Fractional Multi-Step Differential Transformed Method for Approximating a Fractional Stochastic SIS Epidemic Model with Imperfect Vaccination
In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model w...
Saved in:
Published in | International journal of environmental research and public health Vol. 16; no. 6; p. 973 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.03.2019
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1660-4601 1661-7827 1660-4601 |
DOI | 10.3390/ijerph16060973 |
Cover
Abstract | In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model with imperfect vaccination, subject to appropriate initial conditions. The fractional derivatives are described in the Caputo sense. Numerical results coupled with graphical representations indicate that the proposed method is robust and precise which can give new interpretations for various types of dynamical systems. |
---|---|
AbstractList | In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model with imperfect vaccination, subject to appropriate initial conditions. The fractional derivatives are described in the Caputo sense. Numerical results coupled with graphical representations indicate that the proposed method is robust and precise which can give new interpretations for various types of dynamical systems. In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model with imperfect vaccination, subject to appropriate initial conditions. The fractional derivatives are described in the Caputo sense. Numerical results coupled with graphical representations indicate that the proposed method is robust and precise which can give new interpretations for various types of dynamical systems.In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method, to find approximate solutions to one of the most important epidemiology and mathematical ecology, fractional stochastic SIS epidemic model with imperfect vaccination, subject to appropriate initial conditions. The fractional derivatives are described in the Caputo sense. Numerical results coupled with graphical representations indicate that the proposed method is robust and precise which can give new interpretations for various types of dynamical systems. Introduction Mathematical modeling of nonlinear systems is a key challenge for contemporary scientists; it is a basic description of physical reality expressed in mathematical terms. Saravanan and Magesh [27] compared two analytical methods: FRDTM vs fractional variational iteration method (FVIM) to find numerical solutions of the linear and nonlinear Fokker-Planck partial differential equations with space and time fractional derivatives, Singh [28] presented FRDTM to compute an alternative approximate solution of initial valued autonomous system of linear and nonlinear fractional partial differential equations and Abuasad et al. The fractional multi-step differential transform method (FMsDTM) is capable of generating approximate solutions of a wide class of linear and nonlinear problems with fractional derivatives that converge quickly to the exact solutions. Dt0αi xi(t)=hi(t,x1,x2,⋯,xn),i=1,2,…,n,t0≤t≤T, with the initial conditions xi(t0)=ci,i=1,2,…,n, where 0<αi≤1 , ci(i=1,2,…,n) are real finite constants, and Dαi is the Caputo fractional derivative of order αi . Before applying the multistep method, we define the fractional differential transform of h(t) as H(k)=1Γ(kα+1)Dtkαh(t)t=t0, then the nth approximate series form solution of fractional initial value problem (FIVP) (5) and (6) can be given by xi=∑k=0NUi(k)(t−t0)kαi,t∈[t0,T], where Ui satisfies the following recurrence relation Ui(K+1)=Γ(kα+1)Γ((k+1)αi+1)Hi(k,U1,U2,⋯,Un),i=1,2,⋯,n, where Hi(k,U1,U2,⋯,Un) denotes the differential transformed function of hi(t,x1,x2,⋯,xn) , subject to the initial conditions Ui(t0)=ci,i=1,2,…,n . Assume that the interval [0,T] is divided into M sub-intervals [ti−1,ti],i=1,2,…,M, of the same step size |
Author | Gómez-Aguilar, J.F. Yildirim, Ahmet Abuasad, Salah Hashim, Ishak Abdul Karim, Samsul Ariffin |
AuthorAffiliation | 2 Department of Mathematics, Ege University, 35100 Bornova, Izmir, Turkey; yahmet49ege@gmail.com 4 Fundamental and Applied Sciences Department and Center for Smart Grid Energy Research (CSMER). Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri Iskandar, Perak DR, Malaysia; samsul_ariffin@utp.edu.my 1 Preparatory Year Deanship, King Faisal University, 31982 Hofuf, Al-Hasa, Saudi Arabia 5 CONACyT-Tecnológico Nacional de México/CENIDET. Interior Internado Palmira S/N, Col. Palmira, C.P. 62490 Cuernavaca, Morelos, Mexico; jgomez@cenidet.edu.mx 3 School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia; ishak_h@ukm.edu.my |
AuthorAffiliation_xml | – name: 4 Fundamental and Applied Sciences Department and Center for Smart Grid Energy Research (CSMER). Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri Iskandar, Perak DR, Malaysia; samsul_ariffin@utp.edu.my – name: 1 Preparatory Year Deanship, King Faisal University, 31982 Hofuf, Al-Hasa, Saudi Arabia – name: 2 Department of Mathematics, Ege University, 35100 Bornova, Izmir, Turkey; yahmet49ege@gmail.com – name: 5 CONACyT-Tecnológico Nacional de México/CENIDET. Interior Internado Palmira S/N, Col. Palmira, C.P. 62490 Cuernavaca, Morelos, Mexico; jgomez@cenidet.edu.mx – name: 3 School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia; ishak_h@ukm.edu.my |
Author_xml | – sequence: 1 givenname: Salah orcidid: 0000-0001-6173-652X surname: Abuasad fullname: Abuasad, Salah – sequence: 2 givenname: Ahmet orcidid: 0000-0001-8989-4271 surname: Yildirim fullname: Yildirim, Ahmet – sequence: 3 givenname: Ishak orcidid: 0000-0003-4237-7140 surname: Hashim fullname: Hashim, Ishak – sequence: 4 givenname: Samsul Ariffin orcidid: 0000-0001-6518-6705 surname: Abdul Karim fullname: Abdul Karim, Samsul Ariffin – sequence: 5 givenname: J.F. orcidid: 0000-0001-9403-3767 surname: Gómez-Aguilar fullname: Gómez-Aguilar, J.F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30889889$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1rFTEUDVKxH7p1KQE3bqZNJpnMZCOU2uqDPly86nZI89HJI5OMSaa1P8L_bOpr62tBhEByb8453HPuPtjxwWsA3mJ0SAhHR3at4zRghhjiLXkB9jBjqKIM4Z2t9y7YT2mNEOko46_ALkFdx8vZA7_OopDZBi8cXM4u22qV9QQ_WWN01D7b0r-IwicT4qgVXOo8BAVLBY-nKYafdhTZ-iso4JbSKgc5iJSthKvFCp5OVumxFMugtIM3Ng9wMU46Gi0z_C6ktF7cUV-Dl0a4pN_c3wfg29npxcmX6vzr58XJ8XklKe5yZTinWJrOSEXppWKNJnXTiEbWFCvdaoU4bdq2JoqQjsu2YYgyibBSwhiEFDkARxvd2U_i9kY410-xOIm3PUb9XbD902AL4-OGMc2XJQdZooniLysI2z_98Xbor8J1zyhjhOMi8OFeIIYfs065H22S2jnhdZhTX-Myc9d0GBXo-2fQdZhjybWgSM1xQwmhBfVue6LHUR52WwCHG4CMIaWozf890mcEafOfvRRH1v2L9hsuosun |
CitedBy_id | crossref_primary_10_1155_2019_5703916 crossref_primary_10_1515_phys_2020_0188 crossref_primary_10_37394_232017_2024_15_12 crossref_primary_10_3390_sym15010194 crossref_primary_10_1142_S1793962320410032 crossref_primary_10_3934_mmc_2022015 crossref_primary_10_1063_5_0153122 crossref_primary_10_1155_2022_7374751 crossref_primary_10_3390_math8010096 crossref_primary_10_3390_fractalfract5040168 crossref_primary_10_1016_j_chaos_2019_07_053 crossref_primary_10_3934_mbe_2022201 crossref_primary_10_37394_232021_2023_3_11 crossref_primary_10_1002_jnm_3220 crossref_primary_10_1142_S1793524520500825 crossref_primary_10_1186_s13662_021_03347_3 crossref_primary_10_3390_sym15091721 crossref_primary_10_3390_math8050729 crossref_primary_10_1140_epjp_s13360_020_00856_0 |
Cites_doi | 10.1016/j.cnsns.2017.01.018 10.1016/j.chaos.2006.09.004 10.1007/978-3-319-17954-4 10.12816/0033742 10.1016/j.jksus.2015.01.003 10.1016/j.apm.2007.09.025 10.1016/S0096-3003(02)00794-4 10.1016/j.amc.2007.07.068 10.1016/j.matcom.2017.06.004 10.1007/s00500-016-2378-5 10.22436/jnsa.010.10.09 10.1016/S0096-3003(03)00581-2 10.1016/j.amc.2015.10.016 10.1007/BFb0067096 10.1016/j.aml.2007.02.022 10.18576/pfda/030404 10.17576/jsm-2018-4711-33 10.1515/IJNSNS.2009.10.6.741 10.1016/j.matcom.2011.07.007 10.1016/S0096-3003(02)00368-5 10.1016/j.amc.2004.10.009 10.12732/ijpam.v95i4.8 |
ContentType | Journal Article |
Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8C1 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
DOI | 10.3390/ijerph16060973 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
EISSN | 1660-4601 |
ExternalDocumentID | 10.3390/ijerph16060973 PMC6466391 30889889 10_3390_ijerph16060973 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 29J 2WC 53G 5GY 5VS 7X7 7XC 88E 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 A8Z AADQD AAFWJ AAHBH AAYXX ABGAM ABUWG ACGFO ACGOD ACIWK ADBBV AENEX AFKRA AFRAH AFZYC AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN ESTFP F5P FYUFA GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO PUEGO Q2X RNS RPM SV3 TR2 UKHRP XSB 3V. ABJCF ALIPV ATCPS AZQEC BHPHI GROUPED_DOAJ HCIFZ IAO M2P M7S M~E NPM PATMY PYCSY 7XB 8FK DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM ADRAZ ADTOC C1A IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c418t-f9941cf8fcd44bd65e3255a5c241de7ed09457723d3389c756046c01ddaff00d3 |
IEDL.DBID | M48 |
ISSN | 1660-4601 1661-7827 |
IngestDate | Tue Aug 19 23:21:48 EDT 2025 Tue Sep 30 16:57:45 EDT 2025 Wed Oct 01 12:12:19 EDT 2025 Fri Jul 25 20:05:02 EDT 2025 Wed Feb 19 02:36:45 EST 2025 Wed Oct 01 04:41:51 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | fractional calculus imperfect vaccination differential transformed method multi-step differential transformed method stochastic SIS epidemic model |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-f9941cf8fcd44bd65e3255a5c241de7ed09457723d3389c756046c01ddaff00d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8989-4271 0000-0001-9403-3767 0000-0003-4237-7140 0000-0001-6518-6705 0000-0001-6173-652X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/ijerph16060973 |
PMID | 30889889 |
PQID | 2329154334 |
PQPubID | 54923 |
ParticipantIDs | unpaywall_primary_10_3390_ijerph16060973 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6466391 proquest_miscellaneous_2194585810 proquest_journals_2329154334 pubmed_primary_30889889 crossref_primary_10_3390_ijerph16060973 crossref_citationtrail_10_3390_ijerph16060973 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-18 |
PublicationDateYYYYMMDD | 2019-03-18 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | International journal of environmental research and public health |
PublicationTitleAlternate | Int J Environ Res Public Health |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Srivastava (ref_18) 2014; 1 Liu (ref_37) 2018; 144 Momani (ref_30) 2016; 15 ref_11 Ayaz (ref_13) 2004; 152 Bonyah (ref_31) 2016; 6 Odibat (ref_22) 2008; 21 Freihat (ref_34) 2017; 14 Arafa (ref_7) 2017; 3 Saravanan (ref_27) 2016; 28 Yu (ref_19) 2016; 273 Rawashdeh (ref_26) 2014; 95 Safan (ref_36) 2014; 96 Keskin (ref_24) 2010; 1 Arikoglu (ref_16) 2005; 168 Moaddy (ref_33) 2018; 22 Singh (ref_28) 2016; 2679 Srivastava (ref_25) 2014; 1 ref_1 Abuasad (ref_9) 2018; 1940 ref_3 Abuasad (ref_29) 2018; 1 ref_2 Arshad (ref_35) 2017; 48 Odibat (ref_23) 2008; 197 Ayaz (ref_12) 2004; 147 Arikoglu (ref_21) 2007; 34 Acan (ref_20) 2017; 10 ref_8 Keskin (ref_17) 2009; 10 Bonyah (ref_32) 2016; 6 Abuasad (ref_10) 2018; 47 ref_5 ref_4 Ayaz (ref_14) 2003; 143 ref_6 Hassan (ref_15) 2008; 32 |
References_xml | – volume: 48 start-page: 509 year: 2017 ident: ref_35 article-title: (n + 1)-dimensional fractional reduced differential transform method for fractional order partial differential equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2017.01.018 – volume: 34 start-page: 1473 year: 2007 ident: ref_21 article-title: Solution of fractional differential equations by using differential transform method publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2006.09.004 – ident: ref_6 doi: 10.1007/978-3-319-17954-4 – volume: 2679 start-page: 20 year: 2016 ident: ref_28 article-title: Fractional reduced differential transform method for numerical computation of a system of linear and nonlinear fractional partial differential equations publication-title: Int. J. Open Probl. Comput. Math. doi: 10.12816/0033742 – ident: ref_5 – volume: 28 start-page: 160 year: 2016 ident: ref_27 article-title: An efficient computational technique for solving the Fokker-Planck equation with space and time fractional derivatives publication-title: J. King Saud Univ. Sci. doi: 10.1016/j.jksus.2015.01.003 – volume: 15 start-page: 319 year: 2016 ident: ref_30 article-title: Analytical approximations for Fokker-Planck equations of fractional order in multistep schemes publication-title: Appl. Comput. Math. – ident: ref_3 – volume: 32 start-page: 2552 year: 2008 ident: ref_15 article-title: Application to differential transformation method for solving systems of differential equations publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2007.09.025 – volume: 147 start-page: 547 year: 2004 ident: ref_12 article-title: Solutions of the system of differential equations by differential transform method publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(02)00794-4 – volume: 1 start-page: 71 year: 2014 ident: ref_25 article-title: Two-dimensional time fractional-order biological population model and its analytical solution publication-title: Egypt. J. Basic Appl. Sci. – ident: ref_11 – volume: 197 start-page: 467 year: 2008 ident: ref_23 article-title: Generalized differential transform method: Application to differential equations of fractional order publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.07.068 – volume: 144 start-page: 78 year: 2018 ident: ref_37 article-title: The threshold of a stochastic SIS epidemic model with imperfect vaccination publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2017.06.004 – volume: 22 start-page: 773 year: 2018 ident: ref_33 article-title: Numerical investigation for handling fractional-order Rabinovich-Fabrikant model using the multistep approach publication-title: Soft Comput. doi: 10.1007/s00500-016-2378-5 – ident: ref_1 – volume: 1 start-page: 1 year: 2018 ident: ref_29 article-title: Analytical treatment of two-dimensional fractional Helmholtz equations publication-title: J. King Saud Univ. Sci. – volume: 10 start-page: 5230 year: 2017 ident: ref_20 article-title: Reduced differential transform method for solving time and space local fractional partial differential equations publication-title: J. Nonlinear Sci. Appl. doi: 10.22436/jnsa.010.10.09 – volume: 152 start-page: 649 year: 2004 ident: ref_13 article-title: Applications of differential transform method to differential-algebraic equations publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(03)00581-2 – volume: 6 start-page: 17 year: 2016 ident: ref_32 article-title: A novel approach of multistep scheme for solving nonlinear fractional telegraph equation publication-title: J. Appl. Environ. Biol. Sci. – volume: 273 start-page: 697 year: 2016 ident: ref_19 article-title: (n + 1) dimensional reduced differential transform method for solving partial differential equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.10.016 – ident: ref_8 doi: 10.1007/BFb0067096 – ident: ref_4 – volume: 21 start-page: 194 year: 2008 ident: ref_22 article-title: A generalized differential transform method for linear partial differential equations of fractional order publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2007.02.022 – ident: ref_2 – volume: 3 start-page: 281 year: 2017 ident: ref_7 article-title: Backward bifurcation in a fractional order epidemiological model publication-title: Prog. Fract. Differ. Appl. doi: 10.18576/pfda/030404 – volume: 14 start-page: 1 year: 2017 ident: ref_34 article-title: Numerical multistep approach for solving fractional partial differential equations publication-title: Int. J. Comput. Methods – volume: 1940 start-page: 1 year: 2018 ident: ref_9 article-title: Homotopy decomposition method for solving one-dimensional time-fractional diffusion equation publication-title: AIP Conf. Proc. – volume: 47 start-page: 2899 year: 2018 ident: ref_10 article-title: Homotopy decomposition method for solving higher-order time-fractional diffusion equation via modified beta derivative publication-title: Sains Malays. doi: 10.17576/jsm-2018-4711-33 – volume: 10 start-page: 741 year: 2009 ident: ref_17 article-title: Reduced differential transform method for partial differential equations publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/IJNSNS.2009.10.6.741 – volume: 96 start-page: 195 year: 2014 ident: ref_36 article-title: Mathematical analysis of an SIS model with imperfect vaccination and backward bifurcation publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2011.07.007 – volume: 143 start-page: 361 year: 2003 ident: ref_14 article-title: On the two-dimensional differential transform method publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(02)00368-5 – volume: 168 start-page: 1145 year: 2005 ident: ref_16 article-title: Solution of boundary value problems for integro-differential equations by using differential transform method publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2004.10.009 – volume: 6 start-page: 83 year: 2016 ident: ref_31 article-title: Application of the multi-step differential transform method to solve system of nonlinear fractional differential algebraic equations publication-title: J. Appl. Environ. Biol. Sci. – volume: 1 start-page: 207 year: 2010 ident: ref_24 article-title: The reduced differential transform method: A new approach to fractional partial differential equations publication-title: Nonlinear Sci. Lett. A – volume: 1 start-page: 115 year: 2014 ident: ref_18 article-title: Reduced differential transform method for solving (1 + n) dimensional Burgers’ equation publication-title: Egypt. J. Basic Appl. Sci. – volume: 95 start-page: 553 year: 2014 ident: ref_26 article-title: A new approach to solve the fractional Harry Dym equation using the FRDTM publication-title: Int. J. Pure Appl. Math. doi: 10.12732/ijpam.v95i4.8 |
SSID | ssj0038469 |
Score | 2.3469007 |
Snippet | In this paper, we applied a fractional multi-step differential transformed method, which is a generalization of the multi-step differential transformed method,... Introduction Mathematical modeling of nonlinear systems is a key challenge for contemporary scientists; it is a basic description of physical reality expressed... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 973 |
SubjectTerms | Infections Infectious diseases Methods Ordinary differential equations Partial differential equations Population Researchers Vaccines |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Nb9QwELWgHEBCiG8CBRkJCS5W47XjxCdUQZcWCS7bot4iZ-y0i6Lsst0V8CP4z8zESeiqAqS9RBll5YzteTMZv8fYK5kWzkhnBWRBC000hFZOQNSTKje56tRqqNviszk80R9Ps9O-4HbRt1UOe2K3UfsFUI18DyO_xXCvlH67_CZINYq-rvYSGtfZDTnBmUQnxacfhp1YYWwl-CsxBgmMhHkkbVSY5u_Nv4YVqQSkhvhqtoPSFaR5tWHy5qZdup_fXdNcikbTu-xODyP5fvT7PXYttPfZ7ViD4_Fo0QP2a7qKxxbQsjtoK6ini7_vNVFwbTf8eACuwfNPnZo0xyu-T1TjP-YEZ9sz7vilJ83WCzh3RO_MZ0czfhAlZoGTqlrDqa7LjxCLr6hPhH9xAPNYcHzITqYHx-8ORS-_IEDLYi1qa7WEuqjBa115kwWF-YfLAIO-D3nwmBlmCM6VxzTXQo7YSRtIpfeurtPUq0dsp1204QnjGUBlJpaUsAARhLeYRPqiwgwWcmtCljAxvP8Sem5ykshoSsxRyF_ltr8S9nq0X0ZWjr9a7g7uLPvVeVH-mUsJeznexnVFH0tcGxYbtJE4uiIrZJqwx9H7418p6g3DX8LyrXkxGhBn9_addn7ecXcbjRDPyoS9GWfQf0bw9N8jeMZuIYaz1BYni122s15twnPESevqRbcYfgMgABQ5 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9QwFA06-6Agfn9UV4kg6Et2mmmaNk8y6A67goswO7I-lTRJ3WrpDLMdv_6D_9l7m7bsuIgizEOH3nYIc5ucc3tzDiHPeJhqybViJnaCCZQhVHxiWDHJE5lErVsNdlscyYOFeHMSn3QFt7OurRKoeNlO0lzKkAmgDHA0lmOVROOVLV5-6SpJqB6mWsmyy2RH4gumEdlZHL2bfkCW1V_rjzmDpTDxqo0R8Pxx-cmt0SYglChYs70qXYCaFzsmr2zqlf7-VVfVueVodoNk_UB8F8rnvU2T75kfv2k8_v9Ib5LrHVKlU59at8glV98m13yZj_rdS3fIz9na74yAyHYvL8O2Mfq6s12B6aOixz02dpa-bQ2rKXyjU1Qz_1YiYq4_Uk3P3WneLM2pRgVpOj-c033vYmsoGrdVFEvH9BDg_hpbUeh7bUzpa5p3yWK2f_zqgHUOD8wInjasUEpwU6SFsULkVsYuAoqjYwO4wrrEWSCfMeD_yAKTViYBeCakCbm1uijC0Eb3yKhe1u4BobExuZwoNNsyAFKsAp5q0xxIskmUdHFAWP8PZ6aTP0cXjioDGoQZkW1nRECeD_ErL_zxx8jdPmGybgI4ywCoKkCnUSQC8nQ4DY8uvo_RtVtuIIbD6NI45WFA7vv8Gn4qwvYz-AQk2cq8IQBlwbfP1OVpKw8uBaBIxQPyYsjRv4zg4b-HPiJXATIq7MLj6S4ZNeuNewywrMmfdM_eL3flM6w priority: 102 providerName: Unpaywall |
Title | Fractional Multi-Step Differential Transformed Method for Approximating a Fractional Stochastic SIS Epidemic Model with Imperfect Vaccination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30889889 https://www.proquest.com/docview/2329154334 https://www.proquest.com/docview/2194585810 https://pubmed.ncbi.nlm.nih.gov/PMC6466391 https://www.mdpi.com/1660-4601/16/6/973/pdf?version=1552911954 |
UnpaywallVersion | publishedVersion |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: HH5 dateStart: 20040101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: DIK dateStart: 20040101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: GX1 dateStart: 20040101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: RPM dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1660-4601 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: 8C1 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1660-4601 dateEnd: 20250731 omitProxy: true ssIdentifier: ssj0038469 issn: 1661-7827 databaseCode: M48 dateStart: 20050501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1da9RAFL3YFrQg4rfRuowg6Es0s5l8zIPIWndthS7F7cr6FCYzE7sSsjXuYvsj_M_emy93aYsvgZCbhMzcYc6Z3DkH4CX3YhVyJV0dWOEKkiGUvK_drJ9GYeRXbjVUbTEOD6bi8yyY_at_ahrw15XUjvykpmX-5vznxXsc8O-IcSJlfzv_YUtS_PdC0p7Zgh2clfqU4Uei-6Pg4zwra9HGK-7ZhZs-1fvE5Pa-Pj9dAp2XaydvrYozdfFb5fnaxDS6C3caRMkGdQrcgxu2uA-36-U4Vu8yegB_RmW9gwEjqz23LpV3sY-NPQoO85ydtBjWGnZUGUszPGMDUh0_nxOyLb4zxdaeNFku9KkipWc2OZywYe02qxkZrOWMlnjZIcLykkpG2Fel9bxee3wI09HwZP_AbZwYXC14vHQzKQXXWZxpI0RqwsD6SEVUoLGljY2sQZIYIE73DTJeqSOEUSLUHjdGZZnnGf8RbBeLwj4BFmidhn1JplgawYSRyCdNnCKZ1ZEMbeCA27Z_ohuZcnLLyBOkK9R1yWbXOfCqiz-rBTqujdxruzNp8yxBQCkRRfq-cOBFdxmHGP03UYVdrDCG49fFQcw9Bx7Xvd-9qk0bB6KNvOgCSL5780oxP61kvEOBaE9yB153GfSfL3h67eufwS4iOUnFcTzeg-1lubLPES0t0x5sRbMIj_E-p-PoUw92PgzHx1961QDBs-n4ePDtL3YfG8o |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcigSQrwxFFgkEFxW9drrxx4QqmijhD4uSVFuxt5d0yDLCWmi0h_BX-E3MuONTaMKOFXyJfLI1mZmd75Zz34fwGvhp3kscsV1ZCWXREOoRKB5GRRJnISNWg11WxzH_RP5aRyNN-BXexaG2irbNbFZqM1U0x75DmZ-hek-DOWH2XdOqlH0dbWV0HBhcWAvzrFkO3s_2EP_vgmC3v7oY5-vVAW4liJd8FIpKXSZltpIWZg4siHC6jzSmMuMTazBgidCzBkarN6UThASyFj7wpi8LH3fhPjcG3AThyWJqz8ZdwVeiLmc4LbAnMcx8yaOJDIMlb8z-WbnpErgx8SPs54EryDbqw2aW8t6ll-c51V1Kfv17sKdFWxluy7O7sGGre_Dbbfnx9xRpgfwszd3xyTQsjnYy6mHjO2tNFhwLanYqAXK1rCjRr2a4S-2S9TmPyYEn-uvLGeXnjRcTPVpTnTSbDgYsn0naasZqbhVjPaR2QCx_5z6UtjnXOuJ2-B8CCfX4phHsFlPa_sEWKR1EQeKlLc0IhajsGg1aYEVs05UbCMPePv_Z3rFhU6SHFWGNRH5K1v3lwdvO_uZYwH5q-V2685stRqcZX9i14NX3W2cx_RxJq_tdIk2AkeXRqnwPXjsvN-9KqReNLw8SNbiojMgjvD1O_XktOEKjyVCSiU8eNdF0H9G8PTfI3gJW_3R0WF2ODg-eAa3ED8qaskT6TZsLuZL-xwx2qJ40UwMBl-ueyb-BuAUUPE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEB2VIgESQtwxFFgkELys4s2uL_uAUEUaNRQqpLQob669u6ZBlhPSRKUfwQ_xdcz4RqMKeKrkl8gjW5uZ3TmzPjsH4KXw4zQUqeYmcIorakOoRd_wvJ9FYSQrtRpiW-yHu4fqwySYbMCv9iwM0SrbNbFaqO3M0B55DzO_xnQvperlDS3i82D4bv6dk4IUfWlt5TTqENlzZ6dYvp28HQ3Q16_6_eHOwftd3igMcKNEvOS51kqYPM6NVSqzYeAkQuw0MJjXrIucxeInQPwpLVZy2kQID1RofGFtmue-byU-9wpcjaSSRCeLJl2xJzGvE_QWmP84ZuGobhgppfZ7029uQQoFfki9ctYT4gWUe5GseX1VztOz07QozmXC4W241UBYtl3H3B3YcOVduFnv_7H6WNM9-Dlc1Ecm0LI65MuJT8YGjR4LrisFO2hBs7PsU6VkzfAX26Y25z-mBKXLryxl5540Xs7McUqtpdl4NGY7tbytYaToVjDaU2YjrAMWxFFhX1JjpvVm5304vBTHPIDNcla6R8ACY7Kwr0mFyyB6sRoLWBtnWD2bSIcu8IC3_39imr7oJM9RJFgfkb-SdX958Lqzn9cdQf5qudW6M2lWhpPkTxx78KK7jXOaPtSkpZut0Ebg6OIgFr4HD2vvd6-SxEvDy4NoLS46A-oXvn6nnB5XfcNDhfBSCw_edBH0nxE8_vcInsM1nIPJx9H-3hO4gVBSEztPxFuwuVys3FOEa8vsWTUvGBxd9kT8DXURVSw |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9QwFA06-6Agfn9UV4kg6Et2mmmaNk8y6A67goswO7I-lTRJ3WrpDLMdv_6D_9l7m7bsuIgizEOH3nYIc5ucc3tzDiHPeJhqybViJnaCCZQhVHxiWDHJE5lErVsNdlscyYOFeHMSn3QFt7OurRKoeNlO0lzKkAmgDHA0lmOVROOVLV5-6SpJqB6mWsmyy2RH4gumEdlZHL2bfkCW1V_rjzmDpTDxqo0R8Pxx-cmt0SYglChYs70qXYCaFzsmr2zqlf7-VVfVueVodoNk_UB8F8rnvU2T75kfv2k8_v9Ib5LrHVKlU59at8glV98m13yZj_rdS3fIz9na74yAyHYvL8O2Mfq6s12B6aOixz02dpa-bQ2rKXyjU1Qz_1YiYq4_Uk3P3WneLM2pRgVpOj-c033vYmsoGrdVFEvH9BDg_hpbUeh7bUzpa5p3yWK2f_zqgHUOD8wInjasUEpwU6SFsULkVsYuAoqjYwO4wrrEWSCfMeD_yAKTViYBeCakCbm1uijC0Eb3yKhe1u4BobExuZwoNNsyAFKsAp5q0xxIskmUdHFAWP8PZ6aTP0cXjioDGoQZkW1nRECeD_ErL_zxx8jdPmGybgI4ywCoKkCnUSQC8nQ4DY8uvo_RtVtuIIbD6NI45WFA7vv8Gn4qwvYz-AQk2cq8IQBlwbfP1OVpKw8uBaBIxQPyYsjRv4zg4b-HPiJXATIq7MLj6S4ZNeuNewywrMmfdM_eL3flM6w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+Multi-Step+Differential+Transformed+Method+for+Approximating+a+Fractional+Stochastic+SIS+Epidemic+Model+with+Imperfect+Vaccination&rft.jtitle=International+journal+of+environmental+research+and+public+health&rft.au=Abuasad%2C+Salah&rft.au=Yildirim%2C+Ahmet&rft.au=Hashim%2C+Ishak&rft.au=Abdul+Karim%2C+Samsul+Ariffin&rft.date=2019-03-18&rft.eissn=1660-4601&rft.volume=16&rft.issue=6&rft_id=info:doi/10.3390%2Fijerph16060973&rft_id=info%3Apmid%2F30889889&rft.externalDocID=30889889 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-4601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-4601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-4601&client=summon |