Day-ahead photovoltaic power generation forecasting with the HWGC-WPD-LSTM hybrid model assisted by wavelet packet decomposition and improved similar day method
Precisely forecasting output of solar photovoltaics is crucial for (i) effective solar power management, (ii) integration into the electrical grid, (iii) flexible allocation of power resources. While deep learning algorithms have shown promise in energy applications, single algorithms often struggle...
Saved in:
| Published in | Engineering science and technology, an international journal Vol. 61; p. 101889 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.01.2025
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2215-0986 2215-0986 |
| DOI | 10.1016/j.jestch.2024.101889 |
Cover
| Abstract | Precisely forecasting output of solar photovoltaics is crucial for (i) effective solar power management, (ii) integration into the electrical grid, (iii) flexible allocation of power resources. While deep learning algorithms have shown promise in energy applications, single algorithms often struggle with unstable predictions and limited generalizability for predicting photovoltaic (PV) output. This study introduces an innovative hybrid model (HWGC-WPD-LSTM) that integrates an improved similar day algorithm (WGC: weighted grey correlation analysis and cosine similarity), Wavelet Packet Decomposition (WPD), and Long Short-Term Memory neural network (LSTM) for predicting day-ahead power output. The model suggests an approach to identifying similar days by integrating weighted GRA with cosine similarity. It then decomposes power sequences employing WPD to capture various frequency characteristics. Four independent LSTM networks are then applied to these sub-sequences to forecast output, which are then reconstructed to derive the ultimate forecast outcome for solar photovoltaics. The evaluation of the hybrid model is conducted based on data gathered from actual generating station in Shandong Province, China. Then it is compared against other models utilizing similar day selection methods and other hybrid HWGC-BP, HWGC-Elman, HWGC-SVM, HWGC-RF, and HWGC-LSTM models. This comparison is based on four performance metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), normalized Root Mean Square Error (NRMSE), and Mean Absolute Deviation (MAD). Results demonstrate that the HWGC-WPD-LSTM model offers enhanced precision and stability (MAE = 0.2168 MW, RMSE = 0.2996 MW, NRMSE = 6.78 %, MAD = 2.18 %) in day-ahead power generation predictions. This highlights the potency of the hybrid model in enhancing the forecasting capabilities for solar photovoltaics, which is crucial for the strategic enhancement of renewable energy resource exploitation in the context of modern power systems. |
|---|---|
| AbstractList | Precisely forecasting output of solar photovoltaics is crucial for (i) effective solar power management, (ii) integration into the electrical grid, (iii) flexible allocation of power resources. While deep learning algorithms have shown promise in energy applications, single algorithms often struggle with unstable predictions and limited generalizability for predicting photovoltaic (PV) output. This study introduces an innovative hybrid model (HWGC-WPD-LSTM) that integrates an improved similar day algorithm (WGC: weighted grey correlation analysis and cosine similarity), Wavelet Packet Decomposition (WPD), and Long Short-Term Memory neural network (LSTM) for predicting day-ahead power output. The model suggests an approach to identifying similar days by integrating weighted GRA with cosine similarity. It then decomposes power sequences employing WPD to capture various frequency characteristics. Four independent LSTM networks are then applied to these sub-sequences to forecast output, which are then reconstructed to derive the ultimate forecast outcome for solar photovoltaics. The evaluation of the hybrid model is conducted based on data gathered from actual generating station in Shandong Province, China. Then it is compared against other models utilizing similar day selection methods and other hybrid HWGC-BP, HWGC-Elman, HWGC-SVM, HWGC-RF, and HWGC-LSTM models. This comparison is based on four performance metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), normalized Root Mean Square Error (NRMSE), and Mean Absolute Deviation (MAD). Results demonstrate that the HWGC-WPD-LSTM model offers enhanced precision and stability (MAE = 0.2168 MW, RMSE = 0.2996 MW, NRMSE = 6.78 %, MAD = 2.18 %) in day-ahead power generation predictions. This highlights the potency of the hybrid model in enhancing the forecasting capabilities for solar photovoltaics, which is crucial for the strategic enhancement of renewable energy resource exploitation in the context of modern power systems. |
| ArticleNumber | 101889 |
| Author | He, Suoying Li, Jinsong Wei, Wei Liu, Jinsong Shi, Yuetao Bai, Ruxue |
| Author_xml | – sequence: 1 givenname: Ruxue surname: Bai fullname: Bai, Ruxue organization: Changji University, Changji 831100, Xinjiang, China – sequence: 2 givenname: Jinsong surname: Li fullname: Li, Jinsong organization: Changji University, Changji 831100, Xinjiang, China – sequence: 3 givenname: Jinsong surname: Liu fullname: Liu, Jinsong organization: Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China – sequence: 4 givenname: Yuetao surname: Shi fullname: Shi, Yuetao email: shieddie@sdu.edu.cn organization: Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China – sequence: 5 givenname: Suoying orcidid: 0009-0006-1614-4414 surname: He fullname: He, Suoying organization: Shandong Engineering Laboratory for High-efficiency Energy Conservation and Energy Storage Technology & Equipment, School of Energy and Power Engineering, Shandong University, Jinan 250061, Shandong, China – sequence: 6 givenname: Wei surname: Wei fullname: Wei, Wei organization: Qilu University of Technology, School of Energy and Power Engineering, Jinan 250012, Shandong, China |
| BookMark | eNqNkd2K1DAUgIus4LruG3iRF-iYpD_TeiHIrO4ujCi4spfhNDmZnrFtShJn6Nv4qHamIuKFenVCyPfByfc8uRjcgEnyUvCV4KJ8tV_tMUTdriSX-emqquonyaWUokh5XZUXv52fJdch7DnnopZCFOVl8v0GphRaBMPG1kV3cF0E0mx0R_RshwN6iOQGZp1HDSHSsGNHii2LLbK7x9tN-vjpJt1-fvjA2qnxZFjvDHYMQqAQ0bBmYkc4YIeRjaC_zsOgdv3oAp3FMBhG_ejdYX4cqKcOPDMwsR5j68yL5KmFLuD1z3mVfHn_7mFzl24_3t5v3m5TnYsqphZlltUFh0ZL00C-rg0gZOW8KhrTYGGx1uu81LkFWfHKGimwXuccRG0rY7Or5H7xGgd7NXrqwU_KAanzhfM7BT6S7lAVkEEmSwu8EXkD6wbKMhNcVhasLbJmdhWL69swwnSErvslFFydqqm9WqqpUzW1VJu5fOG0dyF4tP-Lvf4D0xTP1aIH6v4Fv1lgnD_3QOhV0ISDRkNz8DhvT38X_ABtms0s |
| CitedBy_id | crossref_primary_10_1016_j_jestch_2025_102017 |
| Cites_doi | 10.1016/j.enconman.2020.112766 10.1016/j.energy.2024.130538 10.1016/j.egyr.2020.08.034 10.1016/j.chaos.2015.11.008 10.1162/neco.1997.9.8.1735 10.1016/j.clwat.2024.100003 10.1016/j.gsd.2024.101178 10.1016/j.jclepro.2018.03.173 10.1016/j.ref.2019.03.003 10.1016/j.energy.2022.125592 10.1016/j.apenergy.2023.120916 10.1016/j.energy.2023.128135 10.1016/j.renene.2022.08.059 10.1016/j.rser.2020.109792 10.1016/j.renene.2024.120385 10.1016/j.enconman.2018.10.015 10.1109/TSG.2017.2693121 10.1016/j.egyr.2023.04.319 10.1016/j.energy.2018.01.177 10.1016/j.gloei.2023.04.006 10.1016/j.procs.2019.04.086 10.1016/j.enconman.2017.11.053 10.1016/j.renene.2019.02.087 10.1016/j.energy.2019.116225 10.1016/j.renene.2023.119241 10.1016/j.energy.2021.120094 10.1016/j.apenergy.2019.114216 10.1016/j.heliyon.2024.e28898 10.1016/j.energy.2020.117894 10.1016/j.apenergy.2018.01.035 10.1016/j.energy.2010.10.028 10.1016/j.measurement.2023.112462 10.1016/j.renene.2023.01.118 10.3390/en9010011 10.1016/j.renene.2018.02.092 10.1016/j.jeconom.2022.04.007 10.1016/j.jestch.2018.04.013 10.1016/j.neucom.2019.09.110 10.3390/su10082627 10.1016/j.energy.2023.127701 10.1016/j.energy.2023.126963 10.1016/j.apenergy.2015.01.038 10.1016/j.renene.2024.121057 10.1016/j.egyr.2021.08.167 10.1016/j.epsr.2021.107427 10.1016/j.egyr.2021.10.125 10.1016/j.enconman.2017.11.019 10.1016/j.hydres.2024.04.006 10.1016/j.energy.2019.07.168 10.1016/j.enconman.2017.06.071 10.1016/j.energy.2016.11.061 10.1016/j.epsr.2022.108966 10.1016/j.energy.2023.129898 10.1016/j.energy.2018.09.118 10.1016/j.heliyon.2024.e33419 10.1016/j.asoc.2023.110037 10.1016/j.energy.2021.120996 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) |
| Copyright_xml | – notice: 2024 The Author(s) |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.jestch.2024.101889 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2215-0986 |
| ExternalDocumentID | oai_doaj_org_article_5a3a326fa0b14ba7ba6631028faff53b 10.1016/j.jestch.2024.101889 10_1016_j_jestch_2024_101889 S2215098624002751 |
| GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 M~E NCXOZ O9- OK1 RIG ROL SSZ AAYWO AAYXX APXCP CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c418t-fe233950abc2dba479daea36001eddbe5fe9c746c4fa2808fd21e9740a19f8df3 |
| IEDL.DBID | UNPAY |
| ISSN | 2215-0986 |
| IngestDate | Fri Oct 03 12:42:31 EDT 2025 Tue Aug 19 14:21:16 EDT 2025 Thu Apr 24 23:02:16 EDT 2025 Wed Oct 01 03:56:22 EDT 2025 Sat Jan 25 16:00:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | PV power forecasting Improved similar day method Hybrid model Wavelet packet decomposition LSTM neural network |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c418t-fe233950abc2dba479daea36001eddbe5fe9c746c4fa2808fd21e9740a19f8df3 |
| ORCID | 0009-0006-1614-4414 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jestch.2024.101889 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5a3a326fa0b14ba7ba6631028faff53b unpaywall_primary_10_1016_j_jestch_2024_101889 crossref_primary_10_1016_j_jestch_2024_101889 crossref_citationtrail_10_1016_j_jestch_2024_101889 elsevier_sciencedirect_doi_10_1016_j_jestch_2024_101889 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering science and technology, an international journal |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Thaker, Höller (b0020) 2024; 232 Xia, Wang, Zhang (b0070) 2023; 135 Ma, Lv, Zhang (b0065) 2021; 7 Wang, Qi, Liu (b0130) 2019; 189 Rogier, Mohamudally (b0085) 2019; 151 Wang, Liu (b0310) 2022; 44 Yang, Mourshed, Liu (b0115) 2020; 397 Liu, Ji, Sun (b0235) 2023; 9 Li, Wei, Yang (b0050) 2023; 208 Wang, Xuan, Zhen (b0060) 2020; 212 Biswas, Suganthan, Amaratunga (b0040) 2017; 148 Hanifi, Behtash, Cammarano (b0190) 2023; 218 Deventer, Jamei, Thirunavukkarasu (b0100) 2019; 140 Qu, Qian, Pei (b0285) 2021; 232 Halabi, Mekhilef, Hossain (b0075) 2018; 213 IRENA, 2024, https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024. Nguyen, Bui, Doan (b0315) 2021; 199 Wang, Sun, Wang (b0215) 2018; 10 Behera, Majumder, Nayak (b0105) 2018; 21 Wang, Mao, Xie (b0110) 2023; 262 Samantaray, Sahoo (b0280) 2024; 26 Wang, Wang, Jiang (b0205) 2015; 143 Bai, Shi, Yue (b0225) 2023; 6 Qing, Niu (b0135) 2018; 148 Limouni, Yaagoubi, Bouziane (b0265) 2023; 205 Li, Zhang, Ma (b0180) 2021; 224 Liu, Mi, Li (b0210) 2018; 156 Wang, Yu, Zeng (b0025) 2024; 288 Li, Duan, Liang (b0230) 2020; 6 X. Yang, S. Wang, L. Meng, et al, Short-term photovoltaic power prediction with similar-day integrated by bp-adaboost based on the grey-markov model, Electric Power Systems Research, 215(Part A) (2023) 108966. https://doi.org/10.1016/j.epsr.2022.108966. Wang, Ran, Song (b0155) 2017; 12 Husein, Gago, Hasan (b0005) 2024; 10 Paulescu, Blaga, Dughir (b0030) 2023; 279 Chen, Wang, Hodge (b0035) 2017; 8 Ge, Lu, Yuan (b0305) 2018; 39 Tang, Chen, Hou (b0245) 2016; 89 Neshat, Nezhad, Mirjalili (b0140) 2023; 278 Samantaray, Sahoo, Baliarsingh (b0295) 2024; 1 Wang, Qi, Liu (b0165) 2018; 165 Sabadus, Blaga, Hategan (b0010) 2024; 226 Monjoly, M. Andŕe, R. Calif (b0220) 2017; 119 Liu, Mi, Li (b0250) 2018; 123 VanDeventer, Jamei, Thirunavukkarasu (b0095) 2019; 140 S. Sobri S. Kamali R. Abd Solar photovoltaic generation forecasting methods: A review Energ. Conver. Manage. 459–497 156 (2018) (JAN) 10.1016/j.enconman.2017.11.019. Zhu, Li, Sun (b0200) 2016; 9 M. Gao J. Li F. Hong et al. Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM[J] Energy 187 (2019) 115838.1-115838.12 10.1016/j.energy.2019.07.168. Khan, Hussain, Baik (b0055) 2023; 338 Ahmed, Sreeram, Mishra (b0275) 2020; 124 Zhou, Zhou, Gong (b0175) 2020; 204 Li, Zhou, Lu (b0145) 2020; 259 Hochreiter, Schmidhuber (b0260) 1997; 9 Ayodele, Ogunjuyigbe, Amedu (b0170) 2019; 29 Wang, Qi, Liu (b0255) 2019; 189 S Asiedu, F Nyarko, S Boahen, et al, Machine learning forecasting of solar PV production using single and hybrid models over different time horizons, Heliyon, 10 (2024) 7, e28898, https://doi.org/10.1016/j.heliyon.2024.e28898 . Liu, Liu, Kong (b0195) 2023; 271 Zang, Chen, Liu (b0160) 2024; 293 Miao, Ning, Gu (b0090) 2018; 186 Zhang, Liu (b0270) 2023; 235 Lin, Peng, Lai (b0240) 2018; 177 Onu, Silva, Souza (b0045) 2022; 198 F. Almonacid, C. Rus, P Higueras, et al, Calculation of the energy provided by a PV generator. Comparative study: conventional methods vs. artificial neural networks, Energy 36(1) (2011) 375-384. https://doi.org/10.1016/j.energy.2010.10.028. Sahoo, Parida, Samantaray (b0300) 2024 Alshafeey, Csáki (b0080) 2021; 7 Yang (10.1016/j.jestch.2024.101889_b0115) 2020; 397 10.1016/j.jestch.2024.101889_b0015 Khan (10.1016/j.jestch.2024.101889_b0055) 2023; 338 Qu (10.1016/j.jestch.2024.101889_b0285) 2021; 232 Paulescu (10.1016/j.jestch.2024.101889_b0030) 2023; 279 10.1016/j.jestch.2024.101889_b0290 Ayodele (10.1016/j.jestch.2024.101889_b0170) 2019; 29 Li (10.1016/j.jestch.2024.101889_b0180) 2021; 224 Behera (10.1016/j.jestch.2024.101889_b0105) 2018; 21 Neshat (10.1016/j.jestch.2024.101889_b0140) 2023; 278 Wang (10.1016/j.jestch.2024.101889_b0255) 2019; 189 Wang (10.1016/j.jestch.2024.101889_b0155) 2017; 12 Samantaray (10.1016/j.jestch.2024.101889_b0280) 2024; 26 Wang (10.1016/j.jestch.2024.101889_b0310) 2022; 44 Zhou (10.1016/j.jestch.2024.101889_b0175) 2020; 204 Biswas (10.1016/j.jestch.2024.101889_b0040) 2017; 148 Zhu (10.1016/j.jestch.2024.101889_b0200) 2016; 9 Wang (10.1016/j.jestch.2024.101889_b0025) 2024; 288 Hochreiter (10.1016/j.jestch.2024.101889_b0260) 1997; 9 10.1016/j.jestch.2024.101889_b0125 Thaker (10.1016/j.jestch.2024.101889_b0020) 2024; 232 Bai (10.1016/j.jestch.2024.101889_b0225) 2023; 6 Li (10.1016/j.jestch.2024.101889_b0230) 2020; 6 10.1016/j.jestch.2024.101889_b0120 Tang (10.1016/j.jestch.2024.101889_b0245) 2016; 89 Li (10.1016/j.jestch.2024.101889_b0050) 2023; 208 Xia (10.1016/j.jestch.2024.101889_b0070) 2023; 135 VanDeventer (10.1016/j.jestch.2024.101889_b0095) 2019; 140 Wang (10.1016/j.jestch.2024.101889_b0130) 2019; 189 Wang (10.1016/j.jestch.2024.101889_b0205) 2015; 143 Nguyen (10.1016/j.jestch.2024.101889_b0315) 2021; 199 Qing (10.1016/j.jestch.2024.101889_b0135) 2018; 148 Sabadus (10.1016/j.jestch.2024.101889_b0010) 2024; 226 Limouni (10.1016/j.jestch.2024.101889_b0265) 2023; 205 Zhang (10.1016/j.jestch.2024.101889_b0270) 2023; 235 Liu (10.1016/j.jestch.2024.101889_b0195) 2023; 271 Li (10.1016/j.jestch.2024.101889_b0145) 2020; 259 Sahoo (10.1016/j.jestch.2024.101889_b0300) 2024 Liu (10.1016/j.jestch.2024.101889_b0210) 2018; 156 Wang (10.1016/j.jestch.2024.101889_b0215) 2018; 10 Monjoly (10.1016/j.jestch.2024.101889_b0220) 2017; 119 10.1016/j.jestch.2024.101889_b0150 Wang (10.1016/j.jestch.2024.101889_b0110) 2023; 262 Hanifi (10.1016/j.jestch.2024.101889_b0190) 2023; 218 Chen (10.1016/j.jestch.2024.101889_b0035) 2017; 8 Halabi (10.1016/j.jestch.2024.101889_b0075) 2018; 213 Onu (10.1016/j.jestch.2024.101889_b0045) 2022; 198 Zang (10.1016/j.jestch.2024.101889_b0160) 2024; 293 Ahmed (10.1016/j.jestch.2024.101889_b0275) 2020; 124 Miao (10.1016/j.jestch.2024.101889_b0090) 2018; 186 Samantaray (10.1016/j.jestch.2024.101889_b0295) 2024; 1 Husein (10.1016/j.jestch.2024.101889_b0005) 2024; 10 Rogier (10.1016/j.jestch.2024.101889_b0085) 2019; 151 Wang (10.1016/j.jestch.2024.101889_b0165) 2018; 165 10.1016/j.jestch.2024.101889_b0185 Liu (10.1016/j.jestch.2024.101889_b0250) 2018; 123 Wang (10.1016/j.jestch.2024.101889_b0060) 2020; 212 Deventer (10.1016/j.jestch.2024.101889_b0100) 2019; 140 Lin (10.1016/j.jestch.2024.101889_b0240) 2018; 177 Ge (10.1016/j.jestch.2024.101889_b0305) 2018; 39 Liu (10.1016/j.jestch.2024.101889_b0235) 2023; 9 Ma (10.1016/j.jestch.2024.101889_b0065) 2021; 7 Alshafeey (10.1016/j.jestch.2024.101889_b0080) 2021; 7 |
| References_xml | – volume: 39 start-page: 775 year: 2018 end-page: 782 ident: b0305 article-title: Power prediction of photovoltaic power plants based on improved similar day and ABC-SVM[J] publication-title: Journal of Solar Energy – volume: 7 start-page: 5495 year: 2021 end-page: 5509 ident: b0065 article-title: Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting publication-title: Energy Rep. – volume: 235 start-page: 280 year: 2023 end-page: 301 ident: b0270 article-title: Model averaging prediction by K-fold cross-validation publication-title: J Journal of Econometrics – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0260 article-title: Long Short-Term Memory. J publication-title: Neural Comput. – volume: 123 start-page: 694 year: 2018 end-page: 705 ident: b0250 article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm publication-title: Renew. Energy – volume: 148 start-page: 1194 year: 2017 end-page: 1207 ident: b0040 article-title: Optimal power flow solutions incorporating stochastic wind and solar power publication-title: Energ. Conver. Manage. – volume: 232 year: 2021 ident: b0285 article-title: Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern [J] publication-title: Energy – volume: 1 year: 2024 ident: b0295 article-title: Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm [J] publication-title: Cleaner Water – volume: 279 year: 2023 ident: b0030 article-title: Intra-hour PV power forecasting based on sky imagery publication-title: Energy – volume: 151 start-page: 643 year: 2019 end-page: 650 ident: b0085 article-title: Forecasting Photovoltaic Power Generation via an IoT Network Using Nonlinear Autoregressive Neural Network publication-title: Procedia Comput. Sci. – volume: 8 start-page: 2903 year: 2017 end-page: 2915 ident: b0035 article-title: Dynamic price vector formation model-based automatic demand response strategy for PV-assisted EV charging stations publication-title: IEEE Trans. Smart Grid – volume: 199 year: 2021 ident: b0315 article-title: A new method for forecasting energy output of a large-scale solar power plant based on long short-term memory networks a case study in Vietnam publication-title: Electr. Pow. Syst. Res. – volume: 224 year: 2021 ident: b0180 article-title: A multi-step ahead photovoltaic power prediction model based on similar-day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine publication-title: Energy – volume: 29 start-page: 78 year: 2019 end-page: 93 ident: b0170 article-title: Prediction of global solar irradiation using hybridized k-means and support vector regression algorithms publication-title: Renewable Energy Focus – volume: 6 start-page: 184 year: 2023 end-page: 196 ident: b0225 article-title: Hybrid model based on K-means++ algorithm, optimal similar day approach, and long short-term memory neural network for short-term photovoltaic power prediction[J] publication-title: Global Energy Interconnect. – volume: 10 year: 2024 ident: b0005 article-title: Towards energy efficiency: A comprehensive review of deep learning-based photovoltaic power forecasting strategies publication-title: Heliyon – volume: 226 year: 2024 ident: b0010 article-title: A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches publication-title: Renew. Energy – volume: 205 start-page: 1010 year: 2023 end-page: 1024 ident: b0265 article-title: Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model publication-title: Renew. Energy – volume: 156 start-page: 498 year: 2018 end-page: 514 ident: b0210 article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short-term memory neural network and Elman neural network publication-title: Energy Convers. Manag. – volume: 89 start-page: 243 year: 2016 end-page: 248 ident: b0245 article-title: Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting publication-title: Chaos Solitons Fractals – reference: S. Sobri S. Kamali R. Abd Solar photovoltaic generation forecasting methods: A review Energ. Conver. Manage. 459–497 156 (2018) (JAN) 10.1016/j.enconman.2017.11.019. – volume: 208 year: 2023 ident: b0050 article-title: Decomposition integration and error correction method for photovoltaic power forecasting publication-title: Measurement – volume: 186 start-page: 905 year: 2018 end-page: 917 ident: b0090 article-title: Markov chain model for solar farm generation and its application to generation performance evaluation publication-title: J. Clean. Prod. – volume: 6 start-page: 2345 year: 2020 end-page: 2357 ident: b0230 article-title: Outlier data mining method considering the output distribution characteristics for photovoltaic arrays and its application publication-title: Energy Rep. – volume: 21 start-page: 428 year: 2018 end-page: 438 ident: b0105 article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique publication-title: Engineering Science and Technology, an International Journal – reference: IRENA, 2024, https://www.irena.org/Publications/2024/Mar/Renewable-capacity-statistics-2024. – volume: 9 start-page: 11 year: 2016 ident: b0200 article-title: A power prediction method for photovoltaic power plant based on wavelet decomposition and artificial neural networks publication-title: Energies – volume: 189 year: 2019 ident: b0130 article-title: Photovoltaic power forecasting based LSTM-Convolutional Network publication-title: Energy – volume: 165 start-page: 840 year: 2018 end-page: 852 ident: b0165 article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting publication-title: Energy – volume: 10 start-page: 2627 year: 2018 ident: b0215 article-title: Photovoltaic power forecasting based on EEMD and a variable-weight combination forecasting model [J] publication-title: Sustainability – volume: 12 start-page: 64 year: 2017 end-page: 71 ident: b0155 article-title: Short-term photovoltaic power generation forecasting based on environmental factors and GA-SVM, Journal of Electrical publication-title: Eng. Technol. – volume: 204 year: 2020 ident: b0175 article-title: Prediction of photovoltaic power output based on similar-day analysis, genetic algorithm and extreme learning machine publication-title: Energy – volume: 44 start-page: 208 year: 2022 end-page: 214 ident: b0310 article-title: Short-term power prediction of photovoltaic power plants based on the principle of similar days and CPSO Elman model [J] publication-title: Energy and Environmental Protection – volume: 213 start-page: 247 year: 2018 end-page: 261 ident: b0075 article-title: Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation publication-title: Appl Energy – volume: 218 year: 2023 ident: b0190 article-title: Offshore wind power forecasting based on WPD and optimised deep learning methods publication-title: Renew. Energy – volume: 198 start-page: 1021 year: 2022 end-page: 1031 ident: b0045 article-title: Integrated design of photovoltaic power generation plant with pumped hydro storage system and irrigation facility at the Uhuelem-Amoncha African community publication-title: Renew. Energy – volume: 7 start-page: 7601 year: 2021 end-page: 7614 ident: b0080 article-title: Evaluating neural network and linear regression photovoltaic power forecasting models based on different input methods publication-title: Energy Rep. – volume: 124 year: 2020 ident: b0275 article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization publication-title: Renew. Sustain. Energy Rev. – reference: S Asiedu, F Nyarko, S Boahen, et al, Machine learning forecasting of solar PV production using single and hybrid models over different time horizons, Heliyon, 10 (2024) 7, e28898, https://doi.org/10.1016/j.heliyon.2024.e28898 . – volume: 232 year: 2024 ident: b0020 article-title: Hybrid model for intra-day probabilistic PV power forecast publication-title: Renew. Energy – volume: 119 start-page: 288 year: 2017 end-page: 298 ident: b0220 article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods: a hybrid approach publication-title: Energy – volume: 278 year: 2023 ident: b0140 article-title: Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy publication-title: Energy – volume: 9 start-page: 716 year: 2023 end-page: 726 ident: b0235 article-title: Optimization design of short-circuit test platform for the distribution network of integrated power system based on improved K-means clustering publication-title: Energy Rep. – reference: X. Yang, S. Wang, L. Meng, et al, Short-term photovoltaic power prediction with similar-day integrated by bp-adaboost based on the grey-markov model, Electric Power Systems Research, 215(Part A) (2023) 108966. https://doi.org/10.1016/j.epsr.2022.108966. – reference: M. Gao J. Li F. Hong et al. Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM[J] Energy 187 (2019) 115838.1-115838.12 10.1016/j.energy.2019.07.168. – volume: 397 start-page: 415 year: 2020 end-page: 421 ident: b0115 article-title: A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting publication-title: Neurocomputing – volume: 212 year: 2020 ident: b0060 article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework publication-title: Energ. Conver. Manage. – volume: 189 year: 2019 ident: b0255 article-title: Photovoltaic power forecasting based LSTM-Convolutional Network[J] publication-title: Energy – volume: 148 start-page: 461 year: 2018 end-page: 468 ident: b0135 article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM publication-title: Energy – volume: 26 year: 2024 ident: b0280 article-title: Groundwater level prediction using an improved ELM model integrated with hybrid particle swarm optimisation and grey wolf optimization [J] publication-title: Groundw. Sustain. Dev. – volume: 140 start-page: 367 year: 2019 end-page: 379 ident: b0100 article-title: Short-term PV power forecasting using hybrid GASVM technique publication-title: Renew. Energy – reference: F. Almonacid, C. Rus, P Higueras, et al, Calculation of the energy provided by a PV generator. Comparative study: conventional methods vs. artificial neural networks, Energy 36(1) (2011) 375-384. https://doi.org/10.1016/j.energy.2010.10.028. – volume: 143 start-page: 472 year: 2015 end-page: 488 ident: b0205 article-title: The study and application of a novel hybrid forecasting model-A case study of wind speed forecasting in China publication-title: Appl Energy – volume: 271 year: 2023 ident: b0195 article-title: Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis publication-title: Energy – start-page: 272 year: 2024 end-page: 284 ident: b0300 article-title: Daily flow discharge prediction using integrated methodology based on LSTM models: Case study in Brahmani-Baitarani basin publication-title: HydroResearch,7 – volume: 288 year: 2024 ident: b0025 article-title: Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis publication-title: Energy – volume: 135 year: 2023 ident: b0070 article-title: Short-term PV power forecasting based on time series expansion and high-order fuzzy cognitive maps publication-title: Appl. Soft Comput. – volume: 177 start-page: 704 year: 2018 end-page: 717 ident: b0240 article-title: Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets publication-title: Energ. Conver. Manage. – volume: 140 start-page: 367 year: 2019 end-page: 379 ident: b0095 article-title: Short-term PV power forecasting using hybrid GASVM technique[J] publication-title: Renew. Energy – volume: 259 year: 2020 ident: b0145 article-title: A hybrid deep learning model for short-term PV power forecasting publication-title: Appl. Energy – volume: 293 year: 2024 ident: b0160 article-title: Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction publication-title: Energy – volume: 262 year: 2023 ident: b0110 article-title: Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model publication-title: Energy – volume: 338 year: 2023 ident: b0055 article-title: Dual stream network with attention mechanism for photovoltaic power forecasting publication-title: Appl. Energy – volume: 212 year: 2020 ident: 10.1016/j.jestch.2024.101889_b0060 article-title: A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2020.112766 – volume: 293 year: 2024 ident: 10.1016/j.jestch.2024.101889_b0160 article-title: Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction publication-title: Energy doi: 10.1016/j.energy.2024.130538 – volume: 6 start-page: 2345 year: 2020 ident: 10.1016/j.jestch.2024.101889_b0230 article-title: Outlier data mining method considering the output distribution characteristics for photovoltaic arrays and its application publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.08.034 – volume: 89 start-page: 243 year: 2016 ident: 10.1016/j.jestch.2024.101889_b0245 article-title: Entropy method combined with extreme learning machine method for the short-term photovoltaic power generation forecasting publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2015.11.008 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.jestch.2024.101889_b0260 article-title: Long Short-Term Memory. J publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 1 year: 2024 ident: 10.1016/j.jestch.2024.101889_b0295 article-title: Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm [J] publication-title: Cleaner Water doi: 10.1016/j.clwat.2024.100003 – volume: 26 year: 2024 ident: 10.1016/j.jestch.2024.101889_b0280 article-title: Groundwater level prediction using an improved ELM model integrated with hybrid particle swarm optimisation and grey wolf optimization [J] publication-title: Groundw. Sustain. Dev. doi: 10.1016/j.gsd.2024.101178 – volume: 186 start-page: 905 year: 2018 ident: 10.1016/j.jestch.2024.101889_b0090 article-title: Markov chain model for solar farm generation and its application to generation performance evaluation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.03.173 – volume: 29 start-page: 78 issue: JUN year: 2019 ident: 10.1016/j.jestch.2024.101889_b0170 article-title: Prediction of global solar irradiation using hybridized k-means and support vector regression algorithms publication-title: Renewable Energy Focus doi: 10.1016/j.ref.2019.03.003 – volume: 262 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0110 article-title: Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model publication-title: Energy doi: 10.1016/j.energy.2022.125592 – volume: 338 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0055 article-title: Dual stream network with attention mechanism for photovoltaic power forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.120916 – volume: 279 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0030 article-title: Intra-hour PV power forecasting based on sky imagery publication-title: Energy doi: 10.1016/j.energy.2023.128135 – volume: 198 start-page: 1021 year: 2022 ident: 10.1016/j.jestch.2024.101889_b0045 article-title: Integrated design of photovoltaic power generation plant with pumped hydro storage system and irrigation facility at the Uhuelem-Amoncha African community publication-title: Renew. Energy doi: 10.1016/j.renene.2022.08.059 – volume: 124 year: 2020 ident: 10.1016/j.jestch.2024.101889_b0275 article-title: A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.109792 – volume: 226 year: 2024 ident: 10.1016/j.jestch.2024.101889_b0010 article-title: A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches publication-title: Renew. Energy doi: 10.1016/j.renene.2024.120385 – volume: 177 start-page: 704 year: 2018 ident: 10.1016/j.jestch.2024.101889_b0240 article-title: Short-term power prediction for photovoltaic power plants using a hybrid improved Kmeans-GRA-Elman model based on multivariate meteorological factors and historical power datasets publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2018.10.015 – volume: 39 start-page: 775 issue: 03 year: 2018 ident: 10.1016/j.jestch.2024.101889_b0305 article-title: Power prediction of photovoltaic power plants based on improved similar day and ABC-SVM[J] publication-title: Journal of Solar Energy – volume: 8 start-page: 2903 issue: 6 year: 2017 ident: 10.1016/j.jestch.2024.101889_b0035 article-title: Dynamic price vector formation model-based automatic demand response strategy for PV-assisted EV charging stations publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2693121 – volume: 9 start-page: 716 issue: 8 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0235 article-title: Optimization design of short-circuit test platform for the distribution network of integrated power system based on improved K-means clustering publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.04.319 – volume: 148 start-page: 461 year: 2018 ident: 10.1016/j.jestch.2024.101889_b0135 article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM publication-title: Energy doi: 10.1016/j.energy.2018.01.177 – volume: 6 start-page: 184 issue: 2 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0225 article-title: Hybrid model based on K-means++ algorithm, optimal similar day approach, and long short-term memory neural network for short-term photovoltaic power prediction[J] publication-title: Global Energy Interconnect. doi: 10.1016/j.gloei.2023.04.006 – volume: 151 start-page: 643 year: 2019 ident: 10.1016/j.jestch.2024.101889_b0085 article-title: Forecasting Photovoltaic Power Generation via an IoT Network Using Nonlinear Autoregressive Neural Network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.04.086 – volume: 156 start-page: 498 year: 2018 ident: 10.1016/j.jestch.2024.101889_b0210 article-title: Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short-term memory neural network and Elman neural network publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.11.053 – volume: 140 start-page: 367 year: 2019 ident: 10.1016/j.jestch.2024.101889_b0100 article-title: Short-term PV power forecasting using hybrid GASVM technique publication-title: Renew. Energy doi: 10.1016/j.renene.2019.02.087 – volume: 189 year: 2019 ident: 10.1016/j.jestch.2024.101889_b0130 article-title: Photovoltaic power forecasting based LSTM-Convolutional Network publication-title: Energy doi: 10.1016/j.energy.2019.116225 – volume: 12 start-page: 64 year: 2017 ident: 10.1016/j.jestch.2024.101889_b0155 article-title: Short-term photovoltaic power generation forecasting based on environmental factors and GA-SVM, Journal of Electrical publication-title: Eng. Technol. – volume: 218 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0190 article-title: Offshore wind power forecasting based on WPD and optimised deep learning methods publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119241 – volume: 224 year: 2021 ident: 10.1016/j.jestch.2024.101889_b0180 article-title: A multi-step ahead photovoltaic power prediction model based on similar-day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2021.120094 – volume: 259 year: 2020 ident: 10.1016/j.jestch.2024.101889_b0145 article-title: A hybrid deep learning model for short-term PV power forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114216 – ident: 10.1016/j.jestch.2024.101889_b0150 doi: 10.1016/j.heliyon.2024.e28898 – volume: 204 year: 2020 ident: 10.1016/j.jestch.2024.101889_b0175 article-title: Prediction of photovoltaic power output based on similar-day analysis, genetic algorithm and extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2020.117894 – volume: 140 start-page: 367 year: 2019 ident: 10.1016/j.jestch.2024.101889_b0095 article-title: Short-term PV power forecasting using hybrid GASVM technique[J] publication-title: Renew. Energy doi: 10.1016/j.renene.2019.02.087 – volume: 213 start-page: 247 year: 2018 ident: 10.1016/j.jestch.2024.101889_b0075 article-title: Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.01.035 – ident: 10.1016/j.jestch.2024.101889_b0125 doi: 10.1016/j.energy.2010.10.028 – volume: 208 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0050 article-title: Decomposition integration and error correction method for photovoltaic power forecasting publication-title: Measurement doi: 10.1016/j.measurement.2023.112462 – volume: 205 start-page: 1010 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0265 article-title: Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model publication-title: Renew. Energy doi: 10.1016/j.renene.2023.01.118 – volume: 9 start-page: 11 issue: 1 year: 2016 ident: 10.1016/j.jestch.2024.101889_b0200 article-title: A power prediction method for photovoltaic power plant based on wavelet decomposition and artificial neural networks publication-title: Energies doi: 10.3390/en9010011 – volume: 123 start-page: 694 year: 2018 ident: 10.1016/j.jestch.2024.101889_b0250 article-title: An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm publication-title: Renew. Energy doi: 10.1016/j.renene.2018.02.092 – volume: 235 start-page: 280 issue: Issue 1 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0270 article-title: Model averaging prediction by K-fold cross-validation publication-title: J Journal of Econometrics doi: 10.1016/j.jeconom.2022.04.007 – volume: 21 start-page: 428 issue: 3 year: 2018 ident: 10.1016/j.jestch.2024.101889_b0105 article-title: Solar photovoltaic power forecasting using optimized modified extreme learning machine technique publication-title: Engineering Science and Technology, an International Journal doi: 10.1016/j.jestch.2018.04.013 – volume: 397 start-page: 415 year: 2020 ident: 10.1016/j.jestch.2024.101889_b0115 article-title: A novel competitive swarm optimized RBF neural network model for short-term solar power generation forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.09.110 – ident: 10.1016/j.jestch.2024.101889_b0015 – volume: 10 start-page: 2627 issue: 8 year: 2018 ident: 10.1016/j.jestch.2024.101889_b0215 article-title: Photovoltaic power forecasting based on EEMD and a variable-weight combination forecasting model [J] publication-title: Sustainability doi: 10.3390/su10082627 – volume: 189 year: 2019 ident: 10.1016/j.jestch.2024.101889_b0255 article-title: Photovoltaic power forecasting based LSTM-Convolutional Network[J] publication-title: Energy doi: 10.1016/j.energy.2019.116225 – volume: 278 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0140 article-title: Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy publication-title: Energy doi: 10.1016/j.energy.2023.127701 – volume: 271 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0195 article-title: Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis publication-title: Energy doi: 10.1016/j.energy.2023.126963 – volume: 143 start-page: 472 year: 2015 ident: 10.1016/j.jestch.2024.101889_b0205 article-title: The study and application of a novel hybrid forecasting model-A case study of wind speed forecasting in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.01.038 – volume: 232 year: 2024 ident: 10.1016/j.jestch.2024.101889_b0020 article-title: Hybrid model for intra-day probabilistic PV power forecast publication-title: Renew. Energy doi: 10.1016/j.renene.2024.121057 – volume: 7 start-page: 5495 year: 2021 ident: 10.1016/j.jestch.2024.101889_b0065 article-title: Short-term photovoltaic power forecasting method based on irradiance correction and error forecasting publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.08.167 – volume: 199 year: 2021 ident: 10.1016/j.jestch.2024.101889_b0315 article-title: A new method for forecasting energy output of a large-scale solar power plant based on long short-term memory networks a case study in Vietnam publication-title: Electr. Pow. Syst. Res. doi: 10.1016/j.epsr.2021.107427 – volume: 7 start-page: 7601 year: 2021 ident: 10.1016/j.jestch.2024.101889_b0080 article-title: Evaluating neural network and linear regression photovoltaic power forecasting models based on different input methods publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.10.125 – ident: 10.1016/j.jestch.2024.101889_b0120 doi: 10.1016/j.enconman.2017.11.019 – start-page: 272 year: 2024 ident: 10.1016/j.jestch.2024.101889_b0300 article-title: Daily flow discharge prediction using integrated methodology based on LSTM models: Case study in Brahmani-Baitarani basin publication-title: HydroResearch,7 doi: 10.1016/j.hydres.2024.04.006 – ident: 10.1016/j.jestch.2024.101889_b0290 doi: 10.1016/j.energy.2019.07.168 – volume: 148 start-page: 1194 year: 2017 ident: 10.1016/j.jestch.2024.101889_b0040 article-title: Optimal power flow solutions incorporating stochastic wind and solar power publication-title: Energ. Conver. Manage. doi: 10.1016/j.enconman.2017.06.071 – volume: 119 start-page: 288 year: 2017 ident: 10.1016/j.jestch.2024.101889_b0220 article-title: Hourly forecasting of global solar radiation based on multiscale decomposition methods: a hybrid approach publication-title: Energy doi: 10.1016/j.energy.2016.11.061 – ident: 10.1016/j.jestch.2024.101889_b0185 doi: 10.1016/j.epsr.2022.108966 – volume: 288 year: 2024 ident: 10.1016/j.jestch.2024.101889_b0025 article-title: Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis publication-title: Energy doi: 10.1016/j.energy.2023.129898 – volume: 165 start-page: 840 year: 2018 ident: 10.1016/j.jestch.2024.101889_b0165 article-title: Deep belief network based k-means cluster approach for short-term wind power forecasting publication-title: Energy doi: 10.1016/j.energy.2018.09.118 – volume: 10 issue: 13 year: 2024 ident: 10.1016/j.jestch.2024.101889_b0005 article-title: Towards energy efficiency: A comprehensive review of deep learning-based photovoltaic power forecasting strategies publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e33419 – volume: 135 year: 2023 ident: 10.1016/j.jestch.2024.101889_b0070 article-title: Short-term PV power forecasting based on time series expansion and high-order fuzzy cognitive maps publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110037 – volume: 232 year: 2021 ident: 10.1016/j.jestch.2024.101889_b0285 article-title: Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern [J] publication-title: Energy doi: 10.1016/j.energy.2021.120996 – volume: 44 start-page: 208 issue: 02 year: 2022 ident: 10.1016/j.jestch.2024.101889_b0310 article-title: Short-term power prediction of photovoltaic power plants based on the principle of similar days and CPSO Elman model [J] publication-title: Energy and Environmental Protection |
| SSID | ssj0001921156 |
| Score | 2.3079002 |
| Snippet | Precisely forecasting output of solar photovoltaics is crucial for (i) effective solar power management, (ii) integration into the electrical grid, (iii)... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 101889 |
| SubjectTerms | Hybrid model Improved similar day method LSTM neural network PV power forecasting Wavelet packet decomposition |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqXigHxKMVy6OaA1dDHt6sc4Q-WCGKkGjV3qJxbLe7LNkVTVXl3_BTmbGzq3DaHjhFcuzE8kxmvnHG8wnxzqiSIJsyUmu0UmlXMpG7kwrzFCnY9lrxAeezb8X0Qn25Gl8NqL44JyyWB44L92GMORLE8JiYVBmcGCQfyV7Ro_fj3LD1TXQ5CKbmEbcQ1CnWZ-VCQteczGz4_5ApbtLM7D7wRaFk_z8u6dFds8LuHheLgcs5fSqe9FgRPsY5PhM7rnkuHg8qCL4Qf46xk0gG1cLqZtkuydhQrF_DisnP4DrUlOalB8KmrsZbTnIG3nsFAn4wvfx8JC-_H8uvP87P4Kbj01sQuHGAMDUrgAXTwT0yO0ULFF7_pIt1nIfeJ3sBNhZmYWeCOt_Ofs0oVAaLHURu6n1xcXpyfjSVPemCrFWqW-ldluflOEFTZ9agmpQWHeaMi5y1xnFyWj1RRa08ZjrR3mapo6AkwbT02vr8QOw2y8a9FKC0LbJalXTfK9IHTWjUZp5GOizKwo5Evl7-qu4rkjMxxqJap57Nqyi0ioVWRaGNhNyMWsWKHFv6f2LJbvpyPe3QQFpW9VpWbdOykZis9aLqoUmEHPSo2ZbXv9-o0YPm--p_zPe12MuYqDjsFb0Ru-3vO_eW0FNrDsOH8hd2Ixw3 priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaKXrYdhj2x7AUedtXih5LIxzVdlw3rMKAtmptBWVLrNnOM1kXhf7OfOlK2s_TUYScDsmQLIk19lEl-QnwwKiPIpozUGq1U2mVM5O6kwjRGcra9VpzgfPhjujhR35aT5Y6YD7kwHFbZ2_7Opgdr3beM-9Uc12U5Pkpot4oyTnBg3yqkUadKM33D1-Xe33OWjFycQOLK_SUPGDLoQpjXBRnf8FciUdykme99a4cKhfzvbFQPbqoa21tcrbY2ooMn4nGPIOFTN8mnYsdVz8SjrbqCz8XvfWwlkpm1UJ-vmzWZoAbLAmqmRIOzUGmaBQKEWF2B1xz6DHwiCwQHYXH6ZS5Pf-7L70fHh3Deck4XBMYcIKTNamHBtHCLzFnRADndl3SxjqPT-xAwwMpCGc4rqPN1-askBxosttAxVr8QJwefj-cL2VMxyELFupHeJWmaTSI0RWINqllm0WHKaMlZaxyHrBUzNS2Ux0RH2tskduSqRBhnXlufvhS71bpyrwQobadJoTK67xVpiSaMahNPIx1Os6kdiXRY_rzo65QzXcYqHwLSLvJOaDkLLe-ENhJyM6ru6nTc03-PJbvpy1W2Q8P66izv1SyfYIoEbz1GJlYGZwYJnzEi8-j9JDUjMRv0Ir-jtPSo8p7Xf9yo0T_N9_V_v-qNeJgwZ3E4NnordpurG_eOgFRj3ocv5Q_njh6D priority: 102 providerName: Elsevier |
| Title | Day-ahead photovoltaic power generation forecasting with the HWGC-WPD-LSTM hybrid model assisted by wavelet packet decomposition and improved similar day method |
| URI | https://dx.doi.org/10.1016/j.jestch.2024.101889 https://doi.org/10.1016/j.jestch.2024.101889 https://doaj.org/article/5a3a326fa0b14ba7ba6631028faff53b |
| UnpaywallVersion | publishedVersion |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2215-0986 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001921156 issn: 2215-0986 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2215-0986 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001921156 issn: 2215-0986 databaseCode: KQ8 dateStart: 20140301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2215-0986 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001921156 issn: 2215-0986 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 2215-0986 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001921156 issn: 2215-0986 databaseCode: IXB dateStart: 20140301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2215-0986 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001921156 issn: 2215-0986 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocqh6aOlLXUSRDz3WqzycrHPkUViqLkIqK7anaBzbENhmVyUrlP6a_tTO5LFiKyHoJZEST2LZY_sbe2Y-xj5pmSBkk1ooBUZIZRMicrdCQugDGttOSQpwHp_Go4n8Oo2mG-xzFwuzdn5f-2Fd4-xYHxsEkh4plTxjm3GEyLvHNienZ3s_iD8OVy7hJSruouMeEF1bfeok_WuL0PNlsYDqDmaze4vM0Ss27qrX-JbcDJalHmS__8nc-NT6b7GXLdrke416vGYbtnjDXtzLQfiW_TmESgBOyYYvrublHKerEvKML4g-jV_WWamp8ziiW5vBLblJc9q95Qgd-eji-EBcnB2Kb9_Px_yqovgvXrPrcETlpEKG64rfAfFblBwN9Bu8GUue7K27GIfC8Lze28DCt_nPHI1tbqDiDbv1OzY5-nJ-MBItbYPIpK9K4WwQhknkgc4Co0EOEwMWQkJW1hhtyb0tG8o4kw4C5SlnAt-iWeOBnzhlXPie9Yp5YT8wLpWJg0wm-N5J1CiFeNYEDiUtxEls-izsujPN2pzmRK0xSzvnteu0af-U2j9t2r_PxEpq0eT0eKT8PmnKqixl5K4fYEen7QBPIwgBobADT_tSw1ADYjlCbw6ci0LdZ8NOz9IW3DSgBT-VP_L7wUotn1Tf7f8V2GG98tfSfkR4VerdelsCryfT_d12hP0FXXEoqg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7tDtMOyJZU8ddtXi2LIjH9d0XbYlxYCmaG4GZUmt28wxWheF_81-6kjZztJTh50MyJItiDT1USb5MfZRyxQhm9RCKTBCKpsSkbsVEqIRoLPtlKQE5_lRMj2R35fxcodN-lwYCqvsbH9r07217lqG3WoOq6IYHoe4WwUpJTiQb0Vp1A9kjOiEsviW-38PWlL0cTyLKw0QNKJPofNxXhdoff1viVBSkyLC960tylfyv7NT7d2UFTS3sFpt7USHT9jjDkLyz-0sn7IdWz5jj7YKCz5nvw-gEYB21vDqfF2v0QbVUOS8Ik40fuZLTZNEOEJWm8M1xT5zOpLliAf59PTrRJz-PBCz48WcnzeU1MU9ZQ5HqE16Ybhu-C0QaUXN0eu-xIuxFJ7exYBxKA0v_IEFdr4ufhXoQXMDDW8pq1-wk8Mvi8lUdFwMIpcjVQtnwyhK4wB0HhoNcpwasBARXLLGaEsxa_lYJrl0EKpAOROOLPoqAYxSp4yLXrLdcl3aV4xLZZIwlynedxLVRCFINaHDkRaSNDEDFvXLn-VdoXLiy1hlfUTaRdYKLSOhZa3QBkxsRlVtoY57-u-TZDd9qcy2b1hfnWWdnmUxRID41kGgR1LDWAMCNIJkDpyLIz1g414vsjtai48q7nn9p40a_dN8X__3qz6wveliPstm345-vGEPQyIw9mdIb9lufXVj3yGqqvV7_9X8AVyaIak |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdG94B44BtRBOgeeMRVmjip8zg2RoXoNIlVG0_RObZZtpJWLNUU_hr-VO7yUa1IaOMpkuNLLPts_86-u58Q74xKCbIpI7VGK5V2KRO5O6kwGiMZ214rDnCeHSXTufp8Fp_tiPd9LMzW_X3jh3VBq2NzbRAqLtI6vSd2k5iQ90Dszo-O974xfxztXDJIddJHx_1DdGv3aZL0b21C99flCutrXCxubDKHj8Ssb17rW3I5WldmlP_6K3PjXdv_WDzs0CbsterxROy48ql4cCMH4TPx-wBribQkW1idL6slLVcVFjmsmD4NvjdZqXnwgNCty_GK3aSBT2-BoCNMTz_ty9PjA_nl68kMzmuO_4KGXQcIlbMKWTA1XCPzW1RABvolPaxjT_bOXQywtFA0ZxtU-ar4UZCxDRZraNmtn4v54ceT_ansaBtkrsa6kt6FUZTGAZo8tAbVJLXoMGJk5aw1jt3b8olKcuUx1IH2Nhw7MmsCHKdeWx-9EINyWbqXApS2SZirlN57RRqlCc_a0JOkwyRN7FBE_XBmeZfTnKk1FlnvvHaRtf2fcf9nbf8PhdxIrdqcHrfU_8CasqnLGbmbAhrorJvgWYwREhT2GJixMjgxSFiO0ZtH7-PIDMWk17OsAzctaKFPFbf8frRRyzu199X_CrwWg-rn2r0heFWZt92s-gOGySax |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Day-ahead+photovoltaic+power+generation+forecasting+with+the+HWGC-WPD-LSTM+hybrid+model+assisted+by+wavelet+packet+decomposition+and+improved+similar+day+method&rft.jtitle=Engineering+science+and+technology%2C+an+international+journal&rft.au=Bai%2C+Ruxue&rft.au=Li%2C+Jinsong&rft.au=Liu%2C+Jinsong&rft.au=Shi%2C+Yuetao&rft.date=2025-01-01&rft.pub=Elsevier+B.V&rft.issn=2215-0986&rft.eissn=2215-0986&rft.volume=61&rft_id=info:doi/10.1016%2Fj.jestch.2024.101889&rft.externalDocID=S2215098624002751 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2215-0986&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2215-0986&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2215-0986&client=summon |