Fractional Multi-Step Differential Transformed Method for Approximating a Fractional Stochastic SIS Epidemic Model with Imperfect Vaccination

In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model w...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of environmental research and public health Vol. 16; no. 6; p. 973
Main Authors Abuasad, Salah, Yildirim, Ahmet, Hashim, Ishak, Abdul Karim, Samsul Ariffin, Gómez-Aguilar, J.F.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 18.03.2019
MDPI
Subjects
Online AccessGet full text
ISSN1660-4601
1661-7827
1660-4601
DOI10.3390/ijerph16060973

Cover

Abstract In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model with imperfect vaccination, subject to appropriate initial conditions. The fractional derivatives are described in the Caputo sense. Numerical results coupled with graphical representations indicate that the proposed method is robust and precise which can give new interpretations for various types of dynamical systems.
AbstractList In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model with imperfect vaccination, subject to appropriate initial conditions. The fractional derivatives are described in the Caputo sense. Numerical results coupled with graphical representations indicate that the proposed method is robust and precise which can give new interpretations for various types of dynamical systems.
In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model with imperfect vaccination, subject to appropriate initial conditions. The fractional derivatives are described in the Caputo sense. Numerical results coupled with graphical representations indicate that the proposed method is robust and precise which can give new interpretations for various types of dynamical systems.In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model with imperfect vaccination, subject to appropriate initial conditions. The fractional derivatives are described in the Caputo sense. Numerical results coupled with graphical representations indicate that the proposed method is robust and precise which can give new interpretations for various types of dynamical systems.
Introduction Mathematical modeling of nonlinear systems is a key challenge for contemporary scientists; it is a basic description of physical reality expressed in mathematical terms. Saravanan and Magesh [27] compared two analytical methods: FRDTM vs fractional variational iteration method (FVIM) to find numerical solutions of the linear and nonlinear Fokker-Planck partial differential equations with space and time fractional derivatives, Singh [28] presented FRDTM to compute an alternative approximate solution of initial valued autonomous system of linear and nonlinear fractional partial differential equations and Abuasad et al. The fractional multi-step differential transform method (FMsDTM) is capable of generating approximate solutions of a wide class of linear and nonlinear problems with fractional derivatives that converge quickly to the exact solutions. Dt0αi xi(t)=hi(t,x1,x2,⋯,xn),i=1,2,…,n,t0≤t≤T, with the initial conditions xi(t0)=ci,i=1,2,…,n, where 0<αi≤1 , ci(i=1,2,…,n) are real finite constants, and Dαi is the Caputo fractional derivative of order αi . Before applying the multistep method, we define the fractional differential transform of h(t) as H(k)=1Γ(kα+1)Dtkαh(t)t=t0, then the nth approximate series form solution of fractional initial value problem (FIVP) (5) and (6) can be given by xi=∑k=0NUi(k)(t−t0)kαi,t∈[t0,T], where Ui satisfies the following recurrence relation Ui(K+1)=Γ(kα+1)Γ((k+1)αi+1)Hi(k,U1,U2,⋯,Un),i=1,2,⋯,n, where Hi(k,U1,U2,⋯,Un) denotes the differential transformed function of hi(t,x1,x2,⋯,xn) , subject to the initial conditions Ui(t0)=ci,i=1,2,…,n . Assume that the interval [0,T] is divided into M sub-intervals [ti−1,ti],i=1,2,…,M, of the same step size
Author Gómez-Aguilar, J.F.
Yildirim, Ahmet
Abuasad, Salah
Hashim, Ishak
Abdul Karim, Samsul Ariffin
AuthorAffiliation 2 Department of Mathematics, Ege University, 35100 Bornova, Izmir, Turkey; yahmet49ege@gmail.com
4 Fundamental and Applied Sciences Department and Center for Smart Grid Energy Research (CSMER). Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri Iskandar, Perak DR, Malaysia; samsul_ariffin@utp.edu.my
1 Preparatory Year Deanship, King Faisal University, 31982 Hofuf, Al-Hasa, Saudi Arabia
5 CONACyT-Tecnológico Nacional de México/CENIDET. Interior Internado Palmira S/N, Col. Palmira, C.P. 62490 Cuernavaca, Morelos, Mexico; jgomez@cenidet.edu.mx
3 School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia; ishak_h@ukm.edu.my
AuthorAffiliation_xml – name: 4 Fundamental and Applied Sciences Department and Center for Smart Grid Energy Research (CSMER). Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri Iskandar, Perak DR, Malaysia; samsul_ariffin@utp.edu.my
– name: 1 Preparatory Year Deanship, King Faisal University, 31982 Hofuf, Al-Hasa, Saudi Arabia
– name: 2 Department of Mathematics, Ege University, 35100 Bornova, Izmir, Turkey; yahmet49ege@gmail.com
– name: 5 CONACyT-Tecnológico Nacional de México/CENIDET. Interior Internado Palmira S/N, Col. Palmira, C.P. 62490 Cuernavaca, Morelos, Mexico; jgomez@cenidet.edu.mx
– name: 3 School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia; ishak_h@ukm.edu.my
Author_xml – sequence: 1
  givenname: Salah
  orcidid: 0000-0001-6173-652X
  surname: Abuasad
  fullname: Abuasad, Salah
– sequence: 2
  givenname: Ahmet
  orcidid: 0000-0001-8989-4271
  surname: Yildirim
  fullname: Yildirim, Ahmet
– sequence: 3
  givenname: Ishak
  orcidid: 0000-0003-4237-7140
  surname: Hashim
  fullname: Hashim, Ishak
– sequence: 4
  givenname: Samsul Ariffin
  orcidid: 0000-0001-6518-6705
  surname: Abdul Karim
  fullname: Abdul Karim, Samsul Ariffin
– sequence: 5
  givenname: J.F.
  orcidid: 0000-0001-9403-3767
  surname: Gómez-Aguilar
  fullname: Gómez-Aguilar, J.F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30889889$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1rFTEUDVKxH7p1KQE3bqZNJpnMZCOU2uqDPly86nZI89HJI5OMSaa1P8L_bOpr62tBhEByb8453HPuPtjxwWsA3mJ0SAhHR3at4zRghhjiLXkB9jBjqKIM4Z2t9y7YT2mNEOko46_ALkFdx8vZA7_OopDZBi8cXM4u22qV9QQ_WWN01D7b0r-IwicT4qgVXOo8BAVLBY-nKYafdhTZ-iso4JbSKgc5iJSthKvFCp5OVumxFMugtIM3Ng9wMU46Gi0z_C6ktF7cUV-Dl0a4pN_c3wfg29npxcmX6vzr58XJ8XklKe5yZTinWJrOSEXppWKNJnXTiEbWFCvdaoU4bdq2JoqQjsu2YYgyibBSwhiEFDkARxvd2U_i9kY410-xOIm3PUb9XbD902AL4-OGMc2XJQdZooniLysI2z_98Xbor8J1zyhjhOMi8OFeIIYfs065H22S2jnhdZhTX-Myc9d0GBXo-2fQdZhjybWgSM1xQwmhBfVue6LHUR52WwCHG4CMIaWozf890mcEafOfvRRH1v2L9hsuosun
CitedBy_id crossref_primary_10_1155_2019_5703916
crossref_primary_10_1515_phys_2020_0188
crossref_primary_10_37394_232017_2024_15_12
crossref_primary_10_3390_sym15010194
crossref_primary_10_1142_S1793962320410032
crossref_primary_10_3934_mmc_2022015
crossref_primary_10_1063_5_0153122
crossref_primary_10_1155_2022_7374751
crossref_primary_10_3390_math8010096
crossref_primary_10_3390_fractalfract5040168
crossref_primary_10_1016_j_chaos_2019_07_053
crossref_primary_10_3934_mbe_2022201
crossref_primary_10_37394_232021_2023_3_11
crossref_primary_10_1002_jnm_3220
crossref_primary_10_1142_S1793524520500825
crossref_primary_10_1186_s13662_021_03347_3
crossref_primary_10_3390_sym15091721
crossref_primary_10_3390_math8050729
crossref_primary_10_1140_epjp_s13360_020_00856_0
Cites_doi 10.1016/j.cnsns.2017.01.018
10.1016/j.chaos.2006.09.004
10.1007/978-3-319-17954-4
10.12816/0033742
10.1016/j.jksus.2015.01.003
10.1016/j.apm.2007.09.025
10.1016/S0096-3003(02)00794-4
10.1016/j.amc.2007.07.068
10.1016/j.matcom.2017.06.004
10.1007/s00500-016-2378-5
10.22436/jnsa.010.10.09
10.1016/S0096-3003(03)00581-2
10.1016/j.amc.2015.10.016
10.1007/BFb0067096
10.1016/j.aml.2007.02.022
10.18576/pfda/030404
10.17576/jsm-2018-4711-33
10.1515/IJNSNS.2009.10.6.741
10.1016/j.matcom.2011.07.007
10.1016/S0096-3003(02)00368-5
10.1016/j.amc.2004.10.009
10.12732/ijpam.v95i4.8
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/ijerph16060973
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1660-4601
ExternalDocumentID 10.3390/ijerph16060973
PMC6466391
30889889
10_3390_ijerph16060973
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
29J
2WC
53G
5GY
5VS
7X7
7XC
88E
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABGAM
ABUWG
ACGFO
ACGOD
ACIWK
ADBBV
AENEX
AFKRA
AFRAH
AFZYC
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
ESTFP
F5P
FYUFA
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
RNS
RPM
SV3
TR2
UKHRP
XSB
3V.
ABJCF
ALIPV
ATCPS
AZQEC
BHPHI
GROUPED_DOAJ
HCIFZ
IAO
M2P
M7S
M~E
NPM
PATMY
PYCSY
7XB
8FK
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADRAZ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c418t-f9941cf8fcd44bd65e3255a5c241de7ed09457723d3389c756046c01ddaff00d3
IEDL.DBID M48
ISSN 1660-4601
1661-7827
IngestDate Tue Aug 19 23:21:48 EDT 2025
Tue Sep 30 16:57:45 EDT 2025
Wed Oct 01 12:12:19 EDT 2025
Fri Jul 25 20:05:02 EDT 2025
Wed Feb 19 02:36:45 EST 2025
Wed Oct 01 04:41:51 EDT 2025
Thu Apr 24 22:53:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords fractional calculus
imperfect vaccination
differential transformed method
multi-step differential transformed method
stochastic SIS epidemic model
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-f9941cf8fcd44bd65e3255a5c241de7ed09457723d3389c756046c01ddaff00d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8989-4271
0000-0001-9403-3767
0000-0003-4237-7140
0000-0001-6518-6705
0000-0001-6173-652X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph16060973
PMID 30889889
PQID 2329154334
PQPubID 54923
ParticipantIDs unpaywall_primary_10_3390_ijerph16060973
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6466391
proquest_miscellaneous_2194585810
proquest_journals_2329154334
pubmed_primary_30889889
crossref_primary_10_3390_ijerph16060973
crossref_citationtrail_10_3390_ijerph16060973
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-18
PublicationDateYYYYMMDD 2019-03-18
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-18
  day: 18
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle International journal of environmental research and public health
PublicationTitleAlternate Int J Environ Res Public Health
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Srivastava (ref_18) 2014; 1
Liu (ref_37) 2018; 144
Momani (ref_30) 2016; 15
ref_11
Ayaz (ref_13) 2004; 152
Bonyah (ref_31) 2016; 6
Odibat (ref_22) 2008; 21
Freihat (ref_34) 2017; 14
Arafa (ref_7) 2017; 3
Saravanan (ref_27) 2016; 28
Yu (ref_19) 2016; 273
Rawashdeh (ref_26) 2014; 95
Safan (ref_36) 2014; 96
Keskin (ref_24) 2010; 1
Arikoglu (ref_16) 2005; 168
Moaddy (ref_33) 2018; 22
Singh (ref_28) 2016; 2679
Srivastava (ref_25) 2014; 1
ref_1
Abuasad (ref_9) 2018; 1940
ref_3
Abuasad (ref_29) 2018; 1
ref_2
Arshad (ref_35) 2017; 48
Odibat (ref_23) 2008; 197
Ayaz (ref_12) 2004; 147
Arikoglu (ref_21) 2007; 34
Acan (ref_20) 2017; 10
ref_8
Keskin (ref_17) 2009; 10
Bonyah (ref_32) 2016; 6
Abuasad (ref_10) 2018; 47
ref_5
ref_4
Ayaz (ref_14) 2003; 143
ref_6
Hassan (ref_15) 2008; 32
References_xml – volume: 48
  start-page: 509
  year: 2017
  ident: ref_35
  article-title: (n + 1)-dimensional fractional reduced differential transform method for fractional order partial differential equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.01.018
– volume: 34
  start-page: 1473
  year: 2007
  ident: ref_21
  article-title: Solution of fractional differential equations by using differential transform method
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.09.004
– ident: ref_6
  doi: 10.1007/978-3-319-17954-4
– volume: 2679
  start-page: 20
  year: 2016
  ident: ref_28
  article-title: Fractional reduced differential transform method for numerical computation of a system of linear and nonlinear fractional partial differential equations
  publication-title: Int. J. Open Probl. Comput. Math.
  doi: 10.12816/0033742
– ident: ref_5
– volume: 28
  start-page: 160
  year: 2016
  ident: ref_27
  article-title: An efficient computational technique for solving the Fokker-Planck equation with space and time fractional derivatives
  publication-title: J. King Saud Univ. Sci.
  doi: 10.1016/j.jksus.2015.01.003
– volume: 15
  start-page: 319
  year: 2016
  ident: ref_30
  article-title: Analytical approximations for Fokker-Planck equations of fractional order in multistep schemes
  publication-title: Appl. Comput. Math.
– ident: ref_3
– volume: 32
  start-page: 2552
  year: 2008
  ident: ref_15
  article-title: Application to differential transformation method for solving systems of differential equations
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2007.09.025
– volume: 147
  start-page: 547
  year: 2004
  ident: ref_12
  article-title: Solutions of the system of differential equations by differential transform method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(02)00794-4
– volume: 1
  start-page: 71
  year: 2014
  ident: ref_25
  article-title: Two-dimensional time fractional-order biological population model and its analytical solution
  publication-title: Egypt. J. Basic Appl. Sci.
– ident: ref_11
– volume: 197
  start-page: 467
  year: 2008
  ident: ref_23
  article-title: Generalized differential transform method: Application to differential equations of fractional order
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.07.068
– volume: 144
  start-page: 78
  year: 2018
  ident: ref_37
  article-title: The threshold of a stochastic SIS epidemic model with imperfect vaccination
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2017.06.004
– volume: 22
  start-page: 773
  year: 2018
  ident: ref_33
  article-title: Numerical investigation for handling fractional-order Rabinovich-Fabrikant model using the multistep approach
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2378-5
– ident: ref_1
– volume: 1
  start-page: 1
  year: 2018
  ident: ref_29
  article-title: Analytical treatment of two-dimensional fractional Helmholtz equations
  publication-title: J. King Saud Univ. Sci.
– volume: 10
  start-page: 5230
  year: 2017
  ident: ref_20
  article-title: Reduced differential transform method for solving time and space local fractional partial differential equations
  publication-title: J. Nonlinear Sci. Appl.
  doi: 10.22436/jnsa.010.10.09
– volume: 152
  start-page: 649
  year: 2004
  ident: ref_13
  article-title: Applications of differential transform method to differential-algebraic equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(03)00581-2
– volume: 6
  start-page: 17
  year: 2016
  ident: ref_32
  article-title: A novel approach of multistep scheme for solving nonlinear fractional telegraph equation
  publication-title: J. Appl. Environ. Biol. Sci.
– volume: 273
  start-page: 697
  year: 2016
  ident: ref_19
  article-title: (n + 1) dimensional reduced differential transform method for solving partial differential equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.10.016
– ident: ref_8
  doi: 10.1007/BFb0067096
– ident: ref_4
– volume: 21
  start-page: 194
  year: 2008
  ident: ref_22
  article-title: A generalized differential transform method for linear partial differential equations of fractional order
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2007.02.022
– ident: ref_2
– volume: 3
  start-page: 281
  year: 2017
  ident: ref_7
  article-title: Backward bifurcation in a fractional order epidemiological model
  publication-title: Prog. Fract. Differ. Appl.
  doi: 10.18576/pfda/030404
– volume: 14
  start-page: 1
  year: 2017
  ident: ref_34
  article-title: Numerical multistep approach for solving fractional partial differential equations
  publication-title: Int. J. Comput. Methods
– volume: 1940
  start-page: 1
  year: 2018
  ident: ref_9
  article-title: Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation
  publication-title: AIP Conf. Proc.
– volume: 47
  start-page: 2899
  year: 2018
  ident: ref_10
  article-title: Homotopy decomposition method for solving higher-order time-fractional diffusion equation via modified beta derivative
  publication-title: Sains Malays.
  doi: 10.17576/jsm-2018-4711-33
– volume: 10
  start-page: 741
  year: 2009
  ident: ref_17
  article-title: Reduced differential transform method for partial differential equations
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/IJNSNS.2009.10.6.741
– volume: 96
  start-page: 195
  year: 2014
  ident: ref_36
  article-title: Mathematical analysis of an SIS model with imperfect vaccination and backward bifurcation
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2011.07.007
– volume: 143
  start-page: 361
  year: 2003
  ident: ref_14
  article-title: On the two-dimensional differential transform method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(02)00368-5
– volume: 168
  start-page: 1145
  year: 2005
  ident: ref_16
  article-title: Solution of boundary value problems for integro-differential equations by using differential transform method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2004.10.009
– volume: 6
  start-page: 83
  year: 2016
  ident: ref_31
  article-title: Application of the multi-step differential transform method to solve system of nonlinear fractional differential algebraic equations
  publication-title: J. Appl. Environ. Biol. Sci.
– volume: 1
  start-page: 207
  year: 2010
  ident: ref_24
  article-title: The reduced differential transform method: A new approach to fractional partial differential equations
  publication-title: Nonlinear Sci. Lett. A
– volume: 1
  start-page: 115
  year: 2014
  ident: ref_18
  article-title: Reduced differential transform method for solving (1 + n) dimensional Burgers’ equation
  publication-title: Egypt. J. Basic Appl. Sci.
– volume: 95
  start-page: 553
  year: 2014
  ident: ref_26
  article-title: A new approach to solve the fractional Harry Dym equation using the FRDTM
  publication-title: Int. J. Pure Appl. Math.
  doi: 10.12732/ijpam.v95i4.8
SSID ssj0038469
Score 2.3469007
Snippet In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method,...
Introduction Mathematical modeling of nonlinear systems is a key challenge for contemporary scientists; it is a basic description of physical reality expressed...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 973
SubjectTerms Infections
Infectious diseases
Methods
Ordinary differential equations
Partial differential equations
Population
Researchers
Vaccines
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELWgHEBCiG8CBRkJCS5W47XjxCdUQZcWCS7bot4iZ-y0i6Lsst0V8CP4z8zESeiqAqS9RBll5YzteTMZv8fYK5kWzkhnBWRBC000hFZOQNSTKje56tRqqNviszk80R9Ps9O-4HbRt1UOe2K3UfsFUI18DyO_xXCvlH67_CZINYq-rvYSGtfZDTnBmUQnxacfhp1YYWwl-CsxBgmMhHkkbVSY5u_Nv4YVqQSkhvhqtoPSFaR5tWHy5qZdup_fXdNcikbTu-xODyP5fvT7PXYttPfZ7ViD4_Fo0QP2a7qKxxbQsjtoK6ini7_vNVFwbTf8eACuwfNPnZo0xyu-T1TjP-YEZ9sz7vilJ83WCzh3RO_MZ0czfhAlZoGTqlrDqa7LjxCLr6hPhH9xAPNYcHzITqYHx-8ORS-_IEDLYi1qa7WEuqjBa115kwWF-YfLAIO-D3nwmBlmCM6VxzTXQo7YSRtIpfeurtPUq0dsp1204QnjGUBlJpaUsAARhLeYRPqiwgwWcmtCljAxvP8Sem5ykshoSsxRyF_ltr8S9nq0X0ZWjr9a7g7uLPvVeVH-mUsJeznexnVFH0tcGxYbtJE4uiIrZJqwx9H7418p6g3DX8LyrXkxGhBn9_addn7ecXcbjRDPyoS9GWfQf0bw9N8jeMZuIYaz1BYni122s15twnPESevqRbcYfgMgABQ5
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9QwFA06-6Agfn9UV4kg6Et2mmmaNk8y6A67goswO7I-lTRJ3WrpDLMdv_6D_9l7m7bsuIgizEOH3nYIc5ucc3tzDiHPeJhqybViJnaCCZQhVHxiWDHJE5lErVsNdlscyYOFeHMSn3QFt7OurRKoeNlO0lzKkAmgDHA0lmOVROOVLV5-6SpJqB6mWsmyy2RH4gumEdlZHL2bfkCW1V_rjzmDpTDxqo0R8Pxx-cmt0SYglChYs70qXYCaFzsmr2zqlf7-VVfVueVodoNk_UB8F8rnvU2T75kfv2k8_v9Ib5LrHVKlU59at8glV98m13yZj_rdS3fIz9na74yAyHYvL8O2Mfq6s12B6aOixz02dpa-bQ2rKXyjU1Qz_1YiYq4_Uk3P3WneLM2pRgVpOj-c033vYmsoGrdVFEvH9BDg_hpbUeh7bUzpa5p3yWK2f_zqgHUOD8wInjasUEpwU6SFsULkVsYuAoqjYwO4wrrEWSCfMeD_yAKTViYBeCakCbm1uijC0Eb3yKhe1u4BobExuZwoNNsyAFKsAp5q0xxIskmUdHFAWP8PZ6aTP0cXjioDGoQZkW1nRECeD_ErL_zxx8jdPmGybgI4ywCoKkCnUSQC8nQ4DY8uvo_RtVtuIIbD6NI45WFA7vv8Gn4qwvYz-AQk2cq8IQBlwbfP1OVpKw8uBaBIxQPyYsjRv4zg4b-HPiJXATIq7MLj6S4ZNeuNewywrMmfdM_eL3flM6w
  priority: 102
  providerName: Unpaywall
Title Fractional Multi-Step Differential Transformed Method for Approximating a Fractional Stochastic SIS Epidemic Model with Imperfect Vaccination
URI https://www.ncbi.nlm.nih.gov/pubmed/30889889
https://www.proquest.com/docview/2329154334
https://www.proquest.com/docview/2194585810
https://pubmed.ncbi.nlm.nih.gov/PMC6466391
https://www.mdpi.com/1660-4601/16/6/973/pdf?version=1552911954
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: HH5
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: KQ8
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: DIK
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: GX1
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: RPM
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: 8C1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1660-4601
  dateEnd: 20250731
  omitProxy: true
  ssIdentifier: ssj0038469
  issn: 1661-7827
  databaseCode: M48
  dateStart: 20050501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1da9RAFL3YFrQg4rfRuowg6Es0s5l8zIPIWndthS7F7cr6FCYzE7sSsjXuYvsj_M_emy93aYsvgZCbhMzcYc6Z3DkH4CX3YhVyJV0dWOEKkiGUvK_drJ9GYeRXbjVUbTEOD6bi8yyY_at_ahrw15XUjvykpmX-5vznxXsc8O-IcSJlfzv_YUtS_PdC0p7Zgh2clfqU4Uei-6Pg4zwra9HGK-7ZhZs-1fvE5Pa-Pj9dAp2XaydvrYozdfFb5fnaxDS6C3caRMkGdQrcgxu2uA-36-U4Vu8yegB_RmW9gwEjqz23LpV3sY-NPQoO85ydtBjWGnZUGUszPGMDUh0_nxOyLb4zxdaeNFku9KkipWc2OZywYe02qxkZrOWMlnjZIcLykkpG2Fel9bxee3wI09HwZP_AbZwYXC14vHQzKQXXWZxpI0RqwsD6SEVUoLGljY2sQZIYIE73DTJeqSOEUSLUHjdGZZnnGf8RbBeLwj4BFmidhn1JplgawYSRyCdNnCKZ1ZEMbeCA27Z_ohuZcnLLyBOkK9R1yWbXOfCqiz-rBTqujdxruzNp8yxBQCkRRfq-cOBFdxmHGP03UYVdrDCG49fFQcw9Bx7Xvd-9qk0bB6KNvOgCSL5780oxP61kvEOBaE9yB153GfSfL3h67eufwS4iOUnFcTzeg-1lubLPES0t0x5sRbMIj_E-p-PoUw92PgzHx1961QDBs-n4ePDtL3YfG8o
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigSQrwxFFgkEFxW9drrxx4QqmijhD4uSVFuxt5d0yDLCWmi0h_BX-E3MuONTaMKOFXyJfLI1mZmd75Zz34fwGvhp3kscsV1ZCWXREOoRKB5GRRJnISNWg11WxzH_RP5aRyNN-BXexaG2irbNbFZqM1U0x75DmZ-hek-DOWH2XdOqlH0dbWV0HBhcWAvzrFkO3s_2EP_vgmC3v7oY5-vVAW4liJd8FIpKXSZltpIWZg4siHC6jzSmMuMTazBgidCzBkarN6UThASyFj7wpi8LH3fhPjcG3AThyWJqz8ZdwVeiLmc4LbAnMcx8yaOJDIMlb8z-WbnpErgx8SPs54EryDbqw2aW8t6ll-c51V1Kfv17sKdFWxluy7O7sGGre_Dbbfnx9xRpgfwszd3xyTQsjnYy6mHjO2tNFhwLanYqAXK1rCjRr2a4S-2S9TmPyYEn-uvLGeXnjRcTPVpTnTSbDgYsn0naasZqbhVjPaR2QCx_5z6UtjnXOuJ2-B8CCfX4phHsFlPa_sEWKR1EQeKlLc0IhajsGg1aYEVs05UbCMPePv_Z3rFhU6SHFWGNRH5K1v3lwdvO_uZYwH5q-V2685stRqcZX9i14NX3W2cx_RxJq_tdIk2AkeXRqnwPXjsvN-9KqReNLw8SNbiojMgjvD1O_XktOEKjyVCSiU8eNdF0H9G8PTfI3gJW_3R0WF2ODg-eAa3ED8qaskT6TZsLuZL-xwx2qJ40UwMBl-ueyb-BuAUUPE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VIgESQtwxFFgkELys4s2uL_uAUEUaNRQqpLQob669u6ZBlhPSRKUfwQ_xdcz4RqMKeKrkl8gjW5uZ3TmzPjsH4KXw4zQUqeYmcIorakOoRd_wvJ9FYSQrtRpiW-yHu4fqwySYbMCv9iwM0SrbNbFaqO3M0B55DzO_xnQvperlDS3i82D4bv6dk4IUfWlt5TTqENlzZ6dYvp28HQ3Q16_6_eHOwftd3igMcKNEvOS51kqYPM6NVSqzYeAkQuw0MJjXrIucxeInQPwpLVZy2kQID1RofGFtmue-byU-9wpcjaSSRCeLJl2xJzGvE_QWmP84ZuGobhgppfZ7029uQQoFfki9ctYT4gWUe5GseX1VztOz07QozmXC4W241UBYtl3H3B3YcOVduFnv_7H6WNM9-Dlc1Ecm0LI65MuJT8YGjR4LrisFO2hBs7PsU6VkzfAX26Y25z-mBKXLryxl5540Xs7McUqtpdl4NGY7tbytYaToVjDaU2YjrAMWxFFhX1JjpvVm5304vBTHPIDNcla6R8ACY7Kwr0mFyyB6sRoLWBtnWD2bSIcu8IC3_39imr7oJM9RJFgfkb-SdX958Lqzn9cdQf5qudW6M2lWhpPkTxx78KK7jXOaPtSkpZut0Ebg6OIgFr4HD2vvd6-SxEvDy4NoLS46A-oXvn6nnB5XfcNDhfBSCw_edBH0nxE8_vcInsM1nIPJx9H-3hO4gVBSEztPxFuwuVys3FOEa8vsWTUvGBxd9kT8DXURVSw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9QwFA06-6Agfn9UV4kg6Et2mmmaNk8y6A67goswO7I-lTRJ3WrpDLMdv_6D_9l7m7bsuIgizEOH3nYIc5ucc3tzDiHPeJhqybViJnaCCZQhVHxiWDHJE5lErVsNdlscyYOFeHMSn3QFt7OurRKoeNlO0lzKkAmgDHA0lmOVROOVLV5-6SpJqB6mWsmyy2RH4gumEdlZHL2bfkCW1V_rjzmDpTDxqo0R8Pxx-cmt0SYglChYs70qXYCaFzsmr2zqlf7-VVfVueVodoNk_UB8F8rnvU2T75kfv2k8_v9Ib5LrHVKlU59at8glV98m13yZj_rdS3fIz9na74yAyHYvL8O2Mfq6s12B6aOixz02dpa-bQ2rKXyjU1Qz_1YiYq4_Uk3P3WneLM2pRgVpOj-c033vYmsoGrdVFEvH9BDg_hpbUeh7bUzpa5p3yWK2f_zqgHUOD8wInjasUEpwU6SFsULkVsYuAoqjYwO4wrrEWSCfMeD_yAKTViYBeCakCbm1uijC0Eb3yKhe1u4BobExuZwoNNsyAFKsAp5q0xxIskmUdHFAWP8PZ6aTP0cXjioDGoQZkW1nRECeD_ErL_zxx8jdPmGybgI4ywCoKkCnUSQC8nQ4DY8uvo_RtVtuIIbD6NI45WFA7vv8Gn4qwvYz-AQk2cq8IQBlwbfP1OVpKw8uBaBIxQPyYsjRv4zg4b-HPiJXATIq7MLj6S4ZNeuNewywrMmfdM_eL3flM6w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Multi-Step+Differential+Transformed+Method+for+Approximating+a+Fractional+Stochastic+SIS+Epidemic+Model+with+Imperfect+Vaccination&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Abuasad%2C+Salah&rft.au=Yildirim%2C+Ahmet&rft.au=Hashim%2C+Ishak&rft.au=Abdul+Karim%2C+Samsul+Ariffin&rft.date=2019-03-18&rft.eissn=1660-4601&rft.volume=16&rft.issue=6&rft_id=info:doi/10.3390%2Fijerph16060973&rft_id=info%3Apmid%2F30889889&rft.externalDocID=30889889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon