Research and Design of Hybrid Optimized Backpropagation (BP) Neural Network PID Algorithm for Integrated Water and Fertilizer Precision Fertilization Control System for Field Crops
China’s field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual fertilization methods, which makes the use of chemical fertilizers in China high and causes waste of fertilizer resources and ecological envir...
        Saved in:
      
    
          | Published in | Agronomy (Basel) Vol. 13; no. 5; p. 1423 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.05.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2073-4395 2073-4395  | 
| DOI | 10.3390/agronomy13051423 | 
Cover
| Abstract | China’s field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual fertilization methods, which makes the use of chemical fertilizers in China high and causes waste of fertilizer resources and ecological environmental damage. To address the above problems, a hybrid optimization of genetic algorithms and particle swarm optimization (GA–PSO) is used to optimize the initial weights of the backpropagation (BP) neural network, and a hybrid optimization-based BP neural network PID controller is designed to realize the accurate control of fertilizer flow in the integrated water and fertilizer precision fertilization control system for field crops. At the same time, the STM32 microcontroller-based precision fertilizer application control system for integrated water and fertilizer application of large field crops was developed and the performance of the controller was verified experimentally. The results show that the controller has an average maximum overshoot of 5.1% and an average adjustment time of 68.99 s, which is better than the PID and PID control algorithms based on BP neural network (BP–PID) controllers; among them, the hybrid optimization of PID control algorithm based on BP neural network by particle swarm optimization and genetic algorithm(GA–PSO–BP–PID) controller has the best-integrated control performance when the fertilizer application flow rate is 0.6m3/h. | 
    
|---|---|
| AbstractList | China's field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual fertilization methods, which makes the use of chemical fertilizers in China high and causes waste of fertilizer resources and ecological environmental damage. To address the above problems, a hybrid optimization of genetic algorithms and particle swarm optimization (GA-PSO) is used to optimize the initial weights of the backpropagation (BP) neural network, and a hybrid optimization-based BP neural network PID controller is designed to realize the accurate control of fertilizer flow in the integrated water and fertilizer precision fertilization control system for field crops. At the same time, the STM32 microcontroller-based precision fertilizer application control system for integrated water and fertilizer application of large field crops was developed and the performance of the controller was verified experimentally. The results show that the controller has an average maximum overshoot of 5.1% and an average adjustment time of 68.99 s, which is better than the PID and PID control algorithms based on BP neural network (BP-PID) controllers; among them, the hybrid optimization of PID control algorithm based on BP neural network by particle swarm optimization and genetic algorithm(GA-PSO-BP-PID) controller has the best-integrated control performance when the fertilizer application flow rate is 0.6m[sup.3]/h. China’s field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual fertilization methods, which makes the use of chemical fertilizers in China high and causes waste of fertilizer resources and ecological environmental damage. To address the above problems, a hybrid optimization of genetic algorithms and particle swarm optimization (GA–PSO) is used to optimize the initial weights of the backpropagation (BP) neural network, and a hybrid optimization-based BP neural network PID controller is designed to realize the accurate control of fertilizer flow in the integrated water and fertilizer precision fertilization control system for field crops. At the same time, the STM32 microcontroller-based precision fertilizer application control system for integrated water and fertilizer application of large field crops was developed and the performance of the controller was verified experimentally. The results show that the controller has an average maximum overshoot of 5.1% and an average adjustment time of 68.99 s, which is better than the PID and PID control algorithms based on BP neural network (BP–PID) controllers; among them, the hybrid optimization of PID control algorithm based on BP neural network by particle swarm optimization and genetic algorithm(GA–PSO–BP–PID) controller has the best-integrated control performance when the fertilizer application flow rate is 0.6m3/h.  | 
    
| Audience | Academic | 
    
| Author | Zheng, Yu Hu, Xue Meng, Zihao Zhao, Jiawei Zhu, Fenglei Zhang, Lixin  | 
    
| Author_xml | – sequence: 1 givenname: Fenglei surname: Zhu fullname: Zhu, Fenglei – sequence: 2 givenname: Lixin surname: Zhang fullname: Zhang, Lixin – sequence: 3 givenname: Xue surname: Hu fullname: Hu, Xue – sequence: 4 givenname: Jiawei surname: Zhao fullname: Zhao, Jiawei – sequence: 5 givenname: Zihao surname: Meng fullname: Meng, Zihao – sequence: 6 givenname: Yu surname: Zheng fullname: Zheng, Yu  | 
    
| BookMark | eNqFkktvEzEQx1eoSJTSO0dLXOCQ4sc-j2lKaKSKRjzEcTWxx1unu_ZiO6rC5-oHrJsFhHoAW_JYY_9_nodfZkfWWcyy14yeCdHQ99B5Z92wZ4IWLOfiWXbMaSVmuWiKo7_2L7LTELY0jYaJmlbH2f1nDAhe3hCwilxgMJ0lTpPL_cYbRa7HaAbzExU5B3k7ejdCB9E4S96er9-RT7jz0CcT75y_JevVBZn3nfMm3gxEO09WNmLnISbA97T6wytL9NH0ierJ2qM04ZH32znRF85G73ryZR8iTqilwV6RRQohvMqea-gDnv6yJ9m35Yevi8vZ1fXH1WJ-NZM5q-MMN6IoU0lUjcgZBy1yrLFQhQDO0knBtEahFBdNpTXLG-S6ogw0Y0rKgomTbDVxlYNtO3ozgN-3Dkx7cDjftZCilj22yGlZbGpZ5azJZY1QsJrJnAregIJcJxabWDs7wv4O-v4PkNH2sYvt0y4mzZtJkwr_Y4chtlu38zal3PKaNbwUFafp1tl0q4MUiLHaRQ8yTYWDkemjaJP886qgdV2WeZkE5SSQ3oXgUbfSxEPdk9D0_4qHPhH-N4UHyWXU-g | 
    
| CitedBy_id | crossref_primary_10_1515_ijcre_2023_0169 crossref_primary_10_3390_agriculture13122176 crossref_primary_10_1016_j_atech_2025_100841 crossref_primary_10_1016_j_energy_2024_132932 crossref_primary_10_3390_su151410835 crossref_primary_10_1016_j_compag_2025_110044 crossref_primary_10_3390_plants12122257 crossref_primary_10_3390_pr11123374 crossref_primary_10_1016_j_jenvman_2024_120393 crossref_primary_10_2478_amns_2024_2414 crossref_primary_10_3390_agriculture14020168 crossref_primary_10_1038_s41598_024_79653_z crossref_primary_10_1016_j_envres_2024_118738 crossref_primary_10_3390_w15213718 crossref_primary_10_1016_j_compag_2024_108912  | 
    
| Cites_doi | 10.3390/agronomy12030664 10.1016/j.agwat.2021.106756 10.1016/j.jclepro.2019.118735 10.1016/j.procs.2018.04.336 10.1016/j.heliyon.2022.e09399 10.1016/j.knosys.2013.11.015 10.3390/pr10020357 10.1016/j.agwat.2022.107468 10.3390/su9030353 10.1016/j.scienta.2018.08.050 10.3390/agronomy12030555 10.1016/j.jclepro.2021.128329 10.1016/j.autcon.2021.103722 10.1016/S1004-9541(13)60479-6 10.1016/j.eja.2014.05.012 10.3390/foods12091897 10.3390/agriculture12091395 10.1007/s00271-016-0525-5 10.1016/j.agwat.2021.107279 10.1016/j.ifacol.2019.12.487 10.1002/agj2.20393  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PYCSY SOI ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/agronomy13051423 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | CrossRef Agricultural Science Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Agriculture | 
    
| EISSN | 2073-4395 | 
    
| ExternalDocumentID | oai_doaj_org_article_e2065b8c74194c8ea5181c40329ada4f 10.3390/agronomy13051423 A750886646 10_3390_agronomy13051423  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI SOI ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c418t-eb356130d8ee212af34e8e5d53a2156151ffe3dd2397ff149e2f701af11dcc513 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2073-4395 | 
    
| IngestDate | Tue Oct 14 19:05:28 EDT 2025 Sun Oct 26 01:49:46 EDT 2025 Mon Jun 30 11:14:58 EDT 2025 Mon Oct 20 16:25:26 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Thu Oct 16 04:41:49 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c418t-eb356130d8ee212af34e8e5d53a2156151ffe3dd2397ff149e2f701af11dcc513 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2819263720?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2819263720 | 
    
| PQPubID | 2032440 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e2065b8c74194c8ea5181c40329ada4f unpaywall_primary_10_3390_agronomy13051423 proquest_journals_2819263720 gale_infotracacademiconefile_A750886646 crossref_citationtrail_10_3390_agronomy13051423 crossref_primary_10_3390_agronomy13051423  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-05-01 | 
    
| PublicationDateYYYYMMDD | 2023-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Agronomy (Basel) | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Dong (ref_14) 2020; 246 Marino (ref_21) 2014; 59 Xiuyun (ref_3) 2019; 52 (ref_5) 2015; 22 ref_12 ref_10 Tang (ref_18) 2017; 139 Wang (ref_2) 2019; 243 Wang (ref_26) 2020; 11 ref_17 ref_15 Fontanier (ref_9) 2021; 113 Beiersdorf (ref_7) 2017; 35 Ahmad (ref_11) 2017; 51 Chen (ref_13) 2021; 316 ref_1 Huang (ref_19) 2018; 131 Bhite (ref_8) 2017; 10 Joseph (ref_16) 2022; 8 Ren (ref_20) 2014; 56 Zou (ref_6) 2013; 21 ref_27 Ren (ref_4) 2022; 263 Wang (ref_22) 2022; 260 Feng (ref_24) 2020; 127 Qi (ref_23) 2021; 248 Yu (ref_25) 2020; 4  | 
    
| References_xml | – volume: 4 start-page: 964 year: 2020 ident: ref_25 article-title: Adsorption control of a pipeline robot based on improved PSO algorithm publication-title: Complex Intell. Syst. – volume: 10 start-page: 5644 year: 2017 ident: ref_8 article-title: Standardization of Stage Wise Requirement of Nutrients in Sweet Orange publication-title: Trends Biosci. – ident: ref_1 doi: 10.3390/agronomy12030664 – volume: 248 start-page: 106756 year: 2021 ident: ref_23 article-title: Prediction of infiltration behaviors and evaluation of irrigation efficiency in clay loam soil under Moistube® irrigation publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.106756 – volume: 246 start-page: 118735 year: 2020 ident: ref_14 article-title: Precision fertilization method of field crops based on the Wavelet-BP neural network in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118735 – volume: 131 start-page: 1238 year: 2018 ident: ref_19 article-title: Application of Improved PSO—BP Neural Network in Customer Churn Warning publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.04.336 – volume: 8 start-page: e09399 year: 2022 ident: ref_16 article-title: Metaheuristic algorithms for PID controller parameters tuning: Review, approaches and open problems publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e09399 – volume: 56 start-page: 226 year: 2014 ident: ref_20 article-title: Optimal parameters selection for BP neural network based on particle swarm optimization: A case study of wind speed forecasting publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2013.11.015 – ident: ref_15 doi: 10.3390/pr10020357 – volume: 263 start-page: 107468 year: 2022 ident: ref_4 article-title: Spatiotemporal patterns of water consumption and irrigation requirements of wheat-maize in the Huang-Huai-Hai Plain, China and options of their reduction publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2022.107468 – ident: ref_12 doi: 10.3390/su9030353 – volume: 243 start-page: 357 year: 2019 ident: ref_2 article-title: Optimal drip fertigation management improves yield, quality, water and nitrogen use efficiency of greenhouse cucumber publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2018.08.050 – ident: ref_10 doi: 10.3390/agronomy12030555 – volume: 316 start-page: 128329 year: 2021 ident: ref_13 article-title: Insights into water sustainability from a grey water footprint perspective in an irrigated region of the Yellow River Basin publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.128329 – volume: 51 start-page: 257 year: 2017 ident: ref_11 article-title: Enhancing production of Zea mays genotypes by K application in Peshawar, Pakistan publication-title: Indian J. Agric. Res. – volume: 127 start-page: 103722 year: 2020 ident: ref_24 article-title: Trajectory control of electrohydraulic position servo system using improved PSO-PID controller publication-title: Automat. Construct. doi: 10.1016/j.autcon.2021.103722 – volume: 21 start-page: 395 year: 2013 ident: ref_6 article-title: Nonlinear Model Algorithmic Control of a pH Neutralization Process publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(13)60479-6 – volume: 59 start-page: 67 year: 2014 ident: ref_21 article-title: Use of soil and vegetation spectroradiometry to investigate crop water use efficiency of a drip irrigated tomato publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2014.05.012 – ident: ref_17 doi: 10.3390/foods12091897 – volume: 139 start-page: 116 year: 2017 ident: ref_18 article-title: Proportional-integral-derivative controller optimization by particle swarm optimization and back propagation neural network for a parallel stabilized platform in marine operations publication-title: J. Ocean Eng. Sci. – volume: 11 start-page: 95 year: 2020 ident: ref_26 article-title: Adaptive PID control of multi-DOF industrial robot based on neural network publication-title: J. Ambient Intell. Humaniz. Comput. – ident: ref_27 doi: 10.3390/agriculture12091395 – volume: 35 start-page: 99 year: 2017 ident: ref_7 article-title: Response of young bearing olive trees to irrigation-induced salinity publication-title: Irrig. Sci. doi: 10.1007/s00271-016-0525-5 – volume: 260 start-page: 107279 year: 2022 ident: ref_22 article-title: Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in Northwest China publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107279 – volume: 22 start-page: 73 year: 2015 ident: ref_5 article-title: Design and Experiment of Slave Computer Control System for Applying Variable-rate Liquid Fertilizer publication-title: J. Northeast Agric. Univ. – volume: 52 start-page: 43 year: 2019 ident: ref_3 article-title: Variable Rate Liquid Fertilizer Applicator for Deep-fertilization in Precision Farming Based on ZigBee Technology publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2019.12.487 – volume: 113 start-page: 3720 year: 2021 ident: ref_9 article-title: Effective rainfall estimates for St. Augustine grass lawns under varying irrigation programs publication-title: Agron. J. doi: 10.1002/agj2.20393  | 
    
| SSID | ssj0000913807 | 
    
| Score | 2.3585558 | 
    
| Snippet | China’s field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual... China's field crops such as cotton, wheat, and tomato have been produced on a large scale, but their cultivation process still adopts more traditional manual...  | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 1423 | 
    
| SubjectTerms | Agricultural industry Agricultural production Agrochemicals Algorithms Aquatic resources Back propagation networks BP neural network China Control algorithms Control systems Control systems design Control theory Controllers Cotton Crops Design optimization Ecological effects Efficiency Environmental degradation Expected values Fertilization Fertilizer application Fertilizers Flow rates Flow velocity Genetic algorithms hybrid optimization algorithm Integrated control Irrigation Mathematical models Microcontrollers Neural networks Optimization algorithms Particle swarm optimization precision control Process controls Proportional integral derivative Software Tomatoes Valves water–fertilizer integration  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL9ADojxEoK18QIIiRZuH4zjH3W1XWyTKHqjoLfLa46UizVbpVqj8Ln4gM3Z2tYBEL1xysBJ7kpnMfCOPv2HsTamNVKmEuIRcxpRAxEoXEEOKYAMKl8w9A9_HMzk9Fx8uioutVl9UExbogcOHG0CGQXKuDEa-ShgFusCYZESSZ5W2WjjyvomqtpIp74OrlJjUw75kjnn9QC86f0oAfTZihCz_LQ55uv6_nfIue3jbXuu777pptqLO5Al73MNFPgxi7rEH0D5lu8NF11NmwDP2c108x3Vr-bGvyOBLx6d3dBiLf0KfcHX5AywfafMN10QP4rXB341mR5zIOXCBs1ANzmenx3zYLJbd5errFUdAy0_XfBKWf8Fr51eZUDV2g7N2fNb1XXo2g2H2caiB54ES3U81oWo5PkYRbp6z88nJ5_E07nsxxEakahVjzu1TDasAMNpplwtQUNgi1wgaCBY5B7m1GeIb5zDtgsyVSapdmlpjijR_wXbaZQsvGa8EJMqYssCwKLLEVkoqQJxgbGmtSF3EBmvN1KYnKqd-GU2NCQvpsv5TlxE72jxxHUg6_nHviJS9uY_otf0AGl3dG119n9FF7C2ZSk1OAEUzuj_LgC9IdFr1sCTcK6WQEdtfW1Pde4ebmjYvM0n9gSL2fmNh94r-6n-I_po9yhCnhZrNfbaz6m7hAHHVan7of6FfWYgi0Q priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVQ9wB74BttYUE-IMEiZRsnseOeUNql6iJReqBiOQXXH6XabFqlKWj3d_EDGTtOBYsEQlxyiBxnrExm3iTPbxB6ngrJOGE6SHXMAltABFxQHWgCYENTE86dAt-7CRvPkrdn9Mz3Od14WiWU4ksXpCPwvwAyJu2RuAcHSP29tTKvv_pPSYTZ2JpyBjX7HqMAxjtobzaZZp9sS7n24ubnZAzFfU8sKrdVAAI3tbP9koycZv_vkXkf3dyWa3H5TRTFT6lndAd9bo1uGCfnx9t6fiyvruk5_seq7qLbHpbirPGje-iGLu-j_WxReWkO_QB9b0l6WJQKnzjmB14ZPL60m77we4g9F8srrfBAyHOwFSKVe-r45WB6hK0ICNxg0rDO8fT0BGfFYlUt6y8XGIAzPm11KxT-CMfK3WVkWd8FzFrhaeW7Ae1ONrMPG649bqTX3VQjy8rDQzBh8xDNRm8-DMeB7_kQyITwOoDa3pU0imsNWVWYONFcU0VjAeDEwi9jdKxUBDjKGCjvdGTSkAhDiJKSkvgR6pSrUh8g3E90yKVMKaTfJApVnzOuAY9IlSqVENNFvfbh59ILotu-HEUOhZF1l_y6u3TR0e6KdSMG8oexA-tPu3FWxtudWFWL3EeFXEeAAOdcAqzrJ5JrQQFwySSMo75QIgETX1hvzG2wAdOk8HsmYIFWtivPUouvGUtYFx22Dpv7KLTJ7U_SiNk-RF30aufEfzX98b8MfoJuRYD7Gg7oIerU1VY_BZxWz5_5d_EHzMc6yQ priority: 102 providerName: Unpaywall  | 
    
| Title | Research and Design of Hybrid Optimized Backpropagation (BP) Neural Network PID Algorithm for Integrated Water and Fertilizer Precision Fertilization Control System for Field Crops | 
    
| URI | https://www.proquest.com/docview/2819263720 https://www.mdpi.com/2073-4395/13/5/1423/pdf?version=1684717860 https://doaj.org/article/e2065b8c74194c8ea5181c40329ada4f  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2073-4395 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: ABDBF dateStart: 20171201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4395 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELbK9gA9IJ7qQql8QIIiRZuHk3gPCGW3XW2RCBFiRTlFXj8WRJpd0q1Q-V38QGYcJ7ykcokUK7GdzHj8jT3-hpCnqZAJDxLtpTpKPHQgPC5i7ekAwIaOjb-0DHxv8mS-YK_P4rMdkndnYTCssrOJ1lCrtcQ18hFu-IQJ5lR5tfnqYdYo3F3tUmgIl1pBvbQUYzfIbojMWAOyOznJi3f9qguyYHI_bfcrI_D3R2LV2NMDYMsBO4TRH_OTpfH_11jvkZuX9UZcfRNV9dtsNLtDbjsYSbNW7nfJjq7vkb1s1TgqDX2f_OiC6qioFT22kRp0bej8Cg9p0bdgK84_f9eKToT8Am2CZbFSos8nxRFF0g5oIG-jxGlxekyzagU_ZPvpnALQpacdz4SiH-Da2FZmGKVdQa0NLRqXvacvbGuftrHxtKVKt1XNMIqOTqELFw_IYnbyfjr3XI4GT7KAbz3wxa0LorjW8MuFiZjmOlZxJABMIFwyRkdKhYB7jAF3TIcm9QNhgkBJGQfRQzKo17XeJ3TMtM-lTGOYLlnoqzFPuAb8IFWqFAvMkIw6yZTSEZhjHo2qBEcGZVn-LcshOerf2LTkHdc8O0Fh988h7bYtWDer0o3iUoeA2JZcAgwbM8m1AF0LJPOjcCyUYNDFZ6gqJRoH6JoU7owDfCDSbJVZing4SVgyJAedNpXOalyUv3R8SF70Gvbfrj-6vq7H5FYIyKyN0jwgg21zqZ8AktouD93wOLQrEXC3yIvs409TyCPF | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKeyg9IJ5ioYAPIChStHk4iXOo0D662qXtskKt6C14bWdBpNklu1W1_C7O_DZmHCe8pHLqJYcosR3NeOabeOYbQp7HQkbci7QT6yByMIBwuAi1oz0AGzrM3Klh4DseR8NT9vYsPNsgP-paGEyrrG2iMdRqLvEfeRsPfPwIe6q8WXx1sGsUnq7WLTSEba2g9g3FmC3sONTrSwjhlvujPsj7he8PDk56Q8d2GXAk8_jKgWjSgGjFtQY7LrKAaa5DFQYC3CE6_CzTgVI-eO4sg4BC-1nseiLzPCVl6AUw7g2yxQKWQPC31T0YT943f3mQdZO7cXU-GgSJ2xaz0lQrwIyAVfzgD39o2gb86xx2yPZFsRDrS5Hnv3m_wW1yy8JW2qn07A7Z0MVdstOZlZa6Q98j3-skPioKRfsmM4TOMzpcY1EYfQe26fzzN61oV8gvMCdYMqMV9FV3skeRJAQmGFdZ6XQy6tNOPgMBrD6dUwDWdFTzWij6Aa6lmWWAWeE5jFrSSWm7BTU3q9F7VS4-rajZzVADzNqjPVjC8j45vRZpPSCbxbzQDwlNmHa5lHEI7pn5rkp4xDXgFalipZiXtUi7lkwqLWE69u3IUwicUJbp37Jskb3mjUVFFnLFs10UdvMc0nybG_NyllqrkWofEOKUS4B9CZNcC9BtTzI38BOhBIMlvkRVSdEYwdKksDUV8IFI65V2YsTfUcSiFtmttSm1VmqZ_tpTLfK60bD_Lv3R1WM9I9vDk-Oj9Gg0PnxMbvqACqsM0V2yuSov9BNAcavpU7tVKPl43bvzJ1z1Xh4 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKwE9IJ4iUMAHEBRplX2vc6hQHo0SCiFCVO1tcexxWpEmYZOqCr-LX8GvYsbrDS-pnHrZw2p37NWMZz6vZ75h7HkmVSqCFLwMotSjDYQnZAIeBAg2IDH-yDLwvR-kvcP47XFyvMF-VLUwlFZZ-UTrqPVM0T_yOh34hCn1VKkblxYx7HTfzL961EGKTlqrdhrStVnQe5ZuzBV5HMDqArdzi71-B3X_Igy7-5_aPc91HPBUHIilhztLC6i1AECfLk0Ug4BEJ5HE0EjB3xiItA4xihuDmwsITeYH0gSBVioJIpR7jW3R4Rc6ia3W_mD4cf3Hhxg4hZ-VZ6VR1PDrclzYygUcEXFLGP0RG20LgX8DxTa7cT6dy9WFnEx-i4Td2-yWg7C8WdrcHbYB07tsuzkuHI0H3GPfq4Q-Lqead2yWCJ8Z3ltRgRj_gH7q7PQbaN6S6guOiV7NWgh_1RruciIMwQEGZYY6H_Y7vDkZowKWJ2ccQTbvVxwXmh_htbCjdClDfIJSCz4sXOeg9c1ServMy-clTbsV1aUMPt7GKSzus8Mr0dYDtjmdTeEh440YfKFUlmCojkNfN0QqALGL0pnWcWBqrF5pJleOPJ16eExy3ESRLvO_dVlju-s35iVxyCXPtkjZ6-eI8tvemBXj3HmQHEJEiyOhEAI2YiVAom0HKvajsCG1jHGKL8lUcnJMODUlXX0FfiBRfOXNjLB4msZpje1U1pQ7j7XIf62vGnu9trD_Tv3R5bKeseu4SvN3_cHBY3YzRIBYJovusM1lcQ5PENAtR0_dSuHs81Uvzp9jP2JN | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwELVQ9wB74BttYUE-IMEiZRsnseOeUNql6iJReqBiOQXXH6XabFqlKWj3d_EDGTtOBYsEQlxyiBxnrExm3iTPbxB6ngrJOGE6SHXMAltABFxQHWgCYENTE86dAt-7CRvPkrdn9Mz3Od14WiWU4ksXpCPwvwAyJu2RuAcHSP29tTKvv_pPSYTZ2JpyBjX7HqMAxjtobzaZZp9sS7n24ubnZAzFfU8sKrdVAAI3tbP9koycZv_vkXkf3dyWa3H5TRTFT6lndAd9bo1uGCfnx9t6fiyvruk5_seq7qLbHpbirPGje-iGLu-j_WxReWkO_QB9b0l6WJQKnzjmB14ZPL60m77we4g9F8srrfBAyHOwFSKVe-r45WB6hK0ICNxg0rDO8fT0BGfFYlUt6y8XGIAzPm11KxT-CMfK3WVkWd8FzFrhaeW7Ae1ONrMPG649bqTX3VQjy8rDQzBh8xDNRm8-DMeB7_kQyITwOoDa3pU0imsNWVWYONFcU0VjAeDEwi9jdKxUBDjKGCjvdGTSkAhDiJKSkvgR6pSrUh8g3E90yKVMKaTfJApVnzOuAY9IlSqVENNFvfbh59ILotu-HEUOhZF1l_y6u3TR0e6KdSMG8oexA-tPu3FWxtudWFWL3EeFXEeAAOdcAqzrJ5JrQQFwySSMo75QIgETX1hvzG2wAdOk8HsmYIFWtivPUouvGUtYFx22Dpv7KLTJ7U_SiNk-RF30aufEfzX98b8MfoJuRYD7Gg7oIerU1VY_BZxWz5_5d_EHzMc6yQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+and+Design+of+Hybrid+Optimized+Backpropagation+%28BP%29+Neural+Network+PID+Algorithm+for+Integrated+Water+and+Fertilizer+Precision+Fertilization+Control+System+for+Field+Crops&rft.jtitle=Agronomy+%28Basel%29&rft.au=Zhu%2C+Fenglei&rft.au=Zhang%2C+Lixin&rft.au=Hu%2C+Xue&rft.au=Zhao%2C+Jiawei&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.eissn=2073-4395&rft.volume=13&rft.issue=5&rft.spage=1423&rft_id=info:doi/10.3390%2Fagronomy13051423&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |