On the influence of distance between two jets on flickering diffusion flames

•A method for instability delineation of a dual-nozzle flame is proposed.•Quantitative analysis of four new instability modes of the dual-nozzle flame is performed.•A special phenomenon is discovered in which the length of a dual-nozzle flame is less than that of a single-nozzle flame.•The formation...

Full description

Saved in:
Bibliographic Details
Published inCombustion and flame Vol. 201; pp. 23 - 30
Main Authors Changchun, Liu, Xinlei, Liu, Hong, Ge, Jun, Deng, Shasha, Zhou, Xueyao, Wang, Fangming, Cheng
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.03.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0010-2180
1556-2921
DOI10.1016/j.combustflame.2018.12.003

Cover

Abstract •A method for instability delineation of a dual-nozzle flame is proposed.•Quantitative analysis of four new instability modes of the dual-nozzle flame is performed.•A special phenomenon is discovered in which the length of a dual-nozzle flame is less than that of a single-nozzle flame.•The formation mechanism of merged sinuous flame and alternated sinuous flame is studied. The interactions of multiple flames are often encountered in real-world fire and industrial burners. The distance between two jets has a strong influence on the instability mode, oscillation frequency, and mean height of flickering diffusion flames, which is experimentally studied and analyzed in this paper. Five different types of instability modes are identified as the separation distance between two nozzles is increased. When the nozzle separation distance is smaller, the flame mode is similar to that of a single-nozzle flame. In this case, the flame can switch between the merged sinuous mode and the merged varicose mode due to external disturbances on the flame. As the nozzle separation distance increases, the probability of mode switching from merged varicose to merged sinuous decreases. As the nozzle separation distance increases further, the flame mode translates into symmetric sinuous mode, alternated sinuous or independent mode. In addition, the flame height and oscillation frequency of a dual-nozzle flame have their own characteristics, which are different from that of the single-nozzle flame. The increase of the nozzle separation distance, leads to a decrease and then an increase of the flame mean height. It is interesting that the flame mean height of the alternated sinuous flame is the lowest, even lower than that of the single-nozzle flame. The oscillation frequency of the symmetrical sinuous flame is lower than that of the single-nozzle flame, and the frequency of alternated sinuous flame is higher than that of the single-nozzle flame.
AbstractList •A method for instability delineation of a dual-nozzle flame is proposed.•Quantitative analysis of four new instability modes of the dual-nozzle flame is performed.•A special phenomenon is discovered in which the length of a dual-nozzle flame is less than that of a single-nozzle flame.•The formation mechanism of merged sinuous flame and alternated sinuous flame is studied. The interactions of multiple flames are often encountered in real-world fire and industrial burners. The distance between two jets has a strong influence on the instability mode, oscillation frequency, and mean height of flickering diffusion flames, which is experimentally studied and analyzed in this paper. Five different types of instability modes are identified as the separation distance between two nozzles is increased. When the nozzle separation distance is smaller, the flame mode is similar to that of a single-nozzle flame. In this case, the flame can switch between the merged sinuous mode and the merged varicose mode due to external disturbances on the flame. As the nozzle separation distance increases, the probability of mode switching from merged varicose to merged sinuous decreases. As the nozzle separation distance increases further, the flame mode translates into symmetric sinuous mode, alternated sinuous or independent mode. In addition, the flame height and oscillation frequency of a dual-nozzle flame have their own characteristics, which are different from that of the single-nozzle flame. The increase of the nozzle separation distance, leads to a decrease and then an increase of the flame mean height. It is interesting that the flame mean height of the alternated sinuous flame is the lowest, even lower than that of the single-nozzle flame. The oscillation frequency of the symmetrical sinuous flame is lower than that of the single-nozzle flame, and the frequency of alternated sinuous flame is higher than that of the single-nozzle flame.
The interactions of multiple flames are often encountered in real-world fire and industrial burners. The distance between two jets has a strong influence on the instability mode, oscillation frequency, and mean height of flickering diffusion flames, which is experimentally studied and analyzed in this paper. Five different types of instability modes are identified as the separation distance between two nozzles is increased. When the nozzle separation distance is smaller, the flame mode is similar to that of a single-nozzle flame. In this case, the flame can switch between the merged sinuous mode and the merged varicose mode due to external disturbances on the flame. As the nozzle separation distance increases, the probability of mode switching from merged varicose to merged sinuous decreases. As the nozzle separation distance increases further, the flame mode translates into symmetric sinuous mode, alternated sinuous or independent mode. In addition, the flame height and oscillation frequency of a dual-nozzle flame have their own characteristics, which are different from that of the single-nozzle flame. The increase of the nozzle separation distance, leads to a decrease and then an increase of the flame mean height. It is interesting that the flame mean height of the alternated sinuous flame is the lowest, even lower than that of the single-nozzle flame. The oscillation frequency of the symmetrical sinuous flame is lower than that of the single-nozzle flame, and the frequency of alternated sinuous flame is higher than that of the single-nozzle flame.
Author Xinlei, Liu
Fangming, Cheng
Changchun, Liu
Shasha, Zhou
Jun, Deng
Xueyao, Wang
Hong, Ge
Author_xml – sequence: 1
  givenname: Liu
  surname: Changchun
  fullname: Changchun, Liu
  organization: College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
– sequence: 2
  givenname: Liu
  surname: Xinlei
  fullname: Xinlei, Liu
  organization: College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
– sequence: 3
  givenname: Ge
  surname: Hong
  fullname: Hong, Ge
  organization: School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 4
  givenname: Deng
  surname: Jun
  fullname: Jun, Deng
  organization: College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
– sequence: 5
  givenname: Zhou
  surname: Shasha
  fullname: Shasha, Zhou
  organization: College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
– sequence: 6
  givenname: Wang
  surname: Xueyao
  fullname: Xueyao, Wang
  email: wangxueyao@ncepu.edu.cn
  organization: School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
– sequence: 7
  givenname: Cheng
  surname: Fangming
  fullname: Fangming, Cheng
  organization: College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
BookMark eNqNkM1OwzAQhC1UJNrCO0RwTvA6TtJyApVfqVIvcLZcZw0OaVxsh4q3x6EcEKdKlmytZ2d2vwkZdbZDQs6BZkChvGwyZTfr3gfdyg1mjMIsA5ZRmh-RMRRFmbI5gxEZUwo0ZTCjJ2TifUMprXiej8ly1SXhDRPT6bbHTmFidVIbH-TwXmPYIUbFziYNBp_YLtGtUe_oTPcadVr33vwUY7w_Jcdath7Pfu8pebm_e148psvVw9PiZpkqDrOQIgc2B1S8lJVec6i4YhWVoFTJuJRV_GRVKXVRFnMJM10Xuea8XNd1FU9R5FNysffdOvvRow-isb3rYqSIK_K4WEEhqq73KuWs9w61UCbIEMcNTppWABUDQ9GIvwzFwFAAE5FhtLj6Z7F1ZiPd12HNt_tmjCg-DTrhlRkQ18ahCqK25hCbb1qul1M
CitedBy_id crossref_primary_10_1016_j_combustflame_2019_11_027
crossref_primary_10_1007_s10973_020_10399_2
crossref_primary_10_1016_j_fuproc_2022_107649
crossref_primary_10_1016_j_energy_2024_131300
crossref_primary_10_1016_j_firesaf_2021_103490
crossref_primary_10_1088_1742_6596_2247_1_012030
crossref_primary_10_1080_00102202_2022_2063688
crossref_primary_10_1016_j_fuel_2023_128789
crossref_primary_10_1021_acs_energyfuels_9b00480
crossref_primary_10_1016_j_expthermflusci_2019_109924
crossref_primary_10_1016_j_psep_2021_11_043
crossref_primary_10_3390_sym16030292
crossref_primary_10_1016_j_fuel_2020_119661
crossref_primary_10_1016_j_fuel_2019_116549
crossref_primary_10_1016_j_fuel_2020_118022
crossref_primary_10_1016_j_combustflame_2025_114090
crossref_primary_10_1103_PhysRevE_105_044208
crossref_primary_10_1103_PhysRevFluids_4_053202
crossref_primary_10_1103_PhysRevFluids_7_L111501
Cites_doi 10.1016/0379-7112(83)90002-4
10.1007/s10494-016-9730-9
10.1016/S1004-9541(12)60402-9
10.1016/j.fuel.2017.03.082
10.1016/j.fuel.2008.09.013
10.1016/0010-2180(95)00076-I
10.1016/j.fuel.2015.09.068
10.1016/j.ces.2006.11.012
10.1007/s003480050415
10.1260/1756-8277.7.3.257
10.1016/j.fuel.2011.03.035
10.1016/S0010-2180(97)00018-7
10.1016/j.fuel.2016.07.084
10.1016/j.combustflame.2008.11.017
10.1016/j.combustflame.2011.09.018
10.1016/0010-2180(93)90148-V
10.1016/S0082-0784(06)80198-0
10.1016/S0010-2180(98)00161-8
10.1016/j.fuel.2016.06.054
10.1016/j.enconman.2011.04.011
10.1080/00102200903418252
10.1016/j.fuel.2012.12.050
10.1002/(SICI)1099-1018(199611)20:6<261::AID-FAM578>3.0.CO;2-M
10.1063/1.870203
10.1016/j.combustflame.2014.11.028
10.1177/014233120002200503
10.1016/0010-2180(93)90090-P
10.1016/j.combustflame.2014.10.001
ContentType Journal Article
Copyright 2018 The Combustion Institute
Copyright Elsevier BV Mar 2019
Copyright_xml – notice: 2018 The Combustion Institute
– notice: Copyright Elsevier BV Mar 2019
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
DOI 10.1016/j.combustflame.2018.12.003
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1556-2921
EndPage 30
ExternalDocumentID 10_1016_j_combustflame_2018_12_003
S0010218018305200
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29F
4.4
41~
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDEX
ABDMP
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ACDAQ
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VH1
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7TB
8FD
FR3
H8D
L7M
ID FETCH-LOGICAL-c418t-e41291ec46a7fb4174c270a1cc624aa7291276af5659a18fd53f446bdd7dd7553
IEDL.DBID AIKHN
ISSN 0010-2180
IngestDate Sun Sep 07 03:23:43 EDT 2025
Thu Sep 18 00:13:58 EDT 2025
Thu Apr 24 23:03:01 EDT 2025
Tue Jul 16 04:31:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Flame height
Flickering
Instability
Diffusion flame
Dual-nozzle flame
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c418t-e41291ec46a7fb4174c270a1cc624aa7291276af5659a18fd53f446bdd7dd7553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2184433501
PQPubID 2045271
PageCount 8
ParticipantIDs proquest_journals_2184433501
crossref_citationtrail_10_1016_j_combustflame_2018_12_003
crossref_primary_10_1016_j_combustflame_2018_12_003
elsevier_sciencedirect_doi_10_1016_j_combustflame_2018_12_003
PublicationCentury 2000
PublicationDate March 2019
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: March 2019
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Combustion and flame
PublicationYear 2019
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Fang, Tu, Guan, Wang, Zhang (bib0008) 2011; 90
Cetegen, Dong (bib0002) 2000; 28
Turns (bib0018) 2000
Gilabert, Lu, Yan (bib0026) 2005; 15
Hamins, Yang, Kashiwagi (bib0025) 1992; 24
Darabkhani, Zhang (bib0007) 2010; 182
Yan, Qiu, Lu, Hossain, Gilabert, Liu (bib0031) 2012; 20
Fang, Jiang, Wang, Guan, Zhang, Wang (bib0015) 2016; 184
Jang, Fang, Wang, Shang (bib0016) 2016; 25
Sahu, Kundu, Ganguly, Datta (bib0027) 2009; 156
Shu, Aggarwal, Katta, Puri (bib0012) 1997; 111
Hu, Hu, Ris (bib0004) 2015; 162
Darabkhani, Zhang (bib0010) 2010; 18
Hu, Liu, Zhang (bib0019) 2017; 200
Hammis, Yang, Kashiwagi (bib0011) 1992
Darabkhani, Wang, Chen, Zhang (bib0001) 2011; 52
Delichatsios (bib0023) 1993; 92
Cetegen, Ahmed (bib0014) 1993; 93
Huang, Yan (bib0030) 2000; 22
Fang, Wang, Guan, Zhang, Wang (bib0005) 2016; 163
Kostiuk, Cheng (bib0009) 1995; 103
Gohari Darabkhani, Bassi, Huang, Zhang (bib0006) 2009; 88
Hu, Wang, Delichatsios, Tang, Zhang, Lu (bib0024) 2013; 109
Tao, Shen, Zong, Tang (bib0020) 2016; 183
Heskestad (bib0021) 1999; 118
Malalasekera, Versteeg, Gilchrist (bib0013) 1996; 20
Yamamoto, Isobe, Hayashi, Yamashita, Chung (bib0029) 2015; 162
Heskestad (bib0022) 1983; 5
Azzoni, Ratti, Puri, Aggarwal (bib0028) 1999; 11
Hu, Lu, Delichatsios, He, Tang (bib0032) 2012; 159
Gotoda, Ueda, Shepherd, Cheng (bib0017) 2007; 62
Fujisawa, Matsumoto, Yamagata (bib0003) 2016; 97
Manikantachari, Raghavan, Srinivasan (bib0033) 2015; 7
Jang (10.1016/j.combustflame.2018.12.003_bib0016) 2016; 25
Hamins (10.1016/j.combustflame.2018.12.003_bib0025) 1992; 24
Darabkhani (10.1016/j.combustflame.2018.12.003_bib0001) 2011; 52
Fang (10.1016/j.combustflame.2018.12.003_bib0005) 2016; 163
Delichatsios (10.1016/j.combustflame.2018.12.003_bib0023) 1993; 92
Cetegen (10.1016/j.combustflame.2018.12.003_bib0002) 2000; 28
Tao (10.1016/j.combustflame.2018.12.003_bib0020) 2016; 183
Yamamoto (10.1016/j.combustflame.2018.12.003_bib0029) 2015; 162
Fujisawa (10.1016/j.combustflame.2018.12.003_bib0003) 2016; 97
Hammis (10.1016/j.combustflame.2018.12.003_bib0011) 1992
Malalasekera (10.1016/j.combustflame.2018.12.003_bib0013) 1996; 20
Gilabert (10.1016/j.combustflame.2018.12.003_bib0026) 2005; 15
Hu (10.1016/j.combustflame.2018.12.003_bib0032) 2012; 159
Darabkhani (10.1016/j.combustflame.2018.12.003_bib0007) 2010; 182
Azzoni (10.1016/j.combustflame.2018.12.003_bib0028) 1999; 11
Fang (10.1016/j.combustflame.2018.12.003_bib0008) 2011; 90
Darabkhani (10.1016/j.combustflame.2018.12.003_bib0010) 2010; 18
Heskestad (10.1016/j.combustflame.2018.12.003_bib0021) 1999; 118
Shu (10.1016/j.combustflame.2018.12.003_bib0012) 1997; 111
Hu (10.1016/j.combustflame.2018.12.003_bib0019) 2017; 200
Hu (10.1016/j.combustflame.2018.12.003_bib0024) 2013; 109
Gohari Darabkhani (10.1016/j.combustflame.2018.12.003_bib0006) 2009; 88
Huang (10.1016/j.combustflame.2018.12.003_bib0030) 2000; 22
Kostiuk (10.1016/j.combustflame.2018.12.003_bib0009) 1995; 103
Yan (10.1016/j.combustflame.2018.12.003_bib0031) 2012; 20
Hu (10.1016/j.combustflame.2018.12.003_bib0004) 2015; 162
Cetegen (10.1016/j.combustflame.2018.12.003_bib0014) 1993; 93
Fang (10.1016/j.combustflame.2018.12.003_bib0015) 2016; 184
Manikantachari (10.1016/j.combustflame.2018.12.003_bib0033) 2015; 7
Heskestad (10.1016/j.combustflame.2018.12.003_bib0022) 1983; 5
Sahu (10.1016/j.combustflame.2018.12.003_bib0027) 2009; 156
Gotoda (10.1016/j.combustflame.2018.12.003_bib0017) 2007; 62
Turns (10.1016/j.combustflame.2018.12.003_bib0018) 2000
References_xml – volume: 5
  start-page: 103
  year: 1983
  end-page: 108
  ident: bib0022
  article-title: Luminous heights of turbulent diffusion flames
  publication-title: Fire Saf. J.
– volume: 159
  start-page: 1178
  year: 2012
  end-page: 1184
  ident: bib0032
  article-title: An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening
  publication-title: Combust. Flame
– volume: 18
  year: 2010
  ident: bib0010
  article-title: Stabilisation mechanism of a flickering methane diffusion flame with co-flow of air
  publication-title: Eng. Lett.
– volume: 111
  start-page: 276
  year: 1997
  end-page: 295
  ident: bib0012
  article-title: Flame-vortex dynamics in an inverse partially premixed combustor: The Froude number effects
  publication-title: Combust. Flame
– volume: 162
  start-page: 1095
  year: 2015
  end-page: 1103
  ident: bib0004
  article-title: Flame necking-in and instability characterization in small and medium pool fires with different lip heights
  publication-title: Combust. Flame
– volume: 97
  start-page: 931
  year: 2016
  end-page: 950
  ident: bib0003
  article-title: Influence of co-flow on flickering diffusion flame
  publication-title: Flow Turb. Combust.
– volume: 62
  start-page: 1753
  year: 2007
  end-page: 1759
  ident: bib0017
  article-title: Flame flickering frequency on a rotating Bunsen burner
  publication-title: Chem. Eng. Sci.
– volume: 24
  start-page: 1695
  year: 1992
  end-page: 1702
  ident: bib0025
  article-title: An experimental investigation of the pulsation frequency of flames
  publication-title: Symp. (Int.) Combust.
– volume: 109
  start-page: 234
  year: 2013
  end-page: 240
  ident: bib0024
  article-title: Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere
  publication-title: Fuel
– volume: 162
  start-page: 1653
  year: 2015
  end-page: 1659
  ident: bib0029
  article-title: Behaviors of tribrachial edge flames and their interactions in a triple-port burner
  publication-title: Combust. Flame
– volume: 163
  start-page: 295
  year: 2016
  end-page: 303
  ident: bib0005
  article-title: Momentum- and buoyancy-driven laminar methane diffusion flame shapes and radiation characteristics at sub-atmospheric pressures
  publication-title: Fuel
– volume: 156
  start-page: 484
  year: 2009
  end-page: 493
  ident: bib0027
  article-title: Effects of fuel type and equivalence ratios on the flickering of triple flames
  publication-title: Combust. Flame
– volume: 183
  start-page: 164
  year: 2016
  end-page: 169
  ident: bib0020
  article-title: An experimental study of flame height and air entrainment of buoyancy-controlled jet flames with sidewalls
  publication-title: Fuel
– volume: 103
  start-page: 27
  year: 1995
  end-page: 40
  ident: bib0009
  article-title: The coupling of conical wrinkled laminar flames with gravity
  publication-title: Combust. Flame
– volume: 25
  start-page: 59
  year: 2016
  end-page: 64
  ident: bib0016
  article-title: Effect of cross-wind on oscillation of buoyant diffusion flame
  publication-title: Fire Saf. Sci.
– volume: 200
  start-page: 583
  year: 2017
  end-page: 589
  ident: bib0019
  article-title: Flame heights of line-source buoyant turbulent non-premixed jets with air entrainment constraint by two parallel side walls
  publication-title: Fuel
– volume: 11
  start-page: 3449
  year: 1999
  end-page: 3464
  ident: bib0028
  article-title: Gravity effects on triple flames: Flame structure and flow instability
  publication-title: Phys. Fluids
– volume: 28
  start-page: 546
  year: 2000
  end-page: 558
  ident: bib0002
  article-title: Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities
  publication-title: Exp. Fluids
– start-page: 1695
  year: 1992
  end-page: 1702
  ident: bib0011
  article-title: An experimental investigation of the pulsation frequency of flames
  publication-title: International Symposium on Combustion
– volume: 20
  start-page: 261
  year: 1996
  end-page: 271
  ident: bib0013
  article-title: A review of research and experimental study on the pulsation of buoyant diffusion flames and pool fires
  publication-title: Fire Mater.
– volume: 88
  start-page: 264
  year: 2009
  end-page: 271
  ident: bib0006
  article-title: Fuel effects on diffusion flames at elevated pressures
  publication-title: Fuel
– volume: 15
  start-page: 167
  year: 2005
  end-page: 171
  ident: bib0026
  article-title: Three dimensional visualisation and reconstruction of the luminosity distribution of a flame using digital imaging techniques
  publication-title: Journal of Physics: Conference Series
– volume: 93
  start-page: 157
  year: 1993
  end-page: 184
  ident: bib0014
  article-title: Experiments on the periodic instability of buoyant plumes and pool fires
  publication-title: Combust. Flame
– volume: 90
  start-page: 2760
  year: 2011
  end-page: 2766
  ident: bib0008
  article-title: Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires
  publication-title: Fuel
– volume: 184
  start-page: 856
  year: 2016
  end-page: 863
  ident: bib0015
  article-title: Oscillation frequency of buoyant diffusion flame in cross-wind
  publication-title: Fuel
– year: 2000
  ident: bib0018
  article-title: An introduction to combustion: concepts and applications
– volume: 7
  start-page: 257
  year: 2015
  end-page: 282
  ident: bib0033
  article-title: Effects of burner configurations on the natural oscillation characteristics of laminar jet diffusion flames
  publication-title: Int. J. Spray Combust. Dyn.
– volume: 20
  start-page: 389
  year: 2012
  end-page: 399
  ident: bib0031
  article-title: Recent advances in 3D flame tomography
  publication-title: Chin. J. Chem. Eng.
– volume: 52
  start-page: 2996
  year: 2011
  end-page: 3003
  ident: bib0001
  article-title: Impact of co-flow air on buoyant diffusion flames flicker
  publication-title: Energy Convers. Manag.
– volume: 92
  start-page: 349
  year: 1993
  end-page: 364
  ident: bib0023
  article-title: Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships
  publication-title: Combust. Flame
– volume: 22
  start-page: 371
  year: 2000
  end-page: 384
  ident: bib0030
  article-title: Transient two-dimensional temperature measurement of open flames by dual-spectral image analysis
  publication-title: Trans. Inst. Measur. Control
– volume: 118
  start-page: 51
  year: 1999
  end-page: 60
  ident: bib0021
  article-title: Turbulent jet diffusion flames: Consolidation of flame height data
  publication-title: Combust. Flame
– volume: 182
  start-page: 231
  year: 2010
  end-page: 251
  ident: bib0007
  article-title: Methane diffusion flame dynamics at elevated pressures
  publication-title: Combust. Sci. Technol.
– volume: 5
  start-page: 103
  year: 1983
  ident: 10.1016/j.combustflame.2018.12.003_bib0022
  article-title: Luminous heights of turbulent diffusion flames
  publication-title: Fire Saf. J.
  doi: 10.1016/0379-7112(83)90002-4
– volume: 97
  start-page: 931
  issue: 3
  year: 2016
  ident: 10.1016/j.combustflame.2018.12.003_bib0003
  article-title: Influence of co-flow on flickering diffusion flame
  publication-title: Flow Turb. Combust.
  doi: 10.1007/s10494-016-9730-9
– volume: 20
  start-page: 389
  year: 2012
  ident: 10.1016/j.combustflame.2018.12.003_bib0031
  article-title: Recent advances in 3D flame tomography
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(12)60402-9
– volume: 200
  start-page: 583
  year: 2017
  ident: 10.1016/j.combustflame.2018.12.003_bib0019
  article-title: Flame heights of line-source buoyant turbulent non-premixed jets with air entrainment constraint by two parallel side walls
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.03.082
– volume: 88
  start-page: 264
  year: 2009
  ident: 10.1016/j.combustflame.2018.12.003_bib0006
  article-title: Fuel effects on diffusion flames at elevated pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2008.09.013
– volume: 103
  start-page: 27
  year: 1995
  ident: 10.1016/j.combustflame.2018.12.003_bib0009
  article-title: The coupling of conical wrinkled laminar flames with gravity
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(95)00076-I
– volume: 15
  start-page: 167
  year: 2005
  ident: 10.1016/j.combustflame.2018.12.003_bib0026
  article-title: Three dimensional visualisation and reconstruction of the luminosity distribution of a flame using digital imaging techniques
  publication-title: Journal of Physics: Conference Series
– volume: 163
  start-page: 295
  year: 2016
  ident: 10.1016/j.combustflame.2018.12.003_bib0005
  article-title: Momentum- and buoyancy-driven laminar methane diffusion flame shapes and radiation characteristics at sub-atmospheric pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.09.068
– volume: 62
  start-page: 1753
  year: 2007
  ident: 10.1016/j.combustflame.2018.12.003_bib0017
  article-title: Flame flickering frequency on a rotating Bunsen burner
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2006.11.012
– year: 2000
  ident: 10.1016/j.combustflame.2018.12.003_bib0018
– start-page: 1695
  year: 1992
  ident: 10.1016/j.combustflame.2018.12.003_bib0011
  article-title: An experimental investigation of the pulsation frequency of flames
– volume: 18
  year: 2010
  ident: 10.1016/j.combustflame.2018.12.003_bib0010
  article-title: Stabilisation mechanism of a flickering methane diffusion flame with co-flow of air
  publication-title: Eng. Lett.
– volume: 28
  start-page: 546
  year: 2000
  ident: 10.1016/j.combustflame.2018.12.003_bib0002
  article-title: Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities
  publication-title: Exp. Fluids
  doi: 10.1007/s003480050415
– volume: 7
  start-page: 257
  year: 2015
  ident: 10.1016/j.combustflame.2018.12.003_bib0033
  article-title: Effects of burner configurations on the natural oscillation characteristics of laminar jet diffusion flames
  publication-title: Int. J. Spray Combust. Dyn.
  doi: 10.1260/1756-8277.7.3.257
– volume: 25
  start-page: 59
  year: 2016
  ident: 10.1016/j.combustflame.2018.12.003_bib0016
  article-title: Effect of cross-wind on oscillation of buoyant diffusion flame
  publication-title: Fire Saf. Sci.
– volume: 90
  start-page: 2760
  year: 2011
  ident: 10.1016/j.combustflame.2018.12.003_bib0008
  article-title: Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.03.035
– volume: 111
  start-page: 276
  year: 1997
  ident: 10.1016/j.combustflame.2018.12.003_bib0012
  article-title: Flame-vortex dynamics in an inverse partially premixed combustor: The Froude number effects
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(97)00018-7
– volume: 184
  start-page: 856
  year: 2016
  ident: 10.1016/j.combustflame.2018.12.003_bib0015
  article-title: Oscillation frequency of buoyant diffusion flame in cross-wind
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.07.084
– volume: 156
  start-page: 484
  year: 2009
  ident: 10.1016/j.combustflame.2018.12.003_bib0027
  article-title: Effects of fuel type and equivalence ratios on the flickering of triple flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2008.11.017
– volume: 159
  start-page: 1178
  year: 2012
  ident: 10.1016/j.combustflame.2018.12.003_bib0032
  article-title: An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2011.09.018
– volume: 92
  start-page: 349
  year: 1993
  ident: 10.1016/j.combustflame.2018.12.003_bib0023
  article-title: Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(93)90148-V
– volume: 24
  start-page: 1695
  year: 1992
  ident: 10.1016/j.combustflame.2018.12.003_bib0025
  article-title: An experimental investigation of the pulsation frequency of flames
  publication-title: Symp. (Int.) Combust.
  doi: 10.1016/S0082-0784(06)80198-0
– volume: 118
  start-page: 51
  year: 1999
  ident: 10.1016/j.combustflame.2018.12.003_bib0021
  article-title: Turbulent jet diffusion flames: Consolidation of flame height data
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(98)00161-8
– volume: 183
  start-page: 164
  year: 2016
  ident: 10.1016/j.combustflame.2018.12.003_bib0020
  article-title: An experimental study of flame height and air entrainment of buoyancy-controlled jet flames with sidewalls
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.06.054
– volume: 52
  start-page: 2996
  year: 2011
  ident: 10.1016/j.combustflame.2018.12.003_bib0001
  article-title: Impact of co-flow air on buoyant diffusion flames flicker
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2011.04.011
– volume: 182
  start-page: 231
  year: 2010
  ident: 10.1016/j.combustflame.2018.12.003_bib0007
  article-title: Methane diffusion flame dynamics at elevated pressures
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102200903418252
– volume: 109
  start-page: 234
  year: 2013
  ident: 10.1016/j.combustflame.2018.12.003_bib0024
  article-title: Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.12.050
– volume: 20
  start-page: 261
  year: 1996
  ident: 10.1016/j.combustflame.2018.12.003_bib0013
  article-title: A review of research and experimental study on the pulsation of buoyant diffusion flames and pool fires
  publication-title: Fire Mater.
  doi: 10.1002/(SICI)1099-1018(199611)20:6<261::AID-FAM578>3.0.CO;2-M
– volume: 11
  start-page: 3449
  year: 1999
  ident: 10.1016/j.combustflame.2018.12.003_bib0028
  article-title: Gravity effects on triple flames: Flame structure and flow instability
  publication-title: Phys. Fluids
  doi: 10.1063/1.870203
– volume: 162
  start-page: 1653
  year: 2015
  ident: 10.1016/j.combustflame.2018.12.003_bib0029
  article-title: Behaviors of tribrachial edge flames and their interactions in a triple-port burner
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.11.028
– volume: 22
  start-page: 371
  year: 2000
  ident: 10.1016/j.combustflame.2018.12.003_bib0030
  article-title: Transient two-dimensional temperature measurement of open flames by dual-spectral image analysis
  publication-title: Trans. Inst. Measur. Control
  doi: 10.1177/014233120002200503
– volume: 93
  start-page: 157
  year: 1993
  ident: 10.1016/j.combustflame.2018.12.003_bib0014
  article-title: Experiments on the periodic instability of buoyant plumes and pool fires
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(93)90090-P
– volume: 162
  start-page: 1095
  year: 2015
  ident: 10.1016/j.combustflame.2018.12.003_bib0004
  article-title: Flame necking-in and instability characterization in small and medium pool fires with different lip heights
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.10.001
SSID ssj0007433
Score 2.414287
Snippet •A method for instability delineation of a dual-nozzle flame is proposed.•Quantitative analysis of four new instability modes of the dual-nozzle flame is...
The interactions of multiple flames are often encountered in real-world fire and industrial burners. The distance between two jets has a strong influence on...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 23
SubjectTerms Cyclones
Diffusion flame
Diffusion flames
Dual-nozzle flame
Flame height
Flickering
Frequency stability
Instability
Nozzles
Separation
Stability analysis
Title On the influence of distance between two jets on flickering diffusion flames
URI https://dx.doi.org/10.1016/j.combustflame.2018.12.003
https://www.proquest.com/docview/2184433501
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED71MQADggKiUCoPrKF14jw6MFQVVXmoLFTqZjmxI7WgpKKp2PjtnBO7KrAgIWVIopxlnZ3v7uzzdwDXNIpVKGKBYYnwHOaK1BFCKkdQIWPqJxg3l9kW02AyYw9zf16DkT0Lo9MqDfZXmF6itXnTM9rsrRYLfcZXl6VGhI28kjyoDk0XrX3UgObw_nEy3QIyGslqoxkhRwtY7tEyzQubjzfrIkX9a9ZMGpWrg7aG1m879QOxSzM0PoJD4z-SYdXFY6iprAV7I1u2rQUHOwyDJ_D0nBF08cjC1iIheUqk9hn1vUnSIsVHTpaqWJM8I_qQyGspTXTxlI1eTSNlv9enMBvfvYwmjimg4CSMRoWjGFpzqhIWiDCNGQYfiRv2BU2SwGVCoF9N3TAQKTp1A0GjVPpeiuFhLGWIl-97Z9DI8kydA9HUcMITLn7nMpmkkd7-DKnyY7-PcrINA6sunhh2cV3k4o3bNLIl31U116rm1NXcpG3wtrKrimPjT1K3dlT4txnD0Rj8Sb5jh5Kb_3bNdcCLs8Xv04t_Nn8J-_g0qNLVOtAo3jfqCv2XIu5C_eaTds0s_QJ9nvHB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VMhQGxFMUCnhgjagT59GBoapAKZSygMRmOYkjtaC0oqn4-9wldlVgqYSUIUpylnV27mGfvw_gmkeJDlWiMC1RniNclTtKZdpRXGUJ91PMm6tqi3EQv4qHN_-tAQN7FobKKo3tr216Za3NkxujzZv5ZEJnfImWGi1s5FXgQVuwLYjUugnb_eFjPF4ZZHSS9UYzmhwSsNijVZkXNp8sF2WO-ifUTB5Vq4OWQ-uvn_plsSs3dL8PeyZ-ZP26iwfQ0MUhtAaWtu0QdtcQBo9g9FwwDPHYxHKRsFnOMooZ6d4UabHya8amulywWcHokMh7Jc2IPGVJq2ms6vfiGF7v714GsWMIFJxU8Kh0tEBvznUqAhXmicDkI3XDruJpGrhCKYyruRsGKsegrqd4lGe-l2N6mGRZiJfveyfQLGaFPgVG0HDKUy5-54oszSPa_gy59hO_i3JZG3pWXTI16OJEcvEhbRnZVK6rWpKqJXcJm7QN3kp2XmNsbCR1a0dF_pgxEp3BRvIdO5TS_LcLSQkvzha_y8_-2fwVtOKXp5EcDceP57CDb3p16VoHmuXnUl9gLFMml2aufgMxFvOn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+influence+of+distance+between+two+jets+on+flickering+diffusion+flames&rft.jtitle=Combustion+and+flame&rft.au=Changchun%2C+Liu&rft.au=Xinlei%2C+Liu&rft.au=Hong%2C+Ge&rft.au=Jun%2C+Deng&rft.date=2019-03-01&rft.issn=0010-2180&rft.volume=201&rft.spage=23&rft.epage=30&rft_id=info:doi/10.1016%2Fj.combustflame.2018.12.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_combustflame_2018_12_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-2180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-2180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-2180&client=summon