On the influence of distance between two jets on flickering diffusion flames
•A method for instability delineation of a dual-nozzle flame is proposed.•Quantitative analysis of four new instability modes of the dual-nozzle flame is performed.•A special phenomenon is discovered in which the length of a dual-nozzle flame is less than that of a single-nozzle flame.•The formation...
Saved in:
Published in | Combustion and flame Vol. 201; pp. 23 - 30 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Inc
01.03.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0010-2180 1556-2921 |
DOI | 10.1016/j.combustflame.2018.12.003 |
Cover
Abstract | •A method for instability delineation of a dual-nozzle flame is proposed.•Quantitative analysis of four new instability modes of the dual-nozzle flame is performed.•A special phenomenon is discovered in which the length of a dual-nozzle flame is less than that of a single-nozzle flame.•The formation mechanism of merged sinuous flame and alternated sinuous flame is studied.
The interactions of multiple flames are often encountered in real-world fire and industrial burners. The distance between two jets has a strong influence on the instability mode, oscillation frequency, and mean height of flickering diffusion flames, which is experimentally studied and analyzed in this paper. Five different types of instability modes are identified as the separation distance between two nozzles is increased. When the nozzle separation distance is smaller, the flame mode is similar to that of a single-nozzle flame. In this case, the flame can switch between the merged sinuous mode and the merged varicose mode due to external disturbances on the flame. As the nozzle separation distance increases, the probability of mode switching from merged varicose to merged sinuous decreases. As the nozzle separation distance increases further, the flame mode translates into symmetric sinuous mode, alternated sinuous or independent mode. In addition, the flame height and oscillation frequency of a dual-nozzle flame have their own characteristics, which are different from that of the single-nozzle flame. The increase of the nozzle separation distance, leads to a decrease and then an increase of the flame mean height. It is interesting that the flame mean height of the alternated sinuous flame is the lowest, even lower than that of the single-nozzle flame. The oscillation frequency of the symmetrical sinuous flame is lower than that of the single-nozzle flame, and the frequency of alternated sinuous flame is higher than that of the single-nozzle flame. |
---|---|
AbstractList | •A method for instability delineation of a dual-nozzle flame is proposed.•Quantitative analysis of four new instability modes of the dual-nozzle flame is performed.•A special phenomenon is discovered in which the length of a dual-nozzle flame is less than that of a single-nozzle flame.•The formation mechanism of merged sinuous flame and alternated sinuous flame is studied.
The interactions of multiple flames are often encountered in real-world fire and industrial burners. The distance between two jets has a strong influence on the instability mode, oscillation frequency, and mean height of flickering diffusion flames, which is experimentally studied and analyzed in this paper. Five different types of instability modes are identified as the separation distance between two nozzles is increased. When the nozzle separation distance is smaller, the flame mode is similar to that of a single-nozzle flame. In this case, the flame can switch between the merged sinuous mode and the merged varicose mode due to external disturbances on the flame. As the nozzle separation distance increases, the probability of mode switching from merged varicose to merged sinuous decreases. As the nozzle separation distance increases further, the flame mode translates into symmetric sinuous mode, alternated sinuous or independent mode. In addition, the flame height and oscillation frequency of a dual-nozzle flame have their own characteristics, which are different from that of the single-nozzle flame. The increase of the nozzle separation distance, leads to a decrease and then an increase of the flame mean height. It is interesting that the flame mean height of the alternated sinuous flame is the lowest, even lower than that of the single-nozzle flame. The oscillation frequency of the symmetrical sinuous flame is lower than that of the single-nozzle flame, and the frequency of alternated sinuous flame is higher than that of the single-nozzle flame. The interactions of multiple flames are often encountered in real-world fire and industrial burners. The distance between two jets has a strong influence on the instability mode, oscillation frequency, and mean height of flickering diffusion flames, which is experimentally studied and analyzed in this paper. Five different types of instability modes are identified as the separation distance between two nozzles is increased. When the nozzle separation distance is smaller, the flame mode is similar to that of a single-nozzle flame. In this case, the flame can switch between the merged sinuous mode and the merged varicose mode due to external disturbances on the flame. As the nozzle separation distance increases, the probability of mode switching from merged varicose to merged sinuous decreases. As the nozzle separation distance increases further, the flame mode translates into symmetric sinuous mode, alternated sinuous or independent mode. In addition, the flame height and oscillation frequency of a dual-nozzle flame have their own characteristics, which are different from that of the single-nozzle flame. The increase of the nozzle separation distance, leads to a decrease and then an increase of the flame mean height. It is interesting that the flame mean height of the alternated sinuous flame is the lowest, even lower than that of the single-nozzle flame. The oscillation frequency of the symmetrical sinuous flame is lower than that of the single-nozzle flame, and the frequency of alternated sinuous flame is higher than that of the single-nozzle flame. |
Author | Xinlei, Liu Fangming, Cheng Changchun, Liu Shasha, Zhou Jun, Deng Xueyao, Wang Hong, Ge |
Author_xml | – sequence: 1 givenname: Liu surname: Changchun fullname: Changchun, Liu organization: College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China – sequence: 2 givenname: Liu surname: Xinlei fullname: Xinlei, Liu organization: College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China – sequence: 3 givenname: Ge surname: Hong fullname: Hong, Ge organization: School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China – sequence: 4 givenname: Deng surname: Jun fullname: Jun, Deng organization: College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China – sequence: 5 givenname: Zhou surname: Shasha fullname: Shasha, Zhou organization: College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China – sequence: 6 givenname: Wang surname: Xueyao fullname: Xueyao, Wang email: wangxueyao@ncepu.edu.cn organization: School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China – sequence: 7 givenname: Cheng surname: Fangming fullname: Fangming, Cheng organization: College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China |
BookMark | eNqNkM1OwzAQhC1UJNrCO0RwTvA6TtJyApVfqVIvcLZcZw0OaVxsh4q3x6EcEKdKlmytZ2d2vwkZdbZDQs6BZkChvGwyZTfr3gfdyg1mjMIsA5ZRmh-RMRRFmbI5gxEZUwo0ZTCjJ2TifUMprXiej8ly1SXhDRPT6bbHTmFidVIbH-TwXmPYIUbFziYNBp_YLtGtUe_oTPcadVr33vwUY7w_Jcdath7Pfu8pebm_e148psvVw9PiZpkqDrOQIgc2B1S8lJVec6i4YhWVoFTJuJRV_GRVKXVRFnMJM10Xuea8XNd1FU9R5FNysffdOvvRow-isb3rYqSIK_K4WEEhqq73KuWs9w61UCbIEMcNTppWABUDQ9GIvwzFwFAAE5FhtLj6Z7F1ZiPd12HNt_tmjCg-DTrhlRkQ18ahCqK25hCbb1qul1M |
CitedBy_id | crossref_primary_10_1016_j_combustflame_2019_11_027 crossref_primary_10_1007_s10973_020_10399_2 crossref_primary_10_1016_j_fuproc_2022_107649 crossref_primary_10_1016_j_energy_2024_131300 crossref_primary_10_1016_j_firesaf_2021_103490 crossref_primary_10_1088_1742_6596_2247_1_012030 crossref_primary_10_1080_00102202_2022_2063688 crossref_primary_10_1016_j_fuel_2023_128789 crossref_primary_10_1021_acs_energyfuels_9b00480 crossref_primary_10_1016_j_expthermflusci_2019_109924 crossref_primary_10_1016_j_psep_2021_11_043 crossref_primary_10_3390_sym16030292 crossref_primary_10_1016_j_fuel_2020_119661 crossref_primary_10_1016_j_fuel_2019_116549 crossref_primary_10_1016_j_fuel_2020_118022 crossref_primary_10_1016_j_combustflame_2025_114090 crossref_primary_10_1103_PhysRevE_105_044208 crossref_primary_10_1103_PhysRevFluids_4_053202 crossref_primary_10_1103_PhysRevFluids_7_L111501 |
Cites_doi | 10.1016/0379-7112(83)90002-4 10.1007/s10494-016-9730-9 10.1016/S1004-9541(12)60402-9 10.1016/j.fuel.2017.03.082 10.1016/j.fuel.2008.09.013 10.1016/0010-2180(95)00076-I 10.1016/j.fuel.2015.09.068 10.1016/j.ces.2006.11.012 10.1007/s003480050415 10.1260/1756-8277.7.3.257 10.1016/j.fuel.2011.03.035 10.1016/S0010-2180(97)00018-7 10.1016/j.fuel.2016.07.084 10.1016/j.combustflame.2008.11.017 10.1016/j.combustflame.2011.09.018 10.1016/0010-2180(93)90148-V 10.1016/S0082-0784(06)80198-0 10.1016/S0010-2180(98)00161-8 10.1016/j.fuel.2016.06.054 10.1016/j.enconman.2011.04.011 10.1080/00102200903418252 10.1016/j.fuel.2012.12.050 10.1002/(SICI)1099-1018(199611)20:6<261::AID-FAM578>3.0.CO;2-M 10.1063/1.870203 10.1016/j.combustflame.2014.11.028 10.1177/014233120002200503 10.1016/0010-2180(93)90090-P 10.1016/j.combustflame.2014.10.001 |
ContentType | Journal Article |
Copyright | 2018 The Combustion Institute Copyright Elsevier BV Mar 2019 |
Copyright_xml | – notice: 2018 The Combustion Institute – notice: Copyright Elsevier BV Mar 2019 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D L7M |
DOI | 10.1016/j.combustflame.2018.12.003 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1556-2921 |
EndPage | 30 |
ExternalDocumentID | 10_1016_j_combustflame_2018_12_003 S0010218018305200 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 29F 4.4 41~ 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDEX ABDMP ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ACDAQ ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VH1 WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c418t-e41291ec46a7fb4174c270a1cc624aa7291276af5659a18fd53f446bdd7dd7553 |
IEDL.DBID | AIKHN |
ISSN | 0010-2180 |
IngestDate | Sun Sep 07 03:23:43 EDT 2025 Thu Sep 18 00:13:58 EDT 2025 Thu Apr 24 23:03:01 EDT 2025 Tue Jul 16 04:31:05 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flame height Flickering Instability Diffusion flame Dual-nozzle flame |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c418t-e41291ec46a7fb4174c270a1cc624aa7291276af5659a18fd53f446bdd7dd7553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2184433501 |
PQPubID | 2045271 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2184433501 crossref_citationtrail_10_1016_j_combustflame_2018_12_003 crossref_primary_10_1016_j_combustflame_2018_12_003 elsevier_sciencedirect_doi_10_1016_j_combustflame_2018_12_003 |
PublicationCentury | 2000 |
PublicationDate | March 2019 2019-03-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: March 2019 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Combustion and flame |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Fang, Tu, Guan, Wang, Zhang (bib0008) 2011; 90 Cetegen, Dong (bib0002) 2000; 28 Turns (bib0018) 2000 Gilabert, Lu, Yan (bib0026) 2005; 15 Hamins, Yang, Kashiwagi (bib0025) 1992; 24 Darabkhani, Zhang (bib0007) 2010; 182 Yan, Qiu, Lu, Hossain, Gilabert, Liu (bib0031) 2012; 20 Fang, Jiang, Wang, Guan, Zhang, Wang (bib0015) 2016; 184 Jang, Fang, Wang, Shang (bib0016) 2016; 25 Sahu, Kundu, Ganguly, Datta (bib0027) 2009; 156 Shu, Aggarwal, Katta, Puri (bib0012) 1997; 111 Hu, Hu, Ris (bib0004) 2015; 162 Darabkhani, Zhang (bib0010) 2010; 18 Hu, Liu, Zhang (bib0019) 2017; 200 Hammis, Yang, Kashiwagi (bib0011) 1992 Darabkhani, Wang, Chen, Zhang (bib0001) 2011; 52 Delichatsios (bib0023) 1993; 92 Cetegen, Ahmed (bib0014) 1993; 93 Huang, Yan (bib0030) 2000; 22 Fang, Wang, Guan, Zhang, Wang (bib0005) 2016; 163 Kostiuk, Cheng (bib0009) 1995; 103 Gohari Darabkhani, Bassi, Huang, Zhang (bib0006) 2009; 88 Hu, Wang, Delichatsios, Tang, Zhang, Lu (bib0024) 2013; 109 Tao, Shen, Zong, Tang (bib0020) 2016; 183 Heskestad (bib0021) 1999; 118 Malalasekera, Versteeg, Gilchrist (bib0013) 1996; 20 Yamamoto, Isobe, Hayashi, Yamashita, Chung (bib0029) 2015; 162 Heskestad (bib0022) 1983; 5 Azzoni, Ratti, Puri, Aggarwal (bib0028) 1999; 11 Hu, Lu, Delichatsios, He, Tang (bib0032) 2012; 159 Gotoda, Ueda, Shepherd, Cheng (bib0017) 2007; 62 Fujisawa, Matsumoto, Yamagata (bib0003) 2016; 97 Manikantachari, Raghavan, Srinivasan (bib0033) 2015; 7 Jang (10.1016/j.combustflame.2018.12.003_bib0016) 2016; 25 Hamins (10.1016/j.combustflame.2018.12.003_bib0025) 1992; 24 Darabkhani (10.1016/j.combustflame.2018.12.003_bib0001) 2011; 52 Fang (10.1016/j.combustflame.2018.12.003_bib0005) 2016; 163 Delichatsios (10.1016/j.combustflame.2018.12.003_bib0023) 1993; 92 Cetegen (10.1016/j.combustflame.2018.12.003_bib0002) 2000; 28 Tao (10.1016/j.combustflame.2018.12.003_bib0020) 2016; 183 Yamamoto (10.1016/j.combustflame.2018.12.003_bib0029) 2015; 162 Fujisawa (10.1016/j.combustflame.2018.12.003_bib0003) 2016; 97 Hammis (10.1016/j.combustflame.2018.12.003_bib0011) 1992 Malalasekera (10.1016/j.combustflame.2018.12.003_bib0013) 1996; 20 Gilabert (10.1016/j.combustflame.2018.12.003_bib0026) 2005; 15 Hu (10.1016/j.combustflame.2018.12.003_bib0032) 2012; 159 Darabkhani (10.1016/j.combustflame.2018.12.003_bib0007) 2010; 182 Azzoni (10.1016/j.combustflame.2018.12.003_bib0028) 1999; 11 Fang (10.1016/j.combustflame.2018.12.003_bib0008) 2011; 90 Darabkhani (10.1016/j.combustflame.2018.12.003_bib0010) 2010; 18 Heskestad (10.1016/j.combustflame.2018.12.003_bib0021) 1999; 118 Shu (10.1016/j.combustflame.2018.12.003_bib0012) 1997; 111 Hu (10.1016/j.combustflame.2018.12.003_bib0019) 2017; 200 Hu (10.1016/j.combustflame.2018.12.003_bib0024) 2013; 109 Gohari Darabkhani (10.1016/j.combustflame.2018.12.003_bib0006) 2009; 88 Huang (10.1016/j.combustflame.2018.12.003_bib0030) 2000; 22 Kostiuk (10.1016/j.combustflame.2018.12.003_bib0009) 1995; 103 Yan (10.1016/j.combustflame.2018.12.003_bib0031) 2012; 20 Hu (10.1016/j.combustflame.2018.12.003_bib0004) 2015; 162 Cetegen (10.1016/j.combustflame.2018.12.003_bib0014) 1993; 93 Fang (10.1016/j.combustflame.2018.12.003_bib0015) 2016; 184 Manikantachari (10.1016/j.combustflame.2018.12.003_bib0033) 2015; 7 Heskestad (10.1016/j.combustflame.2018.12.003_bib0022) 1983; 5 Sahu (10.1016/j.combustflame.2018.12.003_bib0027) 2009; 156 Gotoda (10.1016/j.combustflame.2018.12.003_bib0017) 2007; 62 Turns (10.1016/j.combustflame.2018.12.003_bib0018) 2000 |
References_xml | – volume: 5 start-page: 103 year: 1983 end-page: 108 ident: bib0022 article-title: Luminous heights of turbulent diffusion flames publication-title: Fire Saf. J. – volume: 159 start-page: 1178 year: 2012 end-page: 1184 ident: bib0032 article-title: An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening publication-title: Combust. Flame – volume: 18 year: 2010 ident: bib0010 article-title: Stabilisation mechanism of a flickering methane diffusion flame with co-flow of air publication-title: Eng. Lett. – volume: 111 start-page: 276 year: 1997 end-page: 295 ident: bib0012 article-title: Flame-vortex dynamics in an inverse partially premixed combustor: The Froude number effects publication-title: Combust. Flame – volume: 162 start-page: 1095 year: 2015 end-page: 1103 ident: bib0004 article-title: Flame necking-in and instability characterization in small and medium pool fires with different lip heights publication-title: Combust. Flame – volume: 97 start-page: 931 year: 2016 end-page: 950 ident: bib0003 article-title: Influence of co-flow on flickering diffusion flame publication-title: Flow Turb. Combust. – volume: 62 start-page: 1753 year: 2007 end-page: 1759 ident: bib0017 article-title: Flame flickering frequency on a rotating Bunsen burner publication-title: Chem. Eng. Sci. – volume: 24 start-page: 1695 year: 1992 end-page: 1702 ident: bib0025 article-title: An experimental investigation of the pulsation frequency of flames publication-title: Symp. (Int.) Combust. – volume: 109 start-page: 234 year: 2013 end-page: 240 ident: bib0024 article-title: Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere publication-title: Fuel – volume: 162 start-page: 1653 year: 2015 end-page: 1659 ident: bib0029 article-title: Behaviors of tribrachial edge flames and their interactions in a triple-port burner publication-title: Combust. Flame – volume: 163 start-page: 295 year: 2016 end-page: 303 ident: bib0005 article-title: Momentum- and buoyancy-driven laminar methane diffusion flame shapes and radiation characteristics at sub-atmospheric pressures publication-title: Fuel – volume: 156 start-page: 484 year: 2009 end-page: 493 ident: bib0027 article-title: Effects of fuel type and equivalence ratios on the flickering of triple flames publication-title: Combust. Flame – volume: 183 start-page: 164 year: 2016 end-page: 169 ident: bib0020 article-title: An experimental study of flame height and air entrainment of buoyancy-controlled jet flames with sidewalls publication-title: Fuel – volume: 103 start-page: 27 year: 1995 end-page: 40 ident: bib0009 article-title: The coupling of conical wrinkled laminar flames with gravity publication-title: Combust. Flame – volume: 25 start-page: 59 year: 2016 end-page: 64 ident: bib0016 article-title: Effect of cross-wind on oscillation of buoyant diffusion flame publication-title: Fire Saf. Sci. – volume: 200 start-page: 583 year: 2017 end-page: 589 ident: bib0019 article-title: Flame heights of line-source buoyant turbulent non-premixed jets with air entrainment constraint by two parallel side walls publication-title: Fuel – volume: 11 start-page: 3449 year: 1999 end-page: 3464 ident: bib0028 article-title: Gravity effects on triple flames: Flame structure and flow instability publication-title: Phys. Fluids – volume: 28 start-page: 546 year: 2000 end-page: 558 ident: bib0002 article-title: Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities publication-title: Exp. Fluids – start-page: 1695 year: 1992 end-page: 1702 ident: bib0011 article-title: An experimental investigation of the pulsation frequency of flames publication-title: International Symposium on Combustion – volume: 20 start-page: 261 year: 1996 end-page: 271 ident: bib0013 article-title: A review of research and experimental study on the pulsation of buoyant diffusion flames and pool fires publication-title: Fire Mater. – volume: 88 start-page: 264 year: 2009 end-page: 271 ident: bib0006 article-title: Fuel effects on diffusion flames at elevated pressures publication-title: Fuel – volume: 15 start-page: 167 year: 2005 end-page: 171 ident: bib0026 article-title: Three dimensional visualisation and reconstruction of the luminosity distribution of a flame using digital imaging techniques publication-title: Journal of Physics: Conference Series – volume: 93 start-page: 157 year: 1993 end-page: 184 ident: bib0014 article-title: Experiments on the periodic instability of buoyant plumes and pool fires publication-title: Combust. Flame – volume: 90 start-page: 2760 year: 2011 end-page: 2766 ident: bib0008 article-title: Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires publication-title: Fuel – volume: 184 start-page: 856 year: 2016 end-page: 863 ident: bib0015 article-title: Oscillation frequency of buoyant diffusion flame in cross-wind publication-title: Fuel – year: 2000 ident: bib0018 article-title: An introduction to combustion: concepts and applications – volume: 7 start-page: 257 year: 2015 end-page: 282 ident: bib0033 article-title: Effects of burner configurations on the natural oscillation characteristics of laminar jet diffusion flames publication-title: Int. J. Spray Combust. Dyn. – volume: 20 start-page: 389 year: 2012 end-page: 399 ident: bib0031 article-title: Recent advances in 3D flame tomography publication-title: Chin. J. Chem. Eng. – volume: 52 start-page: 2996 year: 2011 end-page: 3003 ident: bib0001 article-title: Impact of co-flow air on buoyant diffusion flames flicker publication-title: Energy Convers. Manag. – volume: 92 start-page: 349 year: 1993 end-page: 364 ident: bib0023 article-title: Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships publication-title: Combust. Flame – volume: 22 start-page: 371 year: 2000 end-page: 384 ident: bib0030 article-title: Transient two-dimensional temperature measurement of open flames by dual-spectral image analysis publication-title: Trans. Inst. Measur. Control – volume: 118 start-page: 51 year: 1999 end-page: 60 ident: bib0021 article-title: Turbulent jet diffusion flames: Consolidation of flame height data publication-title: Combust. Flame – volume: 182 start-page: 231 year: 2010 end-page: 251 ident: bib0007 article-title: Methane diffusion flame dynamics at elevated pressures publication-title: Combust. Sci. Technol. – volume: 5 start-page: 103 year: 1983 ident: 10.1016/j.combustflame.2018.12.003_bib0022 article-title: Luminous heights of turbulent diffusion flames publication-title: Fire Saf. J. doi: 10.1016/0379-7112(83)90002-4 – volume: 97 start-page: 931 issue: 3 year: 2016 ident: 10.1016/j.combustflame.2018.12.003_bib0003 article-title: Influence of co-flow on flickering diffusion flame publication-title: Flow Turb. Combust. doi: 10.1007/s10494-016-9730-9 – volume: 20 start-page: 389 year: 2012 ident: 10.1016/j.combustflame.2018.12.003_bib0031 article-title: Recent advances in 3D flame tomography publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(12)60402-9 – volume: 200 start-page: 583 year: 2017 ident: 10.1016/j.combustflame.2018.12.003_bib0019 article-title: Flame heights of line-source buoyant turbulent non-premixed jets with air entrainment constraint by two parallel side walls publication-title: Fuel doi: 10.1016/j.fuel.2017.03.082 – volume: 88 start-page: 264 year: 2009 ident: 10.1016/j.combustflame.2018.12.003_bib0006 article-title: Fuel effects on diffusion flames at elevated pressures publication-title: Fuel doi: 10.1016/j.fuel.2008.09.013 – volume: 103 start-page: 27 year: 1995 ident: 10.1016/j.combustflame.2018.12.003_bib0009 article-title: The coupling of conical wrinkled laminar flames with gravity publication-title: Combust. Flame doi: 10.1016/0010-2180(95)00076-I – volume: 15 start-page: 167 year: 2005 ident: 10.1016/j.combustflame.2018.12.003_bib0026 article-title: Three dimensional visualisation and reconstruction of the luminosity distribution of a flame using digital imaging techniques publication-title: Journal of Physics: Conference Series – volume: 163 start-page: 295 year: 2016 ident: 10.1016/j.combustflame.2018.12.003_bib0005 article-title: Momentum- and buoyancy-driven laminar methane diffusion flame shapes and radiation characteristics at sub-atmospheric pressures publication-title: Fuel doi: 10.1016/j.fuel.2015.09.068 – volume: 62 start-page: 1753 year: 2007 ident: 10.1016/j.combustflame.2018.12.003_bib0017 article-title: Flame flickering frequency on a rotating Bunsen burner publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2006.11.012 – year: 2000 ident: 10.1016/j.combustflame.2018.12.003_bib0018 – start-page: 1695 year: 1992 ident: 10.1016/j.combustflame.2018.12.003_bib0011 article-title: An experimental investigation of the pulsation frequency of flames – volume: 18 year: 2010 ident: 10.1016/j.combustflame.2018.12.003_bib0010 article-title: Stabilisation mechanism of a flickering methane diffusion flame with co-flow of air publication-title: Eng. Lett. – volume: 28 start-page: 546 year: 2000 ident: 10.1016/j.combustflame.2018.12.003_bib0002 article-title: Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities publication-title: Exp. Fluids doi: 10.1007/s003480050415 – volume: 7 start-page: 257 year: 2015 ident: 10.1016/j.combustflame.2018.12.003_bib0033 article-title: Effects of burner configurations on the natural oscillation characteristics of laminar jet diffusion flames publication-title: Int. J. Spray Combust. Dyn. doi: 10.1260/1756-8277.7.3.257 – volume: 25 start-page: 59 year: 2016 ident: 10.1016/j.combustflame.2018.12.003_bib0016 article-title: Effect of cross-wind on oscillation of buoyant diffusion flame publication-title: Fire Saf. Sci. – volume: 90 start-page: 2760 year: 2011 ident: 10.1016/j.combustflame.2018.12.003_bib0008 article-title: Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires publication-title: Fuel doi: 10.1016/j.fuel.2011.03.035 – volume: 111 start-page: 276 year: 1997 ident: 10.1016/j.combustflame.2018.12.003_bib0012 article-title: Flame-vortex dynamics in an inverse partially premixed combustor: The Froude number effects publication-title: Combust. Flame doi: 10.1016/S0010-2180(97)00018-7 – volume: 184 start-page: 856 year: 2016 ident: 10.1016/j.combustflame.2018.12.003_bib0015 article-title: Oscillation frequency of buoyant diffusion flame in cross-wind publication-title: Fuel doi: 10.1016/j.fuel.2016.07.084 – volume: 156 start-page: 484 year: 2009 ident: 10.1016/j.combustflame.2018.12.003_bib0027 article-title: Effects of fuel type and equivalence ratios on the flickering of triple flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.11.017 – volume: 159 start-page: 1178 year: 2012 ident: 10.1016/j.combustflame.2018.12.003_bib0032 article-title: An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening publication-title: Combust. Flame doi: 10.1016/j.combustflame.2011.09.018 – volume: 92 start-page: 349 year: 1993 ident: 10.1016/j.combustflame.2018.12.003_bib0023 article-title: Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships publication-title: Combust. Flame doi: 10.1016/0010-2180(93)90148-V – volume: 24 start-page: 1695 year: 1992 ident: 10.1016/j.combustflame.2018.12.003_bib0025 article-title: An experimental investigation of the pulsation frequency of flames publication-title: Symp. (Int.) Combust. doi: 10.1016/S0082-0784(06)80198-0 – volume: 118 start-page: 51 year: 1999 ident: 10.1016/j.combustflame.2018.12.003_bib0021 article-title: Turbulent jet diffusion flames: Consolidation of flame height data publication-title: Combust. Flame doi: 10.1016/S0010-2180(98)00161-8 – volume: 183 start-page: 164 year: 2016 ident: 10.1016/j.combustflame.2018.12.003_bib0020 article-title: An experimental study of flame height and air entrainment of buoyancy-controlled jet flames with sidewalls publication-title: Fuel doi: 10.1016/j.fuel.2016.06.054 – volume: 52 start-page: 2996 year: 2011 ident: 10.1016/j.combustflame.2018.12.003_bib0001 article-title: Impact of co-flow air on buoyant diffusion flames flicker publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2011.04.011 – volume: 182 start-page: 231 year: 2010 ident: 10.1016/j.combustflame.2018.12.003_bib0007 article-title: Methane diffusion flame dynamics at elevated pressures publication-title: Combust. Sci. Technol. doi: 10.1080/00102200903418252 – volume: 109 start-page: 234 year: 2013 ident: 10.1016/j.combustflame.2018.12.003_bib0024 article-title: Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere publication-title: Fuel doi: 10.1016/j.fuel.2012.12.050 – volume: 20 start-page: 261 year: 1996 ident: 10.1016/j.combustflame.2018.12.003_bib0013 article-title: A review of research and experimental study on the pulsation of buoyant diffusion flames and pool fires publication-title: Fire Mater. doi: 10.1002/(SICI)1099-1018(199611)20:6<261::AID-FAM578>3.0.CO;2-M – volume: 11 start-page: 3449 year: 1999 ident: 10.1016/j.combustflame.2018.12.003_bib0028 article-title: Gravity effects on triple flames: Flame structure and flow instability publication-title: Phys. Fluids doi: 10.1063/1.870203 – volume: 162 start-page: 1653 year: 2015 ident: 10.1016/j.combustflame.2018.12.003_bib0029 article-title: Behaviors of tribrachial edge flames and their interactions in a triple-port burner publication-title: Combust. Flame doi: 10.1016/j.combustflame.2014.11.028 – volume: 22 start-page: 371 year: 2000 ident: 10.1016/j.combustflame.2018.12.003_bib0030 article-title: Transient two-dimensional temperature measurement of open flames by dual-spectral image analysis publication-title: Trans. Inst. Measur. Control doi: 10.1177/014233120002200503 – volume: 93 start-page: 157 year: 1993 ident: 10.1016/j.combustflame.2018.12.003_bib0014 article-title: Experiments on the periodic instability of buoyant plumes and pool fires publication-title: Combust. Flame doi: 10.1016/0010-2180(93)90090-P – volume: 162 start-page: 1095 year: 2015 ident: 10.1016/j.combustflame.2018.12.003_bib0004 article-title: Flame necking-in and instability characterization in small and medium pool fires with different lip heights publication-title: Combust. Flame doi: 10.1016/j.combustflame.2014.10.001 |
SSID | ssj0007433 |
Score | 2.414287 |
Snippet | •A method for instability delineation of a dual-nozzle flame is proposed.•Quantitative analysis of four new instability modes of the dual-nozzle flame is... The interactions of multiple flames are often encountered in real-world fire and industrial burners. The distance between two jets has a strong influence on... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 23 |
SubjectTerms | Cyclones Diffusion flame Diffusion flames Dual-nozzle flame Flame height Flickering Frequency stability Instability Nozzles Separation Stability analysis |
Title | On the influence of distance between two jets on flickering diffusion flames |
URI | https://dx.doi.org/10.1016/j.combustflame.2018.12.003 https://www.proquest.com/docview/2184433501 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED71MQADggKiUCoPrKF14jw6MFQVVXmoLFTqZjmxI7WgpKKp2PjtnBO7KrAgIWVIopxlnZ3v7uzzdwDXNIpVKGKBYYnwHOaK1BFCKkdQIWPqJxg3l9kW02AyYw9zf16DkT0Lo9MqDfZXmF6itXnTM9rsrRYLfcZXl6VGhI28kjyoDk0XrX3UgObw_nEy3QIyGslqoxkhRwtY7tEyzQubjzfrIkX9a9ZMGpWrg7aG1m879QOxSzM0PoJD4z-SYdXFY6iprAV7I1u2rQUHOwyDJ_D0nBF08cjC1iIheUqk9hn1vUnSIsVHTpaqWJM8I_qQyGspTXTxlI1eTSNlv9enMBvfvYwmjimg4CSMRoWjGFpzqhIWiDCNGQYfiRv2BU2SwGVCoF9N3TAQKTp1A0GjVPpeiuFhLGWIl-97Z9DI8kydA9HUcMITLn7nMpmkkd7-DKnyY7-PcrINA6sunhh2cV3k4o3bNLIl31U116rm1NXcpG3wtrKrimPjT1K3dlT4txnD0Rj8Sb5jh5Kb_3bNdcCLs8Xv04t_Nn8J-_g0qNLVOtAo3jfqCv2XIu5C_eaTds0s_QJ9nvHB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VMhQGxFMUCnhgjagT59GBoapAKZSygMRmOYkjtaC0oqn4-9wldlVgqYSUIUpylnV27mGfvw_gmkeJDlWiMC1RniNclTtKZdpRXGUJ91PMm6tqi3EQv4qHN_-tAQN7FobKKo3tr216Za3NkxujzZv5ZEJnfImWGi1s5FXgQVuwLYjUugnb_eFjPF4ZZHSS9UYzmhwSsNijVZkXNp8sF2WO-ifUTB5Vq4OWQ-uvn_plsSs3dL8PeyZ-ZP26iwfQ0MUhtAaWtu0QdtcQBo9g9FwwDPHYxHKRsFnOMooZ6d4UabHya8amulywWcHokMh7Jc2IPGVJq2ms6vfiGF7v714GsWMIFJxU8Kh0tEBvznUqAhXmicDkI3XDruJpGrhCKYyruRsGKsegrqd4lGe-l2N6mGRZiJfveyfQLGaFPgVG0HDKUy5-54oszSPa_gy59hO_i3JZG3pWXTI16OJEcvEhbRnZVK6rWpKqJXcJm7QN3kp2XmNsbCR1a0dF_pgxEp3BRvIdO5TS_LcLSQkvzha_y8_-2fwVtOKXp5EcDceP57CDb3p16VoHmuXnUl9gLFMml2aufgMxFvOn |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+influence+of+distance+between+two+jets+on+flickering+diffusion+flames&rft.jtitle=Combustion+and+flame&rft.au=Changchun%2C+Liu&rft.au=Xinlei%2C+Liu&rft.au=Hong%2C+Ge&rft.au=Jun%2C+Deng&rft.date=2019-03-01&rft.issn=0010-2180&rft.volume=201&rft.spage=23&rft.epage=30&rft_id=info:doi/10.1016%2Fj.combustflame.2018.12.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_combustflame_2018_12_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon |