Day-ahead photovoltaic power generation forecasting with the HWGC-WPD-LSTM hybrid model assisted by wavelet packet decomposition and improved similar day method

Precisely forecasting output of solar photovoltaics is crucial for (i) effective solar power management, (ii) integration into the electrical grid, (iii) flexible allocation of power resources. While deep learning algorithms have shown promise in energy applications, single algorithms often struggle...

Full description

Saved in:
Bibliographic Details
Published inEngineering science and technology, an international journal Vol. 61; p. 101889
Main Authors Bai, Ruxue, Li, Jinsong, Liu, Jinsong, Shi, Yuetao, He, Suoying, Wei, Wei
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2025
Elsevier
Subjects
Online AccessGet full text
ISSN2215-0986
2215-0986
DOI10.1016/j.jestch.2024.101889

Cover

Abstract Precisely forecasting output of solar photovoltaics is crucial for (i) effective solar power management, (ii) integration into the electrical grid, (iii) flexible allocation of power resources. While deep learning algorithms have shown promise in energy applications, single algorithms often struggle with unstable predictions and limited generalizability for predicting photovoltaic (PV) output. This study introduces an innovative hybrid model (HWGC-WPD-LSTM) that integrates an improved similar day algorithm (WGC: weighted grey correlation analysis and cosine similarity), Wavelet Packet Decomposition (WPD), and Long Short-Term Memory neural network (LSTM) for predicting day-ahead power output. The model suggests an approach to identifying similar days by integrating weighted GRA with cosine similarity. It then decomposes power sequences employing WPD to capture various frequency characteristics. Four independent LSTM networks are then applied to these sub-sequences to forecast output, which are then reconstructed to derive the ultimate forecast outcome for solar photovoltaics. The evaluation of the hybrid model is conducted based on data gathered from actual generating station in Shandong Province, China. Then it is compared against other models utilizing similar day selection methods and other hybrid HWGC-BP, HWGC-Elman, HWGC-SVM, HWGC-RF, and HWGC-LSTM models. This comparison is based on four performance metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), normalized Root Mean Square Error (NRMSE), and Mean Absolute Deviation (MAD). Results demonstrate that the HWGC-WPD-LSTM model offers enhanced precision and stability (MAE = 0.2168 MW, RMSE = 0.2996 MW, NRMSE = 6.78 %, MAD = 2.18 %) in day-ahead power generation predictions. This highlights the potency of the hybrid model in enhancing the forecasting capabilities for solar photovoltaics, which is crucial for the strategic enhancement of renewable energy resource exploitation in the context of modern power systems.
AbstractList Precisely forecasting output of solar photovoltaics is crucial for (i) effective solar power management, (ii) integration into the electrical grid, (iii) flexible allocation of power resources. While deep learning algorithms have shown promise in energy applications, single algorithms often struggle with unstable predictions and limited generalizability for predicting photovoltaic (PV) output. This study introduces an innovative hybrid model (HWGC-WPD-LSTM) that integrates an improved similar day algorithm (WGC: weighted grey correlation analysis and cosine similarity), Wavelet Packet Decomposition (WPD), and Long Short-Term Memory neural network (LSTM) for predicting day-ahead power output. The model suggests an approach to identifying similar days by integrating weighted GRA with cosine similarity. It then decomposes power sequences employing WPD to capture various frequency characteristics. Four independent LSTM networks are then applied to these sub-sequences to forecast output, which are then reconstructed to derive the ultimate forecast outcome for solar photovoltaics. The evaluation of the hybrid model is conducted based on data gathered from actual generating station in Shandong Province, China. Then it is compared against other models utilizing similar day selection methods and other hybrid HWGC-BP, HWGC-Elman, HWGC-SVM, HWGC-RF, and HWGC-LSTM models. This comparison is based on four performance metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), normalized Root Mean Square Error (NRMSE), and Mean Absolute Deviation (MAD). Results demonstrate that the HWGC-WPD-LSTM model offers enhanced precision and stability (MAE = 0.2168 MW, RMSE = 0.2996 MW, NRMSE = 6.78 %, MAD = 2.18 %) in day-ahead power generation predictions. This highlights the potency of the hybrid model in enhancing the forecasting capabilities for solar photovoltaics, which is crucial for the strategic enhancement of renewable energy resource exploitation in the context of modern power systems.
ArticleNumber 101889
Author He, Suoying
Li, Jinsong
Wei, Wei
Liu, Jinsong
Shi, Yuetao
Bai, Ruxue
Author_xml – sequence: 1
  givenname: Ruxue
  surname: Bai
  fullname: Bai, Ruxue
  organization: Changji University, Changji 831100, Xinjiang, China
– sequence: 2
  givenname: Jinsong
  surname: Li
  fullname: Li, Jinsong
  organization: Changji University, Changji 831100, Xinjiang, China
– sequence: 3
  givenname: Jinsong
  surname: Liu
  fullname: Liu, Jinsong
  organization: Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
– sequence: 4
  givenname: Yuetao
  surname: Shi
  fullname: Shi, Yuetao
  email: shieddie@sdu.edu.cn
  organization: Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
– sequence: 5
  givenname: Suoying
  orcidid: 0009-0006-1614-4414
  surname: He
  fullname: He, Suoying
  organization: Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China
– sequence: 6
  givenname: Wei
  surname: Wei
  fullname: Wei, Wei
  organization: Qilu University of Technology, School of Energy and Power Engineering, Jinan 250012, Shandong, China
BookMark eNqNkd2K1DAUgIus4LruG3iRF-iYpD_TeiHIrO4ujCi4spfhNDmZnrFtShJn6Nv4qHamIuKFenVCyPfByfc8uRjcgEnyUvCV4KJ8tV_tMUTdriSX-emqquonyaWUokh5XZUXv52fJdch7DnnopZCFOVl8v0GphRaBMPG1kV3cF0E0mx0R_RshwN6iOQGZp1HDSHSsGNHii2LLbK7x9tN-vjpJt1-fvjA2qnxZFjvDHYMQqAQ0bBmYkc4YIeRjaC_zsOgdv3oAp3FMBhG_ejdYX4cqKcOPDMwsR5j68yL5KmFLuD1z3mVfHn_7mFzl24_3t5v3m5TnYsqphZlltUFh0ZL00C-rg0gZOW8KhrTYGGx1uu81LkFWfHKGimwXuccRG0rY7Or5H7xGgd7NXrqwU_KAanzhfM7BT6S7lAVkEEmSwu8EXkD6wbKMhNcVhasLbJmdhWL69swwnSErvslFFydqqm9WqqpUzW1VJu5fOG0dyF4tP-Lvf4D0xTP1aIH6v4Fv1lgnD_3QOhV0ISDRkNz8DhvT38X_ABtms0s
CitedBy_id crossref_primary_10_1016_j_jestch_2025_102017
Cites_doi 10.1016/j.enconman.2020.112766
10.1016/j.energy.2024.130538
10.1016/j.egyr.2020.08.034
10.1016/j.chaos.2015.11.008
10.1162/neco.1997.9.8.1735
10.1016/j.clwat.2024.100003
10.1016/j.gsd.2024.101178
10.1016/j.jclepro.2018.03.173
10.1016/j.ref.2019.03.003
10.1016/j.energy.2022.125592
10.1016/j.apenergy.2023.120916
10.1016/j.energy.2023.128135
10.1016/j.renene.2022.08.059
10.1016/j.rser.2020.109792
10.1016/j.renene.2024.120385
10.1016/j.enconman.2018.10.015
10.1109/TSG.2017.2693121
10.1016/j.egyr.2023.04.319
10.1016/j.energy.2018.01.177
10.1016/j.gloei.2023.04.006
10.1016/j.procs.2019.04.086
10.1016/j.enconman.2017.11.053
10.1016/j.renene.2019.02.087
10.1016/j.energy.2019.116225
10.1016/j.renene.2023.119241
10.1016/j.energy.2021.120094
10.1016/j.apenergy.2019.114216
10.1016/j.heliyon.2024.e28898
10.1016/j.energy.2020.117894
10.1016/j.apenergy.2018.01.035
10.1016/j.energy.2010.10.028
10.1016/j.measurement.2023.112462
10.1016/j.renene.2023.01.118
10.3390/en9010011
10.1016/j.renene.2018.02.092
10.1016/j.jeconom.2022.04.007
10.1016/j.jestch.2018.04.013
10.1016/j.neucom.2019.09.110
10.3390/su10082627
10.1016/j.energy.2023.127701
10.1016/j.energy.2023.126963
10.1016/j.apenergy.2015.01.038
10.1016/j.renene.2024.121057
10.1016/j.egyr.2021.08.167
10.1016/j.epsr.2021.107427
10.1016/j.egyr.2021.10.125
10.1016/j.enconman.2017.11.019
10.1016/j.hydres.2024.04.006
10.1016/j.energy.2019.07.168
10.1016/j.enconman.2017.06.071
10.1016/j.energy.2016.11.061
10.1016/j.epsr.2022.108966
10.1016/j.energy.2023.129898
10.1016/j.energy.2018.09.118
10.1016/j.heliyon.2024.e33419
10.1016/j.asoc.2023.110037
10.1016/j.energy.2021.120996
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.jestch.2024.101889
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2215-0986
ExternalDocumentID oai_doaj_org_article_5a3a326fa0b14ba7ba6631028faff53b
10.1016/j.jestch.2024.101889
10_1016_j_jestch_2024_101889
S2215098624002751
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
M~E
NCXOZ
O9-
OK1
RIG
ROL
SSZ
AAYWO
AAYXX
APXCP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c418t-fe233950abc2dba479daea36001eddbe5fe9c746c4fa2808fd21e9740a19f8df3
IEDL.DBID UNPAY
ISSN 2215-0986
IngestDate Fri Oct 03 12:42:31 EDT 2025
Tue Aug 19 14:21:16 EDT 2025
Thu Apr 24 23:02:16 EDT 2025
Wed Oct 01 03:56:22 EDT 2025
Sat Jan 25 16:00:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords PV power forecasting
Improved similar day method
Hybrid model
Wavelet packet decomposition
LSTM neural network
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-fe233950abc2dba479daea36001eddbe5fe9c746c4fa2808fd21e9740a19f8df3
ORCID 0009-0006-1614-4414
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jestch.2024.101889
ParticipantIDs doaj_primary_oai_doaj_org_article_5a3a326fa0b14ba7ba6631028faff53b
unpaywall_primary_10_1016_j_jestch_2024_101889
crossref_primary_10_1016_j_jestch_2024_101889
crossref_citationtrail_10_1016_j_jestch_2024_101889
elsevier_sciencedirect_doi_10_1016_j_jestch_2024_101889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Engineering science and technology, an international journal
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Thaker, Höller (b0020) 2024; 232
Xia, Wang, Zhang (b0070) 2023; 135
Ma, Lv, Zhang (b0065) 2021; 7
Wang, Qi, Liu (b0130) 2019; 189
Rogier, Mohamudally (b0085) 2019; 151
Wang, Liu (b0310) 2022; 44
Yang, Mourshed, Liu (b0115) 2020; 397
Liu, Ji, Sun (b0235) 2023; 9
Li, Wei, Yang (b0050) 2023; 208
Wang, Xuan, Zhen (b0060) 2020; 212
Biswas, Suganthan, Amaratunga (b0040) 2017; 148
Hanifi, Behtash, Cammarano (b0190) 2023; 218
Deventer, Jamei, Thirunavukkarasu (b0100) 2019; 140
Qu, Qian, Pei (b0285) 2021; 232
Halabi, Mekhilef, Hossain (b0075) 2018; 213
IRENA, 2024, https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024.
Nguyen, Bui, Doan (b0315) 2021; 199
Wang, Sun, Wang (b0215) 2018; 10
Behera, Majumder, Nayak (b0105) 2018; 21
Wang, Mao, Xie (b0110) 2023; 262
Samantaray, Sahoo (b0280) 2024; 26
Wang, Wang, Jiang (b0205) 2015; 143
Bai, Shi, Yue (b0225) 2023; 6
Qing, Niu (b0135) 2018; 148
Limouni, Yaagoubi, Bouziane (b0265) 2023; 205
Li, Zhang, Ma (b0180) 2021; 224
Liu, Mi, Li (b0210) 2018; 156
Wang, Yu, Zeng (b0025) 2024; 288
Li, Duan, Liang (b0230) 2020; 6
X. Yang, S. Wang, L. Meng, et al, Short-term photovoltaic power prediction with similar-day integrated by bp-adaboost based on the grey-markov model, Electric Power Systems Research, 215(Part A) (2023) 108966. https://doi.org/10.1016/j.epsr.2022.108966.
Wang, Ran, Song (b0155) 2017; 12
Husein, Gago, Hasan (b0005) 2024; 10
Paulescu, Blaga, Dughir (b0030) 2023; 279
Chen, Wang, Hodge (b0035) 2017; 8
Ge, Lu, Yuan (b0305) 2018; 39
Tang, Chen, Hou (b0245) 2016; 89
Neshat, Nezhad, Mirjalili (b0140) 2023; 278
Samantaray, Sahoo, Baliarsingh (b0295) 2024; 1
Wang, Qi, Liu (b0165) 2018; 165
Sabadus, Blaga, Hategan (b0010) 2024; 226
Monjoly, M. Andŕe, R. Calif (b0220) 2017; 119
Liu, Mi, Li (b0250) 2018; 123
VanDeventer, Jamei, Thirunavukkarasu (b0095) 2019; 140
S. Sobri S. Kamali R. Abd Solar photovoltaic generation forecasting methods: A review Energ. Conver. Manage. 459–497 156 (2018) (JAN) 10.1016/j.enconman.2017.11.019.
Zhu, Li, Sun (b0200) 2016; 9
M. Gao J. Li F. Hong et al. Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM[J] Energy 187 (2019) 115838.1-115838.12 10.1016/j.energy.2019.07.168.
Khan, Hussain, Baik (b0055) 2023; 338
Ahmed, Sreeram, Mishra (b0275) 2020; 124
Zhou, Zhou, Gong (b0175) 2020; 204
Li, Zhou, Lu (b0145) 2020; 259
Hochreiter, Schmidhuber (b0260) 1997; 9
Ayodele, Ogunjuyigbe, Amedu (b0170) 2019; 29
Wang, Qi, Liu (b0255) 2019; 189
S Asiedu, F Nyarko, S Boahen, et al, Machine learning forecasting of solar PV production using single and hybrid models over different time horizons, Heliyon, 10 (2024) 7, e28898, https://doi.org/10.1016/j.heliyon.2024.e28898 .
Liu, Liu, Kong (b0195) 2023; 271
Zang, Chen, Liu (b0160) 2024; 293
Miao, Ning, Gu (b0090) 2018; 186
Zhang, Liu (b0270) 2023; 235
Lin, Peng, Lai (b0240) 2018; 177
Onu, Silva, Souza (b0045) 2022; 198
F. Almonacid, C. Rus, P Higueras, et al, Calculation of the energy provided by a PV generator. Comparative study: conventional methods vs. artificial neural networks, Energy 36(1) (2011) 375-384. https://doi.org/10.1016/j.energy.2010.10.028.
Sahoo, Parida, Samantaray (b0300) 2024
Alshafeey, Csáki (b0080) 2021; 7
Yang (10.1016/j.jestch.2024.101889_b0115) 2020; 397
10.1016/j.jestch.2024.101889_b0015
Khan (10.1016/j.jestch.2024.101889_b0055) 2023; 338
Qu (10.1016/j.jestch.2024.101889_b0285) 2021; 232
Paulescu (10.1016/j.jestch.2024.101889_b0030) 2023; 279
10.1016/j.jestch.2024.101889_b0290
Ayodele (10.1016/j.jestch.2024.101889_b0170) 2019; 29
Li (10.1016/j.jestch.2024.101889_b0180) 2021; 224
Behera (10.1016/j.jestch.2024.101889_b0105) 2018; 21
Neshat (10.1016/j.jestch.2024.101889_b0140) 2023; 278
Wang (10.1016/j.jestch.2024.101889_b0255) 2019; 189
Wang (10.1016/j.jestch.2024.101889_b0155) 2017; 12
Samantaray (10.1016/j.jestch.2024.101889_b0280) 2024; 26
Wang (10.1016/j.jestch.2024.101889_b0310) 2022; 44
Zhou (10.1016/j.jestch.2024.101889_b0175) 2020; 204
Biswas (10.1016/j.jestch.2024.101889_b0040) 2017; 148
Zhu (10.1016/j.jestch.2024.101889_b0200) 2016; 9
Wang (10.1016/j.jestch.2024.101889_b0025) 2024; 288
Hochreiter (10.1016/j.jestch.2024.101889_b0260) 1997; 9
10.1016/j.jestch.2024.101889_b0125
Thaker (10.1016/j.jestch.2024.101889_b0020) 2024; 232
Bai (10.1016/j.jestch.2024.101889_b0225) 2023; 6
Li (10.1016/j.jestch.2024.101889_b0230) 2020; 6
10.1016/j.jestch.2024.101889_b0120
Tang (10.1016/j.jestch.2024.101889_b0245) 2016; 89
Li (10.1016/j.jestch.2024.101889_b0050) 2023; 208
Xia (10.1016/j.jestch.2024.101889_b0070) 2023; 135
VanDeventer (10.1016/j.jestch.2024.101889_b0095) 2019; 140
Wang (10.1016/j.jestch.2024.101889_b0130) 2019; 189
Wang (10.1016/j.jestch.2024.101889_b0205) 2015; 143
Nguyen (10.1016/j.jestch.2024.101889_b0315) 2021; 199
Qing (10.1016/j.jestch.2024.101889_b0135) 2018; 148
Sabadus (10.1016/j.jestch.2024.101889_b0010) 2024; 226
Limouni (10.1016/j.jestch.2024.101889_b0265) 2023; 205
Zhang (10.1016/j.jestch.2024.101889_b0270) 2023; 235
Liu (10.1016/j.jestch.2024.101889_b0195) 2023; 271
Li (10.1016/j.jestch.2024.101889_b0145) 2020; 259
Sahoo (10.1016/j.jestch.2024.101889_b0300) 2024
Liu (10.1016/j.jestch.2024.101889_b0210) 2018; 156
Wang (10.1016/j.jestch.2024.101889_b0215) 2018; 10
Monjoly (10.1016/j.jestch.2024.101889_b0220) 2017; 119
10.1016/j.jestch.2024.101889_b0150
Wang (10.1016/j.jestch.2024.101889_b0110) 2023; 262
Hanifi (10.1016/j.jestch.2024.101889_b0190) 2023; 218
Chen (10.1016/j.jestch.2024.101889_b0035) 2017; 8
Halabi (10.1016/j.jestch.2024.101889_b0075) 2018; 213
Onu (10.1016/j.jestch.2024.101889_b0045) 2022; 198
Zang (10.1016/j.jestch.2024.101889_b0160) 2024; 293
Ahmed (10.1016/j.jestch.2024.101889_b0275) 2020; 124
Miao (10.1016/j.jestch.2024.101889_b0090) 2018; 186
Samantaray (10.1016/j.jestch.2024.101889_b0295) 2024; 1
Husein (10.1016/j.jestch.2024.101889_b0005) 2024; 10
Rogier (10.1016/j.jestch.2024.101889_b0085) 2019; 151
Wang (10.1016/j.jestch.2024.101889_b0165) 2018; 165
10.1016/j.jestch.2024.101889_b0185
Liu (10.1016/j.jestch.2024.101889_b0250) 2018; 123
Wang (10.1016/j.jestch.2024.101889_b0060) 2020; 212
Deventer (10.1016/j.jestch.2024.101889_b0100) 2019; 140
Lin (10.1016/j.jestch.2024.101889_b0240) 2018; 177
Ge (10.1016/j.jestch.2024.101889_b0305) 2018; 39
Liu (10.1016/j.jestch.2024.101889_b0235) 2023; 9
Ma (10.1016/j.jestch.2024.101889_b0065) 2021; 7
Alshafeey (10.1016/j.jestch.2024.101889_b0080) 2021; 7
References_xml – volume: 39
  start-page: 775
  year: 2018
  end-page: 782
  ident: b0305
  article-title: Power prediction of photovoltaic power plants based on improved similar day and ABC-SVM[J]
  publication-title: Journal of Solar Energy
– volume: 7
  start-page: 5495
  year: 2021
  end-page: 5509
  ident: b0065
  article-title: Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting
  publication-title: Energy Rep.
– volume: 235
  start-page: 280
  year: 2023
  end-page: 301
  ident: b0270
  article-title: Model averaging prediction by K-fold cross-validation
  publication-title: J Journal of Econometrics
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0260
  article-title: Long Short-Term Memory. J
  publication-title: Neural Comput.
– volume: 123
  start-page: 694
  year: 2018
  end-page: 705
  ident: b0250
  article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm
  publication-title: Renew. Energy
– volume: 148
  start-page: 1194
  year: 2017
  end-page: 1207
  ident: b0040
  article-title: Optimal power flow solutions incorporating stochastic wind and solar power
  publication-title: Energ. Conver. Manage.
– volume: 232
  year: 2021
  ident: b0285
  article-title: Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern [J]
  publication-title: Energy
– volume: 1
  year: 2024
  ident: b0295
  article-title: Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm [J]
  publication-title: Cleaner Water
– volume: 279
  year: 2023
  ident: b0030
  article-title: Intra-hour PV power forecasting based on sky imagery
  publication-title: Energy
– volume: 151
  start-page: 643
  year: 2019
  end-page: 650
  ident: b0085
  article-title: Forecasting Photovoltaic Power Generation via an IoT Network Using Nonlinear Autoregressive Neural Network
  publication-title: Procedia Comput. Sci.
– volume: 8
  start-page: 2903
  year: 2017
  end-page: 2915
  ident: b0035
  article-title: Dynamic price vector formation model-based automatic demand response strategy for PV-assisted EV charging stations
  publication-title: IEEE Trans. Smart Grid
– volume: 199
  year: 2021
  ident: b0315
  article-title: A new method for forecasting energy output of a large-scale solar power plant based on long short-term memory networks a case study in Vietnam
  publication-title: Electr. Pow. Syst. Res.
– volume: 224
  year: 2021
  ident: b0180
  article-title: A multi-step ahead photovoltaic power prediction model based on similar-day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine
  publication-title: Energy
– volume: 29
  start-page: 78
  year: 2019
  end-page: 93
  ident: b0170
  article-title: Prediction of global solar irradiation using hybridized k-means and support vector regression algorithms
  publication-title: Renewable Energy Focus
– volume: 6
  start-page: 184
  year: 2023
  end-page: 196
  ident: b0225
  article-title: Hybrid model based on K-means++ algorithm, optimal similar day approach, and long short-term memory neural network for short-term photovoltaic power prediction[J]
  publication-title: Global Energy Interconnect.
– volume: 10
  year: 2024
  ident: b0005
  article-title: Towards energy efficiency: A comprehensive review of deep learning-based photovoltaic power forecasting strategies
  publication-title: Heliyon
– volume: 226
  year: 2024
  ident: b0010
  article-title: A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches
  publication-title: Renew. Energy
– volume: 205
  start-page: 1010
  year: 2023
  end-page: 1024
  ident: b0265
  article-title: Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model
  publication-title: Renew. Energy
– volume: 156
  start-page: 498
  year: 2018
  end-page: 514
  ident: b0210
  article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short-term memory neural network and Elman neural network
  publication-title: Energy Convers. Manag.
– volume: 89
  start-page: 243
  year: 2016
  end-page: 248
  ident: b0245
  article-title: Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting
  publication-title: Chaos Solitons Fractals
– reference: S. Sobri S. Kamali R. Abd Solar photovoltaic generation forecasting methods: A review Energ. Conver. Manage. 459–497 156 (2018) (JAN) 10.1016/j.enconman.2017.11.019.
– volume: 208
  year: 2023
  ident: b0050
  article-title: Decomposition integration and error correction method for photovoltaic power forecasting
  publication-title: Measurement
– volume: 186
  start-page: 905
  year: 2018
  end-page: 917
  ident: b0090
  article-title: Markov chain model for solar farm generation and its application to generation performance evaluation
  publication-title: J. Clean. Prod.
– volume: 6
  start-page: 2345
  year: 2020
  end-page: 2357
  ident: b0230
  article-title: Outlier data mining method considering the output distribution characteristics for photovoltaic arrays and its application
  publication-title: Energy Rep.
– volume: 21
  start-page: 428
  year: 2018
  end-page: 438
  ident: b0105
  article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique
  publication-title: Engineering Science and Technology, an International Journal
– reference: IRENA, 2024, https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024.
– volume: 9
  start-page: 11
  year: 2016
  ident: b0200
  article-title: A power prediction method for photovoltaic power plant based on wavelet decomposition and artificial neural networks
  publication-title: Energies
– volume: 189
  year: 2019
  ident: b0130
  article-title: Photovoltaic power forecasting based LSTM-Convolutional Network
  publication-title: Energy
– volume: 165
  start-page: 840
  year: 2018
  end-page: 852
  ident: b0165
  article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting
  publication-title: Energy
– volume: 10
  start-page: 2627
  year: 2018
  ident: b0215
  article-title: Photovoltaic power forecasting based on EEMD and a variable-weight combination forecasting model [J]
  publication-title: Sustainability
– volume: 12
  start-page: 64
  year: 2017
  end-page: 71
  ident: b0155
  article-title: Short-term photovoltaic power generation forecasting based on environmental factors and GA-SVM, Journal of Electrical
  publication-title: Eng. Technol.
– volume: 204
  year: 2020
  ident: b0175
  article-title: Prediction of photovoltaic power output based on similar-day analysis, genetic algorithm and extreme learning machine
  publication-title: Energy
– volume: 44
  start-page: 208
  year: 2022
  end-page: 214
  ident: b0310
  article-title: Short-term power prediction of photovoltaic power plants based on the principle of similar days and CPSO Elman model [J]
  publication-title: Energy and Environmental Protection
– volume: 213
  start-page: 247
  year: 2018
  end-page: 261
  ident: b0075
  article-title: Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation
  publication-title: Appl Energy
– volume: 218
  year: 2023
  ident: b0190
  article-title: Offshore wind power forecasting based on WPD and optimised deep learning methods
  publication-title: Renew. Energy
– volume: 198
  start-page: 1021
  year: 2022
  end-page: 1031
  ident: b0045
  article-title: Integrated design of photovoltaic power generation plant with pumped hydro storage system and irrigation facility at the Uhuelem-Amoncha African community
  publication-title: Renew. Energy
– volume: 7
  start-page: 7601
  year: 2021
  end-page: 7614
  ident: b0080
  article-title: Evaluating neural network and linear regression photovoltaic power forecasting models based on different input methods
  publication-title: Energy Rep.
– volume: 124
  year: 2020
  ident: b0275
  article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization
  publication-title: Renew. Sustain. Energy Rev.
– reference: S Asiedu, F Nyarko, S Boahen, et al, Machine learning forecasting of solar PV production using single and hybrid models over different time horizons, Heliyon, 10 (2024) 7, e28898, https://doi.org/10.1016/j.heliyon.2024.e28898 .
– volume: 232
  year: 2024
  ident: b0020
  article-title: Hybrid model for intra-day probabilistic PV power forecast
  publication-title: Renew. Energy
– volume: 119
  start-page: 288
  year: 2017
  end-page: 298
  ident: b0220
  article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods: a hybrid approach
  publication-title: Energy
– volume: 278
  year: 2023
  ident: b0140
  article-title: Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy
  publication-title: Energy
– volume: 9
  start-page: 716
  year: 2023
  end-page: 726
  ident: b0235
  article-title: Optimization design of short-circuit test platform for the distribution network of integrated power system based on improved K-means clustering
  publication-title: Energy Rep.
– reference: X. Yang, S. Wang, L. Meng, et al, Short-term photovoltaic power prediction with similar-day integrated by bp-adaboost based on the grey-markov model, Electric Power Systems Research, 215(Part A) (2023) 108966. https://doi.org/10.1016/j.epsr.2022.108966.
– reference: M. Gao J. Li F. Hong et al. Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM[J] Energy 187 (2019) 115838.1-115838.12 10.1016/j.energy.2019.07.168.
– volume: 397
  start-page: 415
  year: 2020
  end-page: 421
  ident: b0115
  article-title: A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting
  publication-title: Neurocomputing
– volume: 212
  year: 2020
  ident: b0060
  article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework
  publication-title: Energ. Conver. Manage.
– volume: 189
  year: 2019
  ident: b0255
  article-title: Photovoltaic power forecasting based LSTM-Convolutional Network[J]
  publication-title: Energy
– volume: 148
  start-page: 461
  year: 2018
  end-page: 468
  ident: b0135
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
– volume: 26
  year: 2024
  ident: b0280
  article-title: Groundwater level prediction using an improved ELM model integrated with hybrid particle swarm optimisation and grey wolf optimization [J]
  publication-title: Groundw. Sustain. Dev.
– volume: 140
  start-page: 367
  year: 2019
  end-page: 379
  ident: b0100
  article-title: Short-term PV power forecasting using hybrid GASVM technique
  publication-title: Renew. Energy
– reference: F. Almonacid, C. Rus, P Higueras, et al, Calculation of the energy provided by a PV generator. Comparative study: conventional methods vs. artificial neural networks, Energy 36(1) (2011) 375-384. https://doi.org/10.1016/j.energy.2010.10.028.
– volume: 143
  start-page: 472
  year: 2015
  end-page: 488
  ident: b0205
  article-title: The study and application of a novel hybrid forecasting model-A case study of wind speed forecasting in China
  publication-title: Appl Energy
– volume: 271
  year: 2023
  ident: b0195
  article-title: Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis
  publication-title: Energy
– start-page: 272
  year: 2024
  end-page: 284
  ident: b0300
  article-title: Daily flow discharge prediction using integrated methodology based on LSTM models: Case study in Brahmani-Baitarani basin
  publication-title: HydroResearch,7
– volume: 288
  year: 2024
  ident: b0025
  article-title: Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis
  publication-title: Energy
– volume: 135
  year: 2023
  ident: b0070
  article-title: Short-term PV power forecasting based on time series expansion and high-order fuzzy cognitive maps
  publication-title: Appl. Soft Comput.
– volume: 177
  start-page: 704
  year: 2018
  end-page: 717
  ident: b0240
  article-title: Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets
  publication-title: Energ. Conver. Manage.
– volume: 140
  start-page: 367
  year: 2019
  end-page: 379
  ident: b0095
  article-title: Short-term PV power forecasting using hybrid GASVM technique[J]
  publication-title: Renew. Energy
– volume: 259
  year: 2020
  ident: b0145
  article-title: A hybrid deep learning model for short-term PV power forecasting
  publication-title: Appl. Energy
– volume: 293
  year: 2024
  ident: b0160
  article-title: Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction
  publication-title: Energy
– volume: 262
  year: 2023
  ident: b0110
  article-title: Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model
  publication-title: Energy
– volume: 338
  year: 2023
  ident: b0055
  article-title: Dual stream network with attention mechanism for photovoltaic power forecasting
  publication-title: Appl. Energy
– volume: 212
  year: 2020
  ident: 10.1016/j.jestch.2024.101889_b0060
  article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2020.112766
– volume: 293
  year: 2024
  ident: 10.1016/j.jestch.2024.101889_b0160
  article-title: Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130538
– volume: 6
  start-page: 2345
  year: 2020
  ident: 10.1016/j.jestch.2024.101889_b0230
  article-title: Outlier data mining method considering the output distribution characteristics for photovoltaic arrays and its application
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.08.034
– volume: 89
  start-page: 243
  year: 2016
  ident: 10.1016/j.jestch.2024.101889_b0245
  article-title: Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2015.11.008
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.jestch.2024.101889_b0260
  article-title: Long Short-Term Memory. J
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 1
  year: 2024
  ident: 10.1016/j.jestch.2024.101889_b0295
  article-title: Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm [J]
  publication-title: Cleaner Water
  doi: 10.1016/j.clwat.2024.100003
– volume: 26
  year: 2024
  ident: 10.1016/j.jestch.2024.101889_b0280
  article-title: Groundwater level prediction using an improved ELM model integrated with hybrid particle swarm optimisation and grey wolf optimization [J]
  publication-title: Groundw. Sustain. Dev.
  doi: 10.1016/j.gsd.2024.101178
– volume: 186
  start-page: 905
  year: 2018
  ident: 10.1016/j.jestch.2024.101889_b0090
  article-title: Markov chain model for solar farm generation and its application to generation performance evaluation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.03.173
– volume: 29
  start-page: 78
  issue: JUN
  year: 2019
  ident: 10.1016/j.jestch.2024.101889_b0170
  article-title: Prediction of global solar irradiation using hybridized k-means and support vector regression algorithms
  publication-title: Renewable Energy Focus
  doi: 10.1016/j.ref.2019.03.003
– volume: 262
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0110
  article-title: Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125592
– volume: 338
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0055
  article-title: Dual stream network with attention mechanism for photovoltaic power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.120916
– volume: 279
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0030
  article-title: Intra-hour PV power forecasting based on sky imagery
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128135
– volume: 198
  start-page: 1021
  year: 2022
  ident: 10.1016/j.jestch.2024.101889_b0045
  article-title: Integrated design of photovoltaic power generation plant with pumped hydro storage system and irrigation facility at the Uhuelem-Amoncha African community
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.08.059
– volume: 124
  year: 2020
  ident: 10.1016/j.jestch.2024.101889_b0275
  article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.109792
– volume: 226
  year: 2024
  ident: 10.1016/j.jestch.2024.101889_b0010
  article-title: A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.120385
– volume: 177
  start-page: 704
  year: 2018
  ident: 10.1016/j.jestch.2024.101889_b0240
  article-title: Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2018.10.015
– volume: 39
  start-page: 775
  issue: 03
  year: 2018
  ident: 10.1016/j.jestch.2024.101889_b0305
  article-title: Power prediction of photovoltaic power plants based on improved similar day and ABC-SVM[J]
  publication-title: Journal of Solar Energy
– volume: 8
  start-page: 2903
  issue: 6
  year: 2017
  ident: 10.1016/j.jestch.2024.101889_b0035
  article-title: Dynamic price vector formation model-based automatic demand response strategy for PV-assisted EV charging stations
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2693121
– volume: 9
  start-page: 716
  issue: 8
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0235
  article-title: Optimization design of short-circuit test platform for the distribution network of integrated power system based on improved K-means clustering
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.04.319
– volume: 148
  start-page: 461
  year: 2018
  ident: 10.1016/j.jestch.2024.101889_b0135
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.177
– volume: 6
  start-page: 184
  issue: 2
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0225
  article-title: Hybrid model based on K-means++ algorithm, optimal similar day approach, and long short-term memory neural network for short-term photovoltaic power prediction[J]
  publication-title: Global Energy Interconnect.
  doi: 10.1016/j.gloei.2023.04.006
– volume: 151
  start-page: 643
  year: 2019
  ident: 10.1016/j.jestch.2024.101889_b0085
  article-title: Forecasting Photovoltaic Power Generation via an IoT Network Using Nonlinear Autoregressive Neural Network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.04.086
– volume: 156
  start-page: 498
  year: 2018
  ident: 10.1016/j.jestch.2024.101889_b0210
  article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short-term memory neural network and Elman neural network
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.11.053
– volume: 140
  start-page: 367
  year: 2019
  ident: 10.1016/j.jestch.2024.101889_b0100
  article-title: Short-term PV power forecasting using hybrid GASVM technique
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.02.087
– volume: 189
  year: 2019
  ident: 10.1016/j.jestch.2024.101889_b0130
  article-title: Photovoltaic power forecasting based LSTM-Convolutional Network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116225
– volume: 12
  start-page: 64
  year: 2017
  ident: 10.1016/j.jestch.2024.101889_b0155
  article-title: Short-term photovoltaic power generation forecasting based on environmental factors and GA-SVM, Journal of Electrical
  publication-title: Eng. Technol.
– volume: 218
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0190
  article-title: Offshore wind power forecasting based on WPD and optimised deep learning methods
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.119241
– volume: 224
  year: 2021
  ident: 10.1016/j.jestch.2024.101889_b0180
  article-title: A multi-step ahead photovoltaic power prediction model based on similar-day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120094
– volume: 259
  year: 2020
  ident: 10.1016/j.jestch.2024.101889_b0145
  article-title: A hybrid deep learning model for short-term PV power forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.114216
– ident: 10.1016/j.jestch.2024.101889_b0150
  doi: 10.1016/j.heliyon.2024.e28898
– volume: 204
  year: 2020
  ident: 10.1016/j.jestch.2024.101889_b0175
  article-title: Prediction of photovoltaic power output based on similar-day analysis, genetic algorithm and extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117894
– volume: 140
  start-page: 367
  year: 2019
  ident: 10.1016/j.jestch.2024.101889_b0095
  article-title: Short-term PV power forecasting using hybrid GASVM technique[J]
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.02.087
– volume: 213
  start-page: 247
  year: 2018
  ident: 10.1016/j.jestch.2024.101889_b0075
  article-title: Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.01.035
– ident: 10.1016/j.jestch.2024.101889_b0125
  doi: 10.1016/j.energy.2010.10.028
– volume: 208
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0050
  article-title: Decomposition integration and error correction method for photovoltaic power forecasting
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.112462
– volume: 205
  start-page: 1010
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0265
  article-title: Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.01.118
– volume: 9
  start-page: 11
  issue: 1
  year: 2016
  ident: 10.1016/j.jestch.2024.101889_b0200
  article-title: A power prediction method for photovoltaic power plant based on wavelet decomposition and artificial neural networks
  publication-title: Energies
  doi: 10.3390/en9010011
– volume: 123
  start-page: 694
  year: 2018
  ident: 10.1016/j.jestch.2024.101889_b0250
  article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.02.092
– volume: 235
  start-page: 280
  issue: Issue 1
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0270
  article-title: Model averaging prediction by K-fold cross-validation
  publication-title: J Journal of Econometrics
  doi: 10.1016/j.jeconom.2022.04.007
– volume: 21
  start-page: 428
  issue: 3
  year: 2018
  ident: 10.1016/j.jestch.2024.101889_b0105
  article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2018.04.013
– volume: 397
  start-page: 415
  year: 2020
  ident: 10.1016/j.jestch.2024.101889_b0115
  article-title: A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.09.110
– ident: 10.1016/j.jestch.2024.101889_b0015
– volume: 10
  start-page: 2627
  issue: 8
  year: 2018
  ident: 10.1016/j.jestch.2024.101889_b0215
  article-title: Photovoltaic power forecasting based on EEMD and a variable-weight combination forecasting model [J]
  publication-title: Sustainability
  doi: 10.3390/su10082627
– volume: 189
  year: 2019
  ident: 10.1016/j.jestch.2024.101889_b0255
  article-title: Photovoltaic power forecasting based LSTM-Convolutional Network[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116225
– volume: 278
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0140
  article-title: Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127701
– volume: 271
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0195
  article-title: Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2023.126963
– volume: 143
  start-page: 472
  year: 2015
  ident: 10.1016/j.jestch.2024.101889_b0205
  article-title: The study and application of a novel hybrid forecasting model-A case study of wind speed forecasting in China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.01.038
– volume: 232
  year: 2024
  ident: 10.1016/j.jestch.2024.101889_b0020
  article-title: Hybrid model for intra-day probabilistic PV power forecast
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.121057
– volume: 7
  start-page: 5495
  year: 2021
  ident: 10.1016/j.jestch.2024.101889_b0065
  article-title: Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.08.167
– volume: 199
  year: 2021
  ident: 10.1016/j.jestch.2024.101889_b0315
  article-title: A new method for forecasting energy output of a large-scale solar power plant based on long short-term memory networks a case study in Vietnam
  publication-title: Electr. Pow. Syst. Res.
  doi: 10.1016/j.epsr.2021.107427
– volume: 7
  start-page: 7601
  year: 2021
  ident: 10.1016/j.jestch.2024.101889_b0080
  article-title: Evaluating neural network and linear regression photovoltaic power forecasting models based on different input methods
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.10.125
– ident: 10.1016/j.jestch.2024.101889_b0120
  doi: 10.1016/j.enconman.2017.11.019
– start-page: 272
  year: 2024
  ident: 10.1016/j.jestch.2024.101889_b0300
  article-title: Daily flow discharge prediction using integrated methodology based on LSTM models: Case study in Brahmani-Baitarani basin
  publication-title: HydroResearch,7
  doi: 10.1016/j.hydres.2024.04.006
– ident: 10.1016/j.jestch.2024.101889_b0290
  doi: 10.1016/j.energy.2019.07.168
– volume: 148
  start-page: 1194
  year: 2017
  ident: 10.1016/j.jestch.2024.101889_b0040
  article-title: Optimal power flow solutions incorporating stochastic wind and solar power
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2017.06.071
– volume: 119
  start-page: 288
  year: 2017
  ident: 10.1016/j.jestch.2024.101889_b0220
  article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods: a hybrid approach
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.061
– ident: 10.1016/j.jestch.2024.101889_b0185
  doi: 10.1016/j.epsr.2022.108966
– volume: 288
  year: 2024
  ident: 10.1016/j.jestch.2024.101889_b0025
  article-title: Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2023.129898
– volume: 165
  start-page: 840
  year: 2018
  ident: 10.1016/j.jestch.2024.101889_b0165
  article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.118
– volume: 10
  issue: 13
  year: 2024
  ident: 10.1016/j.jestch.2024.101889_b0005
  article-title: Towards energy efficiency: A comprehensive review of deep learning-based photovoltaic power forecasting strategies
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e33419
– volume: 135
  year: 2023
  ident: 10.1016/j.jestch.2024.101889_b0070
  article-title: Short-term PV power forecasting based on time series expansion and high-order fuzzy cognitive maps
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110037
– volume: 232
  year: 2021
  ident: 10.1016/j.jestch.2024.101889_b0285
  article-title: Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern [J]
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120996
– volume: 44
  start-page: 208
  issue: 02
  year: 2022
  ident: 10.1016/j.jestch.2024.101889_b0310
  article-title: Short-term power prediction of photovoltaic power plants based on the principle of similar days and CPSO Elman model [J]
  publication-title: Energy and Environmental Protection
SSID ssj0001921156
Score 2.3079002
Snippet Precisely forecasting output of solar photovoltaics is crucial for (i) effective solar power management, (ii) integration into the electrical grid, (iii)...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 101889
SubjectTerms Hybrid model
Improved similar day method
LSTM neural network
PV power forecasting
Wavelet packet decomposition
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqXigHxKMVy6OaA1dDHt6sc4Q-WCGKkGjV3qJxbLe7LNkVTVXl3_BTmbGzq3DaHjhFcuzE8kxmvnHG8wnxzqiSIJsyUmu0UmlXMpG7kwrzFCnY9lrxAeezb8X0Qn25Gl8NqL44JyyWB44L92GMORLE8JiYVBmcGCQfyV7Ro_fj3LD1TXQ5CKbmEbcQ1CnWZ-VCQteczGz4_5ApbtLM7D7wRaFk_z8u6dFds8LuHheLgcs5fSqe9FgRPsY5PhM7rnkuHg8qCL4Qf46xk0gG1cLqZtkuydhQrF_DisnP4DrUlOalB8KmrsZbTnIG3nsFAn4wvfx8JC-_H8uvP87P4Kbj01sQuHGAMDUrgAXTwT0yO0ULFF7_pIt1nIfeJ3sBNhZmYWeCOt_Ofs0oVAaLHURu6n1xcXpyfjSVPemCrFWqW-ldluflOEFTZ9agmpQWHeaMi5y1xnFyWj1RRa08ZjrR3mapo6AkwbT02vr8QOw2y8a9FKC0LbJalXTfK9IHTWjUZp5GOizKwo5Evl7-qu4rkjMxxqJap57Nqyi0ioVWRaGNhNyMWsWKHFv6f2LJbvpyPe3QQFpW9VpWbdOykZis9aLqoUmEHPSo2ZbXv9-o0YPm--p_zPe12MuYqDjsFb0Ru-3vO_eW0FNrDsOH8hd2Ixw3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaKXrYdhj2x7AUedtXih5LIxzVdlw3rMKAtmptBWVLrNnOM1kXhf7OfOlK2s_TUYScDsmQLIk19lEl-QnwwKiPIpozUGq1U2mVM5O6kwjRGcra9VpzgfPhjujhR35aT5Y6YD7kwHFbZ2_7Opgdr3beM-9Uc12U5Pkpot4oyTnBg3yqkUadKM33D1-Xe33OWjFycQOLK_SUPGDLoQpjXBRnf8FciUdykme99a4cKhfzvbFQPbqoa21tcrbY2ooMn4nGPIOFTN8mnYsdVz8SjrbqCz8XvfWwlkpm1UJ-vmzWZoAbLAmqmRIOzUGmaBQKEWF2B1xz6DHwiCwQHYXH6ZS5Pf-7L70fHh3Deck4XBMYcIKTNamHBtHCLzFnRADndl3SxjqPT-xAwwMpCGc4rqPN1-askBxosttAxVr8QJwefj-cL2VMxyELFupHeJWmaTSI0RWINqllm0WHKaMlZaxyHrBUzNS2Ux0RH2tskduSqRBhnXlufvhS71bpyrwQobadJoTK67xVpiSaMahNPIx1Os6kdiXRY_rzo65QzXcYqHwLSLvJOaDkLLe-ENhJyM6ru6nTc03-PJbvpy1W2Q8P66izv1SyfYIoEbz1GJlYGZwYJnzEi8-j9JDUjMRv0Ir-jtPSo8p7Xf9yo0T_N9_V_v-qNeJgwZ3E4NnordpurG_eOgFRj3ocv5Q_njh6D
  priority: 102
  providerName: Elsevier
Title Day-ahead photovoltaic power generation forecasting with the HWGC-WPD-LSTM hybrid model assisted by wavelet packet decomposition and improved similar day method
URI https://dx.doi.org/10.1016/j.jestch.2024.101889
https://doi.org/10.1016/j.jestch.2024.101889
https://doaj.org/article/5a3a326fa0b14ba7ba6631028faff53b
UnpaywallVersion publishedVersion
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2215-0986
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001921156
  issn: 2215-0986
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2215-0986
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001921156
  issn: 2215-0986
  databaseCode: KQ8
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2215-0986
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001921156
  issn: 2215-0986
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 2215-0986
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001921156
  issn: 2215-0986
  databaseCode: IXB
  dateStart: 20140301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2215-0986
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001921156
  issn: 2215-0986
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocqh6aOlLXUSRDz3WqzycrHPkUViqLkIqK7anaBzbENhmVyUrlP6a_tTO5LFiKyHoJZEST2LZY_sbe2Y-xj5pmSBkk1ooBUZIZRMicrdCQugDGttOSQpwHp_Go4n8Oo2mG-xzFwuzdn5f-2Fd4-xYHxsEkh4plTxjm3GEyLvHNienZ3s_iD8OVy7hJSruouMeEF1bfeok_WuL0PNlsYDqDmaze4vM0Ss27qrX-JbcDJalHmS__8nc-NT6b7GXLdrke416vGYbtnjDXtzLQfiW_TmESgBOyYYvrublHKerEvKML4g-jV_WWamp8ziiW5vBLblJc9q95Qgd-eji-EBcnB2Kb9_Px_yqovgvXrPrcETlpEKG64rfAfFblBwN9Bu8GUue7K27GIfC8Lze28DCt_nPHI1tbqDiDbv1OzY5-nJ-MBItbYPIpK9K4WwQhknkgc4Co0EOEwMWQkJW1hhtyb0tG8o4kw4C5SlnAt-iWeOBnzhlXPie9Yp5YT8wLpWJg0wm-N5J1CiFeNYEDiUtxEls-izsujPN2pzmRK0xSzvnteu0af-U2j9t2r_PxEpq0eT0eKT8PmnKqixl5K4fYEen7QBPIwgBobADT_tSw1ADYjlCbw6ci0LdZ8NOz9IW3DSgBT-VP_L7wUotn1Tf7f8V2GG98tfSfkR4VerdelsCryfT_d12hP0FXXEoqg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7tDtMOyJZU8ddtXi2LIjH9d0XbYlxYCmaG4GZUmt28wxWheF_81-6kjZztJTh50MyJItiDT1USb5MfZRyxQhm9RCKTBCKpsSkbsVEqIRoLPtlKQE5_lRMj2R35fxcodN-lwYCqvsbH9r07217lqG3WoOq6IYHoe4WwUpJTiQb0Vp1A9kjOiEsviW-38PWlL0cTyLKw0QNKJPofNxXhdoff1viVBSkyLC960tylfyv7NT7d2UFTS3sFpt7USHT9jjDkLyz-0sn7IdWz5jj7YKCz5nvw-gEYB21vDqfF2v0QbVUOS8Ik40fuZLTZNEOEJWm8M1xT5zOpLliAf59PTrRJz-PBCz48WcnzeU1MU9ZQ5HqE16Ybhu-C0QaUXN0eu-xIuxFJ7exYBxKA0v_IEFdr4ufhXoQXMDDW8pq1-wk8Mvi8lUdFwMIpcjVQtnwyhK4wB0HhoNcpwasBARXLLGaEsxa_lYJrl0EKpAOROOLPoqAYxSp4yLXrLdcl3aV4xLZZIwlynedxLVRCFINaHDkRaSNDEDFvXLn-VdoXLiy1hlfUTaRdYKLSOhZa3QBkxsRlVtoY57-u-TZDd9qcy2b1hfnWWdnmUxRID41kGgR1LDWAMCNIJkDpyLIz1g414vsjtai48q7nn9p40a_dN8X__3qz6wveliPstm345-vGEPQyIw9mdIb9lufXVj3yGqqvV7_9X8AVyaIak
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG94B44BtRBOgeeMRVmjip8zg2RoXoNIlVG0_RObZZtpJWLNUU_hr-VO7yUa1IaOMpkuNLLPts_86-u58Q74xKCbIpI7VGK5V2KRO5O6kwGiMZ214rDnCeHSXTufp8Fp_tiPd9LMzW_X3jh3VBq2NzbRAqLtI6vSd2k5iQ90Dszo-O974xfxztXDJIddJHx_1DdGv3aZL0b21C99flCutrXCxubDKHj8Ssb17rW3I5WldmlP_6K3PjXdv_WDzs0CbsterxROy48ql4cCMH4TPx-wBribQkW1idL6slLVcVFjmsmD4NvjdZqXnwgNCty_GK3aSBT2-BoCNMTz_ty9PjA_nl68kMzmuO_4KGXQcIlbMKWTA1XCPzW1RABvolPaxjT_bOXQywtFA0ZxtU-ar4UZCxDRZraNmtn4v54ceT_ansaBtkrsa6kt6FUZTGAZo8tAbVJLXoMGJk5aw1jt3b8olKcuUx1IH2Nhw7MmsCHKdeWx-9EINyWbqXApS2SZirlN57RRqlCc_a0JOkwyRN7FBE_XBmeZfTnKk1FlnvvHaRtf2fcf9nbf8PhdxIrdqcHrfU_8CasqnLGbmbAhrorJvgWYwREhT2GJixMjgxSFiO0ZtH7-PIDMWk17OsAzctaKFPFbf8frRRyzu199X_CrwWg-rn2r0heFWZt92s-gOGySax
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Day-ahead+photovoltaic+power+generation+forecasting+with+the+HWGC-WPD-LSTM+hybrid+model+assisted+by+wavelet+packet+decomposition+and+improved+similar+day+method&rft.jtitle=Engineering+science+and+technology%2C+an+international+journal&rft.au=Bai%2C+Ruxue&rft.au=Li%2C+Jinsong&rft.au=Liu%2C+Jinsong&rft.au=Shi%2C+Yuetao&rft.date=2025-01-01&rft.pub=Elsevier+B.V&rft.issn=2215-0986&rft.eissn=2215-0986&rft.volume=61&rft_id=info:doi/10.1016%2Fj.jestch.2024.101889&rft.externalDocID=S2215098624002751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0986&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0986&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0986&client=summon