 https://www.ncbi.nlm.nih.gov/pubmed/32726488 https://www.proquest.com/docview/2451103701 https://www.proquest.com/docview/2429054756 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0740-3194 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFD6IYOlLa-3FbbWkxYe-zDqbZCYTfKqrooXxYa1FSmHIbX2wOys7u0L75E_wN_pLepK5iK2F0pdhYE5IJueSj5yTLwBbHrQyo-JIMi4i7ijGQalFZJ1WY6qdTQNZdX6cHp7yT2fJ2RLstGdhan6IbsPNe0aI197Bla6270hDJ7NJH2Mr8_F3wJKQoh3dUUdJWTMwC-7jjOQtq1BMt7uW99eiPwDmfbwaFpyDp_CtHWpdZ3LRX8x13_z8jcXxP_9lFZ40QJR8rC3nGSy5cg0e5U2qfQ1WQm2oqZ7D15MfJcJElCPngaTa65JMx2TvZHh7fZOPjvBp0ZKvnCX12ZgrR4a7X8hEXVbEH2Ahe8N9goK-lfaXUpD5YjKdVS_g9GD_8_Awaq5kiIxPF0cM4Yuykhrt-GBgtUZ4gRgvsS4T0vJEUGpZprmwGTfKZiw1LEFxwZWIZWbYS1gup6VbB5LgssicG4uxirlNM2kz6QQqzhmOGM_14EOrnMI0fOX-2ozvRc20TAuctSLMWg_ed6KXNUnHQ0IbrYaLxk-rgnp6tpiJeNCDd91n9DCfNlGlmy68DJUIbEWS9uBVbRldL4wKXyKY4WCDfv_efZGP8vDy-t9F38Bj6ktowo7PBizPZwu3iRhort8GY_8FAnIAew |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qilguLGUbKGAQBy6ZZmxnHEtcYKbVFJoepi2qkFAUL8OhnUw1SyU48RP4jfwS3nOWqiwS4hJFyrPs-C3-5Pf8GeAlgVZhizjSQqpIeo5xUBsVOW-KCTfe9QNZdbbfHx3Jd8fJ8Rq8bs7CVPwQ7YYbeUaI1-TgtCG9dcEaOp1PuxhcBQbgK5SfI7ccji_Io7SuOJiVpEijZcMrFPOttunl1eg3iHkZsYYlZ-cWfGoGW1WanHRXS9O1X3_hcfzfv7kNN2ssyt5UxnMH1ny5AdeyOtu-AVdDeahd3IWPB19KRIooxz4HnmpSJ5tN2PBg8OPb92y8i0-HxnzuHauOx5x7Nnj7gU2LswWjMyxsONhmKEitDN1LwZar6Wy-uAdHO9uHg1FU38oQWcoYRwIRTOE0t8bLXs8ZgwgDYV7ifKq0k4ni3InUSOVSaQuXir4VCYorWahYp1bch_VyVvqHwBJcGYX3EzUpYun6qXap9go1561EmOc78KrRTm5rynK6OeM0r8iWeY6zlodZ68CLVvSs4un4k9Bmo-K8dtVFzomhLRYq7nXgefsZnYwyJ0XpZyuS4RqxrUr6HXhQmUbbi-CKqgRTHGxQ8N-7z7NxFl4e_bvoM7g-Osz28r3d_feP4QanipqwAbQJ68v5yj9BSLQ0T4Pl_wQIPwSX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qiqi4sJQCAwUM4tBLZjK2E8fiVGY6aoFUaEpRVSFF8RIOMJnRLJXgxE_ob-wv6bOzVGWREJcoUp5lx2_xZ_v5M8ArB1qZzsNAMi4CbinGQalEYKzKC6qsiT1ZdXoY7x_ztyfRyRq8bs7CVPwQ7YKb8wwfr52Dz0zRuyINncwnXYytDOPvDR7j7MohovEVd5SUFQWz4C7QSN7QCoW01xa9Phj9hjCvA1Y_4ozuwOemrVWiydfuaqm6-scvNI7_-TN34XaNRMluZTr3YM2Wm7CR1nvtm3DTJ4fqxX04PfpeIk5EOfLFs1Q7ZZJpQYZHg4uf5-n4AJ8GTfnMGlIdjjmzZPDmE5nkswVxJ1jIcLBHUNCVUu5WCrJcTabzxRYcj_Y-DvaD-k6GQLv94oAhfsmNpFpZ3u8bpRBfIMiLjE2ENDwSlBqWKC5MwnVuEhZrFqG44LkIZaLZA1gvp6V9BCTCcZFZW4giD7mJE2kSaQUqzmqOIM92YKdRTqZrwnJ3b8a3rKJaphn2WuZ7rQMvW9FZxdLxJ6HtRsNZ7aiLjDp-tpCJsN-BF-1ndDG3b5KXdrpyMlQishVR3IGHlWW0tTAqXI5ggo31-v179Vk6Tv3L438XfQ4bH4aj7P3B4bsncIu6dBq_-rMN68v5yj5FPLRUz7zdXwL3KANG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+generation+of+DSC%E2%80%90MRI%E2%80%90derived+relative+CBV+maps+from+DCE+MRI+of+brain+tumors&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Sanders%2C+Jeremiah+W&rft.au=Henry+Szu%E2%80%90Meng+Chen&rft.au=Johnson%2C+Jason+M&rft.au=Schomer%2C+Donald+F&rft.date=2021-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=85&rft.issue=1&rft.spage=469&rft.epage=479&rft_id=info:doi/10.1002%2Fmrm.28432&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |