MPI/OpenMP hybrid parallel algorithm for resolution of identity second‐order Møller–Plesset perturbation calculation of analytical energy gradient for massively parallel multicore supercomputers

A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller–Plesset perturbation (RI‐MP2) method from the restricted Hartree–Fock reference is presented for geometry optimization calculations and one‐electron property calculations of large mo...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational chemistry Vol. 38; no. 8; pp. 489 - 507
Main Authors Katouda, Michio, Nakajima, Takahito
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 30.03.2017
Subjects
Online AccessGet full text
ISSN0192-8651
1096-987X
1096-987X
DOI10.1002/jcc.24701

Cover

Abstract A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller–Plesset perturbation (RI‐MP2) method from the restricted Hartree–Fock reference is presented for geometry optimization calculations and one‐electron property calculations of large molecules. This algorithm is designed for massively parallel computation on multicore supercomputers applying the Message Passing Interface (MPI) and Open Multi‐Processing (OpenMP) hybrid parallel programming model. In this algorithm, the two‐dimensional hierarchical MP2 parallelization scheme is applied using a huge number of MPI processes (more than 1000 MPI processes) for acceleration of the computationally demanding O(N5) step such as calculations of occupied–occupied and virtual–virtual blocks of MP2 one‐particle density matrix and MP2 two‐particle density matrices. The new parallel algorithm performance is assessed using test calculations of several large molecules such as buckycatcher C60@C60H28 (144 atoms, 1820 atomic orbitals (AOs) for def2‐SVP basis set, and 3888 AOs for def2‐TZVP), nanographene dimer (C96H24)2 (240 atoms, 2928 AOs for def2‐SVP, and 6432 AOs for cc‐pVTZ), and trp‐cage protein 1L2Y (304 atoms and 2906 AOs for def2‐SVP) using up to 32,768 nodes and 262,144 central processing unit (CPU) cores of the K computer. The results of geometry optimization calculations of trp‐cage protein 1L2Y at the RI‐MP2/def2‐SVP level using the 3072 nodes and 24,576 cores of the K computer are presented and discussed to assess the efficiency of the proposed algorithm. © 2017 Wiley Periodicals, Inc. A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller–Plesset perturbation (RI‐MP2) method from the restricted Hartree–Fock reference is developed for geometry optimization calculations of large molecules using supercomputers. The analytical energy gradient calculation of Trp‐cage protein 1L2Y at the RI‐MP2/def2‐SVP level is speeded up considerably enough to perform the geometry optimization using the new algorithm and implementation on the K computer.
AbstractList A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller-Plesset perturbation (RI-MP2) method from the restricted Hartree-Fock reference is presented for geometry optimization calculations and one-electron property calculations of large molecules. This algorithm is designed for massively parallel computation on multicore supercomputers applying the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) hybrid parallel programming model. In this algorithm, the two-dimensional hierarchical MP2 parallelization scheme is applied using a huge number of MPI processes (more than 1000 MPI processes) for acceleration of the computationally demanding O(N5 ) step such as calculations of occupied-occupied and virtual-virtual blocks of MP2 one-particle density matrix and MP2 two-particle density matrices. The new parallel algorithm performance is assessed using test calculations of several large molecules such as buckycatcher C60 @C60 H28 (144 atoms, 1820 atomic orbitals (AOs) for def2-SVP basis set, and 3888 AOs for def2-TZVP), nanographene dimer (C96 H24 )2 (240 atoms, 2928 AOs for def2-SVP, and 6432 AOs for cc-pVTZ), and trp-cage protein 1L2Y (304 atoms and 2906 AOs for def2-SVP) using up to 32,768 nodes and 262,144 central processing unit (CPU) cores of the K computer. The results of geometry optimization calculations of trp-cage protein 1L2Y at the RI-MP2/def2-SVP level using the 3072 nodes and 24,576 cores of the K computer are presented and discussed to assess the efficiency of the proposed algorithm. © 2017 Wiley Periodicals, Inc.A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller-Plesset perturbation (RI-MP2) method from the restricted Hartree-Fock reference is presented for geometry optimization calculations and one-electron property calculations of large molecules. This algorithm is designed for massively parallel computation on multicore supercomputers applying the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) hybrid parallel programming model. In this algorithm, the two-dimensional hierarchical MP2 parallelization scheme is applied using a huge number of MPI processes (more than 1000 MPI processes) for acceleration of the computationally demanding O(N5 ) step such as calculations of occupied-occupied and virtual-virtual blocks of MP2 one-particle density matrix and MP2 two-particle density matrices. The new parallel algorithm performance is assessed using test calculations of several large molecules such as buckycatcher C60 @C60 H28 (144 atoms, 1820 atomic orbitals (AOs) for def2-SVP basis set, and 3888 AOs for def2-TZVP), nanographene dimer (C96 H24 )2 (240 atoms, 2928 AOs for def2-SVP, and 6432 AOs for cc-pVTZ), and trp-cage protein 1L2Y (304 atoms and 2906 AOs for def2-SVP) using up to 32,768 nodes and 262,144 central processing unit (CPU) cores of the K computer. The results of geometry optimization calculations of trp-cage protein 1L2Y at the RI-MP2/def2-SVP level using the 3072 nodes and 24,576 cores of the K computer are presented and discussed to assess the efficiency of the proposed algorithm. © 2017 Wiley Periodicals, Inc.
A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Moller-Plesset perturbation (RI-MP2) method from the restricted Hartree-Fock reference is presented for geometry optimization calculations and one-electron property calculations of large molecules. This algorithm is designed for massively parallel computation on multicore supercomputers applying the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) hybrid parallel programming model. In this algorithm, the two-dimensional hierarchical MP2 parallelization scheme is applied using a huge number of MPI processes (more than 1000 MPI processes) for acceleration of the computationally demanding O(N^sup 5^) step such as calculations of occupied-occupied and virtual-virtual blocks of MP2 one-particle density matrix and MP2 two-particle density matrices. The new parallel algorithm performance is assessed using test calculations of several large molecules such as buckycatcher C^sub 60^@C^sub 60^H^sub 28^ (144 atoms, 1820 atomic orbitals (AOs) for def2-SVP basis set, and 3888 AOs for def2-TZVP), nanographene dimer (C^sub 96^H^sub 24^)^sub 2^ (240 atoms, 2928 AOs for def2-SVP, and 6432 AOs for cc-pVTZ), and trp-cage protein 1L2Y (304 atoms and 2906 AOs for def2-SVP) using up to 32,768 nodes and 262,144 central processing unit (CPU) cores of the K computer. The results of geometry optimization calculations of trp-cage protein 1L2Y at the RI-MP2/def2-SVP level using the 3072 nodes and 24,576 cores of the K computer are presented and discussed to assess the efficiency of the proposed algorithm.
A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller-Plesset perturbation (RI-MP2) method from the restricted Hartree-Fock reference is presented for geometry optimization calculations and one-electron property calculations of large molecules. This algorithm is designed for massively parallel computation on multicore supercomputers applying the Message Passing Interface (MPI) and Open Multi-Processing (OpenMP) hybrid parallel programming model. In this algorithm, the two-dimensional hierarchical MP2 parallelization scheme is applied using a huge number of MPI processes (more than 1000 MPI processes) for acceleration of the computationally demanding O(N ) step such as calculations of occupied-occupied and virtual-virtual blocks of MP2 one-particle density matrix and MP2 two-particle density matrices. The new parallel algorithm performance is assessed using test calculations of several large molecules such as buckycatcher C @C H (144 atoms, 1820 atomic orbitals (AOs) for def2-SVP basis set, and 3888 AOs for def2-TZVP), nanographene dimer (C H ) (240 atoms, 2928 AOs for def2-SVP, and 6432 AOs for cc-pVTZ), and trp-cage protein 1L2Y (304 atoms and 2906 AOs for def2-SVP) using up to 32,768 nodes and 262,144 central processing unit (CPU) cores of the K computer. The results of geometry optimization calculations of trp-cage protein 1L2Y at the RI-MP2/def2-SVP level using the 3072 nodes and 24,576 cores of the K computer are presented and discussed to assess the efficiency of the proposed algorithm. © 2017 Wiley Periodicals, Inc.
A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller–Plesset perturbation (RI‐MP2) method from the restricted Hartree–Fock reference is presented for geometry optimization calculations and one‐electron property calculations of large molecules. This algorithm is designed for massively parallel computation on multicore supercomputers applying the Message Passing Interface (MPI) and Open Multi‐Processing (OpenMP) hybrid parallel programming model. In this algorithm, the two‐dimensional hierarchical MP2 parallelization scheme is applied using a huge number of MPI processes (more than 1000 MPI processes) for acceleration of the computationally demanding O ( N 5 ) step such as calculations of occupied–occupied and virtual–virtual blocks of MP2 one‐particle density matrix and MP2 two‐particle density matrices. The new parallel algorithm performance is assessed using test calculations of several large molecules such as buckycatcher C 60 @C 60 H 28 (144 atoms, 1820 atomic orbitals (AOs) for def2‐SVP basis set, and 3888 AOs for def2‐TZVP), nanographene dimer (C 96 H 24 ) 2 (240 atoms, 2928 AOs for def2‐SVP, and 6432 AOs for cc‐pVTZ), and trp‐cage protein 1L2Y (304 atoms and 2906 AOs for def2‐SVP) using up to 32,768 nodes and 262,144 central processing unit (CPU) cores of the K computer. The results of geometry optimization calculations of trp‐cage protein 1L2Y at the RI‐MP2/def2‐SVP level using the 3072 nodes and 24,576 cores of the K computer are presented and discussed to assess the efficiency of the proposed algorithm. © 2017 Wiley Periodicals, Inc.
A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller–Plesset perturbation (RI‐MP2) method from the restricted Hartree–Fock reference is presented for geometry optimization calculations and one‐electron property calculations of large molecules. This algorithm is designed for massively parallel computation on multicore supercomputers applying the Message Passing Interface (MPI) and Open Multi‐Processing (OpenMP) hybrid parallel programming model. In this algorithm, the two‐dimensional hierarchical MP2 parallelization scheme is applied using a huge number of MPI processes (more than 1000 MPI processes) for acceleration of the computationally demanding O(N5) step such as calculations of occupied–occupied and virtual–virtual blocks of MP2 one‐particle density matrix and MP2 two‐particle density matrices. The new parallel algorithm performance is assessed using test calculations of several large molecules such as buckycatcher C60@C60H28 (144 atoms, 1820 atomic orbitals (AOs) for def2‐SVP basis set, and 3888 AOs for def2‐TZVP), nanographene dimer (C96H24)2 (240 atoms, 2928 AOs for def2‐SVP, and 6432 AOs for cc‐pVTZ), and trp‐cage protein 1L2Y (304 atoms and 2906 AOs for def2‐SVP) using up to 32,768 nodes and 262,144 central processing unit (CPU) cores of the K computer. The results of geometry optimization calculations of trp‐cage protein 1L2Y at the RI‐MP2/def2‐SVP level using the 3072 nodes and 24,576 cores of the K computer are presented and discussed to assess the efficiency of the proposed algorithm. © 2017 Wiley Periodicals, Inc. A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller–Plesset perturbation (RI‐MP2) method from the restricted Hartree–Fock reference is developed for geometry optimization calculations of large molecules using supercomputers. The analytical energy gradient calculation of Trp‐cage protein 1L2Y at the RI‐MP2/def2‐SVP level is speeded up considerably enough to perform the geometry optimization using the new algorithm and implementation on the K computer.
Author Katouda, Michio
Nakajima, Takahito
Author_xml – sequence: 1
  givenname: Michio
  surname: Katouda
  fullname: Katouda, Michio
  organization: Computational Molecular Science Research Team, RIKEN Advanced Institute for Computational Science
– sequence: 2
  givenname: Takahito
  surname: Nakajima
  fullname: Nakajima, Takahito
  email: nakajima@riken.jp
  organization: Computational Molecular Science Research Team, RIKEN Advanced Institute for Computational Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28133838$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFu1DAUhi1URKeFBRdAltjAIh079iTOEo2gFHXUWYDELnLsl6lHThxspyi7HqESl2HPgnv0JJiZFqRKsLL09P3fs_0foYPe9YDQc0pOKCH5fKvUSc5LQh-hGSVVkVWi_HyAZoRWeSaKBT1ERyFsCSFsUfAn6DAXlDHBxAz9XK3P5hcD9Ks1vpwabzQepJfWgsXSbpw38bLDrfPYQ3B2jMb12LXYaOijiRMOoFyvb69vnNfg8erH95T1t9ff1hZCgIgH8HH0jdwllbRqtPLeIntpp2jSFEMPfjPhjZfaJPVuZSdDMFdgp7936kabeOcBhzGZleuGMYIPT9HjVtoAz-7OY_Tp3duPy_fZ-cXp2fLNeaY4rWimGsVZqxshoGhKIQsiVMt4kZcLxium1QIYp0Rzrkvd6IoDI6ICxnjLCi0JO0av9t7Buy8jhFh3JiiwVvbgxlBTUeQVL3O6SOjLB-jWjT69eEcxygQnPFEv7qix6UDXgzed9FN9X1ECXu8B5V0IHto_CCX17_rrVH-9qz-x8wesMnH329FLY_-X-GosTP9W1x-Wy33iF8L-yKA
CODEN JCCHDD
CitedBy_id crossref_primary_10_1063_5_0143424
Cites_doi 10.1021/ct100199k
10.1109/MCSE.2010.29
10.1090/S0025-5718-1980-0572855-7
10.1063/1.4956454
10.1002/jcc.540030413
10.1016/0009-2614(93)87156-W
10.1021/jp9028968
10.1007/s002140050269
10.1080/00268976.2014.952696
10.1002/jcc.540030314
10.1016/0009-2614(93)89151-7
10.1063/1.2777146
10.1021/jp0776762
10.1007/s00214-007-0295-5
10.1002/wcms.58
10.1021/ct900543q
10.1039/c002859b
10.1016/S0167-8191(00)00020-X
10.1063/1.1445115
10.1039/b515355g
10.1021/ct400795v
10.1002/jcc.540100111
10.1063/1.450106
10.1063/1.1679012
10.1021/ct4002202
10.1002/qua.24563
10.1063/1.455553
10.1002/wcms.1162
10.1016/j.cplett.2006.06.059
10.1016/j.cplett.2006.05.092
10.1063/1.4903269
10.1002/jcc.20604
10.1002/wcms.81
10.1002/jcc.24221
10.1021/acs.jctc.6b00015
10.1063/1.4896235
10.1063/1.456153
10.1021/ct300531w
10.1021/ct100083w
10.1063/1.2712433
10.1002/wcms.1159
10.1039/b508541a
10.1021/jz201697x
10.1002/qua.22068
10.1103/PhysRev.46.618
10.1063/1.447489
10.1063/1.4927325
10.1002/9781119019572
10.1038/nsb798
10.1016/0009-2614(96)00054-1
10.1080/00268976900100941
10.1007/978-1-4684-8541-7_4
10.1002/qua.560120408
10.1007/BF01589116
10.1063/1.438728
10.1063/1.4919238
10.1016/S0009-2614(98)00862-8
10.1002/qua.24860
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright Wiley Subscription Services, Inc. Mar 30, 2017
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
– notice: Copyright Wiley Subscription Services, Inc. Mar 30, 2017
DBID AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1002/jcc.24701
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Computer Science Collection
PubMed
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 507
ExternalDocumentID 4311015651
28133838
10_1002_jcc_24701
JCC24701
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Next‐Generation Supercomputer project
  funderid: FLAGSHIP2020
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
JQ2
7X8
ID FETCH-LOGICAL-c4191-cbc43fdb88e6b78a608cf3462753493dc5e3410d44d7dbd94e3089e334f36da03
IEDL.DBID DR2
ISSN 0192-8651
1096-987X
IngestDate Thu Oct 02 10:34:58 EDT 2025
Fri Jul 25 19:17:47 EDT 2025
Thu Apr 03 07:04:17 EDT 2025
Wed Oct 01 02:49:04 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Wed Jan 22 16:19:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords geometry optimization
NTChem
massively parallel algorithm
K computer
analytical energy gradient
RI-MP2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4191-cbc43fdb88e6b78a608cf3462753493dc5e3410d44d7dbd94e3089e334f36da03
Notes This work was supported by the Next‐Generation Supercomputer project, FLAGSHIP2020 project (Development of new fundamental technologies for high‐efficiency energy creation, conversion/storage and use), and Kakenhi (Grant‐in‐aid for Young Scientists B: 15K17816 and Grant‐in‐Aid for Scientific Research on Innovative Areas “p‐System Figuration”: 15H01006) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. Calculations were performed on the K computer (RIKEN, Kobe, Japan) and the supercomputer system of Research Center for Computational Science (Institute for Molecular Science, Okazaki, Japan).
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 28133838
PQID 1863138404
PQPubID 48816
PageCount 20
ParticipantIDs proquest_miscellaneous_1862947215
proquest_journals_1863138404
pubmed_primary_28133838
crossref_primary_10_1002_jcc_24701
crossref_citationtrail_10_1002_jcc_24701
wiley_primary_10_1002_jcc_24701_JCC24701
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 30, 2017
PublicationDateYYYYMMDD 2017-03-30
PublicationDate_xml – month: 03
  year: 2017
  text: March 30, 2017
  day: 30
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 12
1989; 45
1993; 208
1973; 58
2015; 143
2016; 145
2009; 113
2002; 116
2016; 37
1979; 71
2013; 9
1977
2007; 28
2014; 4
1986; 84
2000
1997; 97
1980; 35
1982; 3
1996; 250
1988; 89
1993; 213
2008; 112
2010; 6
2007; 126
2007; 127
1984; 81
2011; 1
2002; 9
2000; 26
2011
1934; 46
2006; 8
2006
1969; 17
2008; 120
2014; 114
1998; 294
2016; 12
2014; 113
2012; 2
2006; 427
2012; 3
1989; 10
2015; 115
1989; 90
2005; 7
2016
1977; 12
2006; 426
2014; 141
2009; 109
2012; 8
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_30_1
Weigend F. (e_1_2_6_15_1) 1997; 97
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Jensen F. (e_1_2_6_1_1) 2006
e_1_2_6_14_1
e_1_2_6_35_1
Haeser M. (e_1_2_6_53_1) 1989; 10
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
Yokokawa M. (e_1_2_6_50_1) 2011
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
References_xml – volume: 294
  start-page: 143
  year: 1998
  publication-title: Chem. Phys. Lett.
– volume: 97
  start-page: 331
  year: 1997
  publication-title: Theor. Chim. Acta
– volume: 12
  start-page: 683
  year: 1977
  publication-title: Int. J. Quantum Chem.
– volume: 8
  start-page: 1159
  year: 2006
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 3297
  year: 2005
  publication-title: Phys. Chem. Chem. Phys.
– volume: 2
  start-page: 73
  year: 2012
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 58
  start-page: 4496
  year: 1973
  publication-title: J. Chem. Phys.
– volume: 17
  start-page: 197
  year: 1969
  publication-title: Mol. Phys.
– volume: 84
  start-page: 3963
  year: 1986
  publication-title: J. Chem. Phys.
– volume: 141
  start-page: 219901
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 2325
  year: 2010
  publication-title: J. Chem. Theory Comput.
– volume: 426
  start-page: 197
  year: 2006
  publication-title: Chem. Phys. Lett.
– volume: 45
  start-page: 503
  year: 1989
  publication-title: Math. Program.
– volume: 112
  start-page: 2049
  year: 2008
  publication-title: J. Phys. Chem. A
– volume: 109
  start-page: 2121
  year: 2009
  publication-title: Int. J. Quantum Chem.
– volume: 208
  start-page: 359
  year: 1993
  publication-title: Chem. Phys. Lett.
– volume: 113
  start-page: 184
  year: 2014
  publication-title: Mol. Phys.
– volume: 116
  start-page: 3175
  year: 2002
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 385
  year: 1982
  publication-title: J. Comput. Chem.
– volume: 90
  start-page: 1007
  year: 1989
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 425
  year: 2002
  publication-title: Nat. Struct. Biol.
– volume: 12
  start-page: 6896
  year: 2010
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 5373
  year: 2013
  publication-title: J. Chem. Theory Comput.
– volume: 115
  start-page: 349
  year: 2015
  publication-title: Int. J. Quantum Chem.
– volume: 145
  start-page: 024106
  year: 2016
  publication-title: J. Chem. Phys.
– volume: 46
  start-page: 618
  year: 1934
  publication-title: Phys. Rev.
– volume: 8
  start-page: 4177
  year: 2012
  publication-title: J. Chem. Theory Comput.
– volume: 143
  start-page: 054506
  year: 2015
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 375
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 250
  start-page: 477
  year: 1996
  publication-title: Chem. Phys. Lett.
– volume: 6
  start-page: 135
  year: 2010
  publication-title: J. Chem. Theory Comput.
– volume: 35
  start-page: 773
  year: 1980
  publication-title: Math. Comput.
– volume: 143
  start-page: 102803
  year: 2015
  publication-title: J. Chem. Phys.
– volume: 3
  start-page: 556
  year: 1982
  publication-title: J. Comput. Chem.
– volume: 81
  start-page: 5031
  year: 1984
  publication-title: J. Chem. Phys.
– volume: 120
  start-page: 185
  year: 2008
  publication-title: Theor. Chem. Acc
– volume: 71
  start-page: 3396
  year: 1979
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 91
  year: 2014
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 89
  start-page: 5777
  year: 1988
  publication-title: J. Chem. Phys.
– year: 2000
– start-page: 371
  year: 2011
  publication-title: ISLPED
– volume: 26
  start-page: 945
  year: 2000
  publication-title: Parallel Comput.
– year: 2016
– volume: 12
  start-page: 40
  year: 2010
  publication-title: Comput. Sci. Eng.
– volume: 141
  start-page: 124108
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 104
  year: 1989
  publication-title: J. Comput. Chem.
– start-page: 153
  year: 1977
  end-page: 185
– volume: 1
  start-page: 509
  year: 2011
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 213
  start-page: 514
  year: 1993
  publication-title: Chem. Phys. Lett.
– volume: 12
  start-page: 2214
  year: 2016
  publication-title: J. Chem. Theory Comput.
– volume: 4
  start-page: 15
  year: 2014
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
– volume: 37
  start-page: 506
  year: 2016
  publication-title: J. Comput. Chem.
– year: 2006
– volume: 126
  start-page: 124115
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 28
  start-page: 839
  year: 2007
  publication-title: J. Comput. Chem.
– volume: 9
  start-page: 2654
  year: 2013
  publication-title: J. Chem. Theory Comput.
– volume: 113
  start-page: 11856
  year: 2009
  publication-title: J. Phys. Chem. A
– volume: 114
  start-page: 321
  year: 2014
  publication-title: Int. J. Quantum Chem.
– volume: 127
  start-page: 114107
  year: 2007
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 1075
  year: 2010
  publication-title: J. Chem. Theory Comput.
– volume: 427
  start-page: 225
  year: 2006
  publication-title: Chem. Phys. Lett.
– ident: e_1_2_6_23_1
  doi: 10.1021/ct100199k
– ident: e_1_2_6_41_1
  doi: 10.1109/MCSE.2010.29
– ident: e_1_2_6_68_1
  doi: 10.1090/S0025-5718-1980-0572855-7
– ident: e_1_2_6_27_1
  doi: 10.1063/1.4956454
– ident: e_1_2_6_57_1
  doi: 10.1002/jcc.540030413
– ident: e_1_2_6_28_1
– ident: e_1_2_6_9_1
  doi: 10.1016/0009-2614(93)87156-W
– ident: e_1_2_6_59_1
– ident: e_1_2_6_36_1
– ident: e_1_2_6_66_1
  doi: 10.1021/jp9028968
– volume: 97
  start-page: 331
  year: 1997
  ident: e_1_2_6_15_1
  publication-title: Theor. Chim. Acta
  doi: 10.1007/s002140050269
– ident: e_1_2_6_31_1
  doi: 10.1080/00268976.2014.952696
– ident: e_1_2_6_52_1
  doi: 10.1002/jcc.540030314
– ident: e_1_2_6_5_1
  doi: 10.1016/0009-2614(93)89151-7
– ident: e_1_2_6_12_1
  doi: 10.1063/1.2777146
– ident: e_1_2_6_39_1
  doi: 10.1021/jp0776762
– ident: e_1_2_6_58_1
  doi: 10.1007/s00214-007-0295-5
– ident: e_1_2_6_4_1
  doi: 10.1002/wcms.58
– ident: e_1_2_6_40_1
  doi: 10.1021/ct900543q
– ident: e_1_2_6_38_1
  doi: 10.1039/c002859b
– ident: e_1_2_6_44_1
  doi: 10.1016/S0167-8191(00)00020-X
– ident: e_1_2_6_55_1
– ident: e_1_2_6_70_1
  doi: 10.1063/1.1445115
– ident: e_1_2_6_16_1
  doi: 10.1039/b515355g
– ident: e_1_2_6_46_1
  doi: 10.1021/ct400795v
– volume: 10
  start-page: 104
  year: 1989
  ident: e_1_2_6_53_1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540100111
– ident: e_1_2_6_62_1
  doi: 10.1063/1.450106
– ident: e_1_2_6_7_1
  doi: 10.1063/1.1679012
– ident: e_1_2_6_43_1
  doi: 10.1021/ct4002202
– ident: e_1_2_6_22_1
  doi: 10.1002/qua.24563
– ident: e_1_2_6_61_1
  doi: 10.1063/1.455553
– ident: e_1_2_6_29_1
  doi: 10.1002/wcms.1162
– ident: e_1_2_6_34_1
– ident: e_1_2_6_11_1
  doi: 10.1016/j.cplett.2006.06.059
– ident: e_1_2_6_17_1
  doi: 10.1016/j.cplett.2006.05.092
– ident: e_1_2_6_21_1
  doi: 10.1063/1.4903269
– ident: e_1_2_6_18_1
  doi: 10.1002/jcc.20604
– ident: e_1_2_6_35_1
  doi: 10.1002/wcms.81
– ident: e_1_2_6_48_1
– ident: e_1_2_6_33_1
  doi: 10.1002/jcc.24221
– ident: e_1_2_6_26_1
  doi: 10.1021/acs.jctc.6b00015
– ident: e_1_2_6_20_1
  doi: 10.1063/1.4896235
– ident: e_1_2_6_69_1
  doi: 10.1063/1.456153
– ident: e_1_2_6_42_1
  doi: 10.1021/ct300531w
– ident: e_1_2_6_60_1
– ident: e_1_2_6_56_1
  doi: 10.1021/ct100083w
– ident: e_1_2_6_19_1
  doi: 10.1063/1.2712433
– ident: e_1_2_6_37_1
  doi: 10.1002/wcms.1159
– ident: e_1_2_6_63_1
  doi: 10.1039/b508541a
– ident: e_1_2_6_24_1
  doi: 10.1021/jz201697x
– start-page: 371
  year: 2011
  ident: e_1_2_6_50_1
  publication-title: ISLPED
– ident: e_1_2_6_45_1
  doi: 10.1002/qua.22068
– ident: e_1_2_6_3_1
  doi: 10.1103/PhysRev.46.618
– ident: e_1_2_6_51_1
  doi: 10.1063/1.447489
– volume-title: Introduction to Computational Chemistry
  year: 2006
  ident: e_1_2_6_1_1
– ident: e_1_2_6_47_1
  doi: 10.1063/1.4927325
– ident: e_1_2_6_30_1
– ident: e_1_2_6_2_1
  doi: 10.1002/9781119019572
– ident: e_1_2_6_65_1
  doi: 10.1038/nsb798
– ident: e_1_2_6_10_1
  doi: 10.1016/0009-2614(96)00054-1
– ident: e_1_2_6_13_1
  doi: 10.1080/00268976900100941
– ident: e_1_2_6_32_1
– ident: e_1_2_6_14_1
  doi: 10.1007/978-1-4684-8541-7_4
– ident: e_1_2_6_8_1
  doi: 10.1002/qua.560120408
– ident: e_1_2_6_67_1
  doi: 10.1007/BF01589116
– ident: e_1_2_6_54_1
– ident: e_1_2_6_6_1
  doi: 10.1063/1.438728
– ident: e_1_2_6_25_1
  doi: 10.1063/1.4919238
– ident: e_1_2_6_64_1
  doi: 10.1016/S0009-2614(98)00862-8
– ident: e_1_2_6_49_1
  doi: 10.1002/qua.24860
SSID ssj0003564
Score 2.2113414
Snippet A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller–Plesset perturbation (RI‐MP2) method from...
A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Møller-Plesset perturbation (RI-MP2) method from...
A massively parallel algorithm of the analytical energy gradient calculations based the resolution of identity Moller-Plesset perturbation (RI-MP2) method from...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 489
SubjectTerms Algorithms
analytical energy gradient
Energy
geometry optimization
K computer
massively parallel algorithm
Matrix
NTChem
Optimization
RI‐MP2
Supercomputers
Title MPI/OpenMP hybrid parallel algorithm for resolution of identity second‐order Møller–Plesset perturbation calculation of analytical energy gradient for massively parallel multicore supercomputers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.24701
https://www.ncbi.nlm.nih.gov/pubmed/28133838
https://www.proquest.com/docview/1863138404
https://www.proquest.com/docview/1862947215
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: ADMLS
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0192-8651
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXuAClOdCQQZx4JJtEjuOI05oRVUqLVohKvWAFMWP9EG6W22yh-2pPwGJP8OdA_-jv4SZSbKr8pAQlyhSxo_Inz0ztucbxl6qVBrpyjKINDyk0VmQFVkZWNSOOrWqtHiiO36v9g7k_mFyuMFe97EwLT_EasMNZwat1zjBC1PvrElDT60dxjKl2K1IKHKnPqypo0TSUkeBBRNolUQ9q1AY76xKXtdFvxmY1-1VUji7t9mnvqvtPZPPw0VjhvbiFxbH__yXO-xWZ4jyNy1yttiGn95lN0Z9_rd77Md48o7YwscTfrzEwC6OPOFV5SteVEez-UlzfMbB5uXgsXcA5rOSn7Shv0teo6_tri6_EL0nH3__hmGHV5dfJxUSljf83M9B4RnCBges2C6VGNZSIFkK7bNzT-GJ_GhOt9MaavIMbH5Yp6vluk90NRJJOXm9gJptl66ivs8Odt9-HO0FXdqHwErwHgNrrBSlM1p7ZVJdqFDbUkikUxYyE84mHlRv6KR0qTMuk16EOvNCyFIoV4TiAduczqb-EeOxEiZ1UDp0AkOAsxTWIBsDcJE4MJUD9qoHQG47TnRMzVHlLZtznMPI5DQyA_ZiJXreEoH8SWi7R1HerQV1HmklIgGONDT3fPUZBhOPZoqpny1IJs4keOPJgD1s0bdqJda0j6Chs4Shvzef749G9PL430WfsJsxWioYZhlus81mvvBPwc5qzDOaUD8Bb7ErGw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLUQLOimpaWPAdq6VRfdZMjEjuNIbKpR0UAJGlUgsami-BGgDTNoJrOYrviESvxM9130P_iS3us8RvQhVWyiSHFiRz72Pdf2PZeQNyLiips893oSLlzJ2IuzOPc0WkcZaZFr3NFNDsXgmO-fhCdLZKeJhan0IdoFNxwZbr7GAY4L0tsL1dDPWncDHmHw1goX4KcgJfq4EI9iYSUeBRzGkyLsNbpCfrDdvnrbGv1BMW8zVmdydh-QT01jq5MmX7qzUnX11990HO_6N2vkfs1F6bsKPA_Jkh09Iqv9JgXcOvmZDPecYHgypGdzjO2iKBVeFLagWXE6npyXZxcUaC8Fp73GMB3n9LyK_p3TKbrb5ubqm1P4pMmP7xh5eHN1PSxQs7ykl3YCNk85eFCAi66zieFXMtRLcUvt1LoIRXo6cQfUSlflBdB-mKqL-aJN7nQk6nLS6Qy-rOuMFdPH5Hj3_VF_4NWZHzzNwYH0tNKc5UZJaYWKZCZ8qXPGUVGZ8ZgZHVqwvr7h3ERGmZhb5svYMsZzJkzmsydkeTQe2WeEBoKpyMDbvmEYBRxHMA3pALCL2oER75C3DQJSXcuiY3aOIq0EnYMUeiZ1PdMhr9uil5UWyN8KbTUwSuvpYJr2pGA9Br40VPeqfQydibsz2ciOZ65MEHNwyMMOeVrBr60lkG4pQUJjHYj-XX263--7m43_L_qSrA6OkoP0YO_wwya5FyBxwahLf4ssl5OZfQ60q1Qv3Oj6Bf3KLzw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRQIuvB8pBRbEgYtTx7teryUuKCVqC6kiRKVekOV9taVuEiXOIZz6E5D4M9w58D_6S5hZP6LykBAXy5L3Ze23OzO7M98Q8kIkXHHjXNCT8OBKpkGapy7QKB1looXTeKM73Bc7B3zvMD5cI6-aWJiKH6I9cMOV4fdrXOB2atzWijX0k9bdiCcYvHWFx6lEh77t9yvyKBZX5FGgwwRSxL2GVyiMttqql6XRbyrmZY3Vi5zBTfKxGWzlaXLaXZSqqz__wuP4v39zi9yodVH6ugLPbbJmx3fItX6TAu4u-TEc7XrC8OGIHi8xtosiVXhR2ILmxdFkdlIen1FQeykY7TWG6cTRkyr6d0nnaG6bi_MvnuGTDr9_w8jDi_OvowI5y0s6tTOQecrDgwJcdJ1NDFvJkS_FH7VT6yMU6dHMO6iVvsszUPthqy6WqzF570jk5aTzBbSs64wV83vkYPDmQ38nqDM_BJqDARlopTlzRklphUpkLkKpHePIqMx4yoyOLUjf0HBuEqNMyi0LZWoZ444Jk4fsPlkfT8b2IaGRYCoxUDs0DKOA0wS2IR0BdpE7MOEd8rJBQKZrWnTMzlFkFaFzlMHMZH5mOuR5W3RacYH8qdBmA6Os3g7mWU8K1mNgS0N3z9rPMJl4O5OP7WThy0QpB4M87pAHFfzaXiLpjxIkDNaD6O_dZ3v9vn_Z-PeiT8nV0fYge7e7__YRuR6h3oJBl-EmWS9nC_sYtK5SPfGL6ydoHC7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MPI%2FOpenMP+hybrid+parallel+algorithm+for+resolution+of+identity+second-order+M%C3%B8ller-Plesset+perturbation+calculation+of+analytical+energy+gradient+for+massively+parallel+multicore+supercomputers&rft.jtitle=Journal+of+computational+chemistry&rft.au=Katouda%2C+Michio&rft.au=Nakajima%2C+Takahito&rft.date=2017-03-30&rft.issn=1096-987X&rft.eissn=1096-987X&rft.volume=38&rft.issue=8&rft.spage=489&rft_id=info:doi/10.1002%2Fjcc.24701&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon