Research and Design of Hybrid Optimized Backpropagation (BP) Neural Network PID Algorithm for Integrated Water and Fertilizer Precision Fertilization Control System for Field Crops

China’s field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual fertilization methods, which makes the use of chemical fertilizers in China high and causes waste of fertilizer resources and ecological envir...

Full description

Saved in:
Bibliographic Details
Published inAgronomy (Basel) Vol. 13; no. 5; p. 1423
Main Authors Zhu, Fenglei, Zhang, Lixin, Hu, Xue, Zhao, Jiawei, Meng, Zihao, Zheng, Yu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2023
Subjects
Online AccessGet full text
ISSN2073-4395
2073-4395
DOI10.3390/agronomy13051423

Cover

Abstract China’s field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual fertilization methods, which makes the use of chemical fertilizers in China high and causes waste of fertilizer resources and ecological environmental damage. To address the above problems, a hybrid optimization of genetic algorithms and particle swarm optimization (GA–PSO) is used to optimize the initial weights of the backpropagation (BP) neural network, and a hybrid optimization-based BP neural network PID controller is designed to realize the accurate control of fertilizer flow in the integrated water and fertilizer precision fertilization control system for field crops. At the same time, the STM32 microcontroller-based precision fertilizer application control system for integrated water and fertilizer application of large field crops was developed and the performance of the controller was verified experimentally. The results show that the controller has an average maximum overshoot of 5.1% and an average adjustment time of 68.99 s, which is better than the PID and PID control algorithms based on BP neural network (BP–PID) controllers; among them, the hybrid optimization of PID control algorithm based on BP neural network by particle swarm optimization and genetic algorithm(GA–PSO–BP–PID) controller has the best-integrated control performance when the fertilizer application flow rate is 0.6m3/h.
AbstractList China's field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual fertilization methods, which makes the use of chemical fertilizers in China high and causes waste of fertilizer resources and ecological environmental damage. To address the above problems, a hybrid optimization of genetic algorithms and particle swarm optimization (GA-PSO) is used to optimize the initial weights of the backpropagation (BP) neural network, and a hybrid optimization-based BP neural network PID controller is designed to realize the accurate control of fertilizer flow in the integrated water and fertilizer precision fertilization control system for field crops. At the same time, the STM32 microcontroller-based precision fertilizer application control system for integrated water and fertilizer application of large field crops was developed and the performance of the controller was verified experimentally. The results show that the controller has an average maximum overshoot of 5.1% and an average adjustment time of 68.99 s, which is better than the PID and PID control algorithms based on BP neural network (BP-PID) controllers; among them, the hybrid optimization of PID control algorithm based on BP neural network by particle swarm optimization and genetic algorithm(GA-PSO-BP-PID) controller has the best-integrated control performance when the fertilizer application flow rate is 0.6m[sup.3]/h.
China’s field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual fertilization methods, which makes the use of chemical fertilizers in China high and causes waste of fertilizer resources and ecological environmental damage. To address the above problems, a hybrid optimization of genetic algorithms and particle swarm optimization (GA–PSO) is used to optimize the initial weights of the backpropagation (BP) neural network, and a hybrid optimization-based BP neural network PID controller is designed to realize the accurate control of fertilizer flow in the integrated water and fertilizer precision fertilization control system for field crops. At the same time, the STM32 microcontroller-based precision fertilizer application control system for integrated water and fertilizer application of large field crops was developed and the performance of the controller was verified experimentally. The results show that the controller has an average maximum overshoot of 5.1% and an average adjustment time of 68.99 s, which is better than the PID and PID control algorithms based on BP neural network (BP–PID) controllers; among them, the hybrid optimization of PID control algorithm based on BP neural network by particle swarm optimization and genetic algorithm(GA–PSO–BP–PID) controller has the best-integrated control performance when the fertilizer application flow rate is 0.6m3/h.
Audience Academic
Author Zheng, Yu
Hu, Xue
Meng, Zihao
Zhao, Jiawei
Zhu, Fenglei
Zhang, Lixin
Author_xml – sequence: 1
  givenname: Fenglei
  surname: Zhu
  fullname: Zhu, Fenglei
– sequence: 2
  givenname: Lixin
  surname: Zhang
  fullname: Zhang, Lixin
– sequence: 3
  givenname: Xue
  surname: Hu
  fullname: Hu, Xue
– sequence: 4
  givenname: Jiawei
  surname: Zhao
  fullname: Zhao, Jiawei
– sequence: 5
  givenname: Zihao
  surname: Meng
  fullname: Meng, Zihao
– sequence: 6
  givenname: Yu
  surname: Zheng
  fullname: Zheng, Yu
BookMark eNqFkktvEzEQx1eoSJTSO0dLXOCQ4sc-j2lKaKSKRjzEcTWxx1unu_ZiO6rC5-oHrJsFhHoAW_JYY_9_nodfZkfWWcyy14yeCdHQ99B5Z92wZ4IWLOfiWXbMaSVmuWiKo7_2L7LTELY0jYaJmlbH2f1nDAhe3hCwilxgMJ0lTpPL_cYbRa7HaAbzExU5B3k7ejdCB9E4S96er9-RT7jz0CcT75y_JevVBZn3nfMm3gxEO09WNmLnISbA97T6wytL9NH0ierJ2qM04ZH32znRF85G73ryZR8iTqilwV6RRQohvMqea-gDnv6yJ9m35Yevi8vZ1fXH1WJ-NZM5q-MMN6IoU0lUjcgZBy1yrLFQhQDO0knBtEahFBdNpTXLG-S6ogw0Y0rKgomTbDVxlYNtO3ozgN-3Dkx7cDjftZCilj22yGlZbGpZ5azJZY1QsJrJnAregIJcJxabWDs7wv4O-v4PkNH2sYvt0y4mzZtJkwr_Y4chtlu38zal3PKaNbwUFafp1tl0q4MUiLHaRQ8yTYWDkemjaJP886qgdV2WeZkE5SSQ3oXgUbfSxEPdk9D0_4qHPhH-N4UHyWXU-g
CitedBy_id crossref_primary_10_1515_ijcre_2023_0169
crossref_primary_10_3390_agriculture13122176
crossref_primary_10_1016_j_atech_2025_100841
crossref_primary_10_1016_j_energy_2024_132932
crossref_primary_10_3390_su151410835
crossref_primary_10_1016_j_compag_2025_110044
crossref_primary_10_3390_plants12122257
crossref_primary_10_3390_pr11123374
crossref_primary_10_1016_j_jenvman_2024_120393
crossref_primary_10_2478_amns_2024_2414
crossref_primary_10_3390_agriculture14020168
crossref_primary_10_1038_s41598_024_79653_z
crossref_primary_10_1016_j_envres_2024_118738
crossref_primary_10_3390_w15213718
crossref_primary_10_1016_j_compag_2024_108912
Cites_doi 10.3390/agronomy12030664
10.1016/j.agwat.2021.106756
10.1016/j.jclepro.2019.118735
10.1016/j.procs.2018.04.336
10.1016/j.heliyon.2022.e09399
10.1016/j.knosys.2013.11.015
10.3390/pr10020357
10.1016/j.agwat.2022.107468
10.3390/su9030353
10.1016/j.scienta.2018.08.050
10.3390/agronomy12030555
10.1016/j.jclepro.2021.128329
10.1016/j.autcon.2021.103722
10.1016/S1004-9541(13)60479-6
10.1016/j.eja.2014.05.012
10.3390/foods12091897
10.3390/agriculture12091395
10.1007/s00271-016-0525-5
10.1016/j.agwat.2021.107279
10.1016/j.ifacol.2019.12.487
10.1002/agj2.20393
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
SOI
ADTOC
UNPAY
DOA
DOI 10.3390/agronomy13051423
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agriculture Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_e2065b8c74194c8ea5181c40329ada4f
10.3390/agronomy13051423
A750886646
10_3390_agronomy13051423
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
SOI
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c418t-eb356130d8ee212af34e8e5d53a2156151ffe3dd2397ff149e2f701af11dcc513
IEDL.DBID BENPR
ISSN 2073-4395
IngestDate Tue Oct 14 19:05:28 EDT 2025
Sun Oct 26 01:49:46 EDT 2025
Mon Jun 30 11:14:58 EDT 2025
Mon Oct 20 16:25:26 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Thu Oct 16 04:41:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-eb356130d8ee212af34e8e5d53a2156151ffe3dd2397ff149e2f701af11dcc513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2819263720?pq-origsite=%requestingapplication%&accountid=15518
PQID 2819263720
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_e2065b8c74194c8ea5181c40329ada4f
unpaywall_primary_10_3390_agronomy13051423
proquest_journals_2819263720
gale_infotracacademiconefile_A750886646
crossref_citationtrail_10_3390_agronomy13051423
crossref_primary_10_3390_agronomy13051423
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Dong (ref_14) 2020; 246
Marino (ref_21) 2014; 59
Xiuyun (ref_3) 2019; 52
(ref_5) 2015; 22
ref_12
ref_10
Tang (ref_18) 2017; 139
Wang (ref_2) 2019; 243
Wang (ref_26) 2020; 11
ref_17
ref_15
Fontanier (ref_9) 2021; 113
Beiersdorf (ref_7) 2017; 35
Ahmad (ref_11) 2017; 51
Chen (ref_13) 2021; 316
ref_1
Huang (ref_19) 2018; 131
Bhite (ref_8) 2017; 10
Joseph (ref_16) 2022; 8
Ren (ref_20) 2014; 56
Zou (ref_6) 2013; 21
ref_27
Ren (ref_4) 2022; 263
Wang (ref_22) 2022; 260
Feng (ref_24) 2020; 127
Qi (ref_23) 2021; 248
Yu (ref_25) 2020; 4
References_xml – volume: 4
  start-page: 964
  year: 2020
  ident: ref_25
  article-title: Adsorption control of a pipeline robot based on improved PSO algorithm
  publication-title: Complex Intell. Syst.
– volume: 10
  start-page: 5644
  year: 2017
  ident: ref_8
  article-title: Standardization of Stage Wise Requirement of Nutrients in Sweet Orange
  publication-title: Trends Biosci.
– ident: ref_1
  doi: 10.3390/agronomy12030664
– volume: 248
  start-page: 106756
  year: 2021
  ident: ref_23
  article-title: Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.106756
– volume: 246
  start-page: 118735
  year: 2020
  ident: ref_14
  article-title: Precision fertilization method of field crops based on the Wavelet-BP neural network in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118735
– volume: 131
  start-page: 1238
  year: 2018
  ident: ref_19
  article-title: Application of Improved PSO—BP Neural Network in Customer Churn Warning
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.04.336
– volume: 8
  start-page: e09399
  year: 2022
  ident: ref_16
  article-title: Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e09399
– volume: 56
  start-page: 226
  year: 2014
  ident: ref_20
  article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.11.015
– ident: ref_15
  doi: 10.3390/pr10020357
– volume: 263
  start-page: 107468
  year: 2022
  ident: ref_4
  article-title: Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2022.107468
– ident: ref_12
  doi: 10.3390/su9030353
– volume: 243
  start-page: 357
  year: 2019
  ident: ref_2
  article-title: Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber
  publication-title: Sci. Hortic.
  doi: 10.1016/j.scienta.2018.08.050
– ident: ref_10
  doi: 10.3390/agronomy12030555
– volume: 316
  start-page: 128329
  year: 2021
  ident: ref_13
  article-title: Insights into water sustainability from a grey water footprint perspective in an irrigated region of the Yellow River Basin
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.128329
– volume: 51
  start-page: 257
  year: 2017
  ident: ref_11
  article-title: Enhancing production of Zea mays genotypes by K application in Peshawar, Pakistan
  publication-title: Indian J. Agric. Res.
– volume: 127
  start-page: 103722
  year: 2020
  ident: ref_24
  article-title: Trajectory control of electrohydraulic position servo system using improved PSO-PID controller
  publication-title: Automat. Construct.
  doi: 10.1016/j.autcon.2021.103722
– volume: 21
  start-page: 395
  year: 2013
  ident: ref_6
  article-title: Nonlinear Model Algorithmic Control of a pH Neutralization Process
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(13)60479-6
– volume: 59
  start-page: 67
  year: 2014
  ident: ref_21
  article-title: Use of soil and vegetation spectroradiometry to investigate crop water use efficiency of a drip irrigated tomato
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2014.05.012
– ident: ref_17
  doi: 10.3390/foods12091897
– volume: 139
  start-page: 116
  year: 2017
  ident: ref_18
  article-title: Proportional-integral-derivative controller optimization by particle swarm optimization and back propagation neural network for a parallel stabilized platform in marine operations
  publication-title: J. Ocean Eng. Sci.
– volume: 11
  start-page: 95
  year: 2020
  ident: ref_26
  article-title: Adaptive PID control of multi-DOF industrial robot based on neural network
  publication-title: J. Ambient Intell. Humaniz. Comput.
– ident: ref_27
  doi: 10.3390/agriculture12091395
– volume: 35
  start-page: 99
  year: 2017
  ident: ref_7
  article-title: Response of young bearing olive trees to irrigation-induced salinity
  publication-title: Irrig. Sci.
  doi: 10.1007/s00271-016-0525-5
– volume: 260
  start-page: 107279
  year: 2022
  ident: ref_22
  article-title: Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in Northwest China
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107279
– volume: 22
  start-page: 73
  year: 2015
  ident: ref_5
  article-title: Design and Experiment of Slave Computer Control System for Applying Variable-rate Liquid Fertilizer
  publication-title: J. Northeast Agric. Univ.
– volume: 52
  start-page: 43
  year: 2019
  ident: ref_3
  article-title: Variable Rate Liquid Fertilizer Applicator for Deep-fertilization in Precision Farming Based on ZigBee Technology
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2019.12.487
– volume: 113
  start-page: 3720
  year: 2021
  ident: ref_9
  article-title: Effective rainfall estimates for St. Augustine grass lawns under varying irrigation programs
  publication-title: Agron. J.
  doi: 10.1002/agj2.20393
SSID ssj0000913807
Score 2.3585558
Snippet China’s field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual...
China's field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1423
SubjectTerms Agricultural industry
Agricultural production
Agrochemicals
Algorithms
Aquatic resources
Back propagation networks
BP neural network
China
Control algorithms
Control systems
Control systems design
Control theory
Controllers
Cotton
Crops
Design optimization
Ecological effects
Efficiency
Environmental degradation
Expected values
Fertilization
Fertilizer application
Fertilizers
Flow rates
Flow velocity
Genetic algorithms
hybrid optimization algorithm
Integrated control
Irrigation
Mathematical models
Microcontrollers
Neural networks
Optimization algorithms
Particle swarm optimization
precision control
Process controls
Proportional integral derivative
Software
Tomatoes
Valves
water–fertilizer integration
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL9ADojxEoK18QIIiRZuH4zjH3W1XWyTKHqjoLfLa46UizVbpVqj8Ln4gM3Z2tYBEL1xysBJ7kpnMfCOPv2HsTamNVKmEuIRcxpRAxEoXEEOKYAMKl8w9A9_HMzk9Fx8uioutVl9UExbogcOHG0CGQXKuDEa-ShgFusCYZESSZ5W2WjjyvomqtpIp74OrlJjUw75kjnn9QC86f0oAfTZihCz_LQ55uv6_nfIue3jbXuu777pptqLO5Al73MNFPgxi7rEH0D5lu8NF11NmwDP2c108x3Vr-bGvyOBLx6d3dBiLf0KfcHX5AywfafMN10QP4rXB341mR5zIOXCBs1ANzmenx3zYLJbd5errFUdAy0_XfBKWf8Fr51eZUDV2g7N2fNb1XXo2g2H2caiB54ES3U81oWo5PkYRbp6z88nJ5_E07nsxxEakahVjzu1TDasAMNpplwtQUNgi1wgaCBY5B7m1GeIb5zDtgsyVSapdmlpjijR_wXbaZQsvGa8EJMqYssCwKLLEVkoqQJxgbGmtSF3EBmvN1KYnKqd-GU2NCQvpsv5TlxE72jxxHUg6_nHviJS9uY_otf0AGl3dG119n9FF7C2ZSk1OAEUzuj_LgC9IdFr1sCTcK6WQEdtfW1Pde4ebmjYvM0n9gSL2fmNh94r-6n-I_po9yhCnhZrNfbaz6m7hAHHVan7of6FfWYgi0Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVQ9wB74BttYUE-IMEiZRsnseOeUNql6iJReqBiOQXXH6XabFqlKWj3d_EDGTtOBYsEQlxyiBxnrExm3iTPbxB6ngrJOGE6SHXMAltABFxQHWgCYENTE86dAt-7CRvPkrdn9Mz3Od14WiWU4ksXpCPwvwAyJu2RuAcHSP29tTKvv_pPSYTZ2JpyBjX7HqMAxjtobzaZZp9sS7n24ubnZAzFfU8sKrdVAAI3tbP9koycZv_vkXkf3dyWa3H5TRTFT6lndAd9bo1uGCfnx9t6fiyvruk5_seq7qLbHpbirPGje-iGLu-j_WxReWkO_QB9b0l6WJQKnzjmB14ZPL60m77we4g9F8srrfBAyHOwFSKVe-r45WB6hK0ICNxg0rDO8fT0BGfFYlUt6y8XGIAzPm11KxT-CMfK3WVkWd8FzFrhaeW7Ae1ONrMPG649bqTX3VQjy8rDQzBh8xDNRm8-DMeB7_kQyITwOoDa3pU0imsNWVWYONFcU0VjAeDEwi9jdKxUBDjKGCjvdGTSkAhDiJKSkvgR6pSrUh8g3E90yKVMKaTfJApVnzOuAY9IlSqVENNFvfbh59ILotu-HEUOhZF1l_y6u3TR0e6KdSMG8oexA-tPu3FWxtudWFWL3EeFXEeAAOdcAqzrJ5JrQQFwySSMo75QIgETX1hvzG2wAdOk8HsmYIFWtivPUouvGUtYFx22Dpv7KLTJ7U_SiNk-RF30aufEfzX98b8MfoJuRYD7Gg7oIerU1VY_BZxWz5_5d_EHzMc6yQ
  priority: 102
  providerName: Unpaywall
Title Research and Design of Hybrid Optimized Backpropagation (BP) Neural Network PID Algorithm for Integrated Water and Fertilizer Precision Fertilization Control System for Field Crops
URI https://www.proquest.com/docview/2819263720
https://www.mdpi.com/2073-4395/13/5/1423/pdf?version=1684717860
https://doaj.org/article/e2065b8c74194c8ea5181c40329ada4f
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: ABDBF
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELbK9gA9IJ7qQql8QIIiRZuHk3gPCGW3XW2RCBFiRTlFXj8WRJpd0q1Q-V38QGYcJ7ykcokUK7GdzHj8jT3-hpCnqZAJDxLtpTpKPHQgPC5i7ekAwIaOjb-0DHxv8mS-YK_P4rMdkndnYTCssrOJ1lCrtcQ18hFu-IQJ5lR5tfnqYdYo3F3tUmgIl1pBvbQUYzfIbojMWAOyOznJi3f9qguyYHI_bfcrI_D3R2LV2NMDYMsBO4TRH_OTpfH_11jvkZuX9UZcfRNV9dtsNLtDbjsYSbNW7nfJjq7vkb1s1TgqDX2f_OiC6qioFT22kRp0bej8Cg9p0bdgK84_f9eKToT8Am2CZbFSos8nxRFF0g5oIG-jxGlxekyzagU_ZPvpnALQpacdz4SiH-Da2FZmGKVdQa0NLRqXvacvbGuftrHxtKVKt1XNMIqOTqELFw_IYnbyfjr3XI4GT7KAbz3wxa0LorjW8MuFiZjmOlZxJABMIFwyRkdKhYB7jAF3TIcm9QNhgkBJGQfRQzKo17XeJ3TMtM-lTGOYLlnoqzFPuAb8IFWqFAvMkIw6yZTSEZhjHo2qBEcGZVn-LcshOerf2LTkHdc8O0Fh988h7bYtWDer0o3iUoeA2JZcAgwbM8m1AF0LJPOjcCyUYNDFZ6gqJRoH6JoU7owDfCDSbJVZing4SVgyJAedNpXOalyUv3R8SF70Gvbfrj-6vq7H5FYIyKyN0jwgg21zqZ8AktouD93wOLQrEXC3yIvs409TyCPF
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeyg9IJ5ioYAPIChStHk4iXOo0D662qXtskKt6C14bWdBpNklu1W1_C7O_DZmHCe8pHLqJYcosR3NeOabeOYbQp7HQkbci7QT6yByMIBwuAi1oz0AGzrM3Klh4DseR8NT9vYsPNsgP-paGEyrrG2iMdRqLvEfeRsPfPwIe6q8WXx1sGsUnq7WLTSEba2g9g3FmC3sONTrSwjhlvujPsj7he8PDk56Q8d2GXAk8_jKgWjSgGjFtQY7LrKAaa5DFQYC3CE6_CzTgVI-eO4sg4BC-1nseiLzPCVl6AUw7g2yxQKWQPC31T0YT943f3mQdZO7cXU-GgSJ2xaz0lQrwIyAVfzgD39o2gb86xx2yPZFsRDrS5Hnv3m_wW1yy8JW2qn07A7Z0MVdstOZlZa6Q98j3-skPioKRfsmM4TOMzpcY1EYfQe26fzzN61oV8gvMCdYMqMV9FV3skeRJAQmGFdZ6XQy6tNOPgMBrD6dUwDWdFTzWij6Aa6lmWWAWeE5jFrSSWm7BTU3q9F7VS4-rajZzVADzNqjPVjC8j45vRZpPSCbxbzQDwlNmHa5lHEI7pn5rkp4xDXgFalipZiXtUi7lkwqLWE69u3IUwicUJbp37Jskb3mjUVFFnLFs10UdvMc0nybG_NyllqrkWofEOKUS4B9CZNcC9BtTzI38BOhBIMlvkRVSdEYwdKksDUV8IFI65V2YsTfUcSiFtmttSm1VmqZ_tpTLfK60bD_Lv3R1WM9I9vDk-Oj9Gg0PnxMbvqACqsM0V2yuSov9BNAcavpU7tVKPl43bvzJ1z1Xh4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKwE9IJ4iUMAHEBRplX2vc6hQHo0SCiFCVO1tcexxWpEmYZOqCr-LX8GvYsbrDS-pnHrZw2p37NWMZz6vZ75h7HkmVSqCFLwMotSjDYQnZAIeBAg2IDH-yDLwvR-kvcP47XFyvMF-VLUwlFZZ-UTrqPVM0T_yOh34hCn1VKkblxYx7HTfzL961EGKTlqrdhrStVnQe5ZuzBV5HMDqArdzi71-B3X_Igy7-5_aPc91HPBUHIilhztLC6i1AECfLk0Ug4BEJ5HE0EjB3xiItA4xihuDmwsITeYH0gSBVioJIpR7jW3R4Rc6ia3W_mD4cf3Hhxg4hZ-VZ6VR1PDrclzYygUcEXFLGP0RG20LgX8DxTa7cT6dy9WFnEx-i4Td2-yWg7C8WdrcHbYB07tsuzkuHI0H3GPfq4Q-Lqead2yWCJ8Z3ltRgRj_gH7q7PQbaN6S6guOiV7NWgh_1RruciIMwQEGZYY6H_Y7vDkZowKWJ2ccQTbvVxwXmh_htbCjdClDfIJSCz4sXOeg9c1ServMy-clTbsV1aUMPt7GKSzus8Mr0dYDtjmdTeEh440YfKFUlmCojkNfN0QqALGL0pnWcWBqrF5pJleOPJ16eExy3ESRLvO_dVlju-s35iVxyCXPtkjZ6-eI8tvemBXj3HmQHEJEiyOhEAI2YiVAom0HKvajsCG1jHGKL8lUcnJMODUlXX0FfiBRfOXNjLB4msZpje1U1pQ7j7XIf62vGnu9trD_Tv3R5bKeseu4SvN3_cHBY3YzRIBYJovusM1lcQ5PENAtR0_dSuHs81Uvzp9jP2JN
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVQ9wB74BttYUE-IMEiZRsnseOeUNql6iJReqBiOQXXH6XabFqlKWj3d_EDGTtOBYsEQlxyiBxnrExm3iTPbxB6ngrJOGE6SHXMAltABFxQHWgCYENTE86dAt-7CRvPkrdn9Mz3Od14WiWU4ksXpCPwvwAyJu2RuAcHSP29tTKvv_pPSYTZ2JpyBjX7HqMAxjtobzaZZp9sS7n24ubnZAzFfU8sKrdVAAI3tbP9koycZv_vkXkf3dyWa3H5TRTFT6lndAd9bo1uGCfnx9t6fiyvruk5_seq7qLbHpbirPGje-iGLu-j_WxReWkO_QB9b0l6WJQKnzjmB14ZPL60m77we4g9F8srrfBAyHOwFSKVe-r45WB6hK0ICNxg0rDO8fT0BGfFYlUt6y8XGIAzPm11KxT-CMfK3WVkWd8FzFrhaeW7Ae1ONrMPG649bqTX3VQjy8rDQzBh8xDNRm8-DMeB7_kQyITwOoDa3pU0imsNWVWYONFcU0VjAeDEwi9jdKxUBDjKGCjvdGTSkAhDiJKSkvgR6pSrUh8g3E90yKVMKaTfJApVnzOuAY9IlSqVENNFvfbh59ILotu-HEUOhZF1l_y6u3TR0e6KdSMG8oexA-tPu3FWxtudWFWL3EeFXEeAAOdcAqzrJ5JrQQFwySSMo75QIgETX1hvzG2wAdOk8HsmYIFWtivPUouvGUtYFx22Dpv7KLTJ7U_SiNk-RF30aufEfzX98b8MfoJuRYD7Gg7oIerU1VY_BZxWz5_5d_EHzMc6yQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+and+Design+of+Hybrid+Optimized+Backpropagation+%28BP%29+Neural+Network+PID+Algorithm+for+Integrated+Water+and+Fertilizer+Precision+Fertilization+Control+System+for+Field+Crops&rft.jtitle=Agronomy+%28Basel%29&rft.au=Zhu%2C+Fenglei&rft.au=Zhang%2C+Lixin&rft.au=Hu%2C+Xue&rft.au=Zhao%2C+Jiawei&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=13&rft.issue=5&rft.spage=1423&rft_id=info:doi/10.3390%2Fagronomy13051423&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon